DYNAMIC DATA STRUCTURE ANALYSIS AND VISUALIZATION
OF JAVA PROGRAMS

by
Sokhom Pheng

School of Computer Science
McGill University, Montreal

May 2006

A THESIS SUBMITTED TOMCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright(© 2006 by Sokhom Pheng

Abstract

For many years, programmers have faced the problem of mgamhid trying to un-
derstand other programmers’ code, either to maintain ibdearn from it. Analysis of
dynamic data structure usage is useful for both programrstateding and for improving
the accuracy of other program analyses.

Data structure usage has been the target of various staticitgies. Static approaches,
however, may suffer from reduced accuracy in complex sanatand have the potential to
be overly-conservative in their approximation. An acceyatean picture of runtime heap
activity is difficult to achieve.

We have designed and implemented a dynamic heap analytssrsigat allows one to
examine and analyze how Java programs build and modify datetsres. Using a com-
plete execution trace from a profiled run of the program, wikellaun internal representation
that mirrors the evolving runtime data structures. Thelteguseries of representations can
then be analyzed and visualized. This gives us an accuiatesentation of the data struc-
tures created and an insight into the program’s behaviourthErmore we show how to
use our approach to help understand how programs use datéustss, the precise effect
of garbage collection, and to establish limits on statiad&tucture analysis.

A deep understanding of dynamic data structures is paatiguimportant for modern,
object-oriented languages that make extensive use of haesgd data structures. These
analysis results can be useful for an important group ofiegjbns such as paralleliza-
tion, garbage collection optimization, program underdiiag or improvements to other
optimization.

Résumé

Depuis de nombreuses a@wes, des programmeurs @ayrou\e de la difficulé a lire et
a comprendre le code soureerit par autrui, soit pour I'apprentissage ou pour la neint
nance. L'analyse de lI'usage des structures de gesmst utiléx la compehension d'un
programme eh I'amélioration de la pgcision des autres analyses.

L'usage des structures de d@ms aéte la cible de plusieurs techniques d’analyses
statigues. Cependant, ces approches statiques couresqle détre moins pecises lors
des situations complexes. De plus, elles ont le potentiétrel’trop conservatrices dans
leurs approximations. L'obtention d’'une imagegise et claire des actiéi$ du tas (heap)
pendant la dure d’execution est uneache ardue.

Nous avons donc faites la conception et I'i@plentation un sy8tme servana analy-
ser dynamiquement un tas. Ceci nous permet d’examiner edlglsar comment des pro-
grammes en Java construisent et modifient leurs structerésmiees. En utilisant un fi-
chier trace profé d’'une excution de programme, nous avons construit uneesartation
interne qui reéte I'évolution des structures de ddres pendant la dée d’execution.A
chaque modification, nous pouvons analyser ces structtiles gisualiser. Nous avons
alors une reprsentation gcises des structures de dées construites ainsi qu’'une meilleure
connaissance des comportements du programme. De plusj@mositrons I'utilisation de
notre approche pour faciliter la con@gtrension de l'utilisation des structures de dess
pas les programmes, pour avoir une connaissances despéeises du&cugerateur de
place (GC) et pouetablir une limite sur les analyses statiques des stristigelonges.

Une compehension plus profonde des structures de @esndynamiques est parti-
culierement importante pour les langages d’objets ceemhodernes dont les structures
de donees sont baes sur le tas. Ceésultats d’analyses peuvegtte utile pour un grand

groupe d’applications tels que la padilsation, I'optimisation duécugerateur de place, la
compehension de programme ou |'@fioration des autres optimisateurs.

Acknowledgments

This work would not have been complete without the supporhahy. First, | would
like to thank my supervisor Clark Verbrugge for his constantignce, support and encour-
agement throughout the completion of this work, as well asi®financial support.

| would like to thank both Clark Verbrugge and Laurie Hendrengroviding a nice
research environment in the Sable lab, where most of thik Wvas been completed. Ad-
ditional thanks go to members of the Sable Research group d&mug the lab a friendly
place to be. In particular | would like to thank Ahmer Ahmeglaarzegorz Prokopski,
Chris Goard, Chris Picket, Haiying Xu and Nomair Naeem for mtoygg much interesting
discussions as to take my mind of my work. A special thanksodBruno Dufour for
developing the *J framework; without this my work would n@Me been possible.

This research has been funded in part by the Fond=€aois de la Recherche sur la
Nature et les Technologies (FQRNT) and the Natural Sciemed$agineering Research
Council of Canada (NSERC).

Finally, I would like to give special thanks to my parents, sister, Oliver Chen and the
rest of my friends for putting up with me and for their constsupport and encouragement
throughout my studies.

Contents

Abstract

Résune
Acknowledgments
Contents

List of Figures

List of Listings

1 Introduction

1.1 Motivation.
1.2 Contributions,
1.3 ThesisOrganization

2 Related Work

2.1 ShapeAnalysis
2.2 DynamicAnalysis.,
2.3 Visualization

3 *J Shape Analyzer

3.1 Background
3.2 *JShapeAnalyzer

Vil

Xii

3.2.1 AddingourAnalyzerto*J, 12
3.2.2 Data Structure Internal Representation 14
3.2.3 Data Structure Properties 17
3.24 Analyses 19
3.25 Restrictions 26
4 Visualization 27
4.1 Literal Representation & Animation 27
4.1.1 Tools&lssues 29
41.2 Resolution 31
4.2 Numerical Summary 35
5 Experiments 39
51 Benchmarks 39
5.2 SnapshotExample 40
5.3 Combinatorial Topology Results 40
5.4 Analysis & Numerical Summary Results 47
541 JOldenSuite 48
542 SPECjvm98 Suite 61
543 Summary e e e 72
6 Conclusions and Future Work 76
6.1 Conclusions 76
6.2 Future Work 77
Appendices
A Complete Benchmarks Graphs 79
A.l BenchmarkResults 79
Bibliography 80

Vi

3.1
3.2
3.3
3.4

3.5

3.6
3.7

3.8

4.1

4.2
4.3
4.4

4.5
4.6
4.7
4.8

List of Figures

Designoverview.. o i e e e e e e e e 11
*J shape analyzer overview ofananalysis. 13
Description of the internal representation of an execution context. 16

A data structure showing the aging property. Nodes are coloureddicgaio

their age (and type); all leaf nodes here are library objects, and alhalteodes
applicationobjects.. e 18
Showing garbage nodes in the data structure. Here unreachablearedd#rawn
indotted lines. e 20
(a) shows an example of surface paths and (b) shows the pieces heted together24
(a) shows an example of cuff in gray, (b) shows an example of handiaynasnd

(c) shows an example ofcrosscap.o 24

(a) shows an example of a binary tree and (b) shows the surface mapping. . 25

SplayTree snapshots. An existing pair of nodes (tree node and deslod#da) is

inserted just below the root of thetree.. 28
Example of what we want of an incremental drawing using Tom Sawyer.. . . 29
Actual result using the Tom Sawyer Software.. 30

Example using Neato: (a) without the pin down option, and (b) with the pin down

OptioN. e e e e e 31
Algorithm for backward visualization, first pass (process and storenrdton). . 32
Algorithm for backward visualization, second pass (write back to file). 33
SplayTree snapshots showing invisible nodes in lightgrey. 34
SplayTree snapshots with incremental drawing.. 34

Vii

4.9 Example of a graph showing the number of entry point type. This graplissho

that trees are converted to DAGs overtime.. v v v v o ...

36

4.10 Example of a GC graph showing the number of live and dead objects over time.

There are no dead, GC-able objects in this graph. Objects are credtedba-
ginning and they are used throughout the whole program without adding ono
deletingany. e e e e
4.11 The top graph shows a graph by the number of updates, and the bott@hawe
agraph over bytecodeexecuted. L0000

5.1 SplayTree snapshots (part1). o o v it
5.2 SplayTree snapshots (part2). o o v i i e
5.3 (a) Shows a snapshot of a binary tree, and (b) shows the cordisg@urface in
combinatorial topology..
5.4 (a) Shows a snapshot of a grid, and (b) shows the correspondiiageim combi-
natorial topology.. e e e e e
5.5 BiSort analysis results by bytecode for every 10k updates. The topefghows
single nodes and trees over bytecodes executed, and the bottom figuwe s
DAGs. TherearenocyclesinBiSort.
5.6 BiSort analysis over bytecode executed showing the number of codneata
structures forevery 10k updates. 00000
5.7 BiSort analysis over bytecode executed showing the number of pure vsirdmp
entry points for every 10k updates..
5.8 BiSort analysis over bytecode executed showing the purity of fields menger
all objects of the same class type for every 10k updates.
5.9 BiSort GC results by bytecode for every 10k updates, showing the nuofibee
and dead objects over bytecodes executed. There are no dead wbgstat. . .
5.10 Barnes-Hut analysis results by bytecode for every 1k updates. CogHegure
is shown the number of single node and tree entry points over “time” (by$scod
executed), and on the bottom the number of DAGs. Again, there are tic cyc
SLIUCIUNES. e e e e e e e e

viii

49

51

5.11 Barnes-Hut GC results by bytecode for every 1k updates, showinguiinéer of

live and dead objects over bytecodes executed.. 52
5.12 Barnes-Hut analysis over bytecode executed showing the numbereofguim-

pure entry points for every 1k updates. There are no impure entry poiR&nes-

Hut. . . e e e e e e 53
5.13 Barnes-Hut analysis over bytecode executed showing the purity of fieéstged

over all objects of the same class type for every 1k updates. Ther® amgpnre

typesinBarnes-Hut.. 53
5.14 Em3d analysis result by bytecode for every 1k updates. Single nodes, &nd

DAGs are shown in this figure. There are nocyclesinEm3d.. 54
5.15 Em3d GC result for every 1k updates, showing the number of live ardlagacts

over bytecodesexecuted. 55
5.16 Em3d analysis over bytecode executed showing the number of connextied d

strucures forevery 1k updates. 55
5.17 Em3d analysis over bytecode executed showing the number of pure vsreimpu

entry points for every 1k updates. There are no impure entry points in Em3d. 56
5.18 Em3d analysis over bytecode executed showing the purity of fields mevged o

all objects of the same class type for every 1k updates. There are nceitypes

INEmM3d. e e 56
5.19 Power analysis result for every 1k updates. The top graph is plottedesitiect to

the total bytecodes executed, and the bottom graph with respect to thautotaén

of data structure changes. Both graphs show the number of single aodlé®es.

