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Abstract

The allocation of lock objects to critical sections in concurrent programs affects

both performance and correctness. Traditionally, this allocation is done manually by

the programmer. Recent work explores automatic lock allocation, aiming primarily to

minimize conflicts and maximize parallelism by allocating locks to individual critical

sections. We investigate several modes of lock allocation, using connected components

(groups) of interfering critical sections on a critical section interference graph as the

basis for allocation decisions. Our allocator uses thread-based side effect analysis

which is built from several pluggable component analyses. It benefits from precise

points-to and may happen in parallel information. Thread-local object information

provides a small improvement over points-to analysis alone. Our framework minimizes

the restrictions on input programs, dealing gracefully with nesting and deadlock, and

requiring only simple annotations identifying critical sections. Legacy programs using

synchronized regions can be processed without alteration. We find that dynamic locks

do not broadly improve upon identical allocations of static locks, but allocating several

dynamic locks in place of a single static lock can significantly increase parallelism in

certain situations. We experiment with a range of small and large Java benchmarks

on 1 to 8 processors, and find that a singleton allocation is sufficient for five of our

benchmarks, and that a static allocation with Spark points-to analysis is sufficient for

another two. Of the other five benchmarks, two require the use of all phases of our

analysis, one depends on using the lockset allocation, and two benchmarks proved

too complex to be automatically transformed to satisfactory performance.
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Résumé

L’allocation des verrous aux sections critiques des programmes construits avec

des processus indépendants affecte la performance et la validité de ces programmes.

Traditionnellement, cette allocation est faite manuellement par le développeur. La

littérature récente rapporte des résultats pour l’allocation automatique des verrous.

Le but est de minimiser les conflits et de maximiser le parallélisme avec une alloca-

tion de verrous aux sections critiques individuelles. Nous étudions plusieurs méthodes

d’allocation de verrous, en utilisant des composantes connectés des sections critiques

qui interfèrent sur un graphe d’interférence des sections critiques. Notre technique

d’allocation utilise une analyse d’effets secondaires qui considère chaque processus

indépendant individuellement. Notre analyse d’effets secondaires est construit d’un

ensemble d’analyses composantes interchangeable. La technique d’allocation peut pro-

fiter d’une analyse des pointeurs précises et d’une analyse ≪may happen in

parallel≫. Nous avons trouvé que la disponibilité des informations qui sont spécifiques

à chaque processus indépendant peut améliorer la qualité des résultats par rapport aux

résultats de l’analyse avec seulement l’analyse des pointeurs. Notre système demande

des pré-requis minimes des programmes qu’il analyse, peut bien analyser les situations

d’embôıtement et d’interblocage, et nécessite seulement quelques annotations simples

pour identifier les sections critiques. Les logiciels patrimoniales qui portent des régions

synchronisés peuvent être analysés directement. Nous avons trouvé que les verrous

dynamiques, en général, ne réussissent pas à améliorer la performance au-dessus de

celle des verrous statiques. Par contre, l’allocation de quelques verrous dynamiques au

lieu d’un seul verrou statique peut augmenter le parallélisme dans certaines situations.

Nous avons évalué notre analyse sur une gamme de programmes pour étudier com-
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parée. Les programmes sont écrits en Java et notre gamme comprend des programmes

qui varient en taille. Nous avons trouvé que l’allocation ≪singleton≫ suffit pour cinq

de nos programmes, et que l’allocation statique avec l’analyse pointeur Spark suffit

pour deux autres programmes. Il reste cinq autres programmes dans notre gamme,

dont deux ont besoin de toutes nos analyses, un requiert l’allocation ≪lockset≫,

et deux autres demeurent trop complexes pour la transformation automatique avec

performance acceptable.
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Résumé ii

Acknowledgments iv

Contents v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Top-Down and Bottom-Up Approaches . . . . . . . . . . . . . . . . . 4

1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Points-to Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Side-Effect Analysis . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 May Happen in Parallel Analysis . . . . . . . . . . . . . . . . 8

2.2 Thread Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Synchronization Elimination . . . . . . . . . . . . . . . . . . . . . . . 9

v



2.4 Static Race Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Lock Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Optimistic Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Design 16

3.1 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Points-To Analysis . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Thread Local Objects Analysis . . . . . . . . . . . . . . . . . 18

3.1.3 Thread-Based Side Effect Analysis . . . . . . . . . . . . . . . 25

3.1.4 May Happen in Parallel Analysis . . . . . . . . . . . . . . . . 26

3.1.5 Lockable Reference Analysis . . . . . . . . . . . . . . . . . . . 29

3.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Input Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Finding Critical Sections . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Generating Read/Write Sets . . . . . . . . . . . . . . . . . . . 35

3.2.4 Constructing the Interference Graph . . . . . . . . . . . . . . 35

3.2.5 Finding and Choosing Lock Objects . . . . . . . . . . . . . . . 38

3.2.6 Detecting and Correcting Deadlock . . . . . . . . . . . . . . . 40

3.2.7 Transforming the Program . . . . . . . . . . . . . . . . . . . . 42

3.2.8 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Compile-time Results 45

4.1 Interference Graph Evolution . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Interference Graph Characteristics and Allocations . . . . . . . . . . 51

5 Runtime Results 68

5.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Benchmarks with Underlying Threading Problems . . . . . . . 72

5.2.2 Lock-Indifferent Benchmarks . . . . . . . . . . . . . . . . . . . 75

5.2.3 Points-to Dependent Benchmarks . . . . . . . . . . . . . . . . 78

5.2.4 Thread Analysis Dependent Benchmarks . . . . . . . . . . . . 82

vi



5.2.5 Lockset Dependent Benchmarks . . . . . . . . . . . . . . . . . 83

5.2.6 Stubborn Benchmarks . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Performance Observations . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusions and Future Work 91

6.1 The ALOCS System . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Empirical Evaluation of ALOCS . . . . . . . . . . . . . . . . . . . . . 92

6.3 Analysis of Lock Allocation . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendices

A Definitions for Selected Flow Analyses 95

A.1 Information Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Lockable Reference Analysis . . . . . . . . . . . . . . . . . . . . . . . 96

B Public Availability of Implementation, Benchmarks, and Scripts 99

C Code Map 100

Bibliography 103

vii



List of Figures

1.1 Three program excerpts with threading problems. . . . . . . . . . . . 2

3.1 Analysis pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 A method and the data it can access. . . . . . . . . . . . . . . . . . . 20

3.3 Information flow graph for rotary.Car.getLocation() from traffic. . . . 22

3.4 Information flow summary for rotary.Car.getLocation() from traffic. . 23

3.5 Summary of TLO results for rotary.Driver from traffic. . . . . . . . . 24

3.6 Run-Once, Run-Many Analysis. . . . . . . . . . . . . . . . . . . . . . 28

3.7 Example of Lockable Reference Analysis. . . . . . . . . . . . . . . . . 30

3.8 Anatomy of a synchronized region in Java and Jimple. . . . . . . . . 33

3.9 Interference graph for traffic using dynamic locking, Spark, MHP, TLO. 36

3.10 Lock analysis graph for traffic. . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Calculating a nested lock region. . . . . . . . . . . . . . . . . . . . . . 43

4.1 Lock allocations for traffic with three different points-to analyses. . . 47

4.2 Lock allocations for traffic with the addition of MHP. . . . . . . . . . 48

4.3 Lock allocations for traffic with the addition of TLO (without MHP). 49

4.4 Lock allocations for traffic with the addition of both TLO and MHP. 50

4.5 Lock allocations for traffic with and without locksets. . . . . . . . . . 52

5.1 Key to performance graphs. . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Relative speedup for sync. . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Relative speedup for pcmab. . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Relative speedup for pcmab with 95% confidence intervals. . . . . . . 75

5.5 Relative speedup for roller. . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



5.6 Relative speedup for mtrt. . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Relative speedup for hsqldb. . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Relative speedup for xalan. . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Relative speedup for lusearch. . . . . . . . . . . . . . . . . . . . . . . 81

5.10 Relative speedup for traffic. . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Relative speedup for jbb2005. . . . . . . . . . . . . . . . . . . . . . . 84

5.12 Relative speedup for heavy. . . . . . . . . . . . . . . . . . . . . . . . . 85

5.13 Relative speedup for bank. . . . . . . . . . . . . . . . . . . . . . . . . 87

5.14 Relative speedup for jbb2000. . . . . . . . . . . . . . . . . . . . . . . 88

5.15 Interference graphs of jbb2000 and jbb2005 (locked components only). 89

ix



List of Tables

2.1 Related work on lock allocation. . . . . . . . . . . . . . . . . . . . . . 12

4.1 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Static results for sync. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Static results for pcmab. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Static results for roller. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Static results for mtrt. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Static results for hsqldb. . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Static results for xalan. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Static results for lusearch. . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Static results for traffic. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Static results for jbb2005. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Static results for heavy. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.12 Static results for bank. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.13 Static results for jbb2000. . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



Chapter 1

Introduction

Many shared memory parallel programming languages use some version of critical

sections to synchronize accesses to shared data. Achieving concurrency and scala-

bility in these programs requires lock allocation: mapping locks to critical sections.

Traditionally, lock allocation is a manual process susceptible to programmer error,

where mistakes may lead to deadlock, livelock, data races, or performance degrada-

tion. Often, these bugs and bottlenecks are extremely difficult to find, due to the

relative subtlety of the coding errors that cause them, and the difficulty of debugging

parallel behavior. The simple examples shown in Figure 1.1 are not so far fetched;

in more complete programs these mistakes would not be obvious, and some language

features actually hide the locking object from the programmer.

Automatic lock allocation relieves programmers of this burden by guaranteeing

desirable properties of the code, such as correctness, good performance, freedom from

deadlock, or some subset of the generally accepted properties of software transac-

tions: atomicity, consistency, and isolation1. One possible set of guarantees is that of

pessimistic transactions, in which lock allocation is performed to ensure that critical

sections behave atomically [MZGB06, HFP06]. A related technique is optimistic

transactions, in which lock allocation is not performed (a single global lock is as-

sumed), but speculative execution is used to achieve concurrency [LR06]. While lock

1The related property of durability is not normally associated with software transactions - it
applies to database transactions.
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Figure 1.1: Three program excerpts with threading problems.
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1.1. Technique

allocation seeks to simplify the parallel programming paradigm without sacrificing

performance, speculative techniques like optimistic transactions actually aim to im-

prove performance.

1.1 Technique

Recent work on lock allocation has focused on finding optimal allocations, where lock-

ing overhead is balanced against the benefit of increased parallelism [SZG05, ZSZ+06,

ZSZ+07, HFP06, EFJM07]. Zhang [ZSZ+06, ZSZ+07] proves that the minimum lock

allocation (MLA) optimization problem is NP-hard, and the corresponding k-bounded

lock allocation (KLA) decision problem is NP-complete. Heuristics may thus be re-

quired for practical use of lock allocation.

We present ALOCS, the Automated Lock Object Compiler System, which aims

to remove the burden of lock allocation from the programmer without sacrificing

performance. Our goal in writing ALOCS is to improve lock-allocator technology

by using analyses and transformations that mimic or improve upon the decisions

made by seasoned programmers without precluding practical usage. We choose to

develop ALOCS without optimal or heuristic MLA solutions. Specifically, ALOCS

generates a critical section interference graph and allocates locks on a per-graph-

component basis, using tunable granularity. ALOCS is especially targeted at novice

programmers whose programs with manually allocated locks might have unnecessary

correctness or performance issues. We use existing benchmarks with existing locks to

test the quality of our allocations, and we find that for many of these benchmarks,

our approach is able to allocate locks with similar runtime performance to the original

program.

Our results suggest that parallel programs often exhibit simple concurrent be-

haviour, and that good solutions can be obtained using straightforward program

analyses. Of course, techniques such as MLA may sometimes be able to improve on

the runtime performance achieved by our component-based lock allocation. However,

in this instance our analyses would still play two valuable roles: 1) they reduce the

size of the MLA problem by initially dividing the interference graph into components,
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1.2. Top-Down and Bottom-Up Approaches

thereby decreasing the cost of optimal allocation; and 2) they provide a “next best”

solution that may suffice when MLA is too expensive.

1.2 Top-Down and Bottom-Up Approaches

Our design is primarily top-down in that we first conservatively assume all critical sec-

tions potentially interfere, then use compiler analyses to refine the solution and expose

groups of potentially interfering critical sections and the data on which they interfere,

from which we construct an interference graph. Finally, we assign locks based on inter-

ference graph components. This contrasts with the more bottom-up approaches used

by McCloskey [MZGB06], Hicks [HFP06], and Emmi [EFJM07], which associate locks

with individual data manually or automatically, and then use a subset of these locks

to transform critical sections. The approach used by Sreedhar and Zhang [SZG05] is

similar to ours, but moves immediately to MLA and KLA [ZSZ+06, ZSZ+07] without

considering the particular data in need of locking.

In order to combine the benefits of top-down and bottom-up approaches, we use a

lockable reference analysis that is similar to the bottom-up techniques used by others,

but benefits from being provided with high-level information from the interference

graph. This analysis effectively bridges the two approaches by allowing locking deci-

sions to be made at the component scope with both high- and low-level information

available.

1.3 Features

ALOCS includes several features intended to increase its practical usability. It is flex-

ible with respect to locking disciplines: it can allocate dynamic, per-data structure

locks, it allows for use of implicit condition variables, and it requires only that the

programmer indicate the locations of critical sections. It permits true nested syn-

chronization; it does not require any type of two-phase locking, in which all locks are

acquired before any are allowed to be released.
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1.4. Contributions

Certain features of ALOCS are intended to improve its value as a research plat-

form. Unlike most related work, ALOCS provides the option to assign exactly one

lock for the whole program, to assign exactly one lock per critical section or to assign

multiple locks. The last situation is called locksets, a set of locks to be acquired before

and released after the execution of a critical section. Using multiple locks per critical

section is often desirable, though it can introduce extra overhead if it’s not possible

for concurrency to be further increased.

In the general case, lock allocation poses deadlock concerns, requiring the con-

struction of an ordering among lock acquisitions to break Coffman’s circular wait

condition [CES71]. Some related work constructs a total ordering of lock acquisi-

tions, and enforces early acquistion of locks in order to satisfy that order, while our

work constructs only the minimal partial ordering necessary to prove the absence of

circular acquisitions. When no such order exists, our allocator inserts additional locks

or merges components to create one.

Another benefit of our work, which is shared by other pessimistic concurrency

solutions, is that programs transformed by our lock allocator can be run on existing,

unmodified Java Virtual Machines.

Finally, we provide comprehensive compile-time and run-time data for a variety

of small and large Java benchmarks. We investigate the utility of applying different

static analyses and allocation strategies to the lock allocation problem, and compare

the resulting allocations qualitatively and quantitatively. This thorough treatment

allows us to suggest the best general-purpose configuration, and to identify areas

where future work will likely lead to significant improvements.

1.4 Contributions

We make the following specific contributions:

• A component-based lock allocator for Java that assigns locks to groups of inter-

fering critical sections. This depends on precise construction of a critical section

interference graph using a thread-based side effect analysis.

5



1.4. Contributions

• Automatic synchronization elimination, a trivial consequence of the approach.

A component containing an isolated critical section that does not interfere with

itself does not require synchronization, and results show that many such com-

ponents exist.

• An implementation of a thread-local objects analysis that improves side effect

information, and an implementation of a relaxed lock-oblivious form of may

happen in parallel analysis for Java, which we use to prune false interference

graph edges.

• Experimental data for six small and six large Java benchmarks, various config-

urations of contributing analyses and allocation strategies, and complete 1 to

8-way scalability data. Component-based allocation often recovers the original

program performance.

• Publicly available code, benchmarks, build scripts and analysis scripts to allow

third-party verification of our results. Our code has been integrated into the

Soot project to encourage its use in future work. The Soot project is avail-

able under the GNU Lesser General Public License. See Appendix B for more

information.

The remainder of this thesis is organized as follows: in Chapter 2, we discuss

related work; in Chapter 3, we present the design of our system and detail the compiler

analyses used (Section 3.2 describes, in order, the activities carried out by our lock

allocator); in Chapter 4, we evaluate our lock allocator statically; in Chapter 5, we

evaluate our lock allocator dynamically; and in Chapter 6, we conclude and suggest

future work.
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Chapter 2

Related Work

ALOCS builds on the work of many others. For analysis and transformation we

use the Soot Java bytecode compiler framework [VR00]. Our allocator depends on

the built-in class hierarchy analysis (CHA) [DGC95], context-insensitive subset-based

points-to analysis (Spark) [Lho03], side effect analysis [Lho03], and portions of the

may happen in parallel (MHP) analysis [Li04]. Our research is closely related to

existing work on thread-sensitive analyses and lock allocation, as well as work on

synchronization elimination, static race detection, and optimistic concurrency.

2.1 Foundations

Vallée-Rai introduced the Soot Java bytecode compiler framework [VR00], a frame-

work for the analysis, optimization, and manipulation of Java bytecode. Soot pro-

vides compilation and code generation, and provides access to Java bytecode in var-

ious intermediate formats. ALOCS operates on the Jimple intermediate format, a

three-address stackless representation of the bytecode. Soot provides a framework

for writing inter- and intraprocedural static analyses for these intermediate formats,

with which many stages of ALOCS were written. Additionally, Soot contains many

existing static analyses, some of which are heavily used by ALOCS.

7



2.1. Foundations

2.1.1 Points-to Analysis

Andersen [And94] developed a context-insensitive subset-based points-to analysis for

C, which Lhoták adapted to handle Java and OO features. Lhoták’s version is im-

plemented in Soot in the default configuration of his Spark points-to analysis frame-

work [Lho03]. We use Spark, unaltered, as an essential component of ALOCS.

2.1.2 Side-Effect Analysis

Lhoták also provides a Side Effect Analysis as a client of Spark. Lhoták’s Side Effect

Analysis computes, for each instruction, abstract sets of locations read and written by

the instruction. These location sets include static fields, array elements, and instance

fields with an associated points-to set for the instance. Lhoták opts to store the

computed side effect set for each instruction, but compute on-demand the side effect

set for each callsite using the stored sets of the callsite’s transitive targets. This

technique balances memory and computation requirements to allow the side effect

analysis to scale.

We alter Lhoták’s side effect analysis by replacing the existing representation of

a side effect set with a more precise and more easily manipulated version. These new

side effect sets allow a larger variety of standard set computations, which are essential

for generating the critical section interference graph.

2.1.3 May Happen in Parallel Analysis

Naumovich et al. present an algorithm for computing MHP information for concur-

rent Java programs [NAC99], and Li provides an implementation in Soot [Li04]. As a

refinement to her run-once and run-many categorization of thread behaviour, we fur-

ther categorize run-many threads as either run-one-at-a-time or run-many-at-a-time

using a start-join analysis; Sura et al. discover similar information in their analysis

of thread structure for sequentially consistent compilation [SFW+05]. Barik proposes

a scalable alternative to Naumovich’s analysis for Java [Bar05], and Agarwal et al.

extend it to support X10 [ABSS07]. An uncommon feature of our analysis is that

8



2.2. Thread Sensitivity

it is lock-oblivious: it ignores the impact of mutual exclusion and thereby overesti-

mates MHP information. This provides better scalability and is appropriate for a

lock allocator that discards existing allocations. This technique was used for static

race detection by Naik et al. in [NAW06].

2.2 Thread Sensitivity

Chang and Choi [CC04] and also Sălcianu and Rinard [SR01] present thread-sensitive

points-to analyses for Java. Our points-to analysis, while thread-insensitive, provides

input to a thread-based side effect (TBSE) analysis that models the heap using thread-

local and thread-shared partitions. Our use of TBSE for interference identification

might benefit from the interprocedural thread-sensitive slicing analysis for Java by

Nanda and Ramesh [NR06]. We improve thread-sensitivity using a thread-local objects

(TLO) analysis that identifies thread-local reads and writes inside critical sections.

Ruf [Ruf00] and Aldrich et al. [ASCE03] find TLO information statically effective for

synchronization elimination in Java, but not such that multithreaded runtime perfor-

mance is significantly affected. Praun and Gross provide a related object use graph

(OUG) and use it to check for conflicting and non-conflicting object accesses [vPG03].

2.3 Synchronization Elimination

We find that synchronization elimination is an inherent consequence of our lock al-

location technique. More importantly, we find that elimination of unnecessary locks

improves the ability of a lock allocator to resolve the features of a multithreaded

program’s structure, and thus to assign locks. As such, it is worth revisiting exist-

ing synchronization elimination and lock coarsening techniques in the context of lock

allocation.

Aldrich et al. [ASCE03] present techniques for two kinds of synchronization elim-

ination: thread-local, and enclosed lock. They also state that may happen in parallel

analysis can be used for synchronization elimination. Our findings support this sug-

gestion, and we find that this particular step to avoid inserting unnecessary synchro-

9



2.4. Static Race Detection

nization improves the precision of our critical section interference graph, which can

in turn improve our lock allocation.

Others use escape analysis [Bla99][BH99] and specialized points-to analyses

[CGS+99][WR99] to find and remove thread-local object synchronization. We simi-

larly use a heap-partitioning thread-local objects analysis to avoid inserting unneces-

sary synchronization. Although Aldrich et al. find little runtime benefit of thread-

local synchronization, we find that, as with MHP, TLO can improve our critical

section interference graph in beneficial ways.

2.4 Static Race Detection

One problem closely related to lock allocation is static race detection. Naik et al.

detect races in Java programs using a staged analysis that refines the set of mem-

ory access pairs potentially involved in a race until the number of false alarms is

small [NAW06]. Naik and Aiken later investigate a conditional must not alias anal-

ysis that concludes whether two objects are aliased from the hypothesis that two

other objects are not aliased [NA07]. In the context of static race detection, their

analysis determines whether two guarded memory regions are aliased given that the

lock objects guarding them are not aliased, and reports a race if true. Pratikakis

et al. detect races in C programs using a consistent correlation analysis that deter-

mines which locks are held when a thread accesses a memory location ρ, and whether

there is some lock l that is always held for each access to ρ [PFH06]. Abadi et al.

present a type-based system for Java programs that depends on annotations to detect

races [AFF06]. A tool infers these annotations automatically, and they are input to a

fixed point computation that removes the incorrect ones using a type-based race de-

tector. Finally, a set of warnings is produced using the correct annotations. Flanagan

and Freund also demonstrate that a constraint-based analysis can be used to insert

synchronized operations and correct a program containing data races [FF05]. These

techniques find memory accesses that are not properly synchronized, whereas lock

allocation examines memory accesses inside critical sections and specifies objects to

protect them. Our requirement that input programs be correctly synchronizable by

10
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our allocator is precisely defined by the Java Memory Model [MPA05].

2.5 Lock Allocation

There is a large body of recent work on lock allocation. Several manual and au-

tomatic techniques have been proposed to address the limitations of most popular

programming environments. Table 2.1 compares the most relevant recent work on

lock allocation.

McCloskey et al. introduce pessimistic atomic sections and provide a tool to

convert them automatically to lock-based code [MZGB06]. They require manually

inserted annotations that associate locks with shared data, in addition to annotations

that identify atomic sections. Pessimistic atomic sections can be nested; the locking

requirements are flattened and applied to the outer atomic section. Dynamic locks

are permitted, namely dynamically allocated lock objects that guard dynamically

allocated data structures. A whole-program analysis detects the use of shared data

inside atomic sections, and a provably sound transformation ensures that the right

locks are acquired according to a global total ordering. If no such order can be found,

the program is rejected as potentially containing deadlock. Lock acquisitions are then

placed before the statements requiring them, potentially being moved earlier in the

code in order to respect the lock order. One limitation is that a two-phase locking

discipline is required, such that once any lock is released for a given atomic section,

no more locks can be acquired. In a related but significantly more radical technique,

Vaziri et al. propose that only data be synchronized, and prove that lock operations

can be safely inserted [VTD06].

Hindman and Grossman [HG06] propose a source-to-source translation for atomic-

ity, employing fine-grained locking, but not ahead-of-time deadlock avoidance. They

instead log write operations to detect deadlock at runtime, and roll back atomic

sections when it occurs.

Hicks et al. also convert atomic sections to pessimistic transactions [HFP06], us-

ing the same compiler analysis framework as their static race detection tool [PFH06].

Locks are associated with abstract memory locations identified by a pointer analysis
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Table 2.1: Related work on lock allocation.

Related Work

Work(s) [MZGB06] [HFP06] [SZG05, ZSZ+06] [EFJM07] [CCG08] [HPV07], This

[ZSZ+07]

First Author(s) McCloskey Hicks Sreedhar, Zhang Emmi Cherem Halpert

Language(s) C C OpenMP C, Java C/C++ Java

Compiler Analysis

Pointer yes yes yes yes yes yes

Thread Local Objects no yes no no no yes

May Happen in Parallel no no yes no no yes

Locking Discipline

Allow Nesting yes yes no yes yes yes

Require At-Once Acq/Rel no yes yes no yes no

Require 2-Phase Locking yes yes yes yes yes no

Allow Locksets yes yes yes yes yes yes

Features

Definite Dynamic Locks yes no no yes yes yes

Indefinite Dynamic Locks yes no no no no yes

Allow Condition Variables yes no yes no no yes

Lock Choice

Require Data Annotations yes no no no no no

Heuristics no yes yes no no yes

MLA (ILP) no no yes yes no no

Results

Small Input yes no yes yes yes yes

Large Input yes no yes yes yes yes

Static Results yes no yes yes yes yes

Runtime Results yes no yes no yes yes
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to create locksets that protect critical sections. They allow nesting of critical sec-

tions by flattening locking requirements: all locks are acquired and released at the

beginning and end of outer atomic sections. They make two improvements, first by

eliminating synchronization on thread-local data, and second by coalescing locks that

are always acquired and released together. The first improvement is comparable to

applying TLO information to the construction of an interference graph. The second is

a lock minimization heuristic that eliminates redundant locking. They do not permit

dynamic locks, and note that maintaining a total ordering among acquisitions with

dynamic locks may require runtime support. It may also greatly complicate the lock

coalescence technique.

Sreedhar, Zhang, et al. develop a framework for data flow and concurrency anal-

ysis of parallel programs, and use it to allocate locks that maximize concurrency and

minimize serialization overhead [SZG05, ZSZ+06, ZSZ+07]. Their computation of a

concurrency relation is comparable to MHP analysis and they apply it to data flow

problems, in particular pointer analysis and lock allocation. They use this concur-

rency information to identify critical sections with intersecting read/write sets that are

actually independent, and construct a concurrency graph with either an interfering or

non-interfering edge between two critical section vertices. Our interference graph is a

straightforward translation of their concurrency graph where all edges indicate inter-

ference on some set of static and/or dynamic memory locations, and non-interfering

edges are removed.

They compute a minimum lock allocation (MLA) such that two vertices connected

by an interfering edge have at least one lock in common, and two vertices connected

by a non-interfering edge have no locks in common. This algorithm relies on the fact

that their representation of interference between a pair of critical sections is a binary,

all or none value. They also provide a k-bounded lock allocation (KLA) algorithm

for bounding the number of locks in exchange for serialization overhead, an obvious

corollary of k-colouring as used by register allocation. They formulate MLA and KLA

as integer linear programming (ILP) problems, and for a range of randomly generated

inputs compare heuristic solutions with optimal ones provided by an industrial ILP

solver. Limitations include that they disallow nested locking altogether, limiting the
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use of synchronized library code, and that they only allocate static locks. They also

analyse OpenMP, and note that the interaction between aliasing and concurrency is

more complicated for Java programs. However, they do provide a useful extension

of data flow that considers the isolation semantics of critical sections, and describe

support for condition variables and barriers in some detail, albeit for a structured

subset of OpenMP. They claim that existing OpenMP programs often use unnamed

critical sections, thus requiring a single global lock, and that the work therefore has

practical importance [SZG05].

Emmi et al. also examine the problem of lock allocation [EFJM07]. They build

directly on McCloskey’s work by eliminating the requirement that annotations protect

shared data. Like Zhang et al. they depend on ILP for allocation, clearly explaining

how to set up MLA and KLA for 0–1 ILP while accounting for various refinements.

Importantly, they find that optimal solutions are tractable for McCloskey’s larger

AOLServer benchmark. They consider dynamic locks in some detail, avoiding dead-

lock by using an accessed-before relation derived from temporal analysis of critical

sections, and favouring dynamic locks over static locks during allocation. However,

they disallow the use of dynamic locks to protect l-values for which a must-alias re-

lation cannot be found, which could potentially have a limiting effect on parallelism.

They also note that more precise compiler analysis is complementary to their work.

Cherem, Chilimbi, and Gulwani [CCG08] present a formal framework for abstract

lock schemes, which is a technique for representing and analyzing locks of different

granularities. They develop an intermediate representation transformation system

and a runtime library to implement their framework. Cherem, Chilimbi, and Gulwani

prove the soundness of their framework, and that the Cartesian product of any two

sound lock schemes is a sound lock scheme. This suggests the easy introduction of

schemes derived from new analyses.

2.6 Optimistic Concurrency

Finally, we see lock allocation in general as complementary to optimistic concurrency

and transactional memory, an active field of research [LR06]. Lock allocation could
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be used to reduce the overhead incurred by optimistic concurrency in a system that

executes uncontended critical or atomic sections non-speculatively and without over-

head. Although this model differs from most transactional memory proposals, which

incur overhead for every transaction, Mart́ınez and Torrellas do propose hardware for

such a system [MT02], and Welc et al. demonstrate a software implementation in a

Java virtual machine [WHJ06].
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Chapter 3

Design

We present the Automated Lock Object Compiler System, ALOCS, a system

for automatic lock allocation. ALOCS is designed as an optional module of the

Soot Java bytecode optimization and analysis framework [VR00]. It is comprised

of several whole-program static data flow analyses that support a pipeline of data

transformations. The contributing analyses are described in Section 3.1, and the

transformation stages are described in Section 3.2.

Figure 3.1: Analysis pipeline.

An overview of ALOCS is shown in Figure 3.1. The core of the system is a

representation of the input program as a critical section interference graph, de-
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scribed in Section 3.2.4, which is enabled by our thread-based side effect analysis,

described in Section 3.1.3. Combined, these two technologies allow Component-

Based Lock Allocation [HPV07], which we extend here with the addition of lock-

sets, a finer-grained lock allocation. Our implementation of locksets builds upon

those of McCloskey et al. [MZGB06], Hicks et al. [HFP06], Sreedhar, Zhang, et

al. [SZG05, ZSZ+06, ZSZ+07], and Emmi et al. [EFJM07] by allowing arbitrary nest-

ing of critical sections without increasing the duration for which locks are held.

3.1 Analyses

We perform a set of whole-program data flow analyses which collectively describe

the input program with sufficient precision to allocate locks. Most of these analyses

are optional, as described in Section 3.2, and in it’s simplest form, our lock allocator

performs only the thread-based side effect analysis described in Section 3.1.3 and one

of the points-to analyses described in Section 3.1.1.

3.1.1 Points-To Analysis

Points-to analysis is a whole program analysis which approximates the set of memory

locations to which a given pointer may refer. Points-to analysis is closely intertwined

with call graph construction because points-to information can resolve virtual method

calls, which in turn may remove some pointer operations from the reachable call graph.

Some points-to analyses use an initial rough approximation of the call graph, which

is later refined, while others build the call graph simultaneously with the points-to

analysis.

ALOCS employs points-to analysis to:

• Determine thread-types for may happen in parallel analysis.

• Find receiving objects for side effect analysis.

• Determine which dynamic locks may be aliased.
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ALOCS uses the program call graph by:

• Traversing it in search of channels of information flow for thread-local objects

analysis.

• Determining reachable methods for each thread in may happen in parallel anal-

ysis.

• Traversing it to propagate run-many status in run-once-run-many analysis.

• Determining reachable methods for a given instruction in thread-based side

effect analysis.

• Traversing it to search for relevant uses in lockable reference analysis.

• Determining reachable methods from each critical section for deadlock detec-

tion.

We employ SPARK, from [Lho03], which is a highly efficient and flexible points-

to analysis framework. In its default configuration, its most precise, it is context-

insensitive, field-sensitive, and it builds the call graph on-the-fly. SPARK is also

capable of emulating Variable Type Analysis [SHR+00] and Rapid Type Analysis

[BS], the former of which we use as an example of a less-precise points-to analysis for

our experiments.

3.1.2 Thread Local Objects Analysis

Our lock allocator performs a thread-local objects (TLO) analysis that serves to im-

prove the precision of the thread-based side effect analysis described in Section 3.1.3.

TLO classifies all fields, parameters, and local variables as either thread-local or thread-

shared, where any memory location that may be accessed by more than one thread

is thread-shared and all others are thread-local. TLO uses an initial classification

based on the privacy properties of fields and methods, as described in Section 3.1.2,

and uses information flow analysis, as described in Section 3.1.2, to determine how

to propagate this information throughout the program.
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TLO accepts a set of thread classes T that implement the Runnable interface, and

analyzes each t in T independently to determine which fields in the thread may hold

thread-shared values.

In the next sections, we discuss the stages of TLO. These are initial classifica-

tion of fields and parameters, information flow analysis, analysis of the thread class,

propagation, and reporting/results.

Initial Classification of Fields and Parameters

If a field is private to class t, its value is hidden from other threads unless explicitly

shared by one of the methods of t. Likewise, if a method is private to class t, it’s

parameters are hidden from other threads unless a shared value is explicity passed

in to it. We therefore include a simple field/method access finder in ALOCS to

determine which fields and methods are private or could be private, by not being

accessed outside of their declaring class. We call all of these fields and methods

private. The field/method access finder is a whole-program analysis.

Initially, private fields of t and the parameters of private methods of t are classified

as thread-local, and all other fields and parameters are classified as thread-shared.

Information Flow Analysis

The primary enabling technology of the TLO analysis in ALOCS is information flow

analysis (IFA). Given a pair of memory locations a and b, IFA approximates whether

the value stored in a is derived from the value stored in b. This analysis only con-

siders explicit information flow resulting from direct assignment or arithmetic opera-

tions; a more accurate analysis would also consider implicit control-based information

flow [Ahm06].

Given a method to analyze, IFA generates an information flow graph and an

information flow summary. The graph nodes represent all values manipulated by

the method, namely parameters, locals, fields, statics, and the return value. Every

assignment or return statement generates an edge in the graph. The summary is

derived from the graph by removing local variables and collapsing strongly connected
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components. It thus approximates all data structures manipulated by the method:

parameters, fields, statics, and the return value. Our analysis distinguishes between

syntactically different values but is type-based and ignores points-to information. The

edge-generation rules are listed in Appendix A.

Figure 3.2 illustrates the relationship between a method and the data structures

it can access. In this figure, method foo in class C takes two parameters (5 and O

are shown as examples), and returns an Obj (shown here being assigned to a variable

result). foo also accesses the two instance fields, my object and my int, and two static

fields, G. object and H.an int. foo can only access these data structures and data

structures reachable through them. IFA conservatively determines the relationships

between these data structures, and optionally data structures reachable through them.

The latter option is significantly more costly in time.

Figure 3.2: A method and the data it can access.

At a callsite, the summaries of all target methods are combined. This combined

summary is merged with the current graph by connecting summary parameters to

callsite arguments, the summary return value to the callsite return value, and the

summary this object and fields to the callsite receiver local. The first two cases
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are illustrated in Figure 3.2 where 5, O and result are connected to a, b, and the

return value, respectively. The full callsite show in Figure 3.2 might take this form:

“c.foo(5,O);”, and the accesses within foo to this.my object and this.my int would

be connected to the callee as c.my object and c.my int. If no summary exists for

a target method of some callsite, then a graph and summary are recursively con-

structed. A simple conservative summary is used when back edges in the recursion

are encountered, and internal library calls also use a conservative summary to improve

runtime.

public Locat ion getLocat ion ( )

{

Locat ion r e t v a l = new Locat ion ( ) ;

synchronized ( l o c a t i o n )

{

// ge t a snapshot o f the current l o c a t i o n

r e t v a l . forwardLocat ion = l o c a t i o n . forwardLocat ion ;

r e t v a l . l a t e r a l L o c a t i o n = l o c a t i o n . l a t e r a l L o c a t i o n ;

r e t v a l . roadSegment = l o c a t i o n . roadSegment ;

}

return r e t v a l ;

}

Listing 3.1: Java code for rotary.Car.getLocation() in the traffic benchmark.

A code sample and associated information flow graph are shown in Figures 3.1 and

3.3. The code sample is taken from the traffic benchmark, which is a simulation of

cars navigating around a traffic circle. Each node in the graph represents either a local

variable ([$]rX, lock, this), a field read on the current object (this.location), a field

read on an object pointed to by a local variable (.roadSegment, .forward, .lateral),

a field write (Location.roadSegment), or a special value. @this: rotary.Car repre-

sents the current object, new rotary.Location represents a newly created object, and

ReturnValue represents the return value of the method. The value sourceof<retval>
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$r10

r4

Location.roadSegment

.roadSegment

$r7

.lateral

sourceof<retval>

retval

ReturnValue

new rotary.Location

$r1

@this: rotary.Car

this$r6

.forward

$r8

this.location

lock

new rotary.Location

Figure 3.3: Information flow graph for rotary.Car.getLocation() from traffic.

is a special node in the information flow graph that indicates that values flowing into

it are in fact being stored in the object pointed to by retval, in this case the new

rotary.Location object.

Figure 3.4 shows the information flow summary that is generated from the informa-

tion flow graph of Figure 3.3. Local variable nodes have been collapsed, non-escaping

and new-object flow has been removed1, and sourceof<?> nodes have been resolved

(in this case, a no-op).

Analysis of the Thread Class

After the initial classification, TLO queries IFA to obtain an information flow sum-

mary for each method in the thread t. Whenever a summary indicates that a thread-

shared value flows to a thread-local field, the classification of that field is changed to

thread-shared. This propagation continues until a fixed point is reached.

1 New-object flow is ignored as an optimization for the thread-local objects analysis: TLO works
by propagating thread-shared status between fields and method inputs/outputs, and new objects
cannot become thread-shared until they are stored in a field or returned.
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Figure 3.4: Information flow summary for rotary.Car.getLocation() from traffic.

TLO Propagation

A locality context is created for each method m in the call graph. A locality context

contains a thread-shared or thread-local classification for each field and parameter in

m. The previous classification of fields and parameters for each m in t provides an

initial set of locality contexts. Shared values are propagated from locality contexts

to callsites using the information flow graph of m, and then merged with the locality

contexts of all target methods. This interprocedural propagation continues until a

fixed point is reached.

Reporting TLO Results

When queried about a value u for any method m, TLO starts from the locality

context of m and traverses its information flow graph to find all information sources

of u. It reports that u is thread-shared unless all sources are thread-local and thus u

is thread-local in each t that calls m.

Figure 3.5 shows an example of a summary of TLO findings for a specific thread
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Local fields: 

  <rotary.Driver: boolean enter>

  <rotary.Driver: int noCollide>

  <rotary.Driver: rotary.StateActionHistory history>

  <rotary.Driver: rotary.ReinforcementLearner learner>

  <rotary.Driver: boolean collision>

  <rotary.Driver: int changeLanes>

  <rotary.Driver: double speedTolerance>

  <rotary.Driver: double laneChangeLookahead>

  <rotary.Driver: double laneChangeHeadway>

  <rotary.Driver: double laneChangeGain>

  <rotary.Driver: double spasticity>

  <rotary.Driver: java.util.Vector adjacentCars>

  <rotary.Driver: java.util.Vector adjacentCarLocations>

Local inner fields: 

  <rotary.Car: rotary.Driver driver>

  <rotary.DriverValueFunction: double[] change>

  <rotary.DriverValueFunction: double[] exit>

  <rotary.DriverValueFunction: double[] any>

  <rotary.DriverValueFunction: double[] accel>

  <rotary.DriverValueFunction: double[] enter>

  <rotary.ReinforcementLearner: int[] rewards>

  <rotary.DriverValueFunction: double[] decel>

  <rotary.RoadSegment: rotary.RoadSegment prevExitRoadSegment>

  <rotary.RoadSegment: java.lang.String exitLeadsTo>

  <rotary.RoadSegment: rotary.RoadSegment exitRoadSegment>

Shared fields: 

  <rotary.Driver: boolean exit>

  <rotary.Driver: boolean done>

  <rotary.Driver: rotary.Acceleration acceleration>

  <rotary.Driver: java.lang.String destination>

  <rotary.Driver: rotary.Car car>

  <rotary.Driver: double desiredSpeed>

  <rotary.Driver: rotary.Car nextCar>

  <rotary.Driver: rotary.Location nextCarLocation>

  <rotary.Driver: rotary.Car nextCarBeside>

  <rotary.Driver: rotary.Location nextCarBesideLocation>

  <rotary.Driver: rotary.Car prevCarBeside>

  <rotary.Driver: rotary.Location prevCarBesideLocation>

Shared inner fields: 

  <rotary.Car: rotary.Location location>

  <rotary.RoadSegment: rotary.RoadSegment nextRoadSegment>

  <rotary.RoadSegment: rotary.RoadSegment mergeRoadSegment>

  <rotary.Location: rotary.RoadSegment roadSegment>

Figure 3.5: Summary of TLO results for rotary.Driver from traffic.
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class, rotary.Driver. The fields of the Driver class are all categorized as Local or

Shared. Inner fields, the fields of the objects manipulated by the Driver class and its

callees, are separately categorized as Local or Shared. When queried about the fields

of these objects, TLO will report that they are thread-shared if either the object is

thread-shared or the field is a Shared inner field.

3.1.3 Thread-Based Side Effect Analysis

We extend Lhoták’s side effect analysis as implemented in Soot [Lho03] to a thread-

based side effect (TBSE) analysis. TBSE computes sets of (field, object) pairs that

may be read or written by individual critical sections, and these sets are used to create

the interference graph. TBSE is a points-to analysis client, and incorporates TLO as

described in Section 3.1.2, a critical section nesting model, and special handling of

calls to library methods and static initializers.

Soot computes the side effects of statements using a simple set of data flow analy-

ses and the output of its points-to analysis. TBSE alters these analyses to ignore side

effects involving thread-local objects. Our allocations differ from pessimistic transac-

tions in the work of others in that our nesting model allows inner critical sections to

acquire and release locks independently of their parent critical sections, and requires

they provide their own complete synchronization. Accordingly, TBSE excludes the

side effects of inner critical sections.

For application calls to library interface methods, TBSE assumes full side effects

on receiver and parameter objects. However, the side effects of internal library calls

are excluded because deep library call chains and side effects involving static fields

both impact significantly on precision. TBSE also excludes the side effects of static

initializers because they impact on precision. We assume that static initializers do not

contain or affect critical sections. However, efficient inclusion of static initializers in

our analysis would be possible with the availability of precise data on class resolution

points.

In addition to making side effect analysis thread-aware, TBSE also includes im-

provements to the computability of the generated side effect sets. While the existing
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side effect analysis in Soot loses precision when its sets are subjected to set opera-

tions, TBSE employs sets that retain full precision when standard set operations are

performed. Although this makes set operations more expensive, the benefit to the

quality of output is drastic for lock allocation.

3.1.4 May Happen in Parallel Analysis

May happen in parallel (MHP) analysis is a technique for determining what parts of

a program are possibly allowed to execute together in time from different threads. If

two sections of a program are found to never execute in parallel, it may be possible

to remove synchronization between them regardless of any data dependences.

Some implementations of MHP perform extensive analysis of possible thread

classes in order to generate per-statement MHP information. Our implementation is a

context-insensitive and lock-oblivious adaptation of Li’s MHP analysis in Soot [Li04].

Our version focuses primarily on thread starts and joins, and uses reachable methods

as a simple descriptor for the execution of each thread class. It first uses a run-once,

run-many analysis to find singleton threads. It then uses a start-join analysis to fur-

ther categorize the remaining threads as run-one-at-a-time or run-many-at-a-time.

Our MHP analysis is lock-oblivous in that it ignores object synchronization, method

synchronization, and calls to any form of wait() or notify(). This allows our lock al-

locator to determine which interfering critical sections require locks to prevent parallel

execution.

Run-Once, Run-Many Analysis

The run-once, run-many analysis is used to determine which statements are provably

run just once. The analysis iterates over the call graph, and for each method marks

each statement in the body of the method and the method itself as either run-once

or run-many [Li04]. The initial approximation is that all statements are run-once.

Statements inside loops and inside run-many methods are categorized as run-many.

Methods with incoming edges from multiple callsites and methods called from run-

many statements are also categorized as run-many. These complementary analyses
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propagate run-many status until a fixed point is reached.

Start-Join Analysis

Next, invocation statements s calling Thread.start() are used to identify and cat-

egorize distinct thread classes t ∈ T . If s is run-once, then t is run-once. If s is

run-many but its receiver object is singleton (has a points-to set with only one ob-

ject, whose allocation site is a run-once statement) then the thread class of this start

statement can be categorized as run-once. Otherwise, t is conservatively assumed

to be run-many. As an implementation detail, T is input to the TLO analysis in

Section 3.1.2.

In the case of a run-many thread class t, a start-join analysis searches the method

m containing the start() invocation s that identified t for invocation statements j

calling Thread.join(). A local must-alias analysis first filters out any j that is not

guaranteed to join t if run. A post-dominator analysis then filters out any j that

does not post-dominate s. If some j exists after filtering, and m is not reentrant and

does not happen in parallel with itself, then t is labelled run-one-at-a-time, otherwise

run-many-at-a-time. If m is later found to happen in parallel with itself, then t is

reclassified as run-many-at-a-time. Our run-one-at-a-time classification is comparable

to the single thread constraint identified by Sura et al. [SFW+05].

Method-Level MHP

The MHP analysis finally reports that pairs of methods reachable from two or more

different threads may happen in parallel. For this classification, each run-many-at-a-

time thread class is treated as two threads, and each other thread class as one. This

information is used to prune edges between critical sections in the interference graph

whose containing methods may not happen in parallel.

The above treatment differs in several ways from Li’s work [Li04]. Her lock-

sensitive analysis creates a whole-program control flow graph in order to analyse

synchronization and wait/notify statements correctly. Our lock-oblivious analysis

works more quickly than her implementation because it does not need to create a
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(a) (b) (c)

(d) (e)

Figure 3.6: Run-Once, Run-Many Analysis.

It is initially assumed that all methods and statements are run-once in (a). In (b),

bar() is found to be run-many because it is called from two different locations.

bar()s statements are therefore run-many in (c). Also, the statements within the

loop in main() are found to be run-many in (c). In (d), since the statement calling

foo() is run-many, foo() itself is run-many as well. Finally, in (e), the statements of

foo() are found to be run-many.
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whole-program CFG. It also works for a wider variety of programs, because her con-

struction of a whole-program CFG requires that every virtual method call be statically

resolvable. The primary limitation of our analysis is that it ignores threads implicitly

started by the JVM and Java class libraries.

3.1.5 Lockable Reference Analysis

Lockable reference analysis (LRA) is used to obtain a list of all of the references

which, if locked prior to the execution of critical section S, would guarantee that

S executes atomically with respect to other critical sections, inner critical sections

notwithstanding2. LRA takes as a parameter a set E of all of the side effects of S

that might interfere with other critical sections; references whose uses in the given

code do not overlap with E are not included in the returned list. The parameter E

is a way of applying the results of TBSE to the calculation of LRA, providing a link

between the top-down approach of the former, and the bottom-up approach of the

latter.

Each reference found must be accessible at the beginning of the section of code as

a local reference, or it must be possible to create a local reference to it by inserting

some set of assignment statements. This analysis assumes that the objects in question

are not altered by any other thread during the execution of S.

LRA examines each Jimple statement s in S. It is a backwards data flow analysis

built on the existing Soot framework. If the side effect set e of statement s intersects

with E, then the points-to set e′ of each value v in s is compared against the objects

in E. If e′ intersects with the objects in E, then v is considered a lockable reference,

and is added to the flow set of lockable references u.

The lockable reference set for a callsite is calculated by recursively invoking LRA

on all possible target methods, and merging the resulting lists. When back edges in

the recursion are encountered, LRA aborts with “lost objects.”

Each lockable reference u is assigned a unique value number. When an assignment

statement a is encountered, the r-value is assigned the value number that the l-value

2See Section 3.1.3 for information about the ALOCS nesting model.
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currently has, and the l-value is then assigned a new value number to indicate that

its value prior to a is unknown. If the r-value already had a value number, then the

two value numbers are merged to indicate that the r-value and l-value from after this

point are actually known to be the same. Figure 3.7 illustrates this analysis for a

simple example program.

Figure 3.7: Example of Lockable Reference Analysis.

A simple example program and its translation to Jimple code is shown in the left

two panes, and the flow sets generated for each statement by Lockable Reference

Analysis are shown in the right pane. The shaded Jimple statements are those

whose (write) side effects intersect the set of side effects known to require locking,

and their left-side value numbers are the lockable references.

Local, Constant, and StaticFieldRef Jimple expressions are handled normally,

but certain types of r-values require special considerations. InstanceFieldRefs and

ArrayRefs require that the base (and index) be added to u and assigned a value

number as well. The base and index of the references are then replaced with a

dummy node that refers to the value number instead of the value, so that they may

be reconstructed at the beginning of S. CastExprs require that the value being cast

be unpackaged and added to u bare. Finally, expressions that create new objects

are not added to u, but a warning is logged that a “lost object” is being ignored.

This behavior is preferable for LRA because new object references do not need to

be locked. Any other r-value is treated as untrackable, and LRA aborts with “lost

objects.”

Lockable reference analysis returns a list containing one value from U , the flowset
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at the beginning of S, for each value number. To simplify the use of the results,

IdentityRefs (Jimple statements that associate a local variable with this or with

method parameters) are preferred over other Refs, which are preferred over any other

value in the construction of the result set.

LRA suffers from two significant limitations: It cannot track arithmetic, and it

would be prohibitively expensive to analyze the class library. The former often causes

lost objects within for loops, while the latter limitiation often causes lost objects when

utilizing Collection classes. The effects of the latter limitation could be mitigated by

including a special-case model of the Collection classes.

3.2 Pipeline

Our lock allocator uses the analyses described in Section 3.1, reformulates the results

as an Interference Graph, chooses appropriate locks according to the given granular-

ity, corrects possible deadlock conditions, and finally transforms the input program

accordingly. The lock allocator chooses locks to produce a race-free, deadlock-free

program. Variations on the analyses used, the stages run, and the desired granularity

affect the resulting lock allocation considerably. The effects of the configuration are

studied in Chapter 4 and Chapter 5.

3.2.1 Input Programs

Our lock allocator accepts compiled Java programs consisting of .class files. Input

programs must not use volatiles, native code, or java.util.concurrent for thread

synchronization, and must contain critical sections protecting all accesses to thread-

shared state. It must be possible to specify a lock allocation that results in correct

synchronization as defined by the Java Memory Model [MPA05].

In its current incarnation, the lock allocator uses synchronized regions (or meth-

ods) to represent the critical sections. Any original lock allocation is discarded. This

allows for newly written software to ignore the lock allocation problem altogether,

and for existing programs to benefit from automatic correction of unsafe allocations.
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Existing programs containing fine-grained manual allocations also provide a basis for

experimental evaluation of lock allocation strategies. Both classes of program undergo

unnecessary synchronization elimination.

Any form of Object.wait(), Object.notify(), or Object.notifyAll() is allow-

able, provided the input program retries condition variables after waking up from a

call to wait(). After lock allocation, these calls are redirected to the (innermost) lock

object protecting the immediately enclosing critical section. Additionally, calls to

notify() are replaced with calls to notifyAll(), which guarantees that wakeup noti-

fications reach their intended thread without being unsafely intercepted by some other

waiting thread. Nested use of wait() and notify() can have deadlock implications,

as described in Section 3.2.6.

3.2.2 Finding Critical Sections

Working with critical sections requires not only extensive record keeping regarding the

location and extent of each section, but also details of the interrelationships between

them. The first stage of our pipeline finds critical sections and records the preparation,

start, ends, and contents of each. It also identifies in-method nesting, and, if analyzing

locks instead of allocating them, records the existing object of synchronization. This

information is all stored in a LockRegion record.

In the Jimple intermediate representation, synchronized regions from valid Java

source code will take the form shown in Figure 3.8. Each critical section consists of

the following:

• An entermonitor statement.

• A beginning statement, which is the first statement of the body of the synchro-

nized region.

• A last statement, which is the last statement of the body of the synchronized

region.

• An after statement, which is the first statement executed after control flow falls

through the end of the synchronized region.
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Figure 3.8: Anatomy of a synchronized region in Java and Jimple.
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• An exceptional catch statement, exceptional exitmonitor statement, and excep-

tional end statement. These are the statements executed if an exception is

thrown during execution of the body of the synchronized region. The excep-

tional end statement rethrows the caught exception.

• Optionally, a preparatory statement, which creates a local reference to the object

being locked. A statement is only considered preparatory if the reference it

creates is used only by the entermonitor statement.

• Optionally, one or more early end statements, which is any goto or return

statement that exits the body of the synchronized region. The statement just

before each early end is an early exitmonitor statement.

• Optionally, a normal exitmonitor statement, which is the statement executed

when control flow falls through the last statement. The normal exitmonitor

statement is followed by the normal end statement, which is a goto statement

directed at the after statement.

The three types of exitmonitor/end statements are used to ensure that the lock is

relinquished prior to exiting the synchronized region. The method containing the

synchronized region will contain entries in the exception handling table for dealing

with exceptions thrown within the body of the synchronized region - these entries are

identified and replaced during the transformation phase of ALOCS, so they are not

stored in the LockRegion object.

Our analysis is not guaranteed to work with .class files generated from sources

other than Java, nor with Java bytecode that has been obfuscated.

For reporting purposes, each critical section is given a unique name derived from

its containing method and its location within that method. These names are stable

between runs of ALOCS so long as new methods have not been added to the program

being analyzed.
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3.2.3 Generating Read/Write Sets

A critical section’s potential interaction with other critical sections can be character-

ized by its side effects. A pair of critical sections whose side effects do not overlap

cannot interfere with each other at runtime. Therefore, they need not share a com-

mon lock. Our lock allocator generates approximated sets of side effects in order to

identify potential interactions and guaranteed non-interactions.

We employ the thread-based side effect analysis described in Section 3.1.3 to

generate these sets. Optionally, TBSE can in turn use TLO to improve the precision

of its results. During critical section discovery, the non-transitive side effects of the

statements contained within each critical section are calculated and stored in separate

read and write sets. Transitive side effects are not calculated until after discovery is

complete, so that the effects of nested critical sections can be properly taken into

account. Each of a critical section’s invoke statements is inspected by TBSE, and the

results added to the existing read and write sets.

3.2.4 Constructing the Interference Graph

We represent programs with a critical section interference graph G = (V,E), where

each v ∈ V is a critical section and each e ∈ E is an interference. An interference

edge between two critical sections indicates that they share a data dependence and

might conflict at runtime, and a self loop indicates that two or more threads compete

for the same critical section.

ALOCS constructs the interference graph using the critical section read and write

sets. A vertex v is created for every critical section, and an interference edge e is

inserted between every pair of vertices vi and vj for which (read(vi) ∩ write(vj))

∪ (write(vi) ∩ read(vj)) ∪ (write(vi) ∩ write(vj)) 6= ∅. This union of intersections

contains all of the data dependences between two critical sections. When non-empty,

it is stored as the contributing read/write set of e.

The interference graph provides not only a structure for the analysis of critical sec-

tion behavior, but also an illustrative visualization of program behavior. An example

of an interference graph is shown in Figure 3.9. This is the graph that is constructed
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for the traffic benchmark using dynamic locks, Spark, MHP, and TLO. The graph has

been enhanced with a visualization of an associated lock allocation (in this case, the

dynamic allocation). Each boxed cluster is a locked component of the graph, while

each lone node is an unlocked component. The grayed nodes represent unreachable

code. The third locked component from the left uses a static lock named “lockobj3”,

while each of the other components uses a dynamic lock of the indicated type. The

dotted edge lines with labels ”D#” indicate dynamic locks, and the solid lines with

labels ”S#” indicate static locks.

Figure 3.9: Interference graph for traffic using dynamic locking, Spark, MHP, TLO.

Applying MHP

Any pair of critical sections that cannot run in parallel cannot interfere with each

other at runtime, so they need not share a common lock. This principle is applied

by using the results of the may happen in parallel analysis described in Section 3.1.4

to rule out pairs of critical sections. For each such pair, the edge between them, if

it exists, is removed from the interference graph. The effect of this application on

the interference graph can be drastic for programs containing identifiable singleton

threads.

Analyzing Existing Locks

Optionally, rather than analyzing the potential interferences between critical sections,

our lock allocator can examine any previously existing locking structure in the pro-
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gram. In this case, an interference graph is constructed based on the original locks in

the program, with edges representing locks that are type compatible. Edges between

locks whose points-to sets do not intersect are grayed. This is a very conservative

approximation of the locking structure in the original program. The program is not

transformed, lock allocation is not performed, and the interference graph is printed

as the only output.

Figure 3.10: Lock analysis graph for traffic.

This non-allocating mode is useful, when analyzing legacy programs, for com-

paring manually written locking schemes against generated allocations. An example

of a lock analysis interference graph is shown in Figure 3.10. This is the graph for

the traffic benchmark. The graph shows the same four locked components that were

found by the lock allocator in Figure 3.9, but with several small differences.

• The lock analysis finds that the locks in the first and second locked components

are in fact static objects, which are the same objects that the allocator used local

references to. The allocator conservatively estimated that these local references

might not always refer to the same static object.

• Critical section m005n09 appears in the fourth locked component instead of the

third. This is a known locking defect in traffic: there is a data race between

m005n09 and m000n01, and there is no contention between m005n09 and m006n01.

The allocator correctly groups m005n09 with the third locked component.
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• The third locked component is found to use dynamic locks. This is a result of

the previously discussed locking error in the original program.

• There are faded edges between m004n01 and the first and second locked compo-

nents. This is because the lock in m004n01 is type-compatible with the locks in

the first and second locked components, but the points-to analysis found that

in fact these critical sections never lock the same objects. The faded edges are

shown to indicate that the programmer may have believed that these critical

sections share a lock.

3.2.5 Finding and Choosing Lock Objects

The completed interference graph yields a set of locked components which contain

potentially interfering critical sections, and a set of unlocked components which are

isolated critical sections without self-loops. Component-based lock allocation assigns

locks per locked component, which may be static, instantiated once per program run,

or dynamic, instantiated once per protected data structure. ALOCS allocates locks

in one of these four different granularities:

• Singleton: A single static lock shared by all components.

• Static: A different static lock for each locked component.

• Dynamic: A different dynamic lock for each locked component, reverting the

entire locked component to static allocation if necessary.

• Lockset: A set of dynamic and/or static locks for each critical section, reverting

the entire locked component to static allocation if necessary.

All four granularities remove all previously existing uses of lock objects by critical

sections, and guarantee that every critical section in a locked component is protected

by some new appropriate lock object(s). Each synchronized method is replaced with

an unsynchronized one containing a synchronized block. Calls to wait() and notify()

are redirected to the new lock object (or innermost lock object) for the immediately
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enclosing critical section. We insert public static Object fields to provide lock ob-

jects for all locks in the Singleton and Static granularities, and for any locks for which

existing program objects are not available in the Dynamic and Lockset granularities.

Singleton Lock Allocation

Singleton allocation is trivial: the interference graph is ignored, and the same static

lock is assigned to every critical section in the program. The composition of our

analysis pipeline has no bearing on this näıve allocation.

Static Lock Allocation

Static allocation does depend on the interference graph, but the lock assignment

process is straightforward: each locked component is assigned a different static lock,

and synchronization is removed from unlocked components.

Dynamic Lock Allocation

Dynamic allocation builds on static allocation by allowing the use of a dynamic lock

for locked components if one can be found. For a given locked component, each critical

section must be dynamically lockable: it must have one object available on entry to

which all reads and writes of the critical section are performed. The key difference

between dynamic allocation and lockset allocation is that dynamic allocation uses a

maximum of one lock per critical section.

To find such an object, the lockable reference analysis described in Section 3.1.5

is used on each critical section in the locked component. For a given critical section,

if the list of lockable references that is returned is either empty (indicating that a

complete list could not be found) or larger than one object, then the entire locked

component reverts to the use of a static lock. Otherwise, each critical section is locked

using the one object in its list.

This type of locking is called a dynamic lock because each critical section in the

component locks the one object that it is working with. If two of the critical sections
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attempt to read/write the same object, both will need to acquire the same lock to do

so. This sufficiently guarantees non-interference.

Unlike static locks, dynamic locks require deadlock considerations within the

locked component because a dynamic lock actually represents more than one pos-

sible runtime lock.

Lockset Allocation

Lockset allocation further builds on dynamic allocation by allowing the use of multiple

lockable references as locks. If the lockable reference analysis succeeds for every critical

section in the locked component, then locksets are used. Otherwise the entire locked

component reverts to the use of a static lock.

A critical section’s lockset initially contains all of the objects found by the lockable

reference analysis. Like dynamic locks, locksets require deadlock considerations within

the locked component, but they also require deadlock considerations within each

lockset because the locksets contain more than one runtime lock. Additionally, some

order must be selected for the locks in a lockset.

3.2.6 Detecting and Correcting Deadlock

The stages discussed so far have focused on freedom from data races. However,

another necessary condition for correct synchronization is the absence of deadlock,

which can be ensured by breaking cyclic lock acquisitions [CES71]. Our lock allocator

abides by a policy of minimal perturbance when performing deadlock detection and

correction. It first allows an initial lock allocation to proceed without regard to

deadlock, then detects violations of the partial ordering of acquisitions implied by

critical section nesting and other factors, and finally corrects deadlock by adding

deadlock avoidance edges to the interference graph and reallocating the locks.

During deadlock detection, the allocator examines all pairs of critical sections. If a

pair is nested, it records the ordering of their locks and adds the outer critical section

to a set of critical sections associated with that ordering. Any new ordering is then

compared to all previous visible orderings. An ordering is considered visible unless all
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of the critical sections associated with it share a static lock with the critical section

currently under review. Critical sections that do share a static lock are prevented

by that lock from happening in parallel, which is why their orderings are not visible

to each other. If a violation is found, it indicates potential deadlock, and a deadlock

avoidance edge is inserted between the outer critical section of the new ordering and

every critical section associated with the violated ordering.

For the static and dynamic allocations, when a deadlock avoidance edge is inserted,

the locked components of the two vertices it joins are merged, and lock allocation

restarts. For the lockset allocation, when a deadlock avoidance edge is inserted, a

shared static lock is added to the beginning of the locksets of the two vertices it joins.

The new static lock is ordered before the other locks in the locksets, so that those

acquisitions cannot happen in parallel, and will no longer be visible to each other.

Reordering Locksets

For the lockset allocation, the result of deadlock detection and correction is a partial

ordering P of all of the locks in the program. No specific ordering is required for

the locks within each lockset, except that it must respect the order in P , and that

the selected orders for locksets visible to each other cannot introduce new sources of

deadlock. The order of locks in each lockset is constructed according to P , but chosen

arbitrarily where P does not specify an order. Each arbitrarily chosen order is then

added to P so that it will not be violated by the orders generated for other locksets.

Wait/Notify Deadlock

Our deadlock detection algorithm handles typical nested mutual exclusion deadlock.

However, it does not handle nested wait/notify deadlock, which occurs if a thread

waits on one lock while holding others, and the locks it holds prevent other threads

from reaching the necessary call to notifyAll(). This type of deadlock can be avoided

by merging locks between the outer critical sections preventing access to notifyAll()

and the inner critical section containing the call to wait(). None of the benchmarks we

experiment with exhibit this behavior for the singleton, static, or dynamic allocations.
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One benchmark exhibits this behavior for the lockset allocation: in xalan, a static

lock L is split into two dynamic locks l and m in both a method W calling wait()

and a method N calling notify(). The two calls are associated to the lock m, but N

is never able to reach its call because it cannot acquire l.

Detecting this type of deadlock is left as future work.

3.2.7 Transforming the Program

Like finding synchronized regions, inserting synchronized regions requires careful

record-keeping and technique. ALOCS’s transformation phase is responsible for in-

serting public static Object fields for use as static locks, and for creating synchro-

nized regions for the lock(s) of each critical section. The transformer reuses existing

code structures whenever possible, and inserts new ones if necessary.

The references in a lockset are those returned by LRA, and may be placeholders

for a real reference that must be generated (called lockable reference reconstruction).

The transformation stage is responsible for generating the correct lockable reference.

Placeholder references are used for array references and field references, and contain

a dummy value in place of the base and index. The dummy values contain a value

number whose value is the real base/index. The transformation stage looks up the

value numbers, and replaces the dummy value with the real value. In some cases, the

real value may be another array reference or field reference, which may itself contain

dummy values that need to be replaced. The statements required to reconstruct a

lockable reference are inserted prior to the entermonitor statement of the lock region,

as well as one statement that copies the final reference into a local variable. The same

process is used to reconstruct dynamic locks as for lockset locks.

Static locks are treated differently; new public static Object fields are inserted

into the program and assigned a singleton object. A statement is inserted before the

entermonitor statement of the lock region to make a local variable reference to the

public static Object.

Every critical section has an associated LockRegion record that catalogues its ex-

isting code structures. The first lock inserted for a given critical section uses that
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LockRegion to determine which code structures may be reused, and which must be

inserted and where. For subsequent locks, a new LockRegion is calculated from the

previous one, as shown in Figure 3.11. The body of the LockRegion is kept the same

(beginning and last remain the same), while the after statement and early end state-

ments are redirected such that the machinery (normal end, exceptional end, etc.) of

the new lock region is inserted inside the old one. LockRegion statements that are null

must be created and inserted in locations relative to the non-null LockRegion state-

ments. For example, a new preparatory statement and entermonitor statement must

be inserted before the beginning statement, and new exceptional catch, exitmonitor,

end statements must be inserted before the after statement.

Figure 3.11: Calculating a nested lock region.
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3.2.8 Output

Because our allocator is integrated into Soot, it can output the transformed program

in a variety of formats. The default is .class files. The output program is compliant

with the Java Bytecode Specification, and should run in any mature Java Virtual

Machine.
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Chapter 4

Compile-time Results

In this chapter we present compile-time results for our lock allocator. We trans-

form twelve different benchmarks using twenty different configurations of our analysis

pipeline and output phase for each. We present a set of interference graphs demon-

strating the effects of each analysis and output phase, and we present complete al-

location information for each benchmark for all pipeline configurations. Chapter 5

presents the runtime results for these experiments. Our benchmarks are described in

Table 4.1.

4.1 Interference Graph Evolution

Figure 4.1 shows the significant differences between points-to analyses. While CHA

and VTA find similarly conservative interference graphs, Spark finds a much more

precise graph which is obscured by spurious edges in the others.

Though not necessarily as effective for all benchmarks, Figure 4.2 illustrates the

significant gain in precision that MHP can sometimes provide. Note that the choice

of points-to analysis is still the more significant factor in the resulting graphs. This

benchmark’s threads are mostly categorized as run-once or run-one-at-a-time, which

allows edges between threads of the same type to be pruned. This causes a consid-

erable “flattening” of the graph if the other analyses (like points-to) have already

provided a sufficiently well-resolved graph.
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Table 4.1: Benchmarks.

name critical sections description source

pcmab 2 25 producers and 25 consumers Sable

connect via an aspect

roller 6 7 passenger threads compete for 7 Sable

seats in 1 roller coaster thread

traffic 24 1 car thread and 1 driver thread Sable

navigate together around a rotary

heavy 24 4 car threads and 4 driver threads Sable

navigate together around a rotary

bank 8 8 threads transfer funds Doug Lea

between two accounts

sync 16 8 threads increment a counter, Java Grande

synchronized on an object or method

mtrt 6 2 threads render SPEC

a raytraced image

hsqldb 269 20 threads run transactions DaCapo

against a banking application

lusearch 88 32 threads search a DaCapo

large index for 3500 words

xalan 73 8 threads perform DaCapo

XSL transforms

jbb2000 241 Npeak through 2×Npeak threads SPEC

perform middleware operations

jbb2005 187 CPUmax through 2×CPUmax threads SPEC

perform middleware operations
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CHA

VTA SPK

Figure 4.1: Lock allocations for traffic with three different points-to analyses.

47



4.1. Interference Graph Evolution

VTA SPK

VTA + MHP SPK + MHP

Figure 4.2: Lock allocations for traffic with the addition of MHP.
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VTA SPK

VTA + TLO SPK + TLO

Figure 4.3: Lock allocations for traffic with the addition of TLO (without MHP).
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VTA + TLO SPK + TLO

VTA + TLO + MHP SPK + TLO + MHP

Figure 4.4: Lock allocations for traffic with the addition of both TLO and MHP.
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Figure 4.3 demonstrates that while TLO can have a significant effect on some

interference graphs, those underpinned by a strong points-to analysis might already be

too precise to benefit from TLO. However, we will later see that TLO can sometimes

have a meaningful affect on Spark-based graphs. TLO’s effectiveness against VTA-

based graphs is undeniable, as it clearly recovers some of the precision of Spark over

VTA. Again note that the choice of points-to analysis is still the more significant

factor in the resulting graphs. In Figure 4.4, we see that the combination of MHP

and TLO can sometimes be more precise than either is alone.

Figure 4.5 shows interference graphs with TLO and MHP using each of the three

allocation types: static, dynamic, and lockset. These graphs illustrate that the com-

ponents of the graph remain the same regardless of allocation - only the assigned

locks change. A partial exception to this rule is that occasionally the lockable ref-

erence analysis assigns locks in a way that allows independence between parts of a

component (see Figure 4.5). However, for the sake of analysis, allocation, deadlock

avoidance, and output, the components are as indicated in the graph.

The static and dynamic graphs contain identical sets of edges. In the static case,

those edges represent singleton objects to be used as locks. In the dynamic case, some

of these edges instead represent local references to objects. The lockset case is different

in that there may be more or fewer edges between nodes. These edges represent the

locks of the locksets. Some pairs of nodes that share a static lock in the static and

dynamic allocations share several dynamic locks in the lockset allocation. Similarly,

some sets of nodes that share a static lock in the static and dynamic allocations share

several partially or non-overlapping locks in the lockset allocation. In both situations,

the lockset allocation potentially allows greater parallelism.

4.2 Interference Graph Characteristics and Allocations

The complete set of allocations generated for each benchmark are shown in Tables 4.2

to 4.13 along with characteristics of the interference graphs from which they are

generated. We discuss the changes resulting from using Spark (instead of VTA),

from adding MHP, from adding TLO, and from using the lockset allocation (instead

51



4.2. Interference Graph Characteristics and Allocations

VTA + TLO + MHP (dynamic allocation) SPK + TLO + MHP (dynamic allocation)

VTA + TLO + MHP (lockset allocation) SPK + TLO + MHP (lockset allocation)

Figure 4.5: Lock allocations for traffic with and without locksets.
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of the static or dynamic allocations).

We include a single measure of analysis time (single-threaded) on a 2.0 GHz ma-

chine, and find it acceptable in all cases except one, generally under 2 minutes for

small benchmarks and 5 minutes for large ones. The exception is for spk-tlo-* on

hsqldb. The total interference graph edge weight for hsqldb is at least an order of

magnitude larger than any of the other benchmarks, which means that hsqldb con-

tains an unusually large number of fields for TLO to track. The per-field cost of our

implementation is clearly suboptimal, but this is not an intrinsic characteristic of our

algorithm. For the other benchmarks, we also find that TLO is more expensive than

MHP, but not prohibitively so.

The gray rows of the graph characteristics column illustrate the effect of intro-

ducing new pipeline components on interference graph evolution. |V | is constant for

each benchmark, corresponding to the number of critical sections in Table 4.1, and

indicates the size of the interference graph construction problem. |E| is the number

of edges in the final interference graph, and |E|/|V | is graph density, ranging from 0

to |V |+1
2

, a suitable graph complexity metric. The weight of any edge e ∈ E is the

number of fields involved in its contributing read/write set, and total graph weight,
∑

weight(e), indicates the size of the dynamic lock allocation problem.

The white rows of the graph characteristics column illustrates the effect that in-

terference graph quality has on lock allocation. A connected set of vertices is a locked

component, and an isolated vertex with no self loop is an unlocked component. The

allocator assigns either one static or dynamic lock to each component, or a set of locks

to each component for the lockset allocation. The static allocation includes only stat-

ically locked components. For the dynamic allocation, dynamic locks are used where

they can be found. For the lockset allocation, multiple locks are used where they can

be found. A set of N locked components C is shown as N :[|C1| . . . |CN |]. For example,

the spk-* configurations of roller have three statically locked components with two

critical sections each, shown as 3:[2 2 2]. For lockset components, more than one lock

may be used for some critical sections. These components are listed as a fraction: the

total number of locks for all critical sections over the number of critical sections.

For sync, MHP removes a static component and significantly reduces total graph
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Table 4.2: Static results for sync.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 12s 16 0 0 0

singleton allocation 1 1:[16] - - 0

VTA 77s 16 68 4.250 608

static allocation 8 2:[2 8] - - 6

dynamic allocation 8 1:[8] 1:[2] - 6

lockset allocation 8 1:[8] - 1:[2] 6

VTA X 75s 16 4 .250 4

static allocation 15 1:[2] - - 14

dynamic allocation 15 0 1:[2] - 14

lockset allocation 15 0 - 1:[2] 14

VTA X X 77s 16 4 .250 4

static allocation 15 1:[2] - - 14

dynamic allocation 15 0 1:[2] - 14

lockset allocation 15 0 - 1:[2] 14

SPK 59s 16 66 4.125 606

static allocation 9 3:[1 1 8] - - 6

dynamic allocation 9 1:[8] 2:[1 1] - 6

lockset allocation 9 1:[8] - 2:[1 1] 6

SPK X 61s 16 2 .125 2

static allocation 16 2:[1 1] - - 14

dynamic allocation 16 0 2:[1 1] - 14

lockset allocation 16 0 - 2:[1 1] 14

SPK X X 62s 16 2 .125 2

static allocation 16 2:[1 1] - - 14

dynamic allocation 16 0 2:[1 1] - 14

lockset allocation 16 0 - 2:[1 1] 14
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4.2. Interference Graph Characteristics and Allocations

Table 4.3: Static results for pcmab.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 10s 2 0 0 0

singleton allocation 1 1:[2] - - 0

VTA 76s 2 4 2.000 13

static allocation 1 1:[2] - - 0

dynamic allocation 1 1:[2] 0 - 0

lockset allocation 1 0 - 1:[ 4
2
] 0

VTA X 74s 2 4 2.000 13

static allocation 1 1:[2] - - 0

dynamic allocation 1 1:[2] 0 - 0

lockset allocation 1 0 - 1:[ 4
2
] 0

VTA X X 74s 2 4 2.000 12

static allocation 1 1:[2] - - 0

dynamic allocation 1 1:[2] 0 - 0

lockset allocation 1 0 - 1:[ 3
2
] 0

SPK 55s 2 4 2.000 13

static allocation 1 1:[2] - - 0

dynamic allocation 1 1:[2] 0 - 0

lockset allocation 1 0 - 1:[ 4
2
] 0

SPK X 57s 2 4 2.000 13

static allocation 1 1:[2] - - 0

dynamic allocation 1 1:[2] 0 - 0

lockset allocation 1 0 - 1:[ 4
2
] 0

SPK X X 58s 2 4 2.000 12

static allocation 1 1:[2] - - 0

dynamic allocation 1 1:[2] 0 - 0

lockset allocation 1 0 - 1:[ 3
2
] 0
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Table 4.4: Static results for roller.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 11s 6 0 0 0

singleton allocation 1 1:[6] - - 0

VTA 76s 6 20 3.333 318

static allocation 2 2:[2 4] - - 0

dynamic allocation 2 1:[4] 1:[2] - 0

lockset allocation 2 1:[4] - 1:[2] 0

VTA X 76s 6 16 2.666 240

static allocation 2 2:[2 4] - - 0

dynamic allocation 2 1:[4] 1:[2] - 0

lockset allocation 2 1:[4] - 1:[2] 0

VTA X X 76s 6 9 1.500 12

static allocation 3 3:[2 2 2] - - 0

dynamic allocation 3 2:[2 2] 1:[2] - 0

lockset allocation 3 2:[2 2] - 1:[2] 0

SPK 60s 6 12 2.000 166

static allocation 3 3:[2 2 2] - - 0

dynamic allocation 3 2:[2 2] 1:[2] - 0

lockset allocation 3 2:[2 2] - 1:[2] 0

SPK X 59s 6 10 1.666 126

static allocation 3 3:[2 2 2] - - 0

dynamic allocation 3 2:[2 2] 1:[2] - 0

lockset allocation 3 2:[2 2] - 1:[2] 0

SPK X X 59s 6 9 1.500 12

static allocation 3 3:[2 2 2] - - 0

dynamic allocation 3 2:[2 2] 1:[2] - 0

lockset allocation 3 2:[2 2] - 1:[2] 0
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Table 4.5: Static results for mtrt.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 26s 6 0 0 0

singleton allocation 1 1:[6] - - 0

VTA 426s 6 11 1.833 238

static allocation 3 1:[4] - - 2

dynamic allocation 3 1:[4] 0 - 2

lockset allocation 3 1:[4] - 0 2

VTA X 410s 6 1 .166 97

static allocation 6 1:[1] - - 5

dynamic allocation 6 1:[1] 0 - 5

lockset allocation 6 1:[1] - 0 5

VTA X X 411s 6 1 .166 31

static allocation 6 1:[1] - - 5

dynamic allocation 6 1:[1] 0 - 5

lockset allocation 6 1:[1] - 0 5

SPK 78s 6 11 1.833 238

static allocation 3 1:[4] - - 2

dynamic allocation 3 1:[4] 0 - 2

lockset allocation 3 1:[4] - 0 2

SPK X 78s 6 1 .166 97

static allocation 6 1:[1] - - 5

dynamic allocation 6 1:[1] 0 - 5

lockset allocation 6 1:[1] - 0 5

SPK X X 82s 6 1 .166 31

static allocation 6 1:[1] - - 5

dynamic allocation 6 1:[1] 0 - 5

lockset allocation 6 1:[1] - 0 5
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4.2. Interference Graph Characteristics and Allocations

weight, and Spark separates two simlar but distinct locks into different components.

While none of the analyses significantly simplifies the already simple interference

graph for pcmab, TLO does allow one unnecessary critical section to be unlocked.

For roller, TLO has the most dramatic effect on total graph weight, and either SPK

or TLO is sufficient to split one component into two. In contrast, Spark and TLO

have little effect on the interference graph and allocations of mtrt. However, MHP

reduces graph weight and density, thereby identifying several critical sections that do

not require locking.

Both hsqldb and xalan benefit from the use of Spark and MHP. Notably, the lockset

allocation is able to replace a static component with a lockset component for both.

lusearch and traffic both benefit from the introduction of Spark and MHP, with

lusearch depending more on the former, and traffic on the latter. lusearch is further

improved by TLO, while traffic is further improved by lockset allocation.

Spark has an unusually small affect on the weight and density of jbb2005’s graph,

and likewise splits fewer components than usual. MHP, on the other hand, has an

especially drastic affect on the weight and density of the graph, and also on the total

number of components that are locked. More typically, heavy is significantly improved

by Spark, though not by MHP and TLO. Lockset allocation replaces the largest static

component with multiple dynamic locks.

Lockset allocation breaks up a component of bank, but none of the other analyses

improve the allocation, and none of them improve the interference graph weight or

density. In contrast, for jbb2000, all of the analyses split and remove components.

Most benchmarks exhibit reduced graph density and weight as more sophisticated

analyses are introduced, although not necessarily at every stage. In general, switching

from VTA to Spark has the largest effect, and including MHP has the second largest

effect.

Empirically, as graph density decreases, the total number of graph components in-

creases monotonically towards |V |: locked components split into isolated locked and

unlocked sub-components as internal edges are removed. Although lower graph den-

sity and weight should intuitively allow for the number of dynamic locks to increase,

in practice these compete with an increasing number of unlocked components.
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Table 4.6: Static results for hsqldb.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 134s 269 0 0 0

singleton allocation 1 1:[269] - - 0

VTA 664s 269 10694 39.754 371212

static allocation 95 10:[1 1 1 1 1 2 2 2 2 171] - - 85

dynamic allocation 95 5:[1 1 1 2 171] 5:[1 1 2 2 2] - 85

lockset allocation 95 3:[1 2 171] - 7:[1 1 1 1 2 2 2] 85

VTA X 846s 269 10476 38.944 370237

static allocation 97 9:[1 1 1 2 2 2 2 6 164] - - 88

dynamic allocation 97 4:[1 2 6 164] 5:[1 1 2 2 2] - 88

lockset allocation 97 4:[1 2 6 164] - 5:[1 1 2 2 2] 88

SPK 361s 269 6191 23.014 190534

static allocation 121 7:[1 1 1 1 2 4 145] - - 114

dynamic allocation 121 4:[1 1 4 145] 3:[1 1 2] - 114

lockset allocation 121 1:[145] - 6:[ 7
4

1 1 1 1 2] 114

SPK X 405s 269 5201 19.334 160842

static allocation 130 5:[1 1 2 4 136] - - 125

dynamic allocation 130 2:[4 136] 3:[1 1 2] - 125

lockset allocation 130 1:[136] - 4:[ 7
4

1 1 2] 125

SPK X X 29768s 269 4585 17.044 134385

static allocation 135 6:[1 1 2 2 4 130] - - 129

dynamic allocation 135 3:[2 4 130] 3:[1 1 2] - 129

lockset allocation 135 2:[2 130] - 4:[ 7
4

1 1 2] 129
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Table 4.7: Static results for xalan.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 84s 73 0 0 0

singleton allocation 1 1:[73] - - 0

VTA 582s 73 249 3.410 12771

static allocation 52 4:[1 1 2 21] - - 48

dynamic allocation 52 4:[1 1 2 21] 0 - 48

lockset allocation 52 1:[21] - 3:[ 4
2

1 1] 48

VTA X 557s 73 195 2.671 11224

static allocation 55 2:[2 18] - - 53

dynamic allocation 55 2:[2 18] 0 - 53

lockset allocation 55 1:[18] - 1:[ 4
2
] 53

VTA X X 1330s 73 166 2.273 7751

static allocation 57 3:[1 2 16] - - 54

dynamic allocation 57 2:[2 16] 1:[1] - 54

lockset allocation 57 1:[16] - 2:[ 4
2

1] 54

SPK 155s 73 6 .082 22

static allocation 72 3:[1 1 2] - - 69

dynamic allocation 72 3:[1 1 2] 0 - 69

lockset allocation 72 0 - 3:[ 4
2

1 1] 69

SPK X 156s 73 3 .041 15

static allocation 72 1:[2] - - 71

dynamic allocation 72 1:[2] 0 - 71

lockset allocation 72 0 - 1:[ 4
2
] 71

SPK X X 183s 73 3 .041 15

static allocation 72 1:[2] - - 71

dynamic allocation 72 1:[2] 0 - 71

lockset allocation 72 0 - 1:[ 4
2
] 71
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Table 4.8: Static results for lusearch.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 45s 88 0 0 0

singleton allocation 1 1:[88] - - 0

VTA 179s 88 287 3.261 2645

static allocation 60 4:[1 1 2 28] - - 56

dynamic allocation 60 3:[1 1 28] 1:[2] - 56

lockset allocation 60 1:[28] - 3:[1 1 2] 56

VTA X 181s 88 250 2.840 2318

static allocation 62 2:[2 26] - - 60

dynamic allocation 62 1:[26] 1:[2] - 60

lockset allocation 62 1:[26] - 1:[2] 60

VTA X X 264s 88 210 2.386 1911

static allocation 64 3:[2 2 23] - - 61

dynamic allocation 64 1:[23] 2:[2 2] - 61

lockset allocation 64 1:[23] - 2:[2 2] 61

SPK 92s 88 86 .977 774

static allocation 74 6:[1 1 1 1 6 10] - - 68

dynamic allocation 74 5:[1 1 1 6 10] 1:[1] - 68

lockset allocation 74 3:[1 6 10] - 3:[1 1 1] 68

SPK X 94s 88 73 .829 628

static allocation 74 3:[1 6 10] - - 71

dynamic allocation 74 3:[1 6 10] 0 - 71

lockset allocation 74 3:[1 6 10] - 0 71

SPK X X 122s 88 59 .670 444

static allocation 77 4:[1 2 6 6] - - 73

dynamic allocation 77 3:[1 6 6] 1:[2] - 73

lockset allocation 77 3:[1 6 6] - 1:[2] 73
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Table 4.9: Static results for traffic.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 16s 24 0 0 0

singleton allocation 1 1:[24] - - 0

VTA 79s 24 129 5.375 290

static allocation 6 1:[19] - - 5

dynamic allocation 6 1:[19] 0 - 5

lockset allocation 6 0 - 1:[ 40
19

] 5

VTA X 78s 24 66 2.750 186

static allocation 6 1:[19] - - 5

dynamic allocation 6 1:[19] 0 - 5

lockset allocation 6 0 - 1:[ 40
19

] 5

VTA X X 103s 24 52 2.166 148

static allocation 8 3:[4 6 9] - - 5

dynamic allocation 8 1:[4] 2:[6 9] - 5

lockset allocation 8 0 - 3:[ 8
4

6 9] 5

SPK 62s 24 89 3.708 146

static allocation 9 4:[1 2 3 13] - - 5

dynamic allocation 9 1:[13] 3:[1 2 3] - 5

lockset allocation 9 0 - 4:[ 34
13

1 2 3] 5

SPK X 88s 24 32 1.333 66

static allocation 10 4:[2 3 4 9] - - 6

dynamic allocation 10 1:[4] 3:[2 3 9] - 6

lockset allocation 10 0 - 4:[ 5
4

2 3 9] 6

SPK X X 90s 24 32 1.333 66

static allocation 10 4:[2 3 4 9] - - 6

dynamic allocation 10 1:[4] 3:[2 3 9] - 6

lockset allocation 10 0 - 4:[ 5
4

2 3 9] 6
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Table 4.10: Static results for jbb2005.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked
dynamically

locked
lockset locked unlocked

NA 42s 187 0 0 0

singleton allocation 1 1:[187] - - 0

VTA 436s 187 710 3.796 3068

static allocation 108
12:[1 1 1 1 1 1

1 2 2 2 2 76]
- - 96

dynamic allocation 108 2:[2 76]
10:[1 1 1 1 1

1 1 2 2 2]
- 96

lockset allocation 108 1:[76] -
11:[ 4

2
1 1 1 1

1 1 1 2 2 2]
96

VTA X 461s 187 119 .636 131

static allocation 152 6:[2 2 2 3 8 24] - - 146

dynamic allocation 152 3:[3 8 24] 3:[2 2 2] - 146

lockset allocation 152 1:[24] - 5:[ 4
3

9

8
2 2 2] 146

VTA X X 553s 187 25 .133 29

static allocation 176 3:[2 4 8] - - 173

dynamic allocation 176 3:[2 4 8] 0 - 173

lockset allocation 176 0 - 3:[ 11
4

3

2

9

8
] 173

SPK 138s 187 560 2.994 2414

static allocation 110
14:[1 1 1 1 1 1 1

1 2 2 2 2 6 69]
- - 96

dynamic allocation 110 3:[2 6 69]
11:[1 1 1 1 1

1 1 1 2 2 2]
- 96

lockset allocation 110 2:[6 69] -
12:[ 4

2
1 1 1 1

1 1 1 1 2 2 2]
96

SPK X 137s 187 75 .401 85

static allocation 156 7:[2 2 2 2 4 8 18] - - 149

dynamic allocation 156 3:[4 8 18] 4:[2 2 2 2] - 149

lockset allocation 156 1:[18] - 6:[ 7
4

9

8
2 2 2 2] 149

SPK X X 444s 187 21 .112 25

static allocation 177 3:[2 3 8] - - 174

dynamic allocation 177 2:[3 8] 1:[2] - 174

lockset allocation 177 0 - 3:[ 7
3

9

8
2] 174
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Table 4.11: Static results for heavy.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 16s 24 0 0 0

singleton allocation 1 1:[24] - - 0

VTA 78s 24 129 5.375 290

static allocation 6 1:[19] - - 5

dynamic allocation 6 1:[19] 0 - 5

lockset allocation 6 0 - 1:[ 40
19

] 5

VTA X 103s 24 128 5.333 286

static allocation 6 1:[19] - - 5

dynamic allocation 6 1:[19] 0 - 5

lockset allocation 6 0 - 1:[ 40
19

] 5

VTA X X 108s 24 101 4.208 215

static allocation 7 2:[6 13] - - 5

dynamic allocation 7 1:[13] 1:[6] - 5

lockset allocation 7 0 - 2:[ 17
13

6] 5

SPK 61s 24 89 3.708 146

static allocation 9 4:[1 2 3 13] - - 5

dynamic allocation 9 1:[13] 3:[1 2 3] - 5

lockset allocation 9 0 - 4:[ 34
13

1 2 3] 5

SPK X 89s 24 88 3.666 142

static allocation 9 4:[1 2 3 13] - - 5

dynamic allocation 9 1:[13] 3:[1 2 3] - 5

lockset allocation 9 0 - 4:[ 34
13

1 2 3] 5

SPK X X 89s 24 79 3.291 125

static allocation 9 4:[1 2 3 13] - - 5

dynamic allocation 9 1:[13] 3:[1 2 3] - 5

lockset allocation 9 0 - 4:[ 14
13

1 2 3] 5
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Table 4.12: Static results for bank.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked dynamically locked lockset locked unlocked

NA 20s 8 0 0 0

singleton allocation 1 1:[8] - - 0

VTA 98s 8 12 1.500 12

static allocation 4 2:[2 4] - - 2

dynamic allocation 4 1:[4] 1:[2] - 2

lockset allocation 5 0 - 3:[2 2 2] 2

VTA X 99s 8 12 1.500 12

static allocation 4 2:[2 4] - - 2

dynamic allocation 4 1:[4] 1:[2] - 2

lockset allocation 5 0 - 3:[2 2 2] 2

VTA X X 96s 8 12 1.500 12

static allocation 4 2:[2 4] - - 2

dynamic allocation 4 1:[4] 1:[2] - 2

lockset allocation 5 0 - 3:[2 2 2] 2

SPK 77s 8 12 1.500 12

static allocation 4 2:[2 4] - - 2

dynamic allocation 4 1:[4] 1:[2] - 2

lockset allocation 5 0 - 3:[2 2 2] 2

SPK X 81s 8 12 1.500 12

static allocation 4 2:[2 4] - - 2

dynamic allocation 4 1:[4] 1:[2] - 2

lockset allocation 5 0 - 3:[2 2 2] 2

SPK X X 79s 8 12 1.500 12

static allocation 4 2:[2 4] - - 2

dynamic allocation 4 1:[4] 1:[2] - 2

lockset allocation 5 0 - 3:[2 2 2] 2
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Table 4.13: Static results for jbb2000.

ANALYSIS PIPELINE GRAPH CHARACTERISTICS

PTA TLO MHP time |V | |E|
|E|

|V |

X

weight(e)

total statically locked
dynamically

locked
lockset locked unlocked

NA 42s 241 0 0 0

singleton allocation 1 1:[241] - - 0

VTA 441s 241 460 1.908 2578

static allocation 200
12:[1 1 1 1 1 1

2 2 2 2 5 34]
- - 188

dynamic allocation 200 3:[2 5 34]
9:[1 1 1 1

1 1 2 2 2]
- 188

lockset allocation 200 1:[34] -
11:[ 4

2

8

5
1 1 1

1 1 1 2 2 2]
188

VTA X 482s 241 407 1.688 2353

static allocation 209 6:[1 1 1 2 2 31] - - 203

dynamic allocation 209 1:[31] 5:[1 1 1 2 2] - 203

lockset allocation 209 1:[31] - 5:[1 1 1 2 2] 203

VTA X X 1395s 241 141 .585 808

static allocation 223 5:[1 1 1 1 19] - - 218

dynamic allocation 223 1:[19] 4:[1 1 1 1] - 218

lockset allocation 223 1:[19] - 4:[1 1 1 1] 218

SPK 105s 241 163 .676 1304

static allocation 225 3:[2 4 13] - - 222

dynamic allocation 225 3:[2 4 13] 0 - 222

lockset allocation 225 2:[4 13] - 1:[ 4
2
] 222

SPK X 109s 241 150 .622 1171

static allocation 227 2:[3 13] - - 225

dynamic allocation 227 2:[3 13] 0 - 225

lockset allocation 227 1:[13] - 1:[ 5
3
] 225

SPK X X 478s 241 44 .182 169

static allocation 233 3:[1 3 7] - - 230

dynamic allocation 233 2:[3 7] 1:[1] - 230

lockset allocation 233 1:[7] - 2:[ 5
3

1] 230

66



4.2. Interference Graph Characteristics and Allocations

Over twelve benchmarks, Spark has an impact on the lock allocations of nine,

MHP on eight, and TLO on six. The lockset allocation converts static components

to lockset components in five benchmarks.

Ten out of eleven benchmarks have unlocked components, which often account

for a significant fraction of both |V | and the total number of components. These

are isolated critical sections that either lie in dead code, have data dependence only

with critical sections with which they may not happen in parallel, or do not read or

write thread-shared data. In the second and third cases, synchronization elimination

will reduce locking overhead, but the performance improvement is generally expected

to be negligible. This is due to optimizations in all production and many research

JVMs for uncontended and unshared locks [BKMS98, KKO02, RD06]. Unlocked

components are often found in instrumentation and harness code associated with

benchmark suites, or in library code, which tends to be very conservatively locked,

and only partially used. The primary benefit of synchronization elimination is a more

fine-grained allocation for the remaining locked components.
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Chapter 5

Runtime Results

In this chapter we present runtime results for our lock allocator. Our goal is to

demonstrate the extent to which this work is able to remove the burden of lock allo-

cation from the programmer without sacrificing performance. We aim to match the

performance of normal, manually assigned allocations, and to beat the performance of

allocations that are incorrect or naive. Our strategy is to take legacy programs, elim-

inate the lock information, assign locks automatically using ALOCS, and compare

the resulting program to the original.

We transform twelve different benchmarks using twenty different configurations

of our analysis pipeline and allocation phase for each, and we test the performance

and scalability of each by running them on one to eight processors of an 8-way x86 64

machine.

We find that runtime results for these twelve benchmarks validate our approach of

top-down, component-based lock allocation, and demonstrate the necessity of thread-

specific analyses like TLO and MHP. We additionally find that there is still progress

to be made in the analysis of certain particularly complex benchmarks. Finally, we

posit that the absence of solid evidence for the necessity of dynamic and lockset

allocations is an indication that the available multithreaded Java benchmarks are not

representative of the large class of casual and/or desktop Java programmers for whom

lock allocation would be most relevant. We also find that most of the benchmarks do

not scale well up to eight processors, which may be due more to benchmark workloads
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than to their code architectures.

All experiments were run on an 8-way machine with two 1.6 GHz Intel Xeon 5310

(4-core x86 64) processors and 1 GB RAM. It runs Debian GNU/Linux 4.0 (Etch),

with Sun’s 64-bit 1.5.0 10 JVM.

5.1 Experimental Procedure

We use twelve different multithreaded benchmarks from various sources, as shown

in Table 4.1. The first six are smaller and contention heavy. The four Sable bench-

marks were developed internally: pcmab stresses thread scheduling, producer/con-

sumer thread coordination, and AspectJ 1.5 performance, roller simulates a race for

seats on a roller coaster by having threads race to synchronize without performing any

real work, and traffic simulates a car driving around a rotary with high contention be-

tween the car and driver threads. A fourth Sable benchmark, heavy, simulates several

cars travelling around a rotary. It uses the same codebase as traffic, but uses an adap-

tation to allow multiple cars to ignore each other while navigating the rotary. This

is necessary because the workload of traffic is non-deterministic if cars interact with

each other1. bank is a micro benchmark derived from Doug Lea’s ATApplet [Lea99],

in which each thread makes a random account transaction then calls Thread.yield()

one million times. For these five benchmarks, we measure the time of one program

run. Our sixth benchmark, sync, is the only benchmark from the Java Grande Forum

multithreaded benchmark suite that exercises lock-based synchronization. It reports

two throughput metrics, object synchronizations per second and method synchroniza-

tions per second. We measure only the former, because our lock allocator converts

all synchronizations to synchronized blocks (object synchronizations), which causes

the method synchronization portion of the benchmark to be invalid.

The next six are larger Java benchmarking standards. We include mtrt from SPEC

JVM98, the only benchmark in the suite with a multithreaded workload, and measure

1Thread non-determinism can cause traffic drivers to make different navigation decisions from
one run to the next. For example, thread unfairness could cause one car to catch up to another, and
a driver might choose to change lanes if another car is observed at a close enough distance.
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the time of the first iteration at input size 100. We use all three benchmarks with

multithreaded workloads from version 2006-10-MR2 of DaCapo[BGH+06], namely

hsqldb, lusearch, and xalan, and measure the time of the first iteration at the default

input size. We use the -xdeps packaging of DaCapo suitable for Soot transformation,

and note that extra care is required to analyse and run all application classes properly:

hsqldb loads its main driver by reflection, and xalan is also contained in the JVM

class libraries. Finally, we include SPEC JBB2000 and JBB2005, which run multiple

fixed-length iterations internally, each increasing the number of threads by one. For

jbb2000, we use the official metric that averages all points from Npeak, the iteration

with peak throughput and N threads, through 2×Npeak. For jbb2005, we were unable

to use the official metric that averages all points from CPUmax through 2×CPUmax

threads, due to memory limitations of our 8-core machine. We instead limited the

benchmark to using 1 to 8 threads, as larger numbers would require more memory

than was available. We find that jbb2005’s performance degrades after four cores,

which is surely a result of our limitation on the workload.

We perform twenty different experiments on each benchmark. A control experi-

ment processes all class files with Soot but does not perform lock allocation. This is

done to factor out any performance effects that the use of Soot might have on the

benchmarks. The singleton allocation uses a single static lock. There remain eighteen

allocation experiments: static, dynamic, and lockset variants of six different analysis

pipeline configurations. These configurations are: 1) VTA only, which uses VTA as

the only input to TBSE, 2) VTA with MHP, 3) VTA with MHP and TLO, 4) Spark

only, 5) Spark with MHP, 6) Spark with MHP and TLO.

Each benchmark was transformed twenty times with Soot, once for control, and

nineteen times for the allocation experiments. We use a 2.0 GHz machine for the

transformations with a 1 GB heap, except for those including TLO on hsqldb, which

require an 8 GB heap.

The results of running these transformations are shown in Table 4.2 to Table 4.13,

in Chapter 4. Here, we present the results of measuring runtime performance. Each

benchmark is run 50 times per allocation, per processor configuration, with a 1 GB

heap, except for jbb2000 and jbb2005 which run only 5 times due to their excessive
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length and relative stability.

Figures 5.5 through 5.14 show runtime performance for each configuration nor-

malized against the control configuration on one processor. For sync, jbb2000, and

jbb2005, we report changes in throughput rather than inverse execution time.

Our source code is available in revision 3043 of Soot [VR00]. In the interest of

encouraging external repeatability we are also making available our benchmarks, run

scripts, raw data, and data processing scripts at

http://www.sable.mcgill.ca/˜rhalpe/thesis.

5.2 Performance Results

Figure 5.2 to Figure 5.14 present runtime performance data for all combinations of

benchmark, experiment, and number of cpus. The figures show the performance

of each configuration as relative speedup versus the control configuration on one

processor. The line representing the control configuration is equivalent to the scal-

ability graph for the original version of that benchmark. Note that a more rigorous

evaluation of scalability might show performance normalized against a lockless or

single-threaded version of the benchmark on one processor, in which case speedup ≤

#Processors would be expected to hold.

The following sections are a categorization of benchmarks based on the lock al-

location strategies that are sufficient for good performance. We loosely define good

performance for an allocation against the control experiment as having a similar or

more ideal scalability curve with a small (< 10%) drop in performance at any data

point, or as consistently outperforming the control experiment. We discuss each

benchmark individually, noting the factors that contribute to its categorization.

Figure 5.1 shows the key for all of the graphs. It can be summarized as:

• The control and singleton lines are black (marks are ‘+’ and ‘x’ respectively).

• VTA marks are solid, Spark (spk) marks are hollow.

• Static allocation (sta) marks are round, dynamic (dyn) allocation marks are

square, lockset (set) allocation marks are triangular.
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• Baseline analyses are pink (lines with small dashes), with MHP is green (lines

with long dashes), and with TLO is blue (lines with medium dashes).

Figure 5.1: Key to performance graphs.

5.2.1 Benchmarks with Underlying Threading Problems

The sync (Figure 5.2) and pcmab (Figure 5.3) benchmarks demonstrate that programs

with underlying threading problems can show counterintuitive behavior with regards

to lock allocation. sync tends to prefer lock objects with low overhead, because it has

no real workload, and no real parallelism. pcmab tends to prefer coarser granularity

locking because it hides a starvation problem of the original program.

sync

The sync (Figure 5.2) benchmark’s workload is completely dominated by the cost of

synchronization. As a result, the simplest allocations, which carry the least synchro-

nization overhead, perform the best. Its performance is measured in synchronizations

per second, which generally decreases with the addition of more processors due to

increased contention, so sync shows negative scalability.
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Figure 5.2: Relative speedup for sync.
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Although all configurations perform similarly for one and eight processors, per-

formance varies considerably for two to seven processors. Note that sync uses eight

threads, which probably accounts for the convergence at eight processors. The control

configuration, along with the basic dynamic and lockset configurations, drop sharply

in throughput when a second or third processor core is added, and recover slightly

thereafter, peaking at six cores. Dynamic and lockset configurations using TLO, and

static Spark configurations perform slightly better, but the best performing configu-

rations are those using just MHP (no TLO), or static locks with VTA. These are the

configurations that result in the simplest allocations by removing unnecessary locks

and using static locks rather than dynamic ones. It is notable that the singleton

allocation outperforms all others for this benchmark.

pcmab

 0

 1

 2

 0  1  2  3  4  5  6  7  8  9

sp
ee

du
p

# of processors

pcmab

control

Figure 5.3: Relative speedup for pcmab.

74



5.2. Performance Results

pcmab (Figure 5.3) suffers from thread starvation problems because it is a polling

solution to the classic producer-consumer problem. Coarse-grained lock allocations

tend to lessen the starvation problem, and as a result, the static and dynamic allo-

cations all outperform the original program and the lock set allocations by a small

margin for three to eight cores. Note in Figure 5.4 that the variance is very large

for this benchmark, which suggests that the benchmark is heavily affected by the

nondeterminism of thread scheduling. This is a typical effect of partial starvation

problems.
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Figure 5.4: Relative speedup for pcmab with 95% confidence intervals.

5.2.2 Lock-Indifferent Benchmarks

Three benchmarks, roller, mtrt, and hsqldb, are examples of programs where the lock-

ing scheme does not play a significant role in performance. All of these benchmarks

exhibit uniform behavior across allocations. For each of them, even the singleton al-
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location performs similarly to the original allocation. Such programs do not depend

on any particular pipeline stage for performance.

roller
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Figure 5.5: Relative speedup for roller.

The workload of roller consists entirely of a synchronization race2 and associated

accounting. The benchmark is essentially impervious to locking strategy changes

because the accounting portion of the workload is serialized (by design) for all strate-

gies, and dominates the running time. roller performs essentially no work outside

of synchronization itself, so its scalability graph (Figure 5.5) is characterized by the

increasing performance cost of increasing contention.
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Figure 5.6: Relative speedup for mtrt.
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mtrt

From the perspective of lock allocation, mtrt is the least interesting of the benchmarks

because locking is not an intrinsic part of its algorithm. It is embarassingly parallel,

simply forking two threads and later joining them, with a small amount of locking

added as insurance against an unlikely data race. Since the locked portions of mtrt

are dominated in running time by the unlocked portions, the lock allocation matters

little.

The performance graph is shown in Figure 5.6. Note that this two-threaded bench-

mark shows statistically significant improvement with the addition of a third core.

This may be an artifact of the machine architecture of two processors with four cores

each, and the choice of core order, which is to alternate between physical processors

when adding cores. As a result, the three-core configuration offers two colocated cores

for the two active threads, which offers cache benefits that may be the cause for the

observed performance improvements.

hsqldb

Like roller and mtrt, all automatic allocations for hsqldb show similar scalability and

performance to the control. However, unlike those other benchmarks, hsqldb’s au-

tomatic allocations do exhibit an observable, albeit small, performance degradation

from the control. This degradation is on the order of 5%, and is fairly stable across

cpu configurations.

Despite the large number of worker threads, this benchmark does not scale at all

past three processors under any configuration.

5.2.3 Points-to Dependent Benchmarks

Two of the DaCapo benchmarks, xalan, and lusearch, illustrate the essential nature of

points-to analysis to ALOCS. Like many production programs, these two benchmarks

use large, widely deployed, conservatively synchronized code libraries to perform their

2Not a data race: threads compete to claim resources, but do so under synchronization.
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Figure 5.7: Relative speedup for hsqldb.
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workload. These two benchmarks require only the use of a good context-insensitive

points-to analysis (Spark) to find lock allocations that provide good performance.

For many of the other benchmarks used here, points-to analysis plays an important

role even if it is not the sole deciding factor in allocation performance.

xalan
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Figure 5.8: Relative speedup for xalan.

xalan (Figure 5.8) performance is separated into two categories: those allocations

using Spark, and the singleton allocation plus those using VTA. The latter category

peaks in performance around two cores, and is flat thereafter, whereas the former

category scales modestly all the way to eight cores, like the original program. The

use of precise points-to analysis is clearly essential to good performance.

It is interesting to note that the pathological behavior we reported on Xalan in

[HPV07] was not present in these experiments. Both the hardware and the software
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differs between the two sets of experiments, which may account for the differences.

lusearch
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Figure 5.9: Relative speedup for lusearch.

Like xalan, lusearch (Figure 5.9) demonstrates a clear division between VTA and

Spark allocations, with control performing like the Spark allocations, and singleton

performing like the VTA allocations.

All three DaCapo benchmarks with multithreaded workloads show only modest

scalability for even the control experiment. This may be an indication that the default

workloads for these benchmarks do not fully take advantage of the high-profile, widely

distributed libraries on which they are built, rather than an indication of scalability

problems in the libraries themselves.
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5.2.4 Thread Analysis Dependent Benchmarks

Benchmarks like traffic and jbb2005, where locking is heavily used to control thread

cooperation, depend on the thread analyses, MHP and TLO, to produce allocations

that perform well. These benchmarks also differentiate between transformation stages

much more than those already presented, though that differentiation does not entirely

match intuitive expectations.

traffic and jbb2005 are examples of programs that require every available tool

in order to be properly analyzed. Only with the complete combination of spark,

mhp, and tlo, do these benchmarks (nearly) match the performance of the originals.

Performance improves with the addition of each analysis.

traffic
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Figure 5.10: Relative speedup for traffic.
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traffic simulates a single car and driver navigating around a rotary. It contains

two active and one dormant thread during the bulk of the workload, and as a result,

performance peaks for all allocations at two processors and remains flat after three.

In general, VTA-based allocations do not perform well. There are notable ex-

ceptions, however, in that VTA-based allocations using either TLO or the lockset

transformation perform nearly as well as their Spark-based equivalents. A reasonable

conclusion, and one supported by similar results for jbb2005, is that TLO and the

lockset analysis both recover some of the information lost by using VTA instead of

Spark. In other cases, such as xalan and lusearch, these analyses are not sufficient

to match the performance of allocations using Spark, so this relationship does not

necessarily apply in the general case.

The best performing allocations for traffic are those using the dynamic locking

transformation, followed by those using static locking, and finally by those using

locksets. This is one of the only benchmarks where locksets perform significantly

worse than their static and dynamic equivalents.

jbb2005

The performance of allocations for jbb2005 depends heavily on the use of thread anal-

ysis stages. Allocations lacking MHP and TLO do not perform well, showing negative

scalability accross all core counts. Allocations using MHP perform well, especially

those based on Spark. The Spark- and MHP- based allocation using dynamic locks

performs especially well, nearly matching the performance of the control. However,

all TLO-based allocations (which all include MHP as well) outperform all non-TLO

allocations, and match the control performance. Clearly, for jbb2005, TLO resolves

the thread-independence of a crucial data structure access that may be unnecessarily

locked by allocations that do not use TLO.

5.2.5 Lockset Dependent Benchmarks

Although rare amongst benchmarks and legacy software, some programs require mul-

tiple different locks per critical section in order to perform optimally. Legacy software
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Figure 5.11: Relative speedup for jbb2005.
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tends to require exactly one lock per critical section because it is designed to do so in

order to maximize performance under the limitations of Java synchronized regions.

Benchmarks tend not to require more than one lock per critical section because they

tend to be either very simple, or based on legacy software.

We believe that naive solutions to many locking problems are likely to require

this type of critical section splitting to allow maximal performance, and that in less

widely used or higher-complexity programs than those comprising our benchmark

suite, this splitting would not have been done manually. This is especially likely as

multithreaded programming becomes necessary, even for novice programmers, to take

advantage of increasing core counts.

heavy
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Figure 5.12: Relative speedup for heavy.

heavy (Figure 5.12) is an adaptation of the traffic benchmark that allows the use
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of a more realistic workload. Four cars navigate the traffic circle at a time, but the

workload is deterministic because the cars ignore each others’ presence. As a result,

while traffic scales only to two processors, heavy demonstrates that the code base

scales at least up to eight.

traffic improves when MHP and TLO are enabled because the improvements they

find in the allocation are necessary to allow its two cooperative threads to work

together effectively. However, in the case of heavy, those same allocations fail to

allow multiple pairs of cooperative threads to work independently enough to perform

optimally. For this, the lockset allocation is needed.

heavy’s thread pairs share the same data as the thread pair in traffic, and all of

heavy’s threads share a small amount of global data. However, most of the data used

by each pair of threads is needed only by that pair. In one important critical section,

both shared and pair-local data is accessed3. The static and dynamic output phases

both assign a static lock to this critical section, thereby serializing it amongst all

threads. The lockset output phase correctly assigns two different locks to protect

these two different pieces of data, thereby allowing increased parallelism at the cost

of having to acquire two locks instead of one. For heavy, this cost is miniscule in

comparison to the benefits.

Our results show that the lockset output phase results in allocations that mirror

the scalability of the control, while none of the static, dynamic, or singleton allocations

do. As our results for traffic would make us expect, the allocation using Spark, MHP,

and TLO performs the best.

Among the other allocations, as with traffic, those using VTA with TLO and those

using Spark perform better than the singleton and others.

5.2.6 Stubborn Benchmarks

Some benchmarks contain certain structures or a level of complexity that the analyses

and output phases presented here cannot address. While some programs may require

3In the original program, a single dynamic lock is used that does not protect all of the data being
accessed, and leaves the shared data susceptible to a data race
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greater precision of the points-to analysis, others might depend on more precise thread

analyses or different deadlock avoidance techniques. Two of these cases were observed

in our benchmark suite.

bank
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Figure 5.13: Relative speedup for bank.

Bank is a simple benchmark that employs a nonstandard locking technique. ALOCS

detects potential deadlock in this benchmark, and corrects it by the addition of a

static lock. The benchmark author, Doug Lea, avoids the same potential deadlock

by the use of a hand-programmed test-and-set boolean, which equates roughly to the

use of a dynamic lock. Unfortunately, ALOCS is unable to determine that this code

prevents the deadlock, because it does not take volatile variable value testing into

consideration as a method of locking.

As a result of the inserted static lock, all allocations suffer from poor scalability.
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An alternative approach to deadlock avoidance could remedy this problem. It is

possible to choose an arbitrary order between the two locks involved in the deadlock,

and add a lock acquisition in the appropriate place to observe that order. This

technique is employed by some other lock allocators. For this work, we opted to

prevent deadlock without altering the boundaries of critical sections in this manner.

jbb2000
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Figure 5.14: Relative speedup for jbb2000.

All automatic allocations for this benchmark suffer from poor performance, though

the use of Spark over VTA offers improvement, and the use of TLO provides a further

benefit. Unlike the similar jbb2005, jbb2000 does not show any improvement from

the application of MHP. It is possible that this difference alone accounts for the

discrepancy in the success of automatic lock allocation. However, it could very well be

other factors that are responsible for the differences. jbb2005 is a rewrite of jbb2000

88



5.3. Performance Observations

that is considered to be more idiomatic of Java. It may be the use of arrays in

jbb2000 instead of collections that results in an obscured interference graph, and thus

poorly performing allocations. The relevant portions of the interference graphs of

jbb2000 and jbb2005 are shown in Figure 5.15. Note that the primary component of

jbb2000 is more highly interconnected than that of jbb2005, and it lacks the two-tier

arrangement that characterizes the addition of MHP information to a well-resolved

interference graph (like the VTA allocation versus the SPK allocation of traffic in

Figure 4.4).

jbb2000 jbb2005

Figure 5.15: Interference graphs of jbb2000 and jbb2005 (locked components only).

5.3 Performance Observations

In general, we find that Spark with the two thread structure analyses, MHP and

TLO, and the lockset allocation offers the best balance of performance across all

benchmarks. Other than sync and pcmab, for which coarser allocations offer the

benefit of hiding other problems, this particular configuration succeeds in generating

an allocation in the range of those that perform best for every benchmark except

traffic. For traffic, this configuration degrades approximately 25%, which may or
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may not be an acceptable price to pay for automatic allocation. Nonetheless, if we

were to suggest a single combination to use for a general purpose lock allocator, it

would be this one.

While stubborn benchmarks may demonstrate the limitations in the ability of

our implementation of lock allocation to find a suitable solution for every program,

and while benchmarks with underlying problems may demonstrate the limitations

of the ability of lock allocation in general to solve the world’s threading problems,

the eight remaining benchmarks prove the usefulness of this technique. Furthermore,

we believe that our approach is a viable one even for the few stubborn benchmarks

presented here, and that future refinements of our implementation will yield progress

on these, and other programs like them.

Four mainstays of Java benchmarking, mtrt, hsqldb, xalan, and lusearch, plus the

simple benchmark roller, all prove the effectiveness of the combination of good points-

to analysis with component-based allocation. More complex benchmarks like traffic,

jbb2005, and heavy illustrate the value of thread structure analyses such as MHP and

TLO.

Although no benchmark here conclusively demonstrates the value of our dynamic

locking output phase, it should be noted that the only benchmark with a compelling

need for dynamic locking, heavy, coincidentally also requires that one critical section

be split between two dynamic locks, and thus happens to require the lockset allo-

cation. We intend to actively seek out new and existing benchmarks that can offer

more parallel and complex workloads for further study. Finally, we believe that heavy

is representative of a large category of new Java programs that use significant multi-

threading, but that are not written by experts, and that are likely to contain locking

missteps that cause a need for the lockset allocation. These sorts of programs and

their programmers stand to benefit the most from automatic lock allocation.
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Chapter 6

Conclusions and Future Work

In this chapter, we present our conclusions regarding this work and lock allocation

in general, and we suggest some future work that might increase the quality and

usefulness of our system.

6.1 The ALOCS System

Automatic techniques like ours take the considerable burden of choosing locks out

of the hands of the programmer. We find that while programs with a very com-

plex architecture or with tricky manual synchronization are not good candidates for

automatic techniques, most programs are.

Our lock allocator, ALOCS, is built around a thread-based side effect analysis

that generates an interference graph. Pluggable points-to, may happen in parallel,

and thread local objects analyses offer different levels of graph quality, and different

allocation phases choose the level of locking granularity. Conceptually, our analysis

is top-down, in that we start with the conservative whole-program assumption that

all critical sections interfere, and refine this solution by application of different anal-

yses to expose groups of interfering critical sections. However, our lockable reference

analysis is similar to portions of the bottom-up analyses of others’ work on lock allo-

cation. Locks are allocated on a per-component basis, which provides good runtime

performance without the use of optimal or heuristic MLA solutions.
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ALOCS puts a minimum of restrictions on input programs, dealing gracefully with

nesting, deadlock, different granularities, and condition variables, the combination of

which allows existing software to be analyzed without alteration. Furthermore, our

framework outputs standard Java class files, allowing programs transformed by our

lock allocator to be run on existing, unmodified Java Virtual Machines.

6.2 Empirical Evaluation of ALOCS

Runtime results for a majority of benchmarks validate the effectiveness of our ap-

proach, with ten of twelve benchmarks recovering or exceeding original performance.

Just one benchmark, jbb2000, gives evidence that there’s still room for improvement

of the analysis phase of ALOCS.

We find that the most important phase in lock allocation is points-to analysis,

with Spark providing significant improvement over VTA for half of our benchmarks.

MHP and TLO together offer improvement for four benchmarks. We judge MHP to

be a better investment of analysis time, as it generally runs considerably shorter than

TLO.

Our benchmark suite does not demonstrate a pressing need for dynamic locking,

but we remain convinced that dynamic locks are relevant for real programs. One

benchmark, traffic, does improve somewhat from the use of dynamic locks. In con-

trast to dynamic locking, there is compelling evidence that locksets are sometimes

necessary. The benchmark heavy is likely representative of a larger category of soft-

ware in its need of locksets to repair an inefficient critical section.

We conclude that the combination of Spark, MHP, TLO, and locksets is the best

pipeline for general-purpose lock allocation. Although locksets do not always provide

the best performance, they are generally within a small margin of it. More impor-

tantly, there are programs like the benchmark heavy, where locksets scale an order of

magnitude better than static or dynamic locking.
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6.3 Analysis of Lock Allocation

Our results suggest that parallel programs often exhibit simplistic concurrent be-

haviour, and that good solutions can be obtained using straightforward program

analyses. Although we recommend the use of our entire analysis pipeline, we acknowl-

edge that for most of the benchmarks here, this is not necessary. It may, however, be

possible to recognize within ALOCS when lockset allocation is not necessary, or to

otherwise improve the quality of the allocations generated.

Optimal allocation approaches may be able to improve on the runtime performance

of component-based allocation for some benchmarks.

6.4 Future Work

There are several possible avenues for future work on ALOCS and component-based

lock allocation in general. Beyond the usual array of design implementation improve-

ments, we believe that ALOCS can be made to work together with other development

tools and areas of research.

As with many still-immature technologies, lock allocation may be best offered as

an online system which provides information to programmers within an IDE without

forcing them to accept a completely automatic lock allocation.

Alternatively, component-based lock allocation could be used in the context of

an allocator based on an optimal allocation approach. Our top-down approach can

reduce the size of the optimization input problem, thereby decreasing the cost of

optimal allocation; and it can provide a “next best” solution that may suffice when

optimal solutions are too expensive.

An even more promising possibility is to integrate ALOCS as an optional opti-

mization step for an optimistic concurrency system. The information generated by

ALOCS could be used to avoid doing unnecessary accounting on speculatively locked

regions or transactions that are guaranteed to be non-conflicting. Furthermore, in

those cases where conflicts are possible, ALOCS could provide ahead-of-time infor-

mation to the optimistic system about which fields could possibly be involved in those
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conflicts. This type of integration could potentially reduce the overhead of optimistic

systems quite substantially.

In the short-term, we plan to improve the quality of the analyses in ALOCS,

improve its transformation phase, and offer alternative means of deadlock avoidance.

There are numerous optimizations possible that might shorten analysis time. We

also intend to study the impact of context-sensitive points-to analysis on the quality

of allocations, and consider the possibility of reformulating our thread-local objects

analysis as a type of context applied to a points-to analysis.
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Appendix A

Definitions for Selected Flow Analyses

In this appendix, we present flow analysis definitions for several selected analyses.

A.1 Information Flow Analysis

1. What: Sets of pairs of values <source, sink> where source is in {Ref} and sink

is in {Local, Ref}

2. Definition: A source flows to a sink if it is assigned to that sink, if it flows to a

value that is assigned to that sink, or if it flows to a field of that sink1

3. Direction: forward

4. Confluence Operator: union

5. Flow Equations: see below

6. Initial Sets: entry flow = {}, initial flow = {}

Flow Equations:

1. Gen(return a;) = {<a, returnref>}

1except assignments of the form this.somefield, in which case only the first two rules apply.
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2. Gen(a = @identityref;) = {<@identityref, a>}

3. Gen(a = b;) = {<b, a>}

4. Gen(this.f = b;) = {<b, this.f>}

5. Gen(a.f = b;) = {<b, typeof(a).f>}

6. Gen(a[e] = b;) = {<b, a>, <b, sources(a)>}

7. Gen(a = b[e];) = {<b, a>}

8. Gen(a = this.f;) = {<this.f, a>}

9. Gen(a = b.f;) = {<b, a>, <typeof(b).f, a>}

10. Gen(a = b op c;) = {<b, a>, <c, a>}

11. Gen(a = op b;) = {<b, a>}

12. Gen(a = b.f();) = {<retval(b.f()), a>, IFA(b.f())}

A.2 Lockable Reference Analysis

1. What: Sets of pairs of <variable, value#>, where variable is in {Local, Ref},

and value# is an integer.

2. Definition: A variable is assigned a value if it is “used”.

3. Direction: backwards

4. Confluence Operator: union, with equivalent value#s merged.

5. Flow Equations: see below

6. Initial Sets: entry flow = {}, initial flow = {}
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A.2. Lockable Reference Analysis

Generate a new value# when a "used" value is found

a.b = 5; val#(a) := new value number

Track a value# through an identity assignment

a = @identityrefb;
val#(@identityrefb):= val#(a)

val#(a):= nothing

Track a value# through a constant assignment

a = 5;

IFDEF val#(5) THEN ∀ x ∈ {x: val#(x)=val#(5)}, val#(x):=val#(a)

ELSE val#(5):= val#(a)

val#(a):= nothing

Track a value# through a Local assignment

a = b;

IFDEF val#(b) THEN ∀ x ∈ {x: val#(x)=val#(b)}, val#(x):=val#(a)

ELSE val#(b):= val#(a)

val#(a):= nothing

Track a value# through assignment from a static field

a = B.f;

IFDEF val#(B.f) THEN ∀ x ∈ {x: val#(x)=val#(B.f)}, val#(x):=val#(a)

ELSE val#(B.f):= val#(a)

val#(a):= nothing

Safely remove a value# through new object assignment

a = new Object; val#(a):= nothing

Track a value# to 2 value#s through assignment from a field

a = b.f;

IFDEF val#(b.f) THEN ∀ x ∈ {x: val#(x)=val#(b.f)}, val#(x):=val#(a)

ELSE val#(b.f):= val#(a)

val#(b):= new integer

Replace b.f with b’.f

val#(a):= nothing

2

2In these equations, ’a’ represents any lvalue which already has an assigned value number.
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A.2. Lockable Reference Analysis

Track a value# to 3 value#s through assignment from an element

a = d[e];

IFDEF val#(d[e]) THEN ∀ x ∈ {x: val#(x)=val#(d[e])}, val#(x):=val#(a)

ELSE val#(d[e]):= val#(a)

val#(d):= new integer

val#(e):= new integer

Replace d with d’ in d[e]

Replace e with e’ in d[e]

val#(a):= nothing
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Appendix B

Public Availability of Implementation,

Benchmarks, and Scripts

In the interest of encouraging external repeatability, we are making available our imple-

mentation, benchmarks, run scripts, raw data, and data processing scripts.

Our implementation has been developed as part of the Soot project. The version used

here is Soot SVN revision 3043. Soot is available at http://www.sable.mcgill.ca/soot/, with

a publicly readable subversion repository at https://svn.sable.mcgill.ca/soot/soot/trunk

All other materials are available at http://www.sable.mcgill.ca/˜rhalpe/thesis.
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Appendix C

Code Map

In this appendix, we present a mapping from Soot revision 3043 source packages to the

sections of this thesis, since many of the analyses described here exist in Soot under different

names.
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Class Section

soot.jimple.toolkits.pointer.CodeBlockRWSet 3.1.3

soot.jimple.toolkits.infoflow.InfoFlowAnalysis 3.1.2

soot.jimple.toolkits.infoflow.ClassInfoFlowAnalysis 3.1.2

soot.jimple.toolkits.infoflow.SmartMethodInfoFlowAnalysis 3.1.2

soot.jimple.toolkits.infoflow.UseFinder 3.1.2

soot.jimple.toolkits.infoflow.LocalObjectsAnalysis 3.1.2

soot.jimple.toolkits.infoflow.ClassLocalObjectsAnalysis 3.1.2

soot.jimple.toolkits.infoflow.SmartMethodLocalObjectsAnalysis 3.1.2

soot.jimple.toolkits.infoflow.CallLocalityContext 3.1.2

soot.jimple.toolkits.infoflow.FakeJimpleLocal 3.1.2

soot.jimple.toolkits.thread.transaction.TransactionAnalysis 3.2.2

soot.jimple.toolkits.thread.transaction.LockRegion 3.2.2

soot.jimple.toolkits.thread.transaction.Transaction 3.2.2

soot.jimple.toolkits.thread.transaction.TransactionAwareSideEffectAnalysis 3.1.3

soot.jimple.toolkits.thread.transaction.TransactionVisibleEdgesPred 3.1.3

soot.jimple.toolkits.thread.transaction.TransactionGroup 3.2.4

soot.jimple.toolkits.thread.transaction.TransactionDataDependency 3.2.4

soot.jimple.toolkits.thread.transaction.LocksetAnalysis 3.1.5

soot.jimple.toolkits.thread.transaction.DeadlockAvoidanceEdge 3.2.6

soot.jimple.toolkits.thread.transaction.NewStaticLock 3.2.6

soot.jimple.toolkits.thread.transaction.TransactionBodyTransformer 3.2.7

soot.jimple.toolkits.thread.AbstractRuntimeThread 3.1.4

soot.jimple.toolkits.thread.ThreadLocalObjectsAnalysis 3.1.2
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soot.jimple.toolkits.thread.mhp.findobject.AllocNodesFinder 3.1.4

soot.jimple.toolkits.thread.mhp.findobject.MultiCalledMethods 3.1.4

soot.jimple.toolkits.thread.mhp.findobject.MultiRunStatementsFinder 3.1.4

soot.jimple.toolkits.thread.mhp.StartJoinAnalysis 3.1.4

soot.jimple.toolkits.thread.mhp.StartJoinFinder 3.1.4

soot.jimple.toolkits.thread.mhp.MhpTester 3.1.4

soot.jimple.toolkits.thread.mhp.UnsynchronizedMhpAnalysis 3.1.4

soot.jimple.toolkits.scalar.EqualUsesAnalysis 3.1.4

soot.jimple.toolkits.callgraph.TransitiveTargets 3.1.3

soot.jimple.toolkits.callgraph.ReachableMethods 3.1.1
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Drunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo bench-

marks: Java benchmarking development and analysis. In OOPSLA’06: Pro-

ceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications, Portland, Oregon, USA,

October 2006, pages 169–190.

[BH99] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java.

1999, volume 34, pages 35–46.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin

locks: Featherweight synchronization for Java. In PLDI’98: Proceedings of

the ACM SIGPLAN 1998 Conference on Programming Language Design and

Implementation, Montreal, Quebec, Canada, June 1998, pages 258–268.

[Bla99] Bruno Blanchet. Escape analysis for object-oriented languages: application to

java. In Proceedings of the 14th Conference on Object-Oriented Programming

Systems, Languages, and Applications, 1999, volume 34, pages 20–34. ACM,

New York, NY, USA.

[BS] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual

function calls. pages 324–341.

[CC04] Byeong-Mo Chang and Jong-Deok Choi. Thread-sensitive points-to analysis

for multithreaded Java programs. In ISCIS’04: Proceedings of the 19th In-

ternational Symposium on Computer and Information Sciences, October 2004,

volume 3280 of LNCS: Lecture Notes in Computer Science, pages 945–954.

[CCG08] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for

atomic sections. In Proceedings of the ACM SIGPLAN 2008 Conference on

Programming Language Design and Implementation (PLDI), June 2008.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. CSUR: ACM

Computing Surveys, 3(2):67–78, June 1971.

104

http://doi.acm.org/10.1145/1167473.1167488
file:citeseer.ist.psu.edu/bogda99removing.html
http://doi.acm.org/10.1145/277650.277734
http://doi.acm.org/10.1145/320385.320387
http://dx.doi.org/10.1007/b101749
http://doi.acm.org/10.1145/356586.356588


Bibliography

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Sam Midkiff. Escape analysis for Java. In OOPSLA ’99: Proceedings of the

14th ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, 1999, pages 1–19.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-

oriented programs using static class hierarchy analysis. In ECOOP’95: Proceed-

ings of the 9th European Conference on Object-Oriented Programming, August

1995, volume 952 of LNCS: Lecture Notes in Computer Science, pages 77–101.

[EFJM07] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. Lock

allocation. In POPL’07: Proceedings of the 34th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, January 2007,

pages 291–296.

[FF05] Cormac Flanagan and Stephen N. Freund. Automatic synchronization correc-

tion. In SCOOL’05: Proceedings of the OOPSLA 2005 Workshop on Synchro-

nization and Concurrency in Object-Oriented Languages, October 2005.

[HFP06] Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock inference for

atomic sections. In TRANSACT’06: Proceedings of the 1st ACM SIGPLAN

Workshop on Languages, Compilers, and Hardware Support for Transactional

Computing, June 2006.

[HG06] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source trans-

lation. In MSPC’06: Proceedings of the 2006 ACM SIGPLAN Workshop on

Memory Systems Performance and Correctness, San Jose, California, October

2006, pages 82–91.

[HPV07] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge.

Component-based lock allocation. In PACT’07: Proceedings of the 16th In-

ternational Conference on Parallel Architectures and Compilation Techniques,

September 2007, pages 353–364.

[KKO02] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. Lock reservation:

Java locks can mostly do without atomic operations. In OOPSLA’02: Proceed-

ings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming,

105

http://doi.acm.org/10.1145/320384.320386
http://doi.acm.org/10.1145/1190216.1190260
http://hdl.handle.net/1802/2106
http://doi.acm.org/10.1145/1178597.1178611
http://doi.ieeecomputersociety.org/10.1109/pact.2007.23
http://doi.acm.org/10.1145/582419.582433


Bibliography

Systems, Languages, and Applications, Seattle, Washington, USA, November

2002, pages 130–141.

[Lea99] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.

Addison-Wesley, 2nd edition, November 1999.
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