
DYNAMIC DATA STRUCTURE ANALYSIS AND VISUALIZATION
OF JAVA PROGRAMS

by

Sokhom Pheng

School of Computer Science

McGill University, Montreal

May 2006

A THESIS SUBMITTED TOMCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright c© 2006 by Sokhom Pheng

Abstract

For many years, programmers have faced the problem of reading and trying to un-

derstand other programmers’ code, either to maintain it or to learn from it. Analysis of

dynamic data structure usage is useful for both program understanding and for improving

the accuracy of other program analyses.

Data structure usage has been the target of various static techniques. Static approaches,

however, may suffer from reduced accuracy in complex situations and have the potential to

be overly-conservative in their approximation. An accurate, clean picture of runtime heap

activity is difficult to achieve.

We have designed and implemented a dynamic heap analysis system that allows one to

examine and analyze how Java programs build and modify data structures. Using a com-

plete execution trace from a profiled run of the program, we build an internal representation

that mirrors the evolving runtime data structures. The resulting series of representations can

then be analyzed and visualized. This gives us an accurate representation of the data struc-

tures created and an insight into the program’s behaviour. Furthermore we show how to

use our approach to help understand how programs use data structures, the precise effect

of garbage collection, and to establish limits on static data structure analysis.

A deep understanding of dynamic data structures is particularly important for modern,

object-oriented languages that make extensive use of heap-based data structures. These

analysis results can be useful for an important group of applications such as paralleliza-

tion, garbage collection optimization, program understanding or improvements to other

optimization.

i

Résum é

Depuis de nombreuses années, des programmeurs ontéprouv́e de la difficult́e à lire et

à comprendre le code sourceécrit par autrui, soit pour l’apprentissage ou pour la mainte-

nance. L’analyse de l’usage des structures de données est utilèa la compŕehension d’un

programme et̀a l’amélioration de la pŕecision des autres analyses.

L’usage des structures de données aét́e la cible de plusieurs techniques d’analyses

statiques. Cependant, ces approches statiques courent le risque d’̂etre moins pŕecises lors

des situations complexes. De plus, elles ont le potentiel d’être trop conservatrices dans

leurs approximations. L’obtention d’une image précise et claire des activités du tas (heap)

pendant la duŕee d’ex́ecution est une tâche ardue.

Nous avons donc faites la conception et l’implémentation un système servant̀a analy-

ser dynamiquement un tas. Ceci nous permet d’examiner et d’analyser comment des pro-

grammes en Java construisent et modifient leurs structures de donńees. En utilisant un fi-

chier trace profiĺe d’une ex́ecution de programme, nous avons construit une représentation

interne qui refl̀ete l’évolution des structures de données pendant la durée d’ex́ecution.À

chaque modification, nous pouvons analyser ces structures et les visualiser. Nous avons

alors une repŕesentation pŕecises des structures de données construites ainsi qu’une meilleure

connaissance des comportements du programme. De plus, nousdémontrons l’utilisation de

notre approche pour faciliter la compréhension de l’utilisation des structures de données

pas les programmes, pour avoir une connaissances des effetsprécises du ŕecuṕerateur de

place (GC) et pouŕetablir une limite sur les analyses statiques des structures de donńees.

Une compŕehension plus profonde des structures de données dynamiques est parti-

culièrement importante pour les langages d’objets orientés modernes dont les structures

de donńees sont basées sur le tas. Ces résultats d’analyses peuventêtre utile pour un grand

ii

groupe d’applications tels que la parallélisation, l’optimisation du ŕecuṕerateur de place, la

compŕehension de programme ou l’amélioration des autres optimisateurs.

iii

Acknowledgments

This work would not have been complete without the support ofmany. First, I would

like to thank my supervisor Clark Verbrugge for his constant guidance, support and encour-

agement throughout the completion of this work, as well as for his financial support.

I would like to thank both Clark Verbrugge and Laurie Hendren for providing a nice

research environment in the Sable lab, where most of this work has been completed. Ad-

ditional thanks go to members of the Sable Research group for making the lab a friendly

place to be. In particular I would like to thank Ahmer Ahmedani, Grzegorz Prokopski,

Chris Goard, Chris Picket, Haiying Xu and Nomair Naeem for providing much interesting

discussions as to take my mind of my work. A special thanks goes to Bruno Dufour for

developing the *J framework; without this my work would not have been possible.

This research has been funded in part by the Fonds Québ́ecois de la Recherche sur la

Nature et les Technologies (FQRNT) and the Natural Sciences and Engineering Research

Council of Canada (NSERC).

Finally, I would like to give special thanks to my parents, mysister, Oliver Chen and the

rest of my friends for putting up with me and for their constant support and encouragement

throughout my studies.

iv

Contents

Abstract i

Résuḿe ii

Acknowledgments iv

Contents v

List of Figures vii

List of Listings xii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization .3

2 Related Work 4

2.1 Shape Analysis . 4

2.2 Dynamic Analysis . 7

2.3 Visualization . 8

3 *J Shape Analyzer 10

3.1 Background . 10

3.2 *J Shape Analyzer . 11

v

3.2.1 Adding our Analyzer to *J . 12

3.2.2 Data Structure Internal Representation 14

3.2.3 Data Structure Properties .17

3.2.4 Analyses . 19

3.2.5 Restrictions . 26

4 Visualization 27

4.1 Literal Representation & Animation 27

4.1.1 Tools & Issues . 29

4.1.2 Resolution . 31

4.2 Numerical Summary . 35

5 Experiments 39

5.1 Benchmarks . 39

5.2 Snapshot Example . 40

5.3 Combinatorial Topology Results .. 40

5.4 Analysis & Numerical Summary Results 47

5.4.1 JOlden Suite . 48

5.4.2 SPECjvm98 Suite . 61

5.4.3 Summary . 72

6 Conclusions and Future Work 76

6.1 Conclusions . 76

6.2 Future Work . 77

Appendices

A Complete Benchmarks Graphs 79

A.1 Benchmark Results . 79

Bibliography 80

vi

List of Figures

3.1 Design overview. 11

3.2 *J shape analyzer overview of an analysis.. 13

3.3 Description of the internal representation of an execution context.. 16

3.4 A data structure showing the aging property. Nodes are coloured according to

their age (and type); all leaf nodes here are library objects, and all internal nodes

application objects.. 18

3.5 Showing garbage nodes in the data structure. Here unreachable nodesare drawn

in dotted lines. 20

3.6 (a) shows an example of surface paths and (b) shows the pieces being pasted together.24

3.7 (a) shows an example of cuff in gray, (b) shows an example of handle in gray and

(c) shows an example of crosscap.. 24

3.8 (a) shows an example of a binary tree and (b) shows the surface mapping. 25

4.1 SplayTree snapshots. An existing pair of nodes (tree node and associated data) is

inserted just below the root of the tree.. 28

4.2 Example of what we want of an incremental drawing using Tom Sawyer.. 29

4.3 Actual result using the Tom Sawyer Software.. 30

4.4 Example using Neato: (a) without the pin down option, and (b) with the pin down

option. 31

4.5 Algorithm for backward visualization, first pass (process and store information). . 32

4.6 Algorithm for backward visualization, second pass (write back to file).. 33

4.7 SplayTree snapshots showing invisible nodes in light grey.. 34

4.8 SplayTree snapshots with incremental drawing.. 34

vii

4.9 Example of a graph showing the number of entry point type. This graph shows

that trees are converted to DAGs over time.. 36

4.10 Example of a GC graph showing the number of live and dead objects over time.

There are no dead, GC-able objects in this graph. Objects are created atthe be-

ginning and they are used throughout the whole program without adding more or

deleting any. 37

4.11 The top graph shows a graph by the number of updates, and the bottom oneshows

a graph over bytecode executed.. 38

5.1 SplayTree snapshots (part 1).. 41

5.2 SplayTree snapshots (part 2).. 42

5.3 (a) Shows a snapshot of a binary tree, and (b) shows the corresponding surface in

combinatorial topology.. 43

5.4 (a) Shows a snapshot of a grid, and (b) shows the corresponding surface in combi-

natorial topology. 46

5.5 BiSort analysis results by bytecode for every 10k updates. The top figure shows

single nodes and trees over bytecodes executed, and the bottom figure shows

DAGs. There are no cycles in BiSort.. 49

5.6 BiSort analysis over bytecode executed showing the number of connected data

structures for every 10k updates.. 49

5.7 BiSort analysis over bytecode executed showing the number of pure vs. impure

entry points for every 10k updates.. 50

5.8 BiSort analysis over bytecode executed showing the purity of fields merged over

all objects of the same class type for every 10k updates.. 50

5.9 BiSort GC results by bytecode for every 10k updates, showing the number of live

and dead objects over bytecodes executed. There are no dead objectsin Bisort. . . 51

5.10 Barnes-Hut analysis results by bytecode for every 1k updates. On thetop figure

is shown the number of single node and tree entry points over “time” (bytecodes

executed), and on the bottom the number of DAGs. Again, there are no cyclic

structures. 52

viii

5.11 Barnes-Hut GC results by bytecode for every 1k updates, showing thenumber of

live and dead objects over bytecodes executed.. 52

5.12 Barnes-Hut analysis over bytecode executed showing the number of pure vs. im-

pure entry points for every 1k updates. There are no impure entry pointsin Barnes-

Hut. 53

5.13 Barnes-Hut analysis over bytecode executed showing the purity of fields merged

over all objects of the same class type for every 1k updates. There are no impure

types in Barnes-Hut. 53

5.14 Em3d analysis result by bytecode for every 1k updates. Single nodes, trees, and

DAGs are shown in this figure. There are no cycles in Em3d.. 54

5.15 Em3d GC result for every 1k updates, showing the number of live and dead objects

over bytecodes executed.. 55

5.16 Em3d analysis over bytecode executed showing the number of connected data

strucures for every 1k updates.. 55

5.17 Em3d analysis over bytecode executed showing the number of pure vs. impure

entry points for every 1k updates. There are no impure entry points in Em3d. . . . 56

5.18 Em3d analysis over bytecode executed showing the purity of fields merged over

all objects of the same class type for every 1k updates. There are no impure types

in Em3d. 56

5.19 Power analysis result for every 1k updates. The top graph is plotted with respect to

the total bytecodes executed, and the bottom graph with respect to the total number

of data structure changes. Both graphs show the number of single nodesand trees.

There are no DAGs or cycles in Power.. 58

5.20 Power GC result for every 1k updates. At the top the time axis is in terms of

bytecodes executed, and at the bottom in terms of total data structure updates. . . . 59

5.21 Power analysis over bytecode executed showing the number of connected data

structures for every 1k updates.. 59

5.22 Power analysis over bytecode executed showing the number of pure vs. impure

entry points for every 1k updates. There are no impure entry points in Power. . . . 60

ix

5.23 Power analysis over bytecode executed showing the purity of fields merged over

all objects of the same class type for every 1k updates. There are neitherpure nor

impure type results in Power.. 60

5.24 Tree example withObjectA as the root,ObjectB as the left child andObjectC

as the right child. In the left graph,ObjectB is the entry point, and in the right

graph the entry point isObjectA . 60

5.25 TSP analysis results by bytecode for every 1k updates. On the top are trees, and

on the bottom single nodes, DAGs and cycles.. 62

5.26 TSP analysis over bytecode executed showing the number of connected data struc-

tures for every 1k updates. There are no impure entry points in TSP.. 62

5.27 TSP analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every 1k updates. There are no impure types in

TSP. 63

5.28 TSP GC results by bytecode for every 1k updates. Again, there are no dead objects

evident in this graph. 63

5.29 Jess analysis results by bytecode for every 100k updates. On the top are single

nodes, and on the bottom trees and DAGS. There are no cycles in Jess.. 65

5.30 Jess analysis over bytecode executed showing the number of connecteddata struc-

tures for every 100k updates.. 65

5.31 Jess GC results by bytecode for every 100k updates.. 66

5.32 Compress shape analysis result by both bytecodes executed (above) and number

of heap updates (below) for every update. There are no cycles in Compress.. . . . 66

5.33 Compress GC result for every update, showing the number of live and dead objects

in terms of total data structure updates.. 67

5.34 MpegAudio analysis result for every updates with respect to the total number of

data structure changes, where the top graph shows the number of trees,the middle

shows the number of cycles and DAGs, and the bottom one shows the numberof

single nodes. 68

5.35 MpegAudio analysis for every updates with respect to the total number of data

structure changes, showing the number of pure vs. impure entry points. There are

no impure entry points in MpegAudio.. 69

x

5.36 MpegAudio analysis for every updates with respect to the total number of data

structure changes, showing the purity result of fields merged over all objects of

the same class type.. 69

5.37 Db analysis results over bytecode executed for every update. On the topare trees,

and on the bottom single nodes. There are no DAGs or cycles in Db.. 70

5.38 Db analysis over bytecode executed showing the number of live and deadobjects

for every update. 71

5.39 Db analysis over bytecode executed showing the number of pure vs. impure entry

points for every update. There are no impure entry points in Db.. 71

5.40 Db analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every update. There are no impure typesin Db. . 72

5.41 Javac analysis results over bytecode executed for every 10 updates.The graphs

shown from top to bottom are trees, DAGs, cycles, and single nodes.. 73

5.42 Javac GC results over bytecode executed for every 10 updates, showing the num-

ber of live and dead objects.. 74

5.43 Javac analysis over bytecode executed showing the number of connected data

structures for every 10 updates.. 74

xi

List of Listings

3.1 Register the new analyzer inScene.java 13

3.2 Structure for the new analyzer to work properly with *J. 15

5.1 Output generated from the combinatorial topology analyzer given the above

equations . 44

xii

Chapter 1

Introduction

1.1 Motivation

Data structure, heap andshapeanalysis techniques summarize dynamic data connectivity,

with the goal of improving alias analysis [GH96], automaticparallelization [HN90], op-

timizing garbage collection [SKS00], debugging, or as partof a general understanding of

program behaviour. Investigation of data structure shape and usage is particularly important

for programs which make extensive use of heap data, such as Java and other object-oriented

languages.

There are many attempts on data structure analysis, but theyare mostly static ap-

proaches as dynamic approaches tend to have too much overhead. Static approaches to

data structure analysis potentially suffer from overly-conservative approximations, easily

induced by temporary data structure inconsistencies during updates and modifications. Dy-

namic approaches, on the other hand, are either very slow dueto the overhead, or not com-

plete as they have to leave out much information in order to beable to work at run-time

without slowing the program.

In this thesis we investigate heap data analysis from the perspective of dynamic analy-

sis. Even though our technique is slow and not done during run-time, it gives us a complete

picture of data structure properties within Java programs.Using complete traces of Java

program executions, we reconstruct the entire program execution bytecode and history of

1

1.1. Motivation

heap-based data as it is changed through program modifications. That way we can keep

track of the program’s heap nodes and their connectivity.

For smaller programs this allows for the construction of data structure snapshots and

animations, visually illustrating evolution of program data, and also encoding a variety of

properties of interest, including shape, age of data, node types, connectivity, and so on.

The animation of data structures might be used for many purposes, such as learning and

understanding a new algorithm. We show, however, that nice animations are not that easily

achievable.

For large benchmarks the results of analyses run at each datastructure change are

graphed to summarize overall behaviour. This permits larger scale investigations of data

structure usage, and using a selection of standard Java benchmarks we demonstrate the

extraction and analysis of various data that can extend detailed, runtime heap analysis to

reasonably sized programs.

Data on number and size of data structures, their general shape, connectedness and en-

trypoints, all supply useful information on how programs use dynamic data structures, and

we show how analysis of such data can provide insights into program behaviour. This in-

cludes aspects of data reachability—we can further examinethe extent of and variation in

garbage data carried through program execution (GCdrag [RR96]). A complete tracking of

heap data also allows us to determine upper limits on the potential accuracy of a more tradi-

tional static, conservative tree/DAG (Directed Acyclic Graph)/cycle data structure analysis,

under different assumptions of available alias analysis information. Most programs in our

study are surprisingly simple with respect to heap usage andour results show that static

approaches can be quite accurate, at least for common industry benchmarks.

To further demonstrate the flexibility and utility of our analysis system and approach

we also define and implement a less traditional data structure shape analysis based on

combinatorial topology.

Data structure analysis is difficult, but worthwhile as it can expose a wide variety of

interesting program behaviours.

2

1.2. Contributions

1.2 Contributions

Specific contributions of our work include:

• We provide a design and implementation of a framework for capturing the complete

dynamic evolution of data structures in Java programs. Our system supports various

data structure analyses that expose interesting and usefulbenchmark properties.

• We provide a simple technique for data structure visualization: a series of snapshots

that can encode current and historical data structure properties, which is turned into

animation to easily see the evolution of program data structures.

• We compare accurate runtime data structure analysis data with that achievable by

both optimal and simple static approaches, assuming different levels of alias infor-

mation. This establishes limits on accuracy for static heapanalyses.

• We give and discuss experimental results on the actual data structure usage of a num-

ber of benchmark programs, including non-trivial programsin the SPEC JVM98

[SPE98] and JOlden [CM01a] suites.

• We define and test a non-traditional analysis for coarse-grained shape classification

of data structures. This analysis demonstrates our system flexibility, but may also be

useful for another area such as parallelizing optimization.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 discusses background and related

work on data structure and dynamic analysis. Chapter 3 describes the general design of

our analyzer and the kind of analyses and information we can gather. Chapter 4 describes

data representation for both smaller programs in the form ofanimation and large programs

in the form of statistical graphs. Chapter 5 gives analyses results performed on a set of

tiny, small and reasonably large benchmarks. Finally chapter 6 concludes this work and

suggests future directions for research.

3

Chapter 2

Related Work

Our approach combines two main techniques, dynamic analysis and shape analysis.

These have historically been relatively orthogonal pursuits, and so we discuss them sepa-

rately in section 2.1 and section 2.2, respectively. Since our work also includes aspects of

data structure visualization, related works on visualization are described in section 2.3.

2.1 Shape Analysis

Shape analysis is a term to represent static program-analysis techniques which attempt to

determine properties of the heap contents. Shape analysis techniques vary from imple-

menting a whole new language for identifying data structures to summarizing them using

specialized graphs.

A frequent, and early approach to identifying data structures is to allow the program-

mer to provide high-level information through program annotations. Hummel et al., for

instance, define static annotations to data structures in order to help the compiler iden-

tify opportunities for parallelizing transformations [HHN92]. They have developed an ap-

proach for theAbstract Description of Data Structures(ADDS) where programmers have

a way to describe properties of the data structures to the compiler. It is designed to intu-

itively and accurately describe pointer data structures possessing a form of regularity by

describing their shape and traversal properties.

4

2.1. Shape Analysis

A similar annotation approach is described by Fradet and Le Métayer, who define a new

language annotation that integrates the notion of shapes into the C language [FM97]. The

notion of shapes to express properties of data structures isdescribed as context-free graph

grammars where modifications are defined as rewrite rules; these rules are used to ensure

that the graph structure described by the grammar is preserved.

Many have tried identifying data structure shape without modifying the source code.

Ghiya and Hendren show how the conceptually simple categorization of data structures into

tree, DAG,or cyclecan be sufficient for compiler optimization [GH96]. They introduce the

idea of using adirection matrixto determine whether a heap-directed pointer has a path

to another heap-directed pointer or not, and aninference matrixto determine if two heap-

directed pointers can access common objects. These matrices are used to perform analysis

to estimate the shape of the data structure as a tree, DAG, or cycle graph.

More detailed data structure information can be discoveredthrough various kinds of

graph abstractions. Klarlund and Schwartzbach’sgraph typesbuild a representation as a

grammar describing data structures having a backbone, suchas doubly-linked lists [KS93].

Wilhelm et al. [WSR00] defineshape graphsto represent structural properties of data struc-

tures. These graphs are the result of shape analysis, which they define to be a conservative

static program-analysis to determine properties of the heap contents. Usingflow graphs,

the shape graphs are modified to give a conservative representation of heap-allocated data

structures every time a program point is executed.

Corbera et al. combines static shape graphs with abstract storage graphs to give a more

precise shape analysis [CAZ02]. For that to be possible, theyextendstatic shape graphs

that were first introduced by Sagiv et al. [SRW98] by adding summary nodes for summa-

rizing different structures and by adding a shared attribute to keep track of cycle links,

which give a more accurate representation of doubly-linkedgraphs. Their techniques were

later improved by Navarro et al. by approximating the data structures in a graph combining

memory locations having similar patterns [NCA+04]. Their analysis maintains topologi-

cal information on connections between the different memory locations (nodes) in the data

structure. The analysis is also based onreference shape graphsused to approximate all

possible memory configurations appearing after executing acode statement, where each of

those nodes represents memory locations which have similarreference patterns.

5

2.1. Shape Analysis

Recently, Hackett and Rugina described a way of breaking down the entire shape ab-

straction into smaller component and analyzing them separately [HR05]. That way, it en-

ables them to do local reasoning about a single heap locationinstead of doing a global

reasoning on the entire heap. To do so, they use two kinds of decompositions to break

down the shape abstraction. They first use a “vertical” decomposition to identify points-to-

relations between regions. Then they use a “horizontal” decomposition to characterize the

state of each single heap location, where the reasoning willbe done.

Raman and August [RA05] examine complete dynamic traces to generate abstract

shape information; this is a similar general approach to ours, although they concentrate

on identifying recursive structures, and derive their information from low-level, binary

analysis. They use a technique calledRecursive Data Structure Profilingto help better

understand the dynamic memory behaviour of recursive data structures such as trees. An

important step of this technique is to reconstruct shape graphs that were created on the fly

during the program execution. It gives two representationsfor shape graphs. It first collects

all information on each object node and reconstructs aUnified Shape Graph, where each

object node contains all reference pointers to and from it. However this graph turns out to

be very large for them to keep track of. Therefore they categorize the edges of the unified

shape graph into different instances of recursive data structures and only keep track of those

instances instead of all objects. With this, they constructa Static Shape Graph, which is

basically a summary of the unified shape graph. Contrary to their work, instead of only

analyzing recursive data structures, we analyze all data structures that are constructed.

While most work done on shape analysis has been done statically on C code, Bogda

and Singh have dome some exploratory work on shape analysis for Java code at run-

time [BS01]. They show that by analyzing at run-time, they avoid problems that would

arise for static analysis such as dynamic loading and binding. However, the trade-off is

the run-time cost and the fact that the analysis must work with incomplete information.

Since their analysis is based on call graphs, to address these trade-offs, they build their call

graphs incrementally based on the previous modification point call graph to avoid the large

overhead. This way they are able to prove that good results are possible, although mainly

under repeated execution scenarios.

The different approaches described above show what have been done in terms of shape

6

2.2. Dynamic Analysis

analysis. Our work will mainly focus on the concept described by Ghiya and Hendren

[GH96] to build our analysis, where data structures are categorized intotree, DAGor cycle.

2.2 Dynamic Analysis

Dynamic program analysis can be performed online, or offlinethrough the analysis of

program execution trace files. Given the large resource demands of our precise shape

analysis we have focused on the latter technique; many inroads have been made to the

former [BS01], however.

Trace extraction from Java programs often relies on the use of the Java’s built-in Virtual

Machine Profiling Interface (JVMPI), or its new replacementJVMTI (Tracing Interface).

Brown et al. describe a framework, STEP, for profiler developers to encode general pro-

gram trace data in a flexible and compact format [BDE+02]. JVMPI is also used by Dufour

et al. in the implementation of *J [Duf04], a tool for dynamicanalysis of Java programs

used to generate Java program metrics [DDHV03]. Our work here builds on the *J frame-

work.

Similarly to STEP and *J, SEAT (Software Analysis and Exploration Tool) is a trace

analysis tool developed at the University of Ottawa to explore large execution traces of

methods calls [HLLF05]. Traces are displayed in the form of atree structure in eclipse that

contains a set of auxiliary views, which are used to display different information that can

be gathered from the trace files. This approach is a bit different from ours. Although they

also analyse trace files, they only focus on method calls, whereas our work focuses on the

whole program execution.

A slightly different approach to dynamic analysis is ARE, which is A Reverse Engi-

neering tool that gathers runtime data to analyze the dynamic behaviour of software sys-

tems [GOP03]. Instead of analyzing execution trace files, AREuses run-time data such as

parameter and object values. ARE focuses mainly on the analysis of reflective (dynamic)

methods, whereas our work focuses on all methods.

The Daikon project from MIT [ECGN99] and the Dynamo project from Indiana Uni-

versity [LD97] both provide online forms of dynamic analysis, differing mostly in usage.

7

2.3. Visualization

Both projects are based on observing runtime values and invariants to perform diverse anal-

yses and optimizations. The Daikon project uses the information to report properties that

were true over the observed period, which can then be used fortesting and verification.

Dynamo is a compiler architecture that uses the informationto do runtime optimizations.

The challenges of efficient online dynamic analysis are quite different from our exhaustive

approach to trace analysis, but the invariant-based approach may be a useful basis for for

determining specific data structure properties.

2.3 Visualization

Visualization is useful in a wide range of fields. It is usefulfor program analysis and

for debugging purpose, but it is even more useful for programcomprehension or even for

learning an algorithm for educational purposes. We will describe some of the work that has

been done in those fields.

Visually representing the heap is an existing concern in many area, and it is used for

various purposes. For example, Zimmermann and Zeller use heap visualization to debug-

ging purpose [ZZ01]. Theirmemory graphis used for accessing and visualizing memory

contents, where each value in memory is a vertex and each pointer is an edge. That way

it can capture the program state as a graph. Printezis and Jones use heap visualization to

understand program behaviour in order to design the next generation of garbage collec-

tors [PJ02].

Reiss and Renieris use visualization for program profiling in general to better under-

stand the behaviour of their software [RR05]. They do so by displaying a summary visu-

alization of data gathered from a running Java program, which shows the execution of the

program as it occurs, but not in terms of data structures.

Reiss uses visualization to provide high-level program-specific information in real time

of Java programs [Rei03]. To work in real time, their trace data have to have minimal

overhead. In order to cut down on the analysis time, instead of showing everything the

program is doing they decided to break down the program execution into intervals, and

only showing a summary for each of those intervals. The information they gather for a

8

2.3. Visualization

class includes the number of entries, the number of synchronization calls and the number

of allocations, and for a thread it includes the time spent ineach state.

De Pauw and Sevitsky use visualization to display referencepatterns for solving mem-

omy leaks in Java [PS00]. By using reference patterns, which are repetitive execution

sequences, they can work with complex structure of data space in a simplified, aggregated

form. They look for memory leaks by comparing two snapshots of the program’s object

population, one taken just before a critical operation and one taken right after.

Another kind of visualization technique for program comprehension is also used in

ARE [GOP03], where a diagram of all method invocations that involves an instance of the

object of interest is displayed. That way it allows the understanding of how that object is

being used.

A very natural way to learn and understand an algorithm is to trace through it; unfor-

tunately most of the time the algorithm is very complex, and we could easily get lost if

we attempt to manually trace it. Therefore it would be most welcome if the tracing can be

done by a tool. This is what the GANIMAL project tries to do [DGK02]. It is a framework

for developing educational software, which provide a powerful set of features. Some of

its features include the ability to do a step-by-step execution of an algorithm or a parallel

execution of it, to get a visualization of invariants for program points and blocks, and most

importantly an online algorithm animation, which is usefulto visualize the control of loops

and recursion. Following the same line of thought, our simple visualization technique can

be used to understand an algorithm in terms of how data structures are modified.

9

Chapter 3

*J Shape Analyzer

This chapter describes the *J shape analyzer and its features. Section 3.1 describes

the *J tool and how the *J shape analyzer fits in. Section 3.2 describes how the *J shape

analyzer is is implemented and added to the *J analyzer framework. It also describes how

data structures are internally represented and the kind of information that can be encoded

with the data structures. Analyses that were implemented are also described as well as

some restrictions to the system.

3.1 Background

In order to perform dynamic analysis for accurately finding data structure modifications

we need a way to know what exactly happened during the execution of a program: what

values were passed, which objects are referenced, and so on.To do so, we use *J, which

is a tool for dynamic analysis of Java programs. It consists of two components. The first

one is the *J agent, a profiling agent, and the second one is the*J analyzer, an analysis

framework. The *J agent consists of a main trace generator that uses the built-in JVMPI

(Java Virtual Machine Profiling Interface) to dynamically receive events from a JVM (Java

Virtual Machine) that implements that interface; each event is serialized into a single event

stream and output to a file called thetrace file. The *J analyzer is a trace analyzer that reads

the trace files produced by the *J agent and perform any numberof dynamic analyses on

data stored in the trace [Duf04].

10

3.2. *J Shape Analyzer

Java Program
*J AgentJVM

...100101101000101

11010110100010110

01010010101010001

100101101000101...

*J Analyzer*J Shape

Analyzer

. . .

putfield

aload_3

ifnonnull

aload_0

. . .

Trace File .dot Output

Summary

Figure 3.1:Design overview.

The overall flow for the shape analysis system is shown in figure 3.1. The first part of

the process is data gathering. Java programs are executed inthe JVM where an attached *J

agent produces execution trace files of the running program.These trace files are then fed

into the *J shape analyzer, which is constructed using the *Janalyzer framework. Here the

input event trace is used to reconstruct the program data structure and their evolution over

time. The *J shape analyzer may apply various analyses such as tree/DAG/cycle analysis,

topological shape analysis, etc. The last part of the process is the output representation

of the analysis data. Results can be communicated as literal snapshot or animated repre-

sentations of graph structures, or in the case of larger outputs as graphs of numerical and

analysis properties.

3.2 *J Shape Analyzer

For a complete and accurate analysis of runtime data structures, we need complete data

on heap objects and references and all values which may be stored in reference fields.

*J provides both a complete trace of all instructions executed, and unique identifiers for

all objects. We are thus able to reconstruct heap connectivity by tracking which object

identifiers are subject and target of reference field writes;this includes reference arrays.

11

3.2. *J Shape Analyzer

Figure 3.2 shows the flow for the *J shape analyzer. The *J shape analyzer reads events

from the generated trace file and processes them one by one. For each event processed,

a corresponding update is applied to an internal structure that mirrors the program’s heap

nodes and their connectivity. This includes the removal of nodes due to GC. At each of

these modification points, analyses are then run to determine the evolving properties of the

data structure.

Many analyses can be performed on this mirrored data structure, and some of those

analyses are explained in section 3.2.4. Apart from the analyses, we can play around with

the analyzer’s options. One of the options is to be able to setthe frequency the analyses

are being performed on data structures. The other option is to be able to recognize some

data structure properties such as doubly-connected structures. If we did not let the analyzer

know it is a doubly-connected structures by explicitly telling it to ignore doubly-connected

reference pointers, it will conclude it is a cyclic graph. Wecan also get analysis result in

terms of arbitrary “timelines”, including number of data structure modifications or bytecode

count.

In the next section we describe how the *J shape analyzer is added to the *J analyzer

framework. Then we describe how data structure objects are internally represented, and

we follow with a list of information that we are currently encoding about data structures.

Section 3.2.4 describes analyses that are implemented, andwe end with section 3.2.5 which

describes restrictions of the system.

3.2.1 Adding our Analyzer to *J

For the analyzer part of *J to correctly work, since it is a complex tool and contains many

different analyses, it needs a way to understand how they work together. Analyses are

organized intoPack s andOperation s, wherePack objects are containers for other

Pack s andOperation s, andOperation objects contains the actual analysis. All this

information is stored in a file calledScene.java , which contains the entire hierarchy

of Operation s andPack s. Furthermore, it contains the main event processing loop

indicating which operations and analyses to perform first, second, and so on.

12

3.2. *J Shape Analyzer

Events Process Events Analysis

(Tree/DAG/Cycle)

Entry points: 1, 3, 4

1

4

3

. . .

putfield

aload_3

ifnonnull

aload_0

. . .

Entry point 1: DAG

Entry point 3: Tree

Entry point 4: DAG
2

5 6

7 8

Figure 3.2:*J shape analyzer overview of an analysis.

. . .

import starj.toolkits.stacks.StackAnalysis;

. . .

public class Scene {

. . .

private void populate(Container container) {

. . .

Pack toolkits_stacks = new Pack("stacks",

"Contains stack-related operations");

toolkits.add(toolkits_stacks);

toolkits_stacks.add(new StackAnalysis("stack",

"Output results of stack operations");

. . .

}

. . .

}

Listing 3.1: Register the new analyzer inScene.java

13

3.2. *J Shape Analyzer

In order for the *J shape analyzer to be a part of *J, we first need to register the

new analyzer, which we calledStackAnalysis . We do so by adding a few lines in

Scene.java as in listing 3.1. We first need to create a newPack object to contain our

analysis with a name and a small description of it. Then we have to add the createdPack

object to thetoolkits package. Once that is done, we add our analysis to thePack

object we just created with the analysis name and its description.

Now that our analysis is registered, we need to follow a certain structure predefined

within the *J analyzer framework for it to work properly. Thestructure is shown in list-

ing 3.2. All analyses have to extendAbstractOperation and need to have these

three methods:init() , apply(EventBox box) anddone() . init() is where

the analysis starts when the *J analyzer starts. This is where we can initialize objects

for the analysis before it actually starts.apply(EventBox box) is where events are

processed. Whenever there is an event to be processed, this method of each analysis is

called to process it.done() is called to wrap up the analysis once the end of the trace

is reached. It is usually used to print out the result of the analysis or the amount of time

it took for the whole analysis to process. In addition, we included two more methods to

the analyzer,operationDependencies() andeventDependencies() . The first

method states which other operations provide information used by this operation. Since we

need to know the particular bytecode associated with each executed instruction event, we

need to make sure that this information will be available to our analysis when it executes.

It is done throughInstructionResolver . The second method is for registration in

order to receive the required events. In our case, we were only interested in instruction

events, which are calledINSTRUCTIONSTARTevents; that is why we only registered to

receive those events. If we wanted other kinds of events, it is the place to register them.

3.2.2 Data Structure Internal Representation

In order to construct an internal data structure representation, we model the complete ex-

ecution of each thread by interpreting bytecode events. Theway we build our system

follows somewhat the Java Virtual Machine Specification [LY96]. From figure 3.3, we

can see that anInvocationStack object is created for each new thread the analyzer

14

3.2. *J Shape Analyzer

package starj.toolkits.stacks;

public class StackAnalysis extends AbstractOperation {

public StackAnalysis(String name, String description) {

super(name, description);

}

// State which other operations provide info used by this operation

public OperationSet operationDependencies() {

OperationSet dep_set = super.operationDependencies();

dep_set.add(InstructionResolver.v());

return dep_set;

}

// Register to receive required events

public EventDependencySet eventDependencies() {

EventDependencySet dep_set = new EventDependencySet();

dep_set.add(new EventDependency(Event.INSTRUCTION_START,

new TotalMask(Constants.FIELD_RECORDED), true));

}

return dep_set;

}

// This is where the analysis starts when the∗J analyzer starts

public void init() { . . . }

// This is where events are processed

public void apply(EventBox box) { . . . }

// This method is called to wrap up the analysis once the end ofthe trace is reached

public void done() { . . . }

}

Listing 3.2: Structure for the new analyzer to work properlywith *J.

15

3.2. *J Shape Analyzer

HashMap for Threads

InvocationStack

StackFrame

ExecutionStack

method 1

method 2

method 3

operand 1

operand 2

operand 3

Int type

value: 5

Float type

value: 1.0

Int type

value: 2

Operand

Figure 3.3:Description of the internal representation of an execution context.

encounters, which contains the thread id as well as aStackFrame stack object. Each

StackFrame object is created at the start of every method, which contains the method

id, the method signature, info on the local variables and themethod parameters as well

as anExecutionStack object. EachExecutionStack object contains a stack for

Operand objects. EachOperand object contains information such as whether it is a

reference type object, an int type object, a float type object, and so forth. With that, the

ExecutionStack can mirror the java execution stack so that bytecode from thetrace

file can be processed.

Most programs contain more than one thread even if the program is not intentionally

multi-threaded. That is due to the fact that there are usually many threads created by de-

fault by the JVM. Therefore, we need a way to identify which thread is being executed.

Fortunately, this is already being handled by the *J tool, which give a unique id for each

thread, method and object. Therefore, when an event has a thread id that is different for the

previous event, the correspondingInvocationStack object is loaded along with the

top element of itsStackFrame , which constitute the method it left off before the other

thread was executed.

As events are processed, if the analyzer gets anINVOKEINTERFACE, an INVOKE-

SPECIAL, anINVOKESTATICor anINVOKEVIRTUALevent, all objects from the stack

that are needed for the invoked method parameters are loadedto that method’s locals. At

the method entry, a new StackFrame is created and pushed intothe InvocationStack

object for the thread id. AsINSTRUCTION events are processed, elements from the

16

3.2. *J Shape Analyzer

ExecutionStack are popped or pushed depending on the bytecode it is processing. For

example, if it gets anIADD instruction event, two elements from theExecutionStack

will be popped, where both of them are of integer type. The value will then be computed

before being pushed back to the stack. When the method exits, itsStackFrame is popped

from theInvocationStack , and if there is a value to be returned, it is then pushed into

the invoker’sExecutionStack .

Once we have the system described above set up, we can start mirroring data structures.

So far, we have dealt with how events and bytecodes are being handled and processed.

However, our goal is to know how objects are connected to eachother. Obviously, this only

concerns reference typed objects; for each reference typedobject or object allocated, we

introduce an object calledObjectAlloc , which holds a space for reference information

on arrays or fields it points to, and also references from other objects. That way when we

have aPUTFIELD instruction for example, we can store the field object at the correspond-

ing field index. Thus when an analysis is to be performed, a depth first search starting at all

roots of the data structure can be done to determine object connectivity and reachability.

3.2.3 Data Structure Properties

From the mirrored representation of the program data structures we are able to find and

show a variety of interesting and useful properties. Certainly type, or other node informa-

tion can be easily included in any graphical representation. We can further encode complex,

historical node properties such as relative age of its component nodes, and the data structure

can also be examined more abstractly, e.g., in terms of reachability.

Node type in our representations is shown textually. However, since we are most inter-

ested in application objects, we distinguish application from library objects through colour

as well, and this strategy can obviously be extended to many node properties. Figure 3.4

shows an example of this division, as well as a visualizationof theagingproperty: as an

object ages, meaning that it lives longer within the program, its colour becomes darker (in

figure 3.4 this is applied only to application objects, not library objects). Observing age

and type can be a useful way of understanding how a structure is constructed; in figure 3.4,

for example, it is evident that the data structure is mostly built bottom-up, with application

17

3.2. *J Shape Analyzer

nodes near the tree root younger than nodes deeper in the structure.

9112
 Integer

7432
 BinaryNode

8568
 BinaryNode

8928
 BinaryNode

8552
 Integer

9008
 BinaryNode

9088
 BinaryNode

9048
 BinaryNode

8952
 Integer

9032
 Integer

9072
 Integer

8912
 Integer

8848
 BinaryNode

8832
 Integer

8888
 BinaryNode

8768
 BinaryNode

8872
 Integer

8752
 Integer

8808
 BinaryNode

8688
 BinaryNode

8792
 Integer

8672
 Integer

8728
 BinaryNode

8608
 BinaryNode

8712
 Integer

8592
 Integer

7832
 SplayTree

7816
 String[]

Figure 3.4:A data structure showing the aging property. Nodes are coloured according to their age

(and type); all leaf nodes here are library objects, and all internal nodes application objects.

There are many options with aging with which we can play. First, we can age an object

every time there is a modification done on the data structuresor we can age it at every

bytecode execution. In our work, we choose to age objects at every bytecode execution.

Second, we have a choice on the colour selection and the rangeof age for each colour. In

our case, colours starting with light to dark are assigned todifferent range of ages, with the

exception of new objects which are of a totally different colour since we want to emphasize

the introduction of new objects. The colouring is done in following way:

18

3.2. *J Shape Analyzer

Age 0 bytecode executions (new object)

Age 1-10 bytecode executions

Age 11-100 bytecode executions

Age 101-1,000 bytecode executions

Age 1,001-10,000 bytecode executions

Age 10,001-100,000 bytecode executions

Age 100,001-1,000,000 bytecode executions

Age > 1,000,000 bytecode executions

For the moment our tool does not have a way to automatically normalize the intervals for

the age classes. It is pre-determined by the user.

Reachability in our system is easily determined. By tracking all object references we

also know the set of all root objects, or entry points to the structure. Root objects include

static variables, live local variables, and live method parameters. Thus by comparing the

transitive closure of references with the set of all allocated but currently uncollected objects

we can determine the set of dead objects, not reachable from the root set. This information

can be visualized, showing the exact amount and (remaining)connectivity of dead, garbage

objects the heap contains. Figure 3.5 shows a visualizationof a data structure containing

garbage data. Dead objects are drawn with dotted lines, and we can easily see how many

there are and exactly how they are connected to each other andto the rest of the structure.

Understanding how much data is carried in this way can be useful for garbage collector

optimization [RR96].

3.2.4 Analyses

The *J shape analyzer has all necessary information to support the implementation of vari-

ous analyses, including different summary and shape graph approaches, topological shape

analysis, etc. We have implemented a basic tree/DAG/cycle analysis as a proof of con-

cept, and also to investigate the quality and utility of thissimple categorization. As a more

complex and non-traditional analysis, we have also implemented an analysis based on the

combinatorial topology of surfaces to classify the different types of data structures.

There are many ways to look at data structures. Most often they can be viewed as a

19

3.2. *J Shape Analyzer

1147620208
 Integer

1147620224
 Integer

1147620240
 Integer

7432
 BinaryNode

8688
 BinaryNode

8672
 Integer

9728
 BinaryNode

9712
 Integer

9168
 BinaryNode

9152
 Integer

8608
 BinaryNode

8592
 Integer

9648
 BinaryNode

9632
 Integer

9088
 BinaryNode

9072
 Integer

1147620256
 Integer

1147620272
 Integer

1147620288
 Integer

1147620304
 Integer

1147620320
 Integer

7832
 SplayTree

9248
 BinaryNode

9232
 Integer

9328
 BinaryNode

9312
 Integer

9408
 BinaryNode

9808
 BinaryNode

9392
 Integer

9488
 BinaryNode

9368
 BinaryNode

9472
 Integer

9528
 BinaryNode

9448
 BinaryNode

9512
 Integer

1147620088
 BinaryNode

1147620048
 BinaryNode

1147620072
 Integer

9568
 BinaryNode

9008
 BinaryNode

9552
 Integer

9048
 BinaryNode

9032
 Integer

8992
 Integer

1147620032
 Integer

8968
 BinaryNode

8952
 Integer

9432
 Integer

1147620008
 BinaryNode

9968
 BinaryNode

9992
 Integer

8928
 BinaryNode

8912
 Integer

9952
 Integer

8888
 BinaryNode

8872
 Integer

9352
 Integer

9928
 BinaryNode

9888
 BinaryNode

9912
 Integer

8848
 BinaryNode

8832
 Integer

9872
 Integer

8808
 BinaryNode

8792
 Integer

9792
 Integer

9288
 BinaryNode

9272
 Integer

9848
 BinaryNode

9832
 Integer

8768
 BinaryNode

8752
 Integer

7816
 String[]

8568
 BinaryNode

8552
 Integer

9608
 BinaryNode

9592
 Integer

9128
 BinaryNode

9112
 Integer

8648
 BinaryNode

8632
 Integer

9688
 BinaryNode

9672
 Integer

9208
 BinaryNode

9192
 Integer

8728
 BinaryNode

8712
 Integer

9768
 BinaryNode

9752
 Integer

Figure 3.5:Showing garbage nodes in the data structure. Here unreachable nodesare drawn in

dotted lines.

20

3.2. *J Shape Analyzer

whole or according to the reachability of root objects. For the first analysis that we will

describe, we use the view given by the reachability of root objects, or entry points.

Tree/DAG/Cycle

Dynamically, a tree/DAG/cycle categorization is quite trivial to compute. From each entry

point we simply do a depth-first search to determine whether the nodes reachable from that

entry point represent a tree, a DAG or a cyclic graph. This information is then encoded

in the graphical output; if the reachable nodes form a tree then the entry point is drawn

as a rectangle, if the structure is a DAG then the entry point is drawn as a “house shape”

(pentagon), and for cyclic structures a hexagon entry pointis used. By performing this

analysis at each structure modification we obtain an evolving view of the data, at least in

terms of tree/DAG/cycle composition.

This process has one important practical caveat: single, unconnected nodes are consid-

ered trees. While this is true in a technical sense, many programs make extensive use of

single node objects, and this obfuscates any understandingof more realistic tree usage. For

this reason we actually make use of a 4-way categorization, with single nodes distinct from

trees.

Connectivity

Note that a given data structure may appear differently fromdifferent perspectives: it is

common to think of data structures as connected graphs, but analysis information can be

distinct for each entry point (reference variable), or generic to the entire connected data

structure. Figure 3.4 shows examples of distinct tree and DAG entry points into the same

connected structure. In most of our work we use entry point information as fine grain data;

connected data structure information, however, is also determined.

Purity

In order to measure the potential accuracy of a static analysis of the same program, we also

define apurity metric on all data structure references.

21

3.2. *J Shape Analyzer

Definition Let “v” be a partial order on data structure shapes; e.g., treev DAG v cycle.

If the shape computed from a particular referencer at each heap change forms a sequence

s0, s1, . . . , sn, thenr is pure if si v si+1 for all i = 0...n − 1.

Data structure purity is meant to capture the relative ability of a static shape analysis

to accurately determine shape. If despite any changes the data structure is perceived to

have the same, constant shape then static analysis may be able to give an accurate shape

designation. If, however, the data structure shape changesthen any static shape result is

necessarily an approximation. Of course data structures are built incrementally—all data

structures evolve from trees (single nodes). To avoid considering nearly all DAGs and cycle

references as impure we categorize references that never progress downward in shape order

as pure. Purity thus over-approximates the accuracy of a static approach.

Based on the above, we compute two measurements on our runtimedata. The entry

point purity determines purity for each runtime reference.This provides a rough upper

bound for static approaches, corresponding to the presenceof perfect alias (points-to) in-

formation. Less than perfect alias information implies a need to merge information for

multiple entry points, necessarily reducing, or at least not improving accuracy.

In the absence of good alias information, a static shape analysis can minimally separate

references according to the static class type. To see how well even such a simple approach

can determine data structure shape we compute a type-based purity metric; here, shape

data for runtime fields with the same static signature are merged together. Purity is then

determined from changes in the merged entity.

We must note, however, that entry point purity and even type-based purity may vary at

different program statements. Static approaches can and will model these changes, so their

accuracy may be greater than our model and what our data suggest.

Combinatorial Topology

Here we present a non-traditional approach for analyzing shapes to demonstrate the flexi-

bility of our system.

Combinatorial topology is the branch of mathematics concerned with essential proper-

ties ofshape. Algorithms exist in combinatorial topology to compute a number of different

22

3.2. *J Shape Analyzer

qualities on surfaces. We have applied a simple algorithm for computing a canonical shape

representation [Jam55]. The algorithm is used to describe general surfaces in canonical

form. It decomposes a surface into small pieces, which are then described in terms of

equations. The analysis then outputs a 3-tuple to describe that surface. This decomposi-

tion and analysis is interesting since it is a non-traditional analysis to be performed on data

structures. The result can also be used to describe data structure connectivity and how it

can be separated, which can be useful for parallelization.

The algorithm takes a set of equations describing a surface and outputs a 3-tuple de-

scribing it. In order to get equations for the surface, we need to cut and unfold it; by

retaining the way the surface has been cut and its direction,we get the set of equations.

Lets take a look at the example shown in figure 3.6 (a). It showstwo pieces of a surface

that has been cut alonga, b, c, d, e and f. By going clockwise around each pieces and

having−1 for paths that go in the opposite direction, we get these equations:

Rectangle piece: a−1bdc = 1

Triangle piece: d−1ef = 1

We then need to reduce these equations to a single equation. Since thed path in the rect-

angle piece and thed path in the triangle piece are the same path, these paths can actually

be pasted together to produce the surface shown in figure 3.6 (b). The new surface is rep-

resented with this equation below:

a−1befc = 1

Reduction of the combinatorial equation can then be applied to generate values for each

field of the 3-tuple. This algorithm is described in detail in[Jam55].

The 3-tuple fields consist of the number ofcuffs, handlesandcrosscaps. A cuff can be

seen as in figure 3.7 (a) as being a cylindric form with 1 side filled, where the empty side is

connected to a surface. This figure is only a representation of a cuff, which is basically an

unconnected edge; it is not specific to cylinders. Ahandle, as its name says, forms a kind

of surface with a hole in the middle where we can use it as a handle as in Figure 3.7 (b).

Finally, acrosscapis a surface where each side of it crosses each other as in figure 3.7 (c).

The equations below show an example of a cuff, a handle and a crosscap.

23

3.2. *J Shape Analyzer

b

a

c

d d e

f

b

a

c

d

e

f

(a) (b)

Figure 3.6:(a) shows an example of surface paths and (b) shows the pieces being pasted together.

(a) (b) (c)

Figure 3.7:(a) shows an example of cuff in gray, (b) shows an example of handle in gray and (c)

shows an example of crosscap.

Cuff: ded−1z−1 = 1

Handle: aba−1b−1x−1 = 1

Crosscap: ccy−1 = 1

To see how a data structure can be mapped into a set of equations fit to be used in

the combinatorial topology algorithm, lets take a look at figure 3.8 (a). The figure show a

representation of a binary tree with an object pointing to the root of the tree. In order for the

concept to work with data structures, we need to assume that all data structures are doubly-

connected. Thus if we have a reference pointer from the parent to the child, there is also a

reference pointer from the child to the parent. By representing each reference pointer as a

path with downward arrows being forward paths and upward ones being backward paths,

we get the surface pieces shown in figure 3.8 (b) and the set of equations shown below:

24

3.2. *J Shape Analyzer

BinaryTree

BinaryNode

BinaryNode BinaryNode

null null null null

a

a

cb

c f

g

b

d

e

(a) (b)

Figure 3.8:(a) shows an example of a binary tree and (b) shows the surface mapping.

Root pointer: a = 1

Root object: a−1cb = 1

Left child: b−1de = 1

Right child: c−1fg = 1

The pieces can be pasted together where paths are the same, but opposite direction. By

doing so, we get this equation:

fgde = 1

The analysis result states that the resulting surface is a surface with one cuff.

Apart from the 3-tuple result, the algorithm also outputs a very interesting value called

the Betti number B. This number indicates the maximum number of cuts that we canbe

made on a surface without dividing it into separate pieces. Data structure partitioning is

important to parallelization, and so computing the Betti number for a data structure may be

useful for parallelizing optimizations.

The combinatorial topology analysis tends to produce a coarse categorization, where

many different data structures have the same number of cuffs, handles and crosscaps as

well as the same Betti number. The algorithm also has the disadvantage of only working

on doubly-connected data structures. This greatly limits practical applications of a combi-

natorial topology approach. Our design here is sufficient toprovide a proof of concept of

25

3.2. *J Shape Analyzer

a non-traditional, non-trivial analysis. Further effort on improving this technique is left for

future work.

3.2.5 Restrictions

A few significant restrictions to our approach are implied bythe use of the JVMPI interface.

We note that the amount of data that can be acquired through itin *J is limited.

• Early events that occur in the virtual machine during start up are not available since

they occur before the JVMPI is initialized. Therefore we cannot reliably analyze

those events.

• The JVMPI interface only detects events from code written inJava, and thus data

from native method executions is not reliably delivered. This can make it difficult to

analyze a program precisely—although object allocations and field changes are re-

ported, even from native methods, primitive numerical values are not. Array indexes,

therefore, if they come from native methods, are not always known. Fortunately this

problem is rarely encountered and does not occur in our benchmark suites.

In our investigations we have restricted our analyses to application code and not include

the start up part (JVM start up) in order to ensure we have a complete event trace with

minimal information loss due to native method calculations.

26

Chapter 4

Visualization

Visualization is useful in many fields as described in section 2.3. In our case, we use

visualization to look at the evolution of data structures inJava programs. We have two

main ways to represent the data gathered. Section 4.1 describes the first way, a literal

representation as a series of snapshots, and also describeshow the animation of data struc-

ture changes is made. Section 4.2 describes the second way, which consists of giving a

numerical summary of the data gathered.

4.1 Literal Representation & Animation

The most obvious and direct representation of data structure evolution is as series of literal

snapshots of the encoded data structures, as in figures 3.4 and figure 3.5. A snapshot is

generated at every update performed on the data structures.By looking at the series of

snapshots, we can see how it changed over the program execution. Moreover, we can see

data structure properties such as the age of each node at eachupdate and the accumulated

dead objects as described in section 3.2.3.

This kind of representation is suitable for small tests, examinations of specific compo-

nents, and for pedagogical pursuits, but unfortunately is not feasible as a general approach

in most benchmarks. The large data sets that must be manipulated in the context of the

analyzer impose strong constraints on the style of presentation, and also on the kind of data

that can be gathered.

27

4.1. Literal Representation & Animation

(a) (b) (c)

Figure 4.1: SplayTree snapshots. An existing pair of nodes (tree node and associated data) is

inserted just below the root of the tree.

Tiny, test programs modify data structures only a relatively small number of times.

More realistic programs, however, can perform a very large number of updates; the Jess

benchmark from SPECjvm98, for instance, performs more than 48 million heap modifica-

tions. Examining all these snapshots is unrealistic for humans. For those programs, instead

of generating snapshots for each modification we therefore only generate a snapshot every

nth change, for differentn depending on the scale of investigation required. This can also

help in reducing the computational cost of the analysis.

Snapshot animation itself is surprisingly difficult, even with external tools. In order

to have a nice animation of the snapshots, we need to be able toincrementally add/sub-

tract nodes and edges to an existing drawing while ensuring existing nodes and edges do

not move. This preserves the location of nodes between snapshots, making node identity

trivially obvious as frames change. Current open source and commercial tools for graph

layout, however, focus on optimal, static representations, and do not in general attempt to

locate nodes in the same place between drawings. This results in animation frames where

graphs in successive frames may bear little visual relationto each other, and thus are not

useful as a visual replay of data structure behaviour. An example is shown in figure 4.1.

Section 4.1.1 describes tools that were investigated to draw the animations and issues

encountered for each of them. Section 4.1.2 propose a way to resolve the animation issue.

28

4.1. Literal Representation & Animation

Object 1 Object 1 Object 2 Object 1 Object 2

(a) (b) (c)

Figure 4.2:Example of what we want of an incremental drawing using Tom Sawyer.

4.1.1 Tools & Issues

In this section, we will show the drawing tools for graph layout that we tried, which range

from commercial tools to open source. We will also describe how these tools do not give

the results we are looking for. The tools we have investigated includeTom Sawyer[tom],

yFilesfrom yWorks[yFi], andNeatoandDot from Graphviz[GN00].

Tom Sawyer Software

Tom Sawyer is a commercial software for graph visualization, layout, and analysis sys-

tems. It is a tool developed in Java that enables developmentof graph analysis applications

quickly and efficiently. The main point that got us interested in this tool is their claim to be

able to do incremental drawing.

We used this tool on a very simple example to see if indeed it really draws incrementally

the way we want. Figure 4.2 shows how we want the graph to be drawn, but figure 4.3

shows what we get out of the software. The tool still tries to deliver an optimal drawing,

which moves objects around. Thus, this tool definitely does not deliver the expected result

for our purpose.

Tom Sawyer’s incremental drawing works beautifully if, forexample, you have two

large disconnected graphs, and you want to connect those twographs together. It will draw

the resulting graph such that you will be able to still recognize those two previous graphs,

although nodes will still move around. However it is not madefor the kind of incremental

drawing we want, where we want nodes to remain at their initial drawn location for as long

as possible, ideally throughout the whole graph animation.

29

4.1. Literal Representation & Animation

Object 1 Object 1 Object 2

Object 1

Object 2

(a) (b) (c)

Figure 4.3:Actual result using the Tom Sawyer Software.

yFiles from yWorks

yFiles from yWorks is another commercial software. It contains an extensive Java class

library that provides algorithms and components to help better analyze, view and draw

graphs. Furthermore it also claims to do incremental drawing.

We use this tool on the same example as with the Tom Sawyer software. Unfortunately,

the result was not much different from figure 4.3. The tool is still trying to deliver an

optimal drawing moving objects around despite the fact thatthe incremental option was

enabled. Overall, this tool is somewhat similar to the Tom Sawyer software. Note that

although these tools do not serve our purposes, it does not mean they are bad for other

purposes.

Neato from Graphviz

The Graphviz package is a freely available package of graph drawing programs. A feature

of Neato, one of the provided graph drawing programs, is to allow nodes to be “pinned”.

By pinning we mean that objects are glued to the canvas and cannot be moved once they

are drawn.

Figure 4.4 (a) shows a simple example of a binary tree with a root and 2 children. Once

we enable the pin down option available in Neato, we get the result shown in figure 4.4 (b).

Note that figure 4.4 (b) is reduced considerably, 2% of the actual size. For such a simple

example to have such a large graph is not ideal. Thus Neato does not solve our problem

either, although it may in the future once these bugs are fixed.

30

4.1. Literal Representation & Animation

A

B

C

A

B

C

(a) (b)

Figure 4.4: Example using Neato: (a) without the pin down option, and (b) with the pin down

option.

4.1.2 Resolution

It is clear that existing graph drawing tools are not designed for the kind of incremental

animation frames we need to draw. However, it is possible to adapt them to our goals.

The basic idea is to build the graphs backward, from finish to start; and below we give a

complete and simple algorithm. We still require a separate program for drawing the graphs.

For that, we could use any static graph drawing. We chose to use Dot from Graphviz

[GN00] because it uses a simple grammar, draws nice graphs and it is open source.

The algorithm works as follows. With the file containing the complete series of snap-

shot of the program execution written indot format, we do a first pass on that file to deter-

mine every node/object and every edge that is present in the program. Once we determine

that, we do a second pass on thedotfile to determine which node/object and edge are truly

part of that snapshot. We then generate a newdot file which contains all the nodes and

edges that we stored, but everything that was not part of the original snapshot have their

node colour, font colour and edge colour set to the background colour in order to make

them invisible. In fact, all the snapshots are the same, but what differs is which nodes are

visible and which are not. Figure 4.7 shows snapshots which contains visible and invisible

31

4.1. Literal Representation & Animation

PROCESSINFO(inputF ile, outputF ile)

input: inputFile written in dot format containing graphs.

outputFile to write back the modified graphs ready for animation.

� first pass, store information

create HashMapallNodes andallEdges

while not end ofinputFile do

for each line in inputFile do

if line describes a nodethen storeline in allNodes with the object id as key

else if line describes an edgethen

storeline in allEdges with the both objects id connected by the edge as key

end if

end for

end while

writeInfo(inputFile, outputFile, allNodes)

Figure 4.5:Algorithm for backward visualization, first pass (process and store information).

32

4.1. Literal Representation & Animation

WRITEINFO(inputF ile, outputF ile, allNodes)

input: inputFile written in dot format containing graphs.

outputFile to write back the modified graphs ready for animation.

allNodes hash map containing all nodes.

� second pass, write back to file

create HashMapvisibleNodes

while not end ofinputFile do

for each line in inputFile do

if line indicates the beginning of a graphthen

for eachobject stored inallNodes do write node information tooutputFile

end for

else if line describes a nodethen store the node information invisibleNodes

else if line describes an edgethen write the edge information tooutputFile

and store the edge and nodes information invisibleNodes

else if line indicates the end of a graphthen

for eachnode not invisibleNodes do

write the node information tooutputFile to be drawn as an invisible node

end for

for eachedge not invisibleNodes do

write the edge information tooutputFile to be drawn as an invisible edge

end for

end if

end for

end while

Figure 4.6:Algorithm for backward visualization, second pass (write back to file).

33

4.1. Literal Representation & Animation

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(a) (b)

Figure 4.7:SplayTree snapshots showing invisible nodes in light grey.

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(a) (b) (c)

Figure 4.8:SplayTree snapshots with incremental drawing.

nodes and edges. Here in order to see what the invisible nodesare, they are displayed in

very light grey.

If we use this approach on the example in figure 4.1, we get the incremental drawing of

the snapshots shown in figure 4.8. This represents a significant visual improvement in the

relation between frames from our individual approach.

There is a small issue with this solution. Nodes representing the same data location are

intended to be identical in each snapshot. Since we encode some temporary information

such as the tree/DAG/cycle analysis result in node shapes, we do in fact end up changing the

graph during its execution. That is because a rectangular node does not take as much space

34

4.2. Numerical Summary

as an elliptic node or as an hexagonal node. Therefore, the graph might move slightly up

or down if tree/DAG/cycle is actually represented. In practice this problem is only mildly

distracting, and it is obvious that figure 4.8 gives a much better result than we were able to

achieve with tools we investigated in Section 4.1.1.

4.2 Numerical Summary

Although an acceptable snapshot representation and incremental layout is important. Many

programs also produce very large data structures, whether or not they are modified fre-

quently. Even a simple program such as BiSort from the JOlden benchmark suite generates

more than 120,000 objects—far too many for a drawing tool to handle, or to meaningfully

show on a screen or in an animation. Interactive visualization techniques can improve this

situation, but it is clear that animations, and even representative snapshots are simply not

feasible in all situations. For the benchmarks we analyze inthe subsequent section we have

thus concentrated on alternative representations that draw only reduced, aggregate infor-

mation on data structure properties, and not the data structures themselves. We do so by

giving a numerical summary of analysis information in the form of graphs.

From the analyses performed by the *J Shape Analyzer, we can get a number of graphs

for each benchmark to better understand it and describe its properties. Those graphs are

described below.

Tree/DAG/cycle

The first graph we can get is the number of entry points where the reachable nodes represent

a tree, a DAG or a cyclic graph. This kind of graph is very useful to understand the evolution

of data structures. For example, if we have a graph such as figure 4.9, we can see that nodes

that form trees are perhaps being converted to DAGs.

GC info

The second kind of graph shows the number of live objects versus the number of dead

objects not yet collected by GC. With this kind of graph, we cansee that a program only

35

4.2. Numerical Summary

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

time

Tree
DAG

Figure 4.9:Example of a graph showing the number of entry point type. This graph shows that

trees are converted to DAGs over time.

creates objects at the beginning and never deletes anythingif we get a graph such as figure

4.10. However, if we have a graph where both the live object line and the GC line fluctuate

a lot over the program execution period, we can conclude thatGC was very busy during the

execution of the program, and that objects were constantly created and thrown away. This

kind of graph is very useful to understand the behaviour of the GC.

Connectivity

The third kind of graph shows the number of connected data structures. This kind of graph

is useful in determining the maximum number of connected data structures and how it

changes over time, and to see if there is any correlation between the number of entry points

and the number of connected data structures.

Purity of entry points

The fourth kind of graph shows the number of pure versus the number of impure entry

points. An entry point is considered to be pure if it follows the pathtree –> DAG –> cycle

without ever going backward, and it is considered impure otherwise as described in section

3.2.4. This kind of graph is useful in determining whether a static analysis will be useful

or not, given optimal alias information.

36

4.2. Numerical Summary

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

nu
m

be
r

of
 o

bj
ec

ts

time

Live Object
GC Object

Figure 4.10:Example of a GC graph showing the number of live and dead objects over time.There

are no dead, GC-able objects in this graph. Objects are created at the beginning and they are used

throughout the whole program without adding more or deleting any.

Purity of types

The fifth and final kind of graph shows the number of distinct data types, where objects

with the same static signature constitute a data type. The graph also shows whether the data

types are pure or impure according to the definition of puritygiven in section 3.2.4. This

graph is useful in determining the number of different data types present in the program.

Similar to the fourth kind of graph, it is also useful in determining whether static analysis

will be useful in analyzing the program, given poor alias information.

Timelines

In addition to the different kind of graphs described above,each of those graphs comes

in two kinds of timeline. We can represent time by the number of updates done on data

structures, or by the bytecode execution count. Each of those graphs may convey different

information about the behaviour of the program. Take for example figure 4.11, the top

graph shows a graph by the number of updates and bottom one shows a graph by bytecode

count. By looking at the straight horizontal line in the middle of each of the graphs, the top

one shows that there were many updates done on the data structures. We would naturally

think that it took a lot of time to execute. However by lookingat the bottom graph, it shows

that in fact it took a really short time to execute. Using bothforms of time axis, we can get

37

4.2. Numerical Summary

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 o

bj
ec

ts

per update

object

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 o

bj
ec

ts

bytecode count

object

Figure 4.11:The top graph shows a graph by the number of updates, and the bottom oneshows a

graph over bytecode executed.

a different perspectives on the program execution and its behaviour.

38

Chapter 5

Experiments

We have analyzed a number of benchmarks from the SPECjvm98 [SPE98] and JOlden

[CM01b] benchmark suites. Below we describe the programs analyzed, and present a

visualization example in terms of snapshots and analysis examples based on the various

data gathered using our framework. These discussions demonstrate both the kind of data

we can collect, and also how it relates to relevant program features and behaviour.

The next section describes the benchmarks we analyzed, thenwe give an example of

an animation done on a splay tree. In section 5.3 we give some results from our test at the

combinatorial topology analysis. Finally in section 5.4 weanalyze benchmarks from the

SPECjvm98 [SPE98] and JOlden [CM01b] suites, then give our overall thoughts.

5.1 Benchmarks

We have analyzed benchmarks from three basic categories. The first kind consist of tiny

programs designed to test the framework, and which are also suitable for snapshot visual-

izations. We used two well-known algorithms, a splay tree implementation and a red-black

tree implementation. Both programs construct a small tree and then delete some nodes;

below we only present the SplayTree benchmark program.

More realistic, but still manageable small results are obtained by analyzing benchmarks

from the JOlden suite. These are small but non-trivial programs that focus on use of dy-

namic data structures. Benchmarks analyzed include Barnes-Hut, BiSort, Em3d, Power,

39

5.2. Snapshot Example

and TSP (Travelling Salesman Problem).

Our final category is of moderately large programs, taken from the SPECjvm98 suite,

which have a more complex heap usage. The benchmarks analyzed here are Jess, Mpe-

gAudio, Compress, Javac, and DB. Jess is the only benchmark from the SPECjvm98 suite

to run at full size (size 100). Compress and MpegAudio run at size 10, and the remaining

benchmarks run at size 1. All benchmarks are run in Sun’s 1.4.0 JVM, server mode (128M

heap).

5.2 Snapshot Example

If a program is relatively small, and in general does not contain more than approximately

1,000 objects, a meaningful visualization of data structures updates can be produced where

a snapshot is generated for each update. We use thedot tool in GraphViz[GN00] to layout

the graphs, encoding node properties as discussed in sections 3.2.3 and 3.2.4.

In figure 5.1 and figure 5.2 we show incremental snapshots generated for the complete

series of data structure updates performed in the SplayTreeprogram. From a) to p) the

splay tree is constructed by adding three tree nodes, and q) to x) shows the deletion of two

tree nodes where those nodes are shown as garbage objects in dotted lines. As seen, these

kinds of incremental snapshot of the data structure evolution over the program execution

may be quite useful for understanding data structure operations and behaviour.

5.3 Combinatorial Topology Results

We already described the combinatorial topology analysis in section 3.2.4. Since this is

only a test in using combinatorial topology on data structures, we will run the analysis on

small examples. In this section we give and discuss results of the analysis done on a binary

tree and on a grid.

Let us first look at the binary tree example shown in figure 5.3 (a). To use the com-

binatorial topology analysis, we have to assume that all edges have an edge that goes the

other direction, which makes the graph fully doubly-linked. The equations we get from the

40

5.3. Combinatorial Topology Results

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(a) (b) (c)

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(d) (e) (f)

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(g) (h) (i)

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(j) (k) (l)

Figure 5.1:SplayTree snapshots (part 1).
41

5.3. Combinatorial Topology Results

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(m) (n) (o)

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(p) (q) (r)

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(s) (t) (u)

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

8640
 BinaryNode

8624
 Integer

8600
 BinaryNode

7824
 SplayTree

8560
 BinaryNode

8584
 Integer

7424
 BinaryNode

8544
 Integer

7808
 String[]

(v) (w) (x)

Figure 5.2:SplayTree snapshots (part 2).
42

5.3. Combinatorial Topology Results

2640
 SimpleBinaryTree

8008
 TreeObject

8664
 TreeObject

8288
 TreeObject

0464
 TreeObject

1128
 TreeObject

9232
 TreeObject

9800
 TreeObject

(a)

a

a

bc

b d

e

c

f

g

f

lm

e

jk

o

gn

h

i
d

(b)

Figure 5.3: (a) Shows a snapshot of a binary tree, and (b) shows the corresponding surface in

combinatorial topology.

43

5.3. Combinatorial Topology Results

corresponding surfaces shown in figure 5.3 (b) are:

a−1bc = 1 e−1jk = 1

b−1de = 1 a = 1

c−1fg = 1 f−1lm = 1

d−1hi = 1 g−1no = 1

Inputing these equations in the combinatorial topology analyzer produces the following

output:

Equation: -abc -bde -cfg -dhi -ejk a -flm -gno

Joining -abc and -bde to get c-ade

Joining c-ade and -cfg to get -adefg

Joining -adefg and -dhi to get efg-ahi

Joining efg-ahi and -ejk to get fg-ahijk

Joining fg-ahijk and a to get hijkfg

Joining hijkfg and -flm to get ghijklm

Joining ghijklm and -gno to get hijklmno

Input surface: hijklmno

Result: hijklmno

Result: hijklmno

Extra cuff.

Result:

handles=0, crosscaps=0, cuffs=1

B = 0

Listing 5.1: Output generated from the combinatorial topology analyzer given the above

equations

From the output above, once the original equations are reduced, we have this resulting

equation:

Resulting Equation: hijklmno = 1

44

5.3. Combinatorial Topology Results

We also get these parameter results:

handles = 0, crosscaps = 0, cuffs = 1

B = 0

The result shows that this snapshot of a binary tree is a surface with one cuff, which

cannot be cut without dividing it into separate pieces. Notethat although we only show

a simple snapshot of a binary tree, the result we get from all the snapshots is the same as

here. Results from analysis of a simple splay tree also give a similar result as shown here.

These results tell us, analytically, that a doubly connected tree structure maintains

reachability between all nodes. For identifying actual shape, this technique is less use-

ful. Consider the grid example shown in figure 5.4 (a). As in thebinary tree example, we

have to assume that all edges have an edge that goes the other direction to make the graph

fully doubly-connected. The corresponding surface shown in figure 5.4 (b) gives this set of

equations:

a = 1 h−1e−1jk = 1

a−1bc = 1 j−1g−1lm = 1

b−1de = 1 i−1no = 1

d−1fg = 1 n−1k−1pq = 1

c−1hi = 1 p−1m−1rs = 1

Once these equations are reduced, we have this resulting equation:

Resulting Equation: qoflrs = 1

We also get these parameter results:

handles = 0, crosscaps = 0, cuffs = 1

B = 0

Both structures thus reduce to a surface with one cuff. This isinteresting with respect to

determining reachability or partitionability of data structures for parallelization, but forms

too coarse a categorization of shape for more general data structure analyses. Thus while

this technique helps demonstrate the ability of our framework and approach to accumulate

new analyses, further investigation and application of this analysis are left for future work.

45

5.3. Combinatorial Topology Results

7424
 Grid

7808
 GridNode

7810
 GridNode

7814
 GridNode

7812
 GridNode

7816
 GridNode

7818
 GridNode

7820
 GridNode

7822
 GridNode

7824
 GridNode

(a)

a

bc

d
eh

i

k j g

mp

n

o f

l

rs

q

(b)

Figure 5.4:(a) Shows a snapshot of a grid, and (b) shows the corresponding surface in combinato-

rial topology. 46

5.4. Analysis & Numerical Summary Results

5.4 Analysis & Numerical Summary Results

Non-trivial benchmarks are not amenable to literal data structure representations, and so

we present aggregated data from analyses run in the shape analyzer at each data structure

modification. We use data from three main analyses: a tree/DAG/cycle shape classification,

reachability analysis, and purity.

Shape classification data is based on the number of entry points that reach single-node,

tree, DAG, and cycle type data structures, plotted over time. For portability of results, time

is measured abstractly, as either bytecodes executed, or interms of number of data struc-

ture modifications. To compress the visual representation,data shown is also sometimes

a sampled subset; sample periods vary up to every 100k updates, and are indicated in the

individual descriptions.

Reachability is given both in terms of the number of live versus dead objects, and in

terms of number of connected structures. The former makes iteasy to see general trends in

volume of data and garbage, and for a limited visual inspection of GC drag. The latter gives

a better impression of the number of connected data structures (of size a least 2) actually

used in the program.

Purity data is used in two forms, entry point purity and type-based purity, as described

in section 3.2.4.

Furthermore, using the analyses mentioned above, we can also detect program phases.

This feature would be quite useful for dynamically adaptable systems as they need to accu-

rately detect changes within procedures.

The goal of this experiment is to see how much information we can gather about the

programs’ behaviour on data structures using all the analyses already mentioned. An ob-

servation for each benchmarks investigated is described inthe following sections where we

work in parallel with the source code to confirm our observations.

Only benchmarks which extensively make use of the heap were chosen from each

benchmark suites. However, a few of them, especially from the SpecJVM98 suite, were

left out as they took too much time to be analyzed. We have to note that Jess from the

SpecJVM98 suite, which is one of the more complex benchmark,took more than two

weeks to be analyzed.

47

5.4. Analysis & Numerical Summary Results

5.4.1 JOlden Suite

This section shows analysis results for BiSort, Barnes-Hut, Em3d, Power, and TSP along

with some analysis of the graphs. The complete set of graphs for each benchmark can be

found following the link provided in appendix A.

BiSort

BiSort performs two bitonic sorts, one forward and one backward. It works in two phases.

The first phase is the tree construction, and the second phaseis the sorting. Our analysis is

done on BiSort sorting 128k integers.

In figure 5.5 we can easily see the first phase, where the tree isbeing constructed.

A number of single nodes are allocated, and then consumed by construction of the base

tree. At about 1/3 of the way through execution the program enters its second phase; here

many changes are performed on the tree, and the number of treestructures becomes quite

variable. As the tree is modified the data types fluctuate between DAG types and tree types

in a complementary fashion: nodes are being rearranged, andnot copied or deleted. Note

that there are not in fact as many disjoint structures as the number of trees and DAGs would

indicate; call chains and recursive calls in particular allow for the stack to contain multiple

entry points to the same structure, magnifying the apparentnumber of structures. This

is more evident in figure 5.6 — in the second phase there is onlyever 1 or 2 connected

structures.

Figure 5.7 gives an indication of how well a static analysis could do in identifying the

data structure shape, assuming perfect alias information.Most references are pure, but the

second phase of execution contains several impure variables due to the tree modifications.

Statically these references would have to be considered DAGs. Less optimal alias infor-

mation may spread this conservative approximation. Furthermore it is not surprising to see

that figure 5.8 shows some impurity in the fields since we have impure entry points.

Figure 5.9 reinforces the observed phase behaviour of the data structures: objects are

allocated (tree construction), followed by a long period ofrelative stability. Interestingly,

there are no dead objects, an observation compatible with our claim that the data structure

is modified by moving nodes, not adding or deleting.

48

5.4. Analysis & Numerical Summary Results

 0

 5

 10

 15

 20

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree
Single node

 0

 2

 4

 6

 8

 10

 12

 14

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

DAG

Figure 5.5:BiSort analysis results by bytecode for every 10k updates. The top figure shows single

nodes and trees over bytecodes executed, and the bottom figure showsDAGs. There are no cycles

in BiSort.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 d

at
a

st
ru

ct
ur

es

bytecode count

data structure

Figure 5.6:BiSort analysis over bytecode executed showing the number of connected data struc-

tures for every 10k updates.

49

5.4. Analysis & Numerical Summary Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

pure entry points
impure entry points

Figure 5.7:BiSort analysis over bytecode executed showing the number of pure vs.impure entry

points for every 10k updates.

 0

 0.5

 1

 1.5

 2

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 ty

pe
.fi

el
d

bytecode count

pure type
impure type

Figure 5.8:BiSort analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every 10k updates.

50

5.4. Analysis & Numerical Summary Results

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.9:BiSort GC results by bytecode for every 10k updates, showing the number of live and

dead objects over bytecodes executed. There are no dead objects in Bisort.

Barnes-Hut

Barnes-Hut solves the classic N-body gravitational attraction problem. Barnes-Hut works

in two phases; first is the tree construction, where a quad-tree is constructed, and second is

the force computation, where the tree is traversed. Our analysis of Barnes-Hut is done with

2000 bodies.

From the graph in figure 5.10 it is evident that this program isquite dynamic in be-

haviour, and aggressive and frequent GC is used to limit the amount of accumulated garbage.

As with BiSort there are no cyclic data structures at all. Thisis unsurprising for tree-based

programs, but is also informative: it suggests, for instance, that the quadtree does not make

use of parent pointers in child nodes.

The phases are not obvious in the shape information, but are clearly shown in the GC

results graph of figure 5.11. The large spikes in number of dead objects indicate a rapid

accumulation of garbage data, and the short-lived nature ofthe spikes suggests this is tem-

porary data, quickly collected. The frequent variation in number of tree and DAG entry

points is in this case mainly due to the use of allocated, intermediate data. Purity data

shown in figure 5.12 and in figure 5.13 show all references are pure, further supporting the

conclusion that the shapes of existing data structures are not generally altered.

51

5.4. Analysis & Numerical Summary Results

 0

 5

 10

 15

 20

 25

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree

 0

 1

 2

 3

 4

 5

 6

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

DAG
Single node

Figure 5.10:Barnes-Hut analysis results by bytecode for every 1k updates. On thetop figure is

shown the number of single node and tree entry points over “time” (bytecodes executed), and on the

bottom the number of DAGs. Again, there are no cyclic structures.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.11:Barnes-Hut GC results by bytecode for every 1k updates, showing thenumber of live

and dead objects over bytecodes executed.

52

5.4. Analysis & Numerical Summary Results

 0

 5

 10

 15

 20

 25

 30

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

pure entry points
impure entry points

Figure 5.12:Barnes-Hut analysis over bytecode executed showing the number of pure vs. impure

entry points for every 1k updates. There are no impure entry points in Barnes-Hut.

 0

 0.5

 1

 1.5

 2

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08

nu
m

be
r

of
 ty

pe
.fi

el
d

bytecode count

pure type
impure type

Figure 5.13:Barnes-Hut analysis over bytecode executed showing the purity of fields merged over

all objects of the same class type for every 1k updates. There are no impure types in Barnes-Hut.

53

5.4. Analysis & Numerical Summary Results

Em3d

Em3d simulates the propagation of electro-magnetic waves through 3D object using nodes

in an irregular bipartite graph to represent electric and magnetic field values. For our anal-

ysis, Em3d simulated 2000 nodes of out-degree 100.

In figure 5.14, we can see that during the total execution of the program there are at

most 5 trees and 1 DAG at any point. Data structures in Em3D arequite few as shown in

figure 5.16, and the ratio of live nodes to entry points suggests a limited number of larger

data structures are used. In fact, there is mainly a table of linked lists.

Behaviour is relatively stable throughout this benchmark, at least until near the end of

the program. At that point the data structures are reduced toa couple of single nodes and

one tree. In this case we are able to see the effect of tearing down the data structures, some-

thing much less evident in the previous benchmarks. The conversion of data to garbage

at the end of the program is confirmed by figure 5.15, where garbage rises as live objects

reduce in number.

The stable behaviour can also be seen in figure 5.17 and in figure 5.18, where the purity

data shown in terms of both entry points and type indicate that all references are pure; again

the shapes of existing data structures are not generally altered.

 0

 1

 2

 3

 4

 5

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree
DAG

Single node

Figure 5.14:Em3d analysis result by bytecode for every 1k updates. Single nodes, trees, and

DAGs are shown in this figure. There are no cycles in Em3d.

54

5.4. Analysis & Numerical Summary Results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.15:Em3d GC result for every 1k updates, showing the number of live and dead objects

over bytecodes executed.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 d

at
a

st
ru

ct
ur

es

bytecode count

data structure

Figure 5.16:Em3d analysis over bytecode executed showing the number of connected data stru-

cures for every 1k updates.

55

5.4. Analysis & Numerical Summary Results

 0

 1

 2

 3

 4

 5

 6

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

pure entry points
impure entry points

Figure 5.17:Em3d analysis over bytecode executed showing the number of pure vs. impure entry

points for every 1k updates. There are no impure entry points in Em3d.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 ty

pe
.fi

el
d

bytecode count

pure type
impure type

Figure 5.18:Em3d analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every 1k updates. There are no impure types in Em3d.

56

5.4. Analysis & Numerical Summary Results

Power

Power solves the Power System Optimization Problem, where the price of each customer’s

power consumption is set so that the economic efficiency of the whole community is max-

imized. It works in two phases. The first phase is the tree construction, and the second

phase is the price computation. The analysis of Power is doneon 10k customers.

Figure 5.19 shows there are only trees and single nodes present. This is consistent

with the algorithm as it only constructs trees. Once the treeconstruction is completed, the

behaviour is fairly stable as seen in figure 5.21 and the bottom graph of figure 5.20, where

the number of live and dead objects, and the number of data structures remain fairly stable.

Although the second phase seems to be fairly stable in terms of object and data structure

creation, we can see from figure 5.19 that it is not as the number of entry points fluctuates

a lot. This means that although there is not much data structure activities, the program is

by no mean idle. It is infact using and accessing the created data structures as seen by the

fluctuation in the number of entry points.

From the top graphs of figure 5.19 and figure 5.20, we can see that the tree construction

phase occurs within a very short time frame. However, from the top graphs, we can see

that it consists of roughly half of the total data structure changes. This difference is more

showing in section 5.4.2 when we describe results from Compress.

Figure 5.22 and figure 5.23 show that although all entry points are pure, we do not have

any purity result for the types. That is due to the fact that all the entry points are objects

from main ; therefore they have no parents nodes. To better explain this take for example

figure 5.24 (a), whereObjectB is the entry point and it is the left child ofObjectA . For

that example,ObjectB ’s data type isObjectA.left . However in (b) whereObjectA

is the entry point, since it does not have a parent node, we do not have a type. We know

it is a variable from main, but it is pointless to keep track ofthose since we cannot merge

objects having the same static signature as all variables inmain are unique.

Travelling Salesman Problem

TSP computes an estimate of the best Hamiltonian circuit forthe Travelling Salesman

Problem. There are two clear phases evident in both figures 5.25 and figure 5.28; a short

57

5.4. Analysis & Numerical Summary Results

 0

 5

 10

 15

 20

 25

 30

 35

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree
Single node

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

per update

Tree
Single node

Figure 5.19:Power analysis result for every 1k updates. The top graph is plotted with respect to

the total bytecodes executed, and the bottom graph with respect to the total number of data structure

changes. Both graphs show the number of single nodes and trees. There are no DAGs or cycles in

Power.

58

5.4. Analysis & Numerical Summary Results

 0

 5000

 10000

 15000

 20000

 25000

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 o

bj
ec

t

per update

Live Object
GC Object

Figure 5.20:Power GC result for every 1k updates. At the top the time axis is in terms of bytecodes

executed, and at the bottom in terms of total data structure updates.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 d

at
a

st
ru

ct
ur

es

bytecode count

data structure

Figure 5.21:Power analysis over bytecode executed showing the number of connected data struc-

tures for every 1k updates.

59

5.4. Analysis & Numerical Summary Results

 0

 5

 10

 15

 20

 25

 30

 35

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

pure entry points
impure entry points

Figure 5.22:Power analysis over bytecode executed showing the number of pure vs.impure entry

points for every 1k updates. There are no impure entry points in Power.

-1

-0.5

 0

 0.5

 1

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 ty

pe
.fi

el
d

bytecode count

pure type
impure type

Figure 5.23:Power analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every 1k updates. There are neither pure nor impure type results

in Power.

ObjectA

ObjectB ObjectC

ObjectA

ObjectB ObjectC

(a) (b)

Figure 5.24:Tree example withObjectA as the root,ObjectB as the left child andObjectC

as the right child. In the left graph,ObjectB is the entry point, and in the right graph the entry

point isObjectA .

60

5.4. Analysis & Numerical Summary Results

initial phase constructing the problem, and a longer phase of analysis. The analysis of TSP

is done on 10k cities.

TSP is our first presented benchmark to actually include cyclic data structures. There

are also a very large number of tree data structures, orders of magnitude more than single

nodes, DAGS, or cycles. In fact the algorithm mainly builds trees, and the few cycles can

be attributed to a double-linked threading of trees formingpartial solutions to the input

problem.

References are uniformly pure as shown in figure 5.26 and figure5.27. This suggests a

mainly static heap structure. However, since the number of entry points in different shape

categories does fluctuate, the data structures clearly do change. In this program the use

of heap data at different stages in the computation is well-separated—entry points used in

processing and generating the tree structures are disjointfrom those used for DAGs and for

cyclic structures.

There is no garbage collection apparent in figure 5.28. However, the number of live

objects decreases dramatically twice; there is necessarily some garbage generated by these

reductions. In this benchmark the generation of dead nodes and their collection occurs

between snapshots, leaving no direct evidence of dead nodesin our sampled results. Larger,

more detailed graphs or actual numbers would reveal this difference. In terms of general

trends, though, it is clear that TSP, particularly in comparison with Barnes-Hut, does not

produce or carry much garbage.

5.4.2 SPECjvm98 Suite

This section shows analysis results for Jess, Compress, MpegAudio, DB, and Javac along

with some analysis of the graphs. The complete set of graphs for each benchmark can be

found following the link provided in appendix A.

Jess

Jess produces a lot of structures of all types, although mostof them are single node objects,

as shown in figure 5.29. There are no cycles, and there is a rhythmic pattern of tree/DAG

construction. This behaviour roughly corresponds with thealgorithm and input, which does

61

5.4. Analysis & Numerical Summary Results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree

 0

 5

 10

 15

 20

 25

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

DAG
Cycle

Single node

Figure 5.25:TSP analysis results by bytecode for every 1k updates. On the top are trees, and on

the bottom single nodes, DAGs and cycles.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

pure entry points
impure entry points

Figure 5.26:TSP analysis over bytecode executed showing the number of connected data structures

for every 1k updates. There are no impure entry points in TSP.

62

5.4. Analysis & Numerical Summary Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 ty

pe
.fi

el
d

bytecode count

pure type
impure type

Figure 5.27:TSP analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every 1k updates. There are no impure types in TSP.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.28:TSP GC results by bytecode for every 1k updates. Again, there are no dead objects

evident in this graph.

63

5.4. Analysis & Numerical Summary Results

repeated, tree-based searches to solve an input combinatorial problem. This behaviour can

be better seen in figure 5.30.

Memory usage in Jess is more complicated than in the JOlden programs. From figure

5.31 we can see that a large number of objects are dead, usually many more than are live

at any one time. Moreover, while the live set is overall stable, the number of dead nodes

seems to have a a general upward slant, increasing over time.This is also true of single

node structures shown in figure 5.29.

We believe this to be an artifact of heap adaptation. Jess allocates a lot of temporary

objects (single nodes). The heap pressure due to the use of temporary object allocations

results in the heap being expanded to accommodate the perceived memory requirements.

However, the core, necessary and retained data is not increasing, and a larger heap merely

provides more room for garbage to accumulate. In this situation the amount of drag in-

creases as the heap increases, suggesting that more aggressive GC rather than increasing

heap size may result in more efficient execution.

Compress

Most of the benchmarks produce extremely similar graphs whether the time axis is formed

of bytecode executions, or expressed in terms of data structure modifications, where data

structure updates are quite regular. Compress shows this is not always the case. In the

bottom graph of figure 5.32 the number of entry points are plotted against total number of

data structure updates. The results shows quite regular behaviour, with three obvious phases

of execution, each consisting of two sub-phases. This correlates nicely with the known

behaviour of Compress under our input parameters, which is tocompress and decompress

three files. The three phases in Compress are also evident in pattern formed by garbage

objects shown in figure 5.33.

The top graph shows the same data plotted with respect to bytecodes executed. Here the

phases are considerably less evident—the time spent compressing and decompressing each

file is clearly uneven. Regularity of changes is a useful property for adaptive program opti-

mization. Compress is quite deterministic in the sequence ofaction executed, but duration

of program phases, a large part of predicting behaviour, is here an input property.

64

5.4. Analysis & Numerical Summary Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Single node

 0

 50

 100

 150

 200

 250

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree
DAG

Figure 5.29:Jess analysis results by bytecode for every 100k updates. On the top are single nodes,

and on the bottom trees and DAGS. There are no cycles in Jess.

 0

 5

 10

 15

 20

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 d

at
a

st
ru

ct
ur

es

bytecode count

data structure

Figure 5.30:Jess analysis over bytecode executed showing the number of connecteddata structures

for every 100k updates.

65

5.4. Analysis & Numerical Summary Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.31:Jess GC results by bytecode for every 100k updates.

 0

 2

 4

 6

 8

 10

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree
DAG

Single node

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

per update

Tree
DAG

Single node

Figure 5.32:Compress shape analysis result by both bytecodes executed (above) and number of

heap updates (below) for every update. There are no cycles in Compress.

66

5.4. Analysis & Numerical Summary Results

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 o

bj
ec

t

per update

Live Object
GC Object

Figure 5.33:Compress GC result for every update, showing the number of live and dead objects

in terms of total data structure updates.

MpegAudio

In this benchmark, we will show graphs in terms of total number of data structure updates

instead of bytecode executed as they show more information.

MpegAudio decodes a compressed audio file twice under our input parameters, and fig-

ure 5.34 clearly shows the two phases. Moreover, MpegAudio demonstrates the potentially

large effect of good alias analysis on a static shape analysis. Figure 5.35 shows that while

there are a large number of entry points, they are entirely pure. However, a shape analysis

that relies on less precise alias information may not be as successful as this suggests—

figure 5.36 shows that when minimal alias data is available there are proportionally many

impure reference.

DB

DB performs several database functions on a database storedin memory. Therefore, the

first phase of this program is to construct the database, and the second phase is to retrieve

data from it.

The top graph of figure 5.37 and figure 5.38 show that the first phase takes the major

part of program execution, about two thirds of the time just constructing the database.

Figure 5.39 and figure 5.40 show that all references are pure.This is an unsurprising

result for a program that only utilizes trees. Since only trees and single nodes are used in

67

5.4. Analysis & Numerical Summary Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

per update

Tree

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

per update

DAG
Cycle

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

per update

Single node

Figure 5.34:MpegAudio analysis result for every updates with respect to the total number of data

structure changes, where the top graph shows the number of trees, the middle shows the number of

cycles and DAGs, and the bottom one shows the number of single nodes.

68

5.4. Analysis & Numerical Summary Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

per update

pure entry points
impure entry points

Figure 5.35:MpegAudio analysis for every updates with respect to the total number of data struc-

ture changes, showing the number of pure vs. impure entry points. Thereare no impure entry points

in MpegAudio.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000

nu
m

be
r

of
 ty

pe
.fi

el
d

per update

pure type
impure type

Figure 5.36:MpegAudio analysis for every updates with respect to the total number of data struc-

ture changes, showing the purity result of fields merged over all objects of the same class type.

69

5.4. Analysis & Numerical Summary Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree

 0

 1

 2

 3

 4

 5

 6

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Single node

Figure 5.37:Db analysis results over bytecode executed for every update. On the topare trees, and

on the bottom single nodes. There are no DAGs or cycles in Db.

this program, there is no way for an entry point or a type to ever be impure. Nevertheless it

demonstrates how simple the use of data structure can be evenin a non-trivial program.

Javac

Javac is the JDK 1.0.2 Java compiler compiling JavaLex. Fromfigure 5.41 and figure

5.43 it is obvious that there are two major phases, where the first phase does not produce

much objects, and the second phase consists of 2 sub-phases.This is consistent with its

behaviour since the first phase is to scan the file to ensure thecorrect grammar, and this

does not require significant object allocations. The secondphase begins by creating the

abstract syntax tree, and this is evident by the increase in objects, trees and connected data

structures, and also in the reachability results of figure 5.42. Symbol tables creation is the

70

5.4. Analysis & Numerical Summary Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.38:Db analysis over bytecode executed showing the number of live and dead objects for

every update.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

pure entry points
impure entry points

Figure 5.39:Db analysis over bytecode executed showing the number of pure vs. impure entry

points for every update. There are no impure entry points in Db.

71

5.4. Analysis & Numerical Summary Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

nu
m

be
r

of
 ty

pe
.fi

el
d

bytecode count

pure type
impure type

Figure 5.40: Db analysis over bytecode executed showing the purity of fields merged over all

objects of the same class type for every update. There are no impure typesin Db.

second part of that phase, and this can be seen in the number oftrees (top of figure 5.41)

and in the number of connected data structures shown in figure5.43.

5.4.3 Summary

Even small Java programs make extensive use of heap structures, and so a dynamic data

structure analysis has the ability to provide a great deal ofinformation about program exe-

cution. Literal snapshots of data structures are most informative, but do not in general scale

to being able to represent real program data. Even from a simple tree/DAG/cycle descrip-

tions of data structures, however, a surprising amount of detail on program behaviour is

discernible in our numerical summary graphs. Most obviously execution phases are clearly

visible in most of our graphs—programs, especially industry benchmarks, tend to behave in

relatively regular ways, and data-centric algorithms showa corresponding regularity in data

manipulations. Regularity is also seen in the kind of data used: the composition of trees,

DAGs and cycles shows that while most of our benchmarks do perform numerous data

structure modifications, they do not generally tend to be complex in their usage—there are

surprisingly few cyclic structures found in our suites. In fact, there are surprisingly few

actual connected structures (as opposed to entry points) inmost programs. This lack of

complexity in data structure usage is further supported by our purity data—certainly some

entry points in some benchmarks do vary in the shape found, but most entry points are in

72

5.4. Analysis & Numerical Summary Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

DAG

 0

 2

 4

 6

 8

 10

 12

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Cycle

 0

 500

 1000

 1500

 2000

 2500

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt
s

bytecode count

Single node

Figure 5.41:Javac analysis results over bytecode executed for every 10 updates.The graphs shown

from top to bottom are trees, DAGs, cycles, and single nodes.
73

5.4. Analysis & Numerical Summary Results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 5.42:Javac GC results over bytecode executed for every 10 updates, showing the number

of live and dead objects.

 0

 10

 20

 30

 40

 50

 60

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

nu
m

be
r

of
 d

at
a

st
ru

ct
ur

es

bytecode count

data structure

Figure 5.43:Javac analysis over bytecode executed showing the number of connected data struc-

tures for every 10 updates.

74

5.4. Analysis & Numerical Summary Results

fact pure, with many of our programs even having 100% of entrypoints pure. This is less

well reflected in type-based purity, indicating the importance of alias information, but is

still quite encouraging for static approaches.

The impact of garbage on memory use is also intriguingly variable. Barnes-Hut and

Jess generate great amounts of garbage, and certainly in thelatter case dragged dead objects

can be seen as a potentially important factor. Other benchmarks, such as TSP and BiSort

carry little to no garbage, and may benefit from a corresponding reduction in GC; these

benchmarks are not strongly GC-dependent.

75

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has shown that dynamic data structure analysis has the ability to show de-

tailed information on various aspects of program behaviour. This can help identify program

characteristics, heap usage, and provide general understanding of any calculable static or

evolving dynamic data structure property, advancing various optimization, understanding,

and analysis goals.

By comparing our runtime data with that achievable through static means we have been

able to verify that static approaches have potential to be quite accurate, at least for many of

our example programs.

Our framework design and experience have demonstrated the feasibility of this tech-

nique, and also highlighted the research challenges involved. Extracting and reconstruct-

ing data structure changes is itself a non-trivial effort. Furthermore, we have demonstrated

that our framework has all necessary information to supportthe implementation of various

analyses such as tree/DAG/cycle, connectivity, purity, and combinatorial shape analysis.

We have shown two ways of representing the data gathered, divided into two main

categories based on the size of the program. For small programs, literal representations

are natural and provide maximal information. Even at this scale, however, the task is not

trivial. Usable animations, as we have shown, is not as simple as one would think. It is

76

6.2. Future Work

unfortunately also the case that this kind of representation does not scale very well to larger

benchmarks.

More abstract analysis data in the form of numerical graphs is more suitable for larger

benchmarks. This summarizes data structure analysis results over execution time. Al-

though this representation does not give us the same kind of information as the literal one,

we can still provide useful and interesting information on program behaviour, while main-

taining much of the accuracy provided by a dynamic, runtime analysis.

6.2 Future Work

Dynamic data structure analysis is complex, and the pursuitof accurate, complete results

implies a great many potential future directions for this work.

More benchmarks

More, and larger benchmark programs would of course be useful, as would an examination

of benchmarks under different inputs. Our results here suggest data structure usage is often

quite simple; further experimental evidence is needed, however, to make strong, general

conclusions.

More analyses

We are also interested in evaluating the efficacy and accuracy of more detailed shape anal-

ysis techniques, such as those based on compact graph abstraction [NCA+04], or shape

types [WSR00].

More efficient data gathering

Our analysis currently works offline, after the program is done executing. In order to be

more efficient, we can run our analysis online by integratingour analysis using Aspect

oriented programming [Asb02]. With the help of dynamic weaving, we will be able to

analyze data structures during the program’s run-time and only retrieve information that

77

6.2. Future Work

we really require instead of reporting all events as it is currently done with *J. That way

the analysis will not be as time consuming as it currently is.Efficiency improvements are

important in order to scale dynamic data structure analysisto very larger programs. As

described in section 5.4, it took more than two weeks to analyze Jess from the SpecJVM98

benchmark suite.

Mapping to source code

We have compared our dynamic data to that achievable by static approaches. This could

be more refined by considering the state of variable at each static statement in the program.

Our dynamic data, for instance, can be mapped to static code locations for direct compar-

ison with static algorithms. This can help guide and measurestatic algorithm design, and

would be a straightforward extension of our implementation.

Visualization improvements

Visualization improvements are many of course. We have beenmost recently working on

improving animation quality by adapting existing tools to support incremental, if perhaps

sub-optimal, graph drawing. Integration of good animationwith interactive visualization

techniques can help alleviate some of the scaling concerns with literal representations, and

can also be the basis for useful educational and debugging tools. Further, novel visual-

izations that compactly summarize graph properties are also important, and a combined

approach that allows inspection of both literal and more abstract representations of heap

activity would greatly assist the understanding of how programs use data structures.

78

Appendix A

Complete Benchmarks Graphs

A.1 Benchmark Results

The complete set of graphs for the benchmarks we have coveredfrom the JOlden and the

SPECjvm98 suites can be found online following this link:

http://www.sable.mcgill.ca/˜spheng/graphs.html

79

Bibliography

[Asb02] R. Dale Asberry. Aspect oriented programming (aop):Using aspectj to imple-

ment and enforce coding standards.http://www.daleasberry.com/

newsletters/200210/20021002.shtml , 2002.

[BDE+02] Rhodes Brown, Karel Driesen, David Eng, Laurie Hendren, John Jorgensen,

Clark Verbrugge, and Qin Wang. STEP: A framework for the efficient en-

coding of general trace data. InProceedings of the 2002 ACM SIGPLAN-

SIGSOFT Workshop on Program Anaylsis for Software Tools and Engineering

(PASTE), New York, New York, United States, November 2002. ACM Press.

[BS01] Jeff Bogda and Ambuj Singh. Can a shape analysis work at run-time? In

Proceedings of the 1st Java Virtual Machine Research and Technology Sym-

posium. USENIX, 2001.

[CAZ02] Francisco Corbera, Rafael Asenjo, and Emilio Zapata. New shape analysis

and interprocedural techniques for automatic parallelization of C codes.Int. J.

Parallel Program., 30(1):37–63, 2002.

[CM01a] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetch-

ing linked data structures in Java controller. InPACT01, pages 280–291,

Barcelona, Spain, September 2001.

80

Bibliography

[CM01b] B. Cahoon and K.S. McKinley. Data flow analysis for software prefetching

linked data structures in java. InInternational Conference on Parallel Ar-

chitectures and Compilation Techniques, pages 280–291, Barcelona, Spain,

September 8-12 2001.

[DDHV03] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic

metrics for Java. InProceedings of the ACM SIGPLAN 2003 Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOP-

SLA ’03), pages 149–168, 2003.

[DGK02] Stephan Diehl, Carsten Görg, and Andreas Kerren. Animating algo-

rithms live and post mortem. InRevised Lectures on Software Visualization,

International Seminar, pages 46–57, London, UK, 2002. Springer-Verlag.

[Duf04] Bruno Dufour. Objective quantification of program behaviour using dynamic

metrics. Master’s thesis, McGill University, Montréal, Qúebec, Canada, 2004.

URL: <http://www.sable.mcgill.ca/metrics/ >.

[ECGN99] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-

namically discovering likely program invariants to support program evolution.

In International Conference on Software Engineering, pages 213–224, 1999.

[FM97] Pascal Fradet and Daniel Le Métayer. Shape types. InPOPL ’97: Proceedings

of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 27–39, New York, NY, USA, 1997.

[GH96] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a

shape analysis for heap-directed pointers in C. InPOPL ’96: Proceedings of

the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 1–15, New York, NY, USA, 1996.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system

and its applications to software engineering.Software — Practice and Expe-

rience, 30(11):1203–1233, 2000.

URL: <citeseer.ist.psu.edu/gansner99open.html >.

81

Bibliography

[GOP03] Thomas Gschwind, Johann Oberleitner, and Martin Pinzger. Using run-time

data for program comprehension. InIWPC ’03: Proceedings of the 11th IEEE

International Workshop on Program Comprehension, page 245, Washington,

DC, USA, 2003. IEEE Computer Society.

[HHN92] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. Abstract de-

scription of pointer data structures: an approach for improving the analysis

and optimization of imperative programs.ACM Lett. Program. Lang. Syst.,

1(3):243–260, 1992.

[HLLF05] Abdelwahab Hamou-Lhadj, Timothy C. Lethbridge, and Lianjiang Fu. Seat:

A usable trace analysis tool. InIWPC ’05: Proceedings of the 13th Inter-

national Workshop on Program Comprehension, pages 157–160, Washington,

DC, USA, 2005. IEEE Computer Society.

[HN90] Laurie J. Hendren and Alexandru Nicolau. Parallelizing programs with recur-

sive data structures. InIEEE Transaction on Parallel and Distributed Systems,

Vol. 1, No. 1, pages 35–47, January 1990.

[HR05] Brian Hackett and Radu Rugina. Region-based shape analysis with tracked

locations. InPOPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 310–323, New

York, NY, USA, 2005.

[Jam55] Robert C. James. Combinatorial topology of surfaces.Mathematics Magazine,

29:1–39, 1955.

[KS93] Nils Klarlund and Michael I. Schwartzbach. Graph types. In POPL ’93:

Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 196–205, New York, NY, USA, 1993.

[LD97] Mark Leone and R. Kent Dybvig. Dynamo: A staged compiler architecture for

dynamic program optimization. Technical Report No.490, Computer Science

Department, Indiana University, September 1997.

82

Bibliography

[LY96] Tim Lindholm and Frank Yellin.The JavaTM Virtual Machine Specification.

Addison Wesley, 1996.

[NCA+04] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and E.L. Zapata. A new

dependence test based on shape analysis for pointer-based codes. InLCPC

’04: Proceedings of the 17th International Workshop on Languages and Com-

pilers for Parallel Computing, 2004.

[PJ02] Tony Printezis and Richard Jones. GCspy: an adaptable heap visualisation

framework. InOOPSLA ’02: Proceedings of the 17th ACM SIGPLAN confer-

ence on Object-oriented programming, systems, languages,and applications,

pages 343–358, New York, NY, USA, 2002.

[PS00] Wim De Pauw and Gary Sevitsky. Visualizing referencepatterns for solving

memory leaks in Java.Concurrency: Practice and Experience, 12(14):1431–

1454, 2000.

URL: <citeseer.ist.psu.edu/depauw99visualizing.html >.

[RA05] Easwaran Raman and David I. August. Recursive data structure profiling.

In Proceedings of the Third Annual ACM SIGPLAN Workshop on Memory

Systems Performance (MSP), June 2005.

[Rei03] Steven P. Reiss. Visualizing java in action. InSoftVis ’03: Proceedings of the

2003 ACM symposium on Software visualization, pages 57–ff, New York, NY,

USA, 2003. ACM Press.

[RR96] Niklas R̈ojemo and Colin Runciman. Lag, drag, void and use - heap profiling

and space-efficient compilation revisited. InICFP ’96: Proceedings of the first

ACM SIGPLAN international conference on Functional programming, pages

34–41, New York, NY, USA, 1996.

[RR05] Steven P. Reiss and Manos Renieris. Jove: Java as it happens. InSoftVis ’05:

Proceedings of the 2005 ACM symposium on Software visualization, pages

115–124, New York, NY, USA, 2005.

83

Bibliography

[SKS00] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the effectiveness of

GC in Java. InISMM ’00: Proceedings of the 2nd international symposium

on Memory management, pages 12–17, New York, NY, USA, 2000.

[SPE98] SPEC Corporation. The SPEC JVM Client98 benchmark suite. http://

www.spec.org/jvm98/jvm98/ , 1998.

[SRW98] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis

problems in languages with destructive updating.ACM Transactions on Pro-

gramming Languages and Systems, 20(1):1–50, January 1998.

URL: <citeseer.ist.psu.edu/sagiv96solving.html >.

[tom] Tom sawyer software.http://www.tomsawyer.com/home/index.

php .

[WSR00] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape analysis. In

Computational Complexity, pages 1–17, 2000.

[yFi] yfiles. http://www.yworks.com/en/products_yfiles_about.

htm .

[ZZ01] Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In

Software Visualization, pages 191–204, 2001.

84