There are no DAGsorcyclesinPower. 58
5.20 Power GC result for every 1k updates. At the top the time axis is in terms of

bytecodes executed, and at the bottom in terms of total data structuresipdate 59
5.21 Power analysis over bytecode executed showing the number of codraatz

structures forevery 1k updates.o 59
5.22 Power analysis over bytecode executed showing the number of pure vareimp

entry points for every 1k updates. There are no impure entry points iePow. . 60

5.23 Power analysis over bytecode executed showing the purity of fields chexge

all objects of the same class type for every 1k updates. There are rmitieenor

impure typeresultsinPower. e 60
5.24 Tree example witlDbjectA as the rootDbjectB as the left child an@bjectC

as the right child. In the left grapl@bjectB is the entry point, and in the right

graph the entry point i®bjectA Lo 60
5.25 TSP analysis results by bytecode for every 1k updates. On the top ese drel

on the bottom single nodes, DAGsandcycles. 62
5.26 TSP analysis over bytecode executed showing the number of connatdestric-

tures for every 1k updates. There are no impure entry pointsin TSP.. 62
5.27 TSP analysis over bytecode executed showing the purity of fields mevgedlo

objects of the same class type for every 1k updates. There are no impaseiy

5.28 TSP GC results by bytecode for every 1k updates. Again, there areatbabjects

evidentinthisgraph.. 63
5.29 Jess analysis results by bytecode for every 100k updates. On theetgngle

nodes, and on the bottom trees and DAGS. There are no cyclesinJess.. . . 65
5.30 Jess analysis over bytecode executed showing the number of condatztestiruc-

tures forevery 100k updates.o 65
5.31 Jess GC results by bytecode for every 100k updates.. 66
5.32 Compress shape analysis result by both bytecodes executed (ahdve)raber

of heap updates (below) for every update. There are no cyclesin@smp . . . 66
5.33 Compress GC result for every update, showing the number of live aattlatgects

in terms of total data structureupdates. 67
5.34 MpegAudio analysis result for every updates with respect to the total euofb

data structure changes, where the top graph shows the number offtecemicidle

shows the number of cycles and DAGs, and the bottom one shows the namber

singlenodes.. e e e e 68
5.35 MpegAudio analysis for every updates with respect to the total numbeataf d

structure changes, showing the number of pure vs. impure entry pohmse &re

no impure entry points in MpegAudia.o 69

5.36 MpegAudio analysis for every updates with respect to the total numbeataf d
structure changes, showing the purity result of fields merged over jaittsbof
thesameclasstype.. e 69

5.37 Db analysis results over bytecode executed for every update. On thesttees,
and on the bottom single nodes. There are no DAGs or cyclesinDb.. 70

5.38 Db analysis over bytecode executed showing the number of live andotigects
foreveryupdate.. L 71

5.39 Db analysis over bytecode executed showing the number of pure vs.araptry
points for every update. There are no impure entry pointsinDb. 71

5.40 Db analysis over bytecode executed showing the purity of fields mergedativ
objects of the same class type for every update. There are no impurertypes . 72

5.41 Javac analysis results over bytecode executed for every 10 upddtesgraphs
shown from top to bottom are trees, DAGS, cycles, and single nodes.. 73

5.42 Javac GC results over bytecode executed for every 10 updatesngtibe num-
berofliveanddead objects.. L. 74

5.43 Javac analysis over bytecode executed showing the number of cahmiatte

structures forevery 10updates.o 74

Xi

3.1
3.2
5.1

List of Listings

Register the new analyzer@tene.java 13
Structure for the new analyzer to work properly with*J.. 15
Output generated from the combinatorial topology arealgiven the above

eqUAtioNS e e e e e 44

Xii

Chapter 1
Introduction

1.1 Motivation

Data structure, heap arsthapeanalysis techniques summarize dynamic data connectivity,
with the goal of improving alias analysis [GH96], automaigrallelization [HN90], op-
timizing garbage collection [SKS00], debugging, or as pér general understanding of
program behaviour. Investigation of data structure shagaiaage is particularly important
for programs which make extensive use of heap data, suchaadd other object-oriented
languages.

There are many attempts on data structure analysis, butateynostly static ap-
proaches as dynamic approaches tend to have too much oderBéatic approaches to
data structure analysis potentially suffer from overlywservative approximations, easily
induced by temporary data structure inconsistencies dugalates and modifications. Dy-
namic approaches, on the other hand, are either very slowodhe overhead, or not com-
plete as they have to leave out much information in order takide to work at run-time
without slowing the program.

In this thesis we investigate heap data analysis from theppetive of dynamic analy-
sis. Even though our technique is slow and not done duringinoe, it gives us a complete
picture of data structure properties within Java prograbhsing complete traces of Java
program executions, we reconstruct the entire programugxecbytecode and history of

1.1. Motivation

heap-based data as it is changed through program modifisatibhat way we can keep
track of the program’s heap nodes and their connectivity.

For smaller programs this allows for the construction ofadsttucture snapshots and
animations, visually illustrating evolution of programtaaand also encoding a variety of
properties of interest, including shape, age of data, ngplest connectivity, and so on.
The animation of data structures might be used for many m@gosuch as learning and
understanding a new algorithm. We show, however, that migaations are not that easily
achievable.

For large benchmarks the results of analyses run at eachsttataure change are
graphed to summarize overall behaviour. This permits fasgale investigations of data
structure usage, and using a selection of standard Javérbaris we demonstrate the
extraction and analysis of various data that can extendlel@tauntime heap analysis to
reasonably sized programs.

Data on number and size of data structures, their generpéshannectedness and en-
trypoints, all supply useful information on how programs dgnamic data structures, and
we show how analysis of such data can provide insights indgram behaviour. This in-
cludes aspects of data reachability—we can further exathmextent of and variation in
garbage data carried through program executiond@@ [RR96]). A complete tracking of
heap data also allows us to determine upper limits on thenpat@ccuracy of a more tradi-
tional static, conservative trd®AG (Directed Acyclic Graph)/cycle data structure analysis,
under different assumptions of available alias analys@rimation. Most programs in our
study are surprisingly simple with respect to heap usageoandesults show that static
approaches can be quite accurate, at least for common igdhestchmarks.

To further demonstrate the flexibility and utility of our dy&is system and approach
we also define and implement a less traditional data streicthape analysis based on
combinatorial topology.

Data structure analysis is difficult, but worthwhile as inaxpose a wide variety of
interesting program behaviours.

1.2. Contributions

1.2 Contributions
Specific contributions of our work include:

e We provide a design and implementation of a framework fotwapg the complete
dynamic evolution of data structures in Java programs. @stes supports various
data structure analyses that expose interesting and ussfahmark properties.

e We provide a simple technique for data structure visuabpata series of snapshots
that can encode current and historical data structure prepgewhich is turned into
animation to easily see the evolution of program data sirest

e \We compare accurate runtime data structure analysis d#tathéat achievable by
both optimal and simple static approaches, assuming diftdevels of alias infor-
mation. This establishes limits on accuracy for static rersgdyses.

e We give and discuss experimental results on the actual ttatdwse usage of a num-
ber of benchmark programs, including non-trivial programshe SPEC JVM98
[SPE98] and JOIden [CMO01a] suites.

¢ We define and test a non-traditional analysis for coarsenggashape classification
of data structures. This analysis demonstrates our sysésrhifity, but may also be
useful for another area such as parallelizing optimization

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2idses background and related
work on data structure and dynamic analysis. Chapter 3 descthe general design of
our analyzer and the kind of analyses and information we eéimeg. Chapter 4 describes
data representation for both smaller programs in the foramohation and large programs
in the form of statistical graphs. Chapter 5 gives analyssslie performed on a set of

tiny, small and reasonably large benchmarks. Finally araptconcludes this work and

suggests future directions for research.

Chapter 2
Related Work

Our approach combines two main techniques, dynamic asafysl shape analysis.
These have historically been relatively orthogonal pussaind so we discuss them sepa-
rately in section 2.1 and section 2.2, respectively. Sinoenmrk also includes aspects of
data structure visualization, related works on visualireare described in section 2.3.

2.1 Shape Analysis

Shape analysis is a term to represent static program-asnadghniques which attempt to
determine properties of the heap contents. Shape anaidisiues vary from imple-
menting a whole new language for identifying data strucioesummarizing them using
specialized graphs.

A frequent, and early approach to identifying data struegus to allow the program-
mer to provide high-level information through program amations. Hummel et al., for
instance, define static annotations to data structuresderdo help the compiler iden-
tify opportunities for parallelizing transformations [F92]. They have developed an ap-
proach for theAbstract Description of Data StructurédADDS) where programmers have
a way to describe properties of the data structures to theibemlt is designed to intu-
itively and accurately describe pointer data structuressessing a form of regularity by
describing their shape and traversal properties.

2.1. Shape Analysis

A similar annotation approach is described by Fradet and &&ler, who define a new
language annotation that integrates the notion of shapesha C language [FM97]. The
notion of shapes to express properties of data structudssisribed as context-free graph
grammars where modifications are defined as rewrite rulesgthules are used to ensure
that the graph structure described by the grammar is prederv

Many have tried identifying data structure shape withoutifying the source code.
Ghiya and Hendren show how the conceptually simple categtion of data structures into
treg, DAG, or cyclecan be sufficient for compiler optimization [GH96]. Theyrmduce the
idea of using alirection matrixto determine whether a heap-directed pointer has a path
to another heap-directed pointer or not, andrdarence matrixo determine if two heap-
directed pointers can access common objects. These nsatneeised to perform analysis
to estimate the shape of the data structure as a tree, DAG¢largraph.

More detailed data structure information can be discovénealigh various kinds of
graph abstractions. Klarlund and Schwartzbagh&ph typesbuild a representation as a
grammar describing data structures having a backbone asugbubly-linked lists [KS93].
Wilhelm et al. [WSRO00] definshape graph$o represent structural properties of data struc-
tures. These graphs are the result of shape analysis, Wiagltefine to be a conservative
static program-analysis to determine properties of the lveatents. Usindglow graphs
the shape graphs are modified to give a conservative repatieenof heap-allocated data
structures every time a program point is executed.

Corbera et al. combines static shape graphs with abstraagstgraphs to give a more
precise shape analysis [CAZ02]. For that to be possible, éltegndstatic shape graphs
that were first introduced by Sagiv et al. [SRW98] by adding mamy nodes for summa-
rizing different structures and by adding a shared atteiliotkeep track of cycle links,
which give a more accurate representation of doubly-lirdkegbhs. Their techniques were
later improved by Navarro et al. by approximating the datacstires in a graph combining
memory locations having similar patterns [NC@4]. Their analysis maintains topologi-
cal information on connections between the different mgnmrations (nodes) in the data
structure. The analysis is also basedreference shape graphssed to approximate all
possible memory configurations appearing after executoupa statement, where each of
those nodes represents memory locations which have sireflenence patterns.

5

2.1. Shape Analysis

Recently, Hackett and Rugina described a way of breaking doeentire shape ab-
straction into smaller component and analyzing them séggrgHR05]. That way, it en-
ables them to do local reasoning about a single heap locatgtead of doing a global
reasoning on the entire heap. To do so, they use two kindsaufnagositions to break
down the shape abstraction. They first use a “vertical” dgusition to identify points-to-
relations between regions. Then they use a “horizontalbgmosition to characterize the
state of each single heap location, where the reasonindpgvifione.

Raman and August [RAO5] examine complete dynamic traces tergtm abstract
shape information; this is a similar general approach t®,oalthough they concentrate
on identifying recursive structures, and derive their infation from low-level, binary
analysis. They use a technique callRdcursive Data Structure Profilingp help better
understand the dynamic memory behaviour of recursive datatgres such as trees. An
important step of this technique is to reconstruct shapphgr#hat were created on the fly
during the program execution. It gives two representationshape graphs. It first collects
all information on each object node and reconstrudtbhdied Shape Graphwhere each
object node contains all reference pointers to and from dweéler this graph turns out to
be very large for them to keep track of. Therefore they categahe edges of the unified
shape graph into different instances of recursive datatstres and only keep track of those
instances instead of all objects. With this, they constau8tatic Shape Graptwhich is
basically a summary of the unified shape graph. Contrary to Wk, instead of only
analyzing recursive data structures, we analyze all daiatstes that are constructed.

While most work done on shape analysis has been done staticalC code, Bogda
and Singh have dome some exploratory work on shape analysi¥afa code at run-
time [BS01]. They show that by analyzing at run-time, theyidyaroblems that would
arise for static analysis such as dynamic loading and bgndhowever, the trade-off is
the run-time cost and the fact that the analysis must work witomplete information.
Since their analysis is based on call graphs, to address treete-offs, they build their call
graphs incrementally based on the previous modificationtyaill graph to avoid the large
overhead. This way they are able to prove that good resudtp@ssible, although mainly
under repeated execution scenarios.

The different approaches described above show what havedoee in terms of shape

6

2.2. Dynamic Analysis

analysis. Our work will mainly focus on the concept desdlilby Ghiya and Hendren
[GH96] to build our analysis, where data structures aregraiteed intotree, DAG or cycle

2.2 Dynamic Analysis

Dynamic program analysis can be performed online, or offtmeugh the analysis of
program execution trace files. Given the large resource ddsnaf our precise shape
analysis we have focused on the latter technique; manydsrbave been made to the
former [BS01], however.

Trace extraction from Java programs often relies on the tisedava’s built-in Virtual
Machine Profiling Interface (JVMPI), or its new replacem@uMTI (Tracing Interface).
Brown et al. describe a framework, STEP, for profiler develspie encode general pro-
gram trace data in a flexible and compact format [BDE]. JVMPI is also used by Dufour
et al. in the implementation of *J [Duf04], a tool for dynan@oalysis of Java programs
used to generate Java program metrics [DDHVO03]. Our work beilds on the *J frame-
work.

Similarly to STEP and *J, SEAT (Software Analysis and Exptayn Tool) is a trace
analysis tool developed at the University of Ottawa to esplarge execution traces of
methods calls [HLLFO5]. Traces are displayed in the form wéa structure in eclipse that
contains a set of auxiliary views, which are used to dispifferent information that can
be gathered from the trace files. This approach is a bit éiffefrom ours. Although they
also analyse trace files, they only focus on method callsre@@seour work focuses on the
whole program execution.

A slightly different approach to dynamic analysis is ARE, @his A Reverse Engi-
neering tool that gathers runtime data to analyze the dynmaetaviour of software sys-
tems [GOPO3]. Instead of analyzing execution trace files, AR&S run-time data such as
parameter and object values. ARE focuses mainly on the asali/geflective (dynamic)
methods, whereas our work focuses on all methods.

The Daikon project from MIT [ECGN99] and the Dynamo projedrfr Indiana Uni-
versity [LD97] both provide online forms of dynamic analysdiffering mostly in usage.

2.3. Visualization

Both projects are based on observing runtime values andamiatto perform diverse anal-
yses and optimizations. The Daikon project uses the infoomao report properties that
were true over the observed period, which can then be use@d$ting and verification.

Dynamo is a compiler architecture that uses the informatotio runtime optimizations.

The challenges of efficient online dynamic analysis areeqifferent from our exhaustive
approach to trace analysis, but the invariant-based apiprnoay be a useful basis for for
determining specific data structure properties.

2.3 Visualization

Visualization is useful in a wide range of fields. It is usefoi program analysis and
for debugging purpose, but it is even more useful for progcamprehension or even for
learning an algorithm for educational purposes. We willdiee some of the work that has
been done in those fields.

Visually representing the heap is an existing concern inynaea, and it is used for
various purposes. For example, Zimmermann and Zeller uese Visualization to debug-
ging purpose [ZZ01]. Theimemory graphs used for accessing and visualizing memory
contents, where each value in memory is a vertex and eackepanan edge. That way
it can capture the program state as a graph. Printezis ares Ise@ heap visualization to
understand program behaviour in order to design the nextrgéan of garbage collec-
tors [PJO2].

Reiss and Renieris use visualization for program profilingenegal to better under-
stand the behaviour of their software [RR05]. They do so bylayspg a summary visu-
alization of data gathered from a running Java program, lwkiows the execution of the
program as it occurs, but not in terms of data structures.

Reiss uses visualization to provide high-level progranegijganformation in real time
of Java programs [Rei03]. To work in real time, their traceadadve to have minimal
overhead. In order to cut down on the analysis time, instédahawing everything the
program is doing they decided to break down the program éxecinto intervals, and
only showing a summary for each of those intervals. The médion they gather for a

2.3. Visualization

class includes the number of entries, the number of syn&abon calls and the number
of allocations, and for a thread it includes the time spemtich state.

De Pauw and Sevitsky use visualization to display refer@aterns for solving mem-
omy leaks in Java [PS00]. By using reference patterns, whielrgpetitive execution
sequences, they can work with complex structure of dateespea simplified, aggregated
form. They look for memory leaks by comparing two snapshéthe program’s object
population, one taken just before a critical operation ameltaken right after.

Another kind of visualization technique for program contpmesion is also used in
ARE [GOPO03], where a diagram of all method invocations thablves an instance of the
object of interest is displayed. That way it allows the ustlnding of how that object is
being used.

A very natural way to learn and understand an algorithm isaoet through it; unfor-
tunately most of the time the algorithm is very complex, arelaguld easily get lost if
we attempt to manually trace it. Therefore it would be modtame if the tracing can be
done by a tool. This is what the GANIMAL project tries to do [BIG2]. It is a framework
for developing educational software, which provide a pduleset of features. Some of
its features include the ability to do a step-by-step exenutf an algorithm or a parallel
execution of it, to get a visualization of invariants for gram points and blocks, and most
importantly an online algorithm animation, which is usatulisualize the control of loops
and recursion. Following the same line of thought, our senp$ualization technique can
be used to understand an algorithm in terms of how data stestre modified.

Chapter 3
*J Shape Analyzer

This chapter describes the *J shape analyzer and its fsat@8ection 3.1 describes
the *J tool and how the *J shape analyzer fits in. Section 3sZml@es how the *J shape
analyzer is is implemented and added to the *J analyzer inamie It also describes how
data structures are internally represented and the kindfefrmation that can be encoded
with the data structures. Analyses that were implementecaso described as well as
some restrictions to the system.

3.1 Background

In order to perform dynamic analysis for accurately findirsgadstructure modifications
we need a way to know what exactly happened during the exerafia program: what
values were passed, which objects are referenced, and siobaio so, we use *J, which
is a tool for dynamic analysis of Java programs. It consistsvo components. The first
one is the *J agent, a profiling agent, and the second one isJthealyzer, an analysis
framework. The *J agent consists of a main trace generatarues the built-in JVMPI
(Java Virtual Machine Profiling Interface) to dynamicalgceive events from a JVM (Java
Virtual Machine) that implements that interface; each éw&gerialized into a single event
stream and output to a file called ttnace file The *J analyzer is a trace analyzer that reads
the trace files produced by the *J agent and perform any nuofdynamic analyses on
data stored in the trace [Duf04].

10

3.2. *J Shape Analyzer

JVM

...100101101000101
11010110100010110
01010010101010001

She

Trace File | 100101101000101... .dot Output
_— -

putfield

aload_3 *J Shape (*J Analyzer

ifnonnull > Analyzer

aload_0

Summary
N J

Figure 3.1:Design overview.

The overall flow for the shape analysis system is shown indi@ut. The first part of
the process is data gathering. Java programs are executexlJ'M where an attached *J
agent produces execution trace files of the running progfdmase trace files are then fed
into the *J shape analyzer, which is constructed using tten&alyzer framework. Here the
input event trace is used to reconstruct the program datetste and their evolution over
time. The *J shape analyzer may apply various analyses sutke&DAG/cycle analysis,
topological shape analysis, etc. The last part of the psethe output representation
of the analysis data. Results can be communicated as litgagshot or animated repre-
sentations of graph structures, or in the case of largemntsigs graphs of numerical and
analysis properties.

3.2 *J Shape Analyzer

For a complete and accurate analysis of runtime data stag;twe need complete data
on heap objects and references and all values which may bedsito reference fields.
*J provides both a complete trace of all instructions exeduaind unique identifiers for
all objects. We are thus able to reconstruct heap conngchbyi tracking which object
identifiers are subject and target of reference field writ@s;includes reference arrays.

11

3.2. *J Shape Analyzer

Figure 3.2 shows the flow for the *J shape analyzer. The *Jeshaplyzer reads events
from the generated trace file and processes them one by ome2aEl event processed,
a corresponding update is applied to an internal struchaerirrors the program’s heap
nodes and their connectivity. This includes the removalades due to GC. At each of
these modification points, analyses are then run to deterthaevolving properties of the
data structure.

Many analyses can be performed on this mirrored data stejcaind some of those
analyses are explained in section 3.2.4. Apart from theyaral we can play around with
the analyzer’s options. One of the options is to be able taheefrequency the analyses
are being performed on data structures. The other optianm i table to recognize some
data structure properties such as doubly-connected stasctlf we did not let the analyzer
know it is a doubly-connected structures by explicitlyitejlit to ignore doubly-connected
reference pointers, it will conclude it is a cyclic graph. % also get analysis result in
terms of arbitrary “timelines”, including number of datastture modifications or bytecode
count.

In the next section we describe how the *J shape analyzerdisdatb the *J analyzer
framework. Then we describe how data structure objectsraeenially represented, and
we follow with a list of information that we are currently eding about data structures.
Section 3.2.4 describes analyses that are implementesyeaadd with section 3.2.5 which
describes restrictions of the system.

3.2.1 Adding our Analyzer to *J

For the analyzer part of *J to correctly work, since it is a gbew tool and contains many
different analyses, it needs a way to understand how thek tagether. Analyses are
organized intoPack s andOperation s, wherePack objects are containers for other
Pack s andOperation s, andOperation objects contains the actual analysis. All this
information is stored in a file calle8cene.java , which contains the entire hierarchy
of Operation s andPacks. Furthermore, it contains the main event processing loop
indicating which operations and analyses to perform fiestpad, and so on.

12

3.2. *J Shape Analyzer

4 4 .
Events Process Events A Analysis h
(Tree/DAG/Cycle)
— putfield o o L
aload_3 o | Entry point 1: DAG

ifnonnull ° ° Entry point 3: Tree
aload_0 Entry point 4: DAG
— (4) (5 (o) - g
N\

Entry points: 1, 3, 4

Figure 3.2:*J shape analyzer overview of an analysis.

i mport starj.toolkits.stacks.StackAnalysis;
public class Scene {
private voi d populate(Container container) {
Pack toolkits_stacks = new Pack("stacks",
"Contains stack-related operations");
toolkits.add(toolkits_stacks);

toolkits_stacks.add(new StackAnalysis("stack",
"Output results of stack operations");

Listing 3.1: Register the new analyzer$tene.java

13

3.2. *J Shape Analyzer

In order for the *J shape analyzer to be a part of *J, we firstdnteeregister the
new analyzer, which we calle8tackAnalysis . We do so by adding a few lines in
Scene.java asin listing 3.1. We first need to create a neack object to contain our
analysis with a name and a small description of it. Then welhaadd the creatddack
object to thetoolkits package. Once that is done, we add our analysis tdéHuk
object we just created with the analysis name and its desurip

Now that our analysis is registered, we need to follow a aesd#aucture predefined
within the *J analyzer framework for it to work properly. Tl&ucture is shown in list-
ing 3.2. All analyses have to extemgbstractOperation and need to have these
three methodsinit() , apply(EventBox box) anddone() . init() is where
the analysis starts when the *J analyzer starts. This is evihwr can initialize objects
for the analysis before it actually startapply(EventBox box) is where events are
processed. Whenever there is an event to be processed, thiedhad each analysis is
called to process itdone() is called to wrap up the analysis once the end of the trace
is reached. It is usually used to print out the result of thalysis or the amount of time
it took for the whole analysis to process. In addition, wduded two more methods to
the analyzemperationDependencies() andeventDependencies() . The first
method states which other operations provide informats®diby this operation. Since we
need to know the particular bytecode associated with eagtuéad instruction event, we
need to make sure that this information will be availabledo @analysis when it executes.
It is done througHnstructionResolver . The second method is for registration in
order to receive the required events. In our case, we weseintdrested in instruction
events, which are calldtN\STRUCTION STARTevents; that is why we only registered to
receive those events. If we wanted other kinds of eventstiita place to register them.

3.2.2 Data Structure Internal Representation

In order to construct an internal data structure repreientave model the complete ex-
ecution of each thread by interpreting bytecode events. Wdne we build our system
follows somewhat the Java Virtual Machine Specification §6Y. From figure 3.3, we
can see that amvocationStack object is created for each new thread the analyzer

14

3.2. *J Shape Analyzer

package starj.toolkits.stacks;

public class StackAnalysis ext ends AbstractOperation {
publ i ¢ StackAnalysis(String name, String description) {
super (name, description);

/I State which other operations provide info used by thigaten

publ i ¢ OperationSet operationDependencies() {
OperationSet dep_set = super .operationDependencies();
dep_set.add(InstructionResolver.v());
return dep_set;

/I Register to receive required events
publ i ¢ EventDependencySet eventDependencies() {
EventDependencySet dep_set = new EventDependencySet();
dep_set.add(new EventDependency(Event.INSTRUCTION_START,
new TotalMask(Constants.FIELD_RECORDED), true));
}

return dep_set;
/I This is where the analysis starts when #deanalyzer starts
public void init) { . . . }

/I This is where events are processed
public void apply(EventBox box) { . . . }

/I This method is called to wrap up the analysis once the etidedtfrace is reached

public void done() { . . .}

Listing 3.2: Structure for the new analyzer to work propevigh *J.

15

3.2. *J Shape Analyzer

HashMap for Threads

StackFrame
' Operand
InvocationStack ExecutionStack
Int type
value: 2
method 3 /
Float type
method 2 operand 3 /
value: 1.0
method 1 operand 2
Int type
operand 1 » value:5

Figure 3.3:Description of the internal representation of an execution context.

encounters, which contains the thread id as well &aakFrame stack object. Each
StackFrame object is created at the start of every method, which costtia method
id, the method signature, info on the local variables andntie¢hod parameters as well
as ankExecutionStack object. EachExecutionStack object contains a stack for
Operand objects. EactOperand object contains information such as whether it is a
reference type object, an int type object, a float type obped so forth. With that, the
ExecutionStack can mirror the java execution stack so that bytecode frontréuee
file can be processed.

Most programs contain more than one thread even if the progsanot intentionally
multi-threaded. That is due to the fact that there are ugmadiny threads created by de-
fault by the JVM. Therefore, we need a way to identify whichetid is being executed.
Fortunately, this is already being handled by the *J tooliclwigive a unique id for each
thread, method and object. Therefore, when an event hasadthd that is different for the
previous event, the correspondiiyocationStack object is loaded along with the
top element of itsStackFrame , which constitute the method it left off before the other
thread was executed.

As events are processed, if the analyzer gettNAMOKEINTERFACE an INVOKE-
SPECIAL, anINVOKESTATICor anINVOKEVIRTUALevent, all objects from the stack
that are needed for the invoked method parameters are laadedt method’s locals. At
the method entry, a new StackFrame is created and pusheith@ltorocationStack
object for the thread id. A$NSTRUCTION events are processed, elements from the

16

3.2. *J Shape Analyzer

ExecutionStack are popped or pushed depending on the bytecode it is pragessr
example, if it gets ahADD instruction event, two elements from tBgecutionStack
will be popped, where both of them are of integer type. Theealill then be computed
before being pushed back to the stack. When the method esiBackFrame is popped
from thelnvocationStack , and if there is a value to be returned, it is then pushed into
the invoker'sExecutionStack

Once we have the system described above set up, we can starimgi data structures.
So far, we have dealt with how events and bytecodes are beindldd and processed.
However, our goal is to know how objects are connected to etiwr. Obviously, this only
concerns reference typed objects; for each reference typjedt or object allocated, we
introduce an object calle@bjectAlloc , which holds a space for reference information
on arrays or fields it points to, and also references fromraibgects. That way when we
have aPUTFIELD instruction for example, we can store the field object at thresspond-
ing field index. Thus when an analysis is to be performed, éhdagt search starting at all
roots of the data structure can be done to determine objediectivity and reachability.

3.2.3 Data Structure Properties

From the mirrored representation of the program data strestwe are able to find and
show a variety of interesting and useful properties. Cdstaype, or other node informa-
tion can be easily included in any graphical representatidamcan further encode complex,
historical node properties such as relative age of its car@ponodes, and the data structure
can also be examined more abstractly, e.g., in terms of addl.

Node type in our representations is shown textually. Howemnece we are most inter-
ested in application objects, we distinguish applicatremtlibrary objects through colour
as well, and this strategy can obviously be extended to madg properties. Figure 3.4
shows an example of this division, as well as a visualizatibtihe aging property: as an
object ages, meaning that it lives longer within the prograsncolour becomes darker (in
figure 3.4 this is applied only to application objects, nbtdiry objects). Observing age
and type can be a useful way of understanding how a strugwanistructed; in figure 3.4,
for example, it is evident that the data structure is moaiijt bottom-up, with application

17

3.2. *J Shape Analyzer

nodes near the tree root younger than nodes deeper in tioctus&u

9112 7432 7816
Integer BinaryNode String[]

8928 8568
BinaryNode BinaryNode

8552 9088
Integer BinaryNode
8952 9072
BinaryNode Integer Integer
8752 9032
Integer Integer
8672
Integer

8848
BinaryNode

9008
BinaryNode

8912

Integer
8888

BinaryNode

8768
BinaryNode

9048

8832
Integer
8872
Integer
8792
Integer

8712 8592
Integer Integer

Figure 3.4:A data structure showing the aging property. Nodes are coloureddiegdo their age
(and type); all leaf nodes here are library objects, and all internasagplication objects.

There are many options with aging with which we can play.tFiwe can age an object
every time there is a modification done on the data structorege can age it at every
bytecode execution. In our work, we choose to age objectseay doytecode execution.
Second, we have a choice on the colour selection and the cdragge for each colour. In
our case, colours starting with light to dark are assignetifterent range of ages, with the
exception of new objects which are of a totally differentazolsince we want to emphasize
the introduction of new objects. The colouring is done inda@ing way:

18

3.2. *J Shape Analyzer

Age O bytecode executions (new object)
Age 1-10 bytecode executions

Age 11-100 bytecode executions

Age 101-1,000 bytecode executions

Age 1,001-10,000 bytecode executions

Age 10,001-100,000 bytecode executions
Age 100,001-1,000,000 bytecode executions
Age > 1,000,000 bytecode executions

For the moment our tool does not have a way to automaticalignalize the intervals for
the age classes. Itis pre-determined by the user.

Reachability in our system is easily determined. By trackihglgect references we
also know the set of all root objects, or entry points to thectire. Root objects include
static variables, live local variables, and live methodapagters. Thus by comparing the
transitive closure of references with the set of all alleddiut currently uncollected objects
we can determine the set of dead objects, not reachable frenoodt set. This information
can be visualized, showing the exact amount and (remaicmg)ectivity of dead, garbage
objects the heap contains. Figure 3.5 shows a visualizafiendata structure containing
garbage data. Dead objects are drawn with dotted lines, anchw easily see how many
there are and exactly how they are connected to each otheo dind rest of the structure.
Understanding how much data is carried in this way can beut$af garbage collector
optimization [RR96].

3.2.4 Analyses

The *J shape analyzer has all necessary information to stffyimplementation of vari-
ous analyses, including different summary and shape gnaptoaches, topological shape
analysis, etc. We have implemented a basic tree/DAG/cywddysis as a proof of con-
cept, and also to investigate the quality and utility of $imaple categorization. As a more
complex and non-traditional analysis, we have also imptgstean analysis based on the
combinatorial topology of surfaces to classify the differg/pes of data structures.

There are many ways to look at data structures. Most oftendha be viewed as a

19

3.2. *J Shape Analyzer

1147620208 1147620224 1147620240 9688 8648 9208 9768 8728 1147620256 1147620272 1147620288 1147620304 1147620320
Integer Integer Integer BinaryNode BinaryNode BinaryNode BinaryNode BinaryNode Integer Integer Integer Integer Integer
v v v R} Ry
9672 8632 9192 9752 8712
Integer Integer Integer Integer Integer
9168
BinaryNode
9128
BinaryNode iaryNode

v
9648 8592 8568 9112 9408 9312 9808
BinaryNode Integer BinaryNode Integer BinaryNode Integer BinaryNode
4

8552 9608 9488 9368 9392 9288 9792
Integer BinaryNode BinaryNode BinaryNode Integer BinaryNode Integer
9472 9448 9352 9928 9888 9272 9848
Integer BinaryNode Integer BinaryNode BinaryNode Integer BinaryNode
9432 9968 9912 8848 9872 8808 9832 8768
Integer Integer BinaryNode Integer BinaryNode Integer BinaryNode Integer BinaryNode
9568 9008 8968 9992 8928 9952 8888 8832 8792 8752
BinaryNode BinaryNode BinaryNode Integer BinaryNode Integer BinaryNode Integer Integer Integer
9552 9048 8992 8952 8912 8872
Integer inaryNode Integer Integer Integer Integer
9032
Integer

Figure 3.5:Showing garbage nodes in the data structure. Here unreachableareddswn in

9592 9528
Integer Integer BinaryNode

9512 1147620048

BinaryNode

dotted lines.

20

3.2. *J Shape Analyzer

whole or according to the reachability of root objects. Hu first analysis that we will
describe, we use the view given by the reachability of rogeats, or entry points.

Tree/DAG/Cycle

Dynamically, a tree/DAG/cycle categorization is quiteial to compute. From each entry
point we simply do a depth-first search to determine whetienbdes reachable from that
entry point represent a tree, a DAG or a cyclic graph. Thisrmfation is then encoded
in the graphical output; if the reachable nodes form a trea the entry point is drawn
as a rectangle, if the structure is a DAG then the entry pginirawn as a “house shape”
(pentagon), and for cyclic structures a hexagon entry peinsed. By performing this
analysis at each structure modification we obtain an evglview of the data, at least in
terms of tree/DAG/cycle composition.

This process has one important practical caveat: singtnmected nodes are consid-
ered trees. While this is true in a technical sense, many anogimake extensive use of
single node objects, and this obfuscates any understantiimgre realistic tree usage. For
this reason we actually make use of a 4-way categorizatidh,swmgle nodes distinct from
trees.

Connectivity

Note that a given data structure may appear differently fdiffierent perspectives: it is

common to think of data structures as connected graphs,nalysas information can be

distinct for each entry point (reference variable), or gent the entire connected data
structure. Figure 3.4 shows examples of distinct tree an@ BAtry points into the same
connected structure. In most of our work we use entry poiormation as fine grain data;

connected data structure information, however, is alserdened.

Purity

In order to measure the potential accuracy of a static aisadyshe same program, we also
define gpurity metric on all data structure references.

21

3.2. *J Shape Analyzer

Definition Let “C” be a partial order on data structure shapes; e.g.,dZr&AG C cycle.
If the shape computed from a particular refereneg each heap change forms a sequence
50, 81, - - -, Sn, thenr is pureif s; C s;,; foralli =0...n — 1.

Data structure purity is meant to capture the relative ighdf a static shape analysis
to accurately determine shape. If despite any changes taesttacture is perceived to
have the same, constant shape then static analysis mayétoalle an accurate shape
designation. If, however, the data structure shape chahgesany static shape result is
necessarily an approximation. Of course data structueeduilt incrementally—all data
structures evolve from trees (single nodes). To avoid cangig nearly all DAGs and cycle
references as impure we categorize references that negregs downward in shape order
as pure. Purity thus over-approximates the accuracy otia sggproach.

Based on the above, we compute two measurements on our rutiditae The entry
point purity determines purity for each runtime referenddiis provides a rough upper
bound for static approaches, corresponding to the presdrmerfect alias (points-to) in-
formation. Less than perfect alias information implies @dé merge information for
multiple entry points, necessarily reducing, or at leastimgroving accuracy.

In the absence of good alias information, a static shapgsisalan minimally separate
references according to the static class type. To see hohewet such a simple approach
can determine data structure shape we compute a type-basédmetric; here, shape
data for runtime fields with the same static signature aregetetogether. Purity is then
determined from changes in the merged entity.

We must note, however, that entry point purity and even tygsed purity may vary at
different program statements. Static approaches can dheh@del these changes, so their
accuracy may be greater than our model and what our datastugge

Combinatorial Topology

Here we present a non-traditional approach for analyziages to demonstrate the flexi-
bility of our system.

Combinatorial topology is the branch of mathematics coregmith essential proper-
ties ofshape Algorithms exist in combinatorial topology to compute amher of different

22

3.2. *J Shape Analyzer

gualities on surfaces. We have applied a simple algorithmadmputing a canonical shape
representation [Jam55]. The algorithm is used to descrdmeml surfaces in canonical
form. It decomposes a surface into small pieces, which ar tlescribed in terms of
equations. The analysis then outputs a 3-tuple to desdrdiestirface. This decomposi-
tion and analysis is interesting since it is a non-traddi@analysis to be performed on data
structures. The result can also be used to describe datauselconnectivity and how it
can be separated, which can be useful for parallelization.

The algorithm takes a set of equations describing a surfadeoatputs a 3-tuple de-
scribing it. In order to get equations for the surface, wedneecut and unfold it; by
retaining the way the surface has been cut and its directienget the set of equations.
Lets take a look at the example shown in figure 3.6 (a). It shwwespieces of a surface
that has been cut alorey b, ¢, d, e andf. By going clockwise around each pieces and
having ! for paths that go in the opposite direction, we get thesetamnsa

Rectangle piece: atbde = 1
Triangle piece: dlef = 1

We then need to reduce these equations to a single equatiwe tBed path in the rect-
angle piece and the path in the triangle piece are the same path, these pathstaila
be pasted together to produce the surface shown in figurdB.d e new surface is rep-
resented with this equation below:

atbefc = 1

Reduction of the combinatorial equation can then be apptiegeherate values for each
field of the 3-tuple. This algorithm is described in detai[Jam55].

The 3-tuple fields consist of the numberaiffs handlesandcrosscapsA cuffcan be
seen as in figure 3.7 (a) as being a cylindric form with 1 sidedjlwhere the empty side is
connected to a surface. This figure is only a representafiarcoff, which is basically an
unconnected edge,; it is not specific to cylindershaxdle as its name says, forms a kind
of surface with a hole in the middle where we can use it as albaslin Figure 3.7 (b).
Finally, acrosscaps a surface where each side of it crosses each other as ia 8gufc).
The equations below show an example of a cuff, a handle anasacap.

23

3.2. *J Shape Analyzer

Yo
Yo

avy v d d e avy dy

A
A

(a) (b)

Figure 3.6:(a) shows an example of surface paths and (b) shows the pieces bsteg pogether.

(@) (b) (c)

Figure 3.7:(a) shows an example of cuff in gray, (b) shows an example of handi&inand (c)
shows an example of crosscap.

Cuff: ded 'z7' = 1
Handle: aba b lz—1 = 1
Crosscap: ceyt =1

To see how a data structure can be mapped into a set of equétido be used in
the combinatorial topology algorithm, lets take a look atifegg3.8 (a). The figure show a
representation of a binary tree with an object pointing tortiot of the tree. In order for the
concept to work with data structures, we need to assumeltluitta structures are doubly-
connected. Thus if we have a reference pointer from the p&wehe child, there is also a
reference pointer from the child to the parent. By represgrgiach reference pointer as a
path with downward arrows being forward paths and upward dreéng backward paths,
we get the surface pieces shown in figure 3.8 (b) and the seuaitiens shown below:

24

3.2. *J Shape Analyzer

BinaryTree

K a

BinaryNode

BinaryNode

null null null null d g

) (b)

Figure 3.8:(a) shows an example of a binary tree and (b) shows the surface mapping

Root pointer: a = 1
Root object: ateb 1
Left child: b~ lde 1
Right child: clfg = 1

The pieces can be pasted together where paths are the sanoppbsite direction. By
doing so, we get this equation:

fgde = 1

The analysis result states that the resulting surface isfacguwith one cuff.

Apart from the 3-tuple result, the algorithm also outputesyunteresting value called
the Betti number B This number indicates the maximum number of cuts that webean
made on a surface without dividing it into separate pieceatal3tructure partitioning is
important to parallelization, and so computing the Betti benfor a data structure may be
useful for parallelizing optimizations.

The combinatorial topology analysis tends to produce assoeategorization, where
many different data structures have the same number of, dudfsdles and crosscaps as
well as the same Betti number. The algorithm also has the vhsdage of only working
on doubly-connected data structures. This greatly linmésfcal applications of a combi-
natorial topology approach. Our design here is sufficieqrtvide a proof of concept of

25

3.2. *J Shape Analyzer

a non-traditional, non-trivial analysis. Further effort ionproving this technique is left for
future work.

3.2.5 Restrictions

A few significant restrictions to our approach are impliedhyuse of the JVMPI interface.
We note that the amount of data that can be acquired throughdtis limited.

e Early events that occur in the virtual machine during starate not available since
they occur before the JVMPI is initialized. Therefore we matnreliably analyze
those events.

e The JVMPI interface only detects events from code writtedama, and thus data
from native method executions is not reliably deliveredisdan make it difficult to
analyze a program precisely—although object allocationsfeeld changes are re-
ported, even from native methods, primitive numerical galare not. Array indexes,
therefore, if they come from native methods, are not alwanswa. Fortunately this
problem is rarely encountered and does not occur in our lmeadhsuites.

In our investigations we have restricted our analyses tbegijpn code and not include
the start up part (JVM start up) in order to ensure we have gptaimevent trace with
minimal information loss due to native method calculations

26

Chapter 4
Visualization

Visualization is useful in many fields as described in sec8®. In our case, we use
visualization to look at the evolution of data structureslava programs. We have two
main ways to represent the data gathered. Section 4.1 besdhe first way, a literal
representation as a series of snapshots, and also dedwiliése animation of data struc-
ture changes is made. Section 4.2 describes the second Wey) vonsists of giving a
numerical summary of the data gathered.

4.1 Literal Representation & Animation

The most obvious and direct representation of data streieuwlution is as series of literal
snapshots of the encoded data structures, as in figures @.figane 3.5. A snhapshot is
generated at every update performed on the data structBsesooking at the series of
snapshots, we can see how it changed over the program execiMoreover, we can see
data structure properties such as the age of each node atigdate and the accumulated
dead objects as described in section 3.2.3.

This kind of representation is suitable for small tests peixations of specific compo-
nents, and for pedagogical pursuits, but unfortunatelpideasible as a general approach
in most benchmarks. The large data sets that must be matggutathe context of the
analyzer impose strong constraints on the style of presentand also on the kind of data
that can be gathered.

27

4.1. Literal Representation & Animation

() (b)

Figure 4.1: SplayTree snapshots. An existing pair of nodes (tree node and dsslod&a) is

inserted just below the root of the tree.

Tiny, test programs modify data structures only a relagivsghall number of times.
More realistic programs, however, can perform a very langalmer of updates; the Jess
benchmark from SPECjvm98, for instance, performs more ti@amilion heap modifica-
tions. Examining all these snapshots is unrealistic for &sn For those programs, instead
of generating snapshots for each modification we therefolegenerate a snapshot every
nth change, for different depending on the scale of investigation required. This tsm a
help in reducing the computational cost of the analysis.

Snapshot animation itself is surprisingly difficult, eveithwexternal tools. In order
to have a nice animation of the snapshots, we need to be ablertamentally add/sub-
tract nodes and edges to an existing drawing while ensusisgigg nodes and edges do
not move. This preserves the location of nodes between kaegsnaking node identity
trivially obvious as frames change. Current open source antheercial tools for graph
layout, however, focus on optimal, static representatiand do not in general attempt to
locate nodes in the same place between drawings. Thissesw@himation frames where
graphs in successive frames may bear little visual relabogach other, and thus are not
useful as a visual replay of data structure behaviour. Amgia is shown in figure 4.1.

Section 4.1.1 describes tools that were investigated o thia animations and issues
encountered for each of them. Section 4.1.2 propose a wagtdve the animation issue.

28

4.1. Literal Representation & Animation

Object 1 Object 1 Object 2 Object 1 Object 2

(@) (b) (c)

Figure 4.2:Example of what we want of an incremental drawing using Tom Sawyer.

4.1.1 Tools & Issues

In this section, we will show the drawing tools for graph laythat we tried, which range
from commercial tools to open source. We will also describe these tools do not give
the results we are looking for. The tools we have investijateludeTom Sawyeftom],
yFilesfrom yWorks[yFi], and NeatoandDot from Graphviz[GNOO].

Tom Sawyer Software

Tom Sawyer is a commercial software for graph visualizatiagout, and analysis sys-
tems. Itis a tool developed in Java that enables developoignaph analysis applications
quickly and efficiently. The main point that got us interelstethis tool is their claim to be
able to do incremental drawing.

We used this tool on a very simple example to see if indeediyrdraws incrementally
the way we want. Figure 4.2 shows how we want the graph to bemgrbut figure 4.3
shows what we get out of the software. The tool still tries eéver an optimal drawing,
which moves objects around. Thus, this tool definitely dassleliver the expected result
for our purpose.

Tom Sawyer’s incremental drawing works beautifully if, fexample, you have two
large disconnected graphs, and you want to connect thosgrapbis together. It will draw
the resulting graph such that you will be able to still reaagrthose two previous graphs,
although nodes will still move around. However it is not méaiethe kind of incremental
drawing we want, where we want nodes to remain at their Irdtiawvn location for as long
as possible, ideally throughout the whole graph animation.

29

4.1. Literal Representation & Animation

Object 1

i

Object 1 Object 1 Object 2 Object 2

(@) (b) (€)

Figure 4.3:Actual result using the Tom Sawyer Software.

yFiles from yWorks

yFiles from yWorks is another commercial software. It camgaan extensive Java class
library that provides algorithms and components to helpebetnalyze, view and draw
graphs. Furthermore it also claims to do incremental drgwin

We use this tool on the same example as with the Tom Sawyevasaft Unfortunately,
the result was not much different from figure 4.3. The toolti 8ying to deliver an
optimal drawing moving objects around despite the fact thatincremental option was
enabled. Overall, this tool is somewhat similar to the Torwga software. Note that
although these tools do not serve our purposes, it does nan they are bad for other
purposes.

Neato from Graphviz

The Graphviz package is a freely available package of greghidg programs. A feature
of Neatq one of the provided graph drawing programs, is to allow sddebe “pinned”.
By pinning we mean that objects are glued to the canvas andthemoved once they
are drawn.

Figure 4.4 (a) shows a simple example of a binary tree witloaand 2 children. Once
we enable the pin down option available in Neato, we get thaltrshown in figure 4.4 (b).
Note that figure 4.4 (b) is reduced considerably, 2% of theadize. For such a simple
example to have such a large graph is not ideal. Thus Neat® rtesolve our problem
either, although it may in the future once these bugs are.fixed

30

4.1. Literal Representation & Animation

) (b)

Figure 4.4: Example using Neato: (a) without the pin down option, and (b) with the pin down
option.

4.1.2 Resolution

It is clear that existing graph drawing tools are not desigfe the kind of incremental
animation frames we need to draw. However, it is possibledepathem to our goals.
The basic idea is to build the graphs backward, from finishtdaa;sand below we give a
complete and simple algorithm. We still require a separedgnam for drawing the graphs.
For that, we could use any static graph drawing. We chose édos$ from Graphviz
[GNOO] because it uses a simple grammar, draws nice graphi$ igropen source.

The algorithm works as follows. With the file containing themplete series of snap-
shot of the program execution writtendot format, we do a first pass on that file to deter-
mine every node/object and every edge that is present inrdgggm. Once we determine
that, we do a second pass on ttafile to determine which node/object and edge are truly
part of that snapshot. We then generate a dewfile which contains all the nodes and
edges that we stored, but everything that was not part of fiiggnal snapshot have their
node colour, font colour and edge colour set to the backgraahour in order to make
them invisible. In fact, all the snapshots are the same, batt @iffers is which nodes are
visible and which are not. Figure 4.7 shows snapshots widokains visible and invisible

31

4.1. Literal Representation & Animation

PROCESS$NFO(input File, output F'ile)

input: inputFile written in dot format containing graphs.
outputFile to write back the modified graphs ready for animation.

> first pass, store information
create HashMaplINodes andallEdges
while not end ofinputFile do
for each line in inputFile do
if line describes a nodden storeline in allNodes with the object id as key
else ifline describes an edghen
storeline in allEdges with the both objects id connected by the edge as key
end if
end for
end while
writeInfo(inputFile, outputFile, allNodes)

Figure 4.5:Algorithm for backward visualization, first pass (process and stocermdtion).

32

4.1. Literal Representation & Animation

WRITEINFO(input File, output File, all N odes)

input: inputFile written in dot format containing graphs.
outputFile to write back the modified graphs ready for animation.
allNodes hash map containing all nodes.

> second pass, write back to file
create HashMapisibleNodes
while not end ofinputFile do
for each line in inputFile do
if line indicates the beginning of a gragien
for each object stored inu/INodes do write node information t@utputFile
end for
else ifline describes a nodden store the node information insible Nodes
else ifline describes an edgben write the edge information toutputFile
and store the edge and nodes informationiiible Nodes
else ifline indicates the end of a graphen
for each node not invisible Nodes do
write the node information toutputFile to be drawn as an invisible node
end for
for each edge not invisibleNodes do
write the edge information toutputFile to be drawn as an invisible edge
end for
end if
end for
end while

Figure 4.6:Algorithm for backward visualization, second pass (write back to file).

33

4.1. Literal Representation & Animation

7808
String[]

7808 SplayTree
String[]

7824
SplayTree

7424

7424 BinaryNode

BinaryNode

8600
BinaryNode

8560
BinaryNode

8584
Integer

8560
BinaryNode

}
=
Integer Integer
(@) (b)

Figure 4.7:SplayTree snapshots showing invisible nodes in light grey.

7808
String[]

7824
SplayTree

7808
String[]

7824
SplayTree

7808
String[]

7824
SplayTree

7424 8640 7424
BinaryNode BinaryNode BinaryNode

8600
BinaryNode

8584
Integer

8640
BinaryNode

8600
BinaryNode

8584
Integer

7424 8640
BinaryNode BinaryNode

8600
BinaryNode

8584
Integer

8624
Integer

8624
Integer

8624
Integer

8560
BinaryNode

8560
BinaryNode

8560
BinaryNode

8544 8544 8544
Integer Integer Integer

(@) (b) (©)

Figure 4.8:SplayTree snapshots with incremental drawing.

nodes and edges. Here in order to see what the invisible revdeghey are displayed in
very light grey.

If we use this approach on the example in figure 4.1, we getnitremental drawing of
the snapshots shown in figure 4.8. This represents a sigrtificsual improvement in the
relation between frames from our individual approach.

There is a small issue with this solution. Nodes represgrttia same data location are
intended to be identical in each snapshot. Since we encade samporary information
such as the tree/DAG/cycle analysis result in node shapedpwn fact end up changing the
graph during its execution. That is because a rectangutie does not take as much space

34

4.2. Numerical Summary

as an elliptic node or as an hexagonal node. Therefore, #phgnight move slightly up
or down if tree/DAG/cycle is actually represented. In pi@ethis problem is only mildly
distracting, and it is obvious that figure 4.8 gives a muchebeesult than we were able to
achieve with tools we investigated in Section 4.1.1.

4.2 Numerical Summary

Although an acceptable snapshot representation and iectaiayout is important. Many
programs also produce very large data structures, whetheotahey are modified fre-
guently. Even a simple program such as BiSort from the JOléechmark suite generates
more than 120,000 objects—far too many for a drawing tooktadte, or to meaningfully
show on a screen or in an animation. Interactive visuabipatchniques can improve this
situation, but it is clear that animations, and even remtadie snapshots are simply not
feasible in all situations. For the benchmarks we analyflearsubsequent section we have
thus concentrated on alternative representations that dndy reduced, aggregate infor-
mation on data structure properties, and not the data stesgcthemselves. We do so by
giving a numerical summary of analysis information in thenfmf graphs.

From the analyses performed by the *J Shape Analyzer, weezamumber of graphs
for each benchmark to better understand it and describeatsepties. Those graphs are
described below.

Tree/DAG/cycle

The first graph we can get is the number of entry points whereghchable nodes represent
atree, a DAG or a cyclic graph. This kind of graph is very ukefunderstand the evolution
of data structures. For example, if we have a graph such ag#g8, we can see that nodes
that form trees are perhaps being converted to DAGs.

GC info

The second kind of graph shows the number of live objectsugetise number of dead
objects not yet collected by GC. With this kind of graph, we saa that a program only

35

4.2. Numerical Summary

10 T T T T T T T T
Tree
DAG X
2] 8 r X 7]
£ o
<] %
a
z er e -
o
9] X
; 4 X .
o .
1S =l
=
c 2 | > 4
X
O 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Figure 4.9:Example of a graph showing the number of entry point type. This graplsstiwat
trees are converted to DAGs over time.

creates objects at the beginning and never deletes anythiegget a graph such as figure
4.10. However, if we have a graph where both the live objeetéind the GC line fluctuate
a lot over the program execution period, we can concludeGikaivas very busy during the
execution of the program, and that objects were constargigted and thrown away. This
kind of graph is very useful to understand the behaviour efGIC.

Connectivity

The third kind of graph shows the number of connected datatstres. This kind of graph
is useful in determining the maximum number of connecte@ datuctures and how it
changes over time, and to see if there is any correlationdstihe number of entry points
and the number of connected data structures.

Purity of entry points

The fourth kind of graph shows the number of pure versus thmebeu of impure entry
points. An entry point is considered to be pure if it followag pathiree = DAG —> cycle
without ever going backward, and it is considered impurewtise as described in section
3.2.4. This kind of graph is useful in determining whethetatis analysis will be useful
or not, given optimal alias information.

36

4.2. Numerical Summary

Live Okl)ject —t
35 GC Object -

number of objects

time

Figure 4.10:Example of a GC graph showing the number of live and dead objects overTireee
are no dead, GC-able objects in this graph. Objects are created at theibg@nd they are used
throughout the whole program without adding more or deleting any.

Purity of types

The fifth and final kind of graph shows the number of distindadapes, where objects
with the same static signature constitute a data type. Tdyghgalso shows whether the data
types are pure or impure according to the definition of pugityeen in section 3.2.4. This
graph is useful in determining the number of different dgses present in the program.
Similar to the fourth kind of graph, it is also useful in detening whether static analysis
will be useful in analyzing the program, given poor alia®mifation.

Timelines

In addition to the different kind of graphs described abaeach of those graphs comes
in two kinds of timeline. We can represent time by the numbearpmlates done on data
structures, or by the bytecode execution count. Each otthsphs may convey different
information about the behaviour of the program. Take fomeple figure 4.11, the top
graph shows a graph by the number of updates and bottom owes shgraph by bytecode
count. By looking at the straight horizontal line in the migldf each of the graphs, the top
one shows that there were many updates done on the dataistsictWe would naturally
think that it took a lot of time to execute. However by lookiigthe bottom graph, it shows
that in fact it took a really short time to execute. Using biaitms of time axis, we can get

37

4.2. Numerical Summary

20 T T T T T T T /
object —+— /

n 15 / g
B /
O,
Qo
o
S 10+ . | | / R
@
Q
S /
>
c 5L / .

0 / 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
per update
20 T T T T T T T
/
/

o 15 T object —+— A
2
2
Qo
o
S 10+ A g
] |
2 |
S \
2 |

5 - .

0 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800

bytecode count

Figure 4.11:The top graph shows a graph by the number of updates, and the bottsh@mme a
graph over bytecode executed.

a different perspectives on the program execution and fta\beur.

38

Chapter 5
Experiments

We have analyzed a number of benchmarks from the SPECjvm¥gRnd JOIlden
[CMO1b] benchmark suites. Below we describe the programsyaed) and present a
visualization example in terms of snapshots and analysisples based on the various
data gathered using our framework. These discussions degrateboth the kind of data
we can collect, and also how it relates to relevant prograatufes and behaviour.

The next section describes the benchmarks we analyzedybe@ive an example of
an animation done on a splay tree. In section 5.3 we give semdts from our test at the
combinatorial topology analysis. Finally in section 5.4 arelyze benchmarks from the
SPECjvm98 [SPE98] and JOlden [CMO01b] suites, then give ouratiboughts.

5.1 Benchmarks

We have analyzed benchmarks from three basic categoriesfirBhkind consist of tiny
programs designed to test the framework, and which are altabte for snapshot visual-
izations. We used two well-known algorithms, a splay treplementation and a red-black
tree implementation. Both programs construct a small trecthen delete some nodes;
below we only present the SplayTree benchmark program.

More realistic, but still manageable small results areiolethby analyzing benchmarks
from the JOIden suite. These are small but non-trivial paotg that focus on use of dy-
namic data structures. Benchmarks analyzed include BarngsBiSort, Em3d, Power,

39

5.2. Snapshot Example

and TSP (Travelling Salesman Problem).

Our final category is of moderately large programs, takemftioe SPECjvm98 suite,
which have a more complex heap usage. The benchmarks addigre are Jess, Mpe-
gAudio, Compress, Javac, and DB. Jess is the only benchmamkifre SPECjvm98 suite
to run at full size (size 100). Compress and MpegAudio runz %D, and the remaining
benchmarks run at size 1. All benchmarks are run in Sun’® IMM, server mode (128M
heap).

5.2 Snapshot Example

If a program is relatively small, and in general does not awninore than approximately
1,000 objects, a meaningful visualization of data strietwpdates can be produced where
a snapshot is generated for each update. We ussotiteol in GraphViz[GNOO] to layout
the graphs, encoding node properties as discussed inrse8tid.3 and 3.2.4.

In figure 5.1 and figure 5.2 we show incremental snapshotsrgetefor the complete
series of data structure updates performed in the Splaydnegam. From a) to p) the
splay tree is constructed by adding three tree nodes, amdx)shows the deletion of two
tree nodes where those nodes are shown as garbage objecttenhlthes. As seen, these
kinds of incremental snapshot of the data structure ewwlutiver the program execution
may be quite useful for understanding data structure opesaand behaviour.

5.3 Combinatorial Topology Results

We already described the combinatorial topology analysiseiction 3.2.4. Since this is
only a test in using combinatorial topology on data strueguwe will run the analysis on
small examples. In this section we give and discuss restlke@nalysis done on a binary
tree and on a grid.

Let us first look at the binary tree example shown in figure 8)3 To use the com-
binatorial topology analysis, we have to assume that alesdgve an edge that goes the
other direction, which makes the graph fully doubly-link&the equations we get from the

40

5.3. Combinatorial Topology Results

(@)

7824
SplayTree

7424
BinaryNode

BinaryNode

8544
Integer
7824 7808
SplayTree Stringl

7424
BinaryNode

8600
BinaryNode

8584
Integer

8560
BinaryNode

(@)

7824 7808
SplayTree String[l

7424
BinaryNode

8600
BinaryNode

8624
Integer

8544
Integer

7424
BinaryNode

(b)

7824
SplayTree

7808
String[]

7424
BinaryNode

8560
BinaryNode

8544
Integer
7824 7808
SplayTree Stringll

7424
BinaryNode

8600
BinaryNode

8560
BinaryNode
8544
Integer

8584
Integer

(h)

7824 7808
SplayTree String[l

7424
BinaryNode

8624
Inte

8600
BinaryNode

8584 8560
Integer BinaryNode
8544
Integer

(k)

7824
SplayTree

7424
BinaryNode

8544
Integer
7824 7808
SplayTree String[l

7424
BinaryNode

8584 8560
Integer BinaryNode
8544
Integer
7824 7808
SplayTree Stringll
7424

BinaryNode

8600
BinaryNode

8584
Integer

8560
BinaryNode

()

7824 7808
SplayTree Stringl

8640
BinaryNode

7424
BinaryNode

8624
Integer

8600
BinaryNode

8560
BinaryNode
8544
Integer

Figure 5.1:SplayTree snapshots (part 1).

41

5.3. Combinatorial Topology Results

7824 7808
SplayTree String[l

8640
BinaryNode

7424
BinaryNode

BinaryNode _-

8624 8600
Integer BinaryNode
8584 8560
Integer BinaryNode
8544
Integer
7824 7808
SplayTree Stringl]

BinaryNode

8640
BinaryNode

7424 ‘

8624 8600
Integer BinaryNode
8584 8560
Integer BinaryNode
8544
Integer
7824 7808
SplayTree Stringll
8640 7424

BinaryNode BinaryNode

v
8624 8600
Integer . BinaryNode
8584 8560
Integer BinaryNode
7824 7808
SplayTree String[]
8640 7424

BinaryNode

v
8624 8600
BinaryNode

Integer

8560
BinaryNode

Integer

‘ SplayTree

7824

7808
String[l

8640
BinaryNode

BinaryNode‘

8624
Integer

8640 :
BinaryNode .-

R4

8624
Integer |

8584
Integer

8560
BinaryNode

8544
Integer

(n)

7824

SplayTree

7808
String[l

8600
BinaryNode

8584
Integer

7424
BinaryNode

8544
Integer

(@)

7824

SplayTree

7808
Stringll

8640
BinaryNode

v

8624
Integer

8584
Integer

8600

(t)

BinaryNode

7424
BinaryNode

8560
BinaryNode

8544
Integer

7824

SplayTree

7808
String[]

8640
BinaryNode
v

8624
Integer

584
Integer

8600

(w)

BinaryNode

8560
BinaryNode

7424
BinaryNode

v

8544
Integer

8560
BinaryNode

7824 7808
SplayTree String[ll
7424

8640
BinaryNode

BinaryNode

8600
BinaryNode

8584
Integer

8560
BinaryNode

8544
Integer

7824
SplayTree

7808
String[l

8640 . 7424
BinaryNode .- BinaryNode

A4
8624 8600
Integer . BinaryNode
8584 8560
Integer BinaryNode
8544
Integer
7824 7808
SplayTree Stringll
8640 7424

BinaryNode .- BinaryNode

v
8624 8600
Integer BinaryNode
8584 8560
Integer BinaryNode
8544
Integer
7824 7808
SplayTree String[l
8640 7424

BinaryNode BinaryNode
v

8624
Integer -

8600
BinaryNode

8560 =
Integer BinaryNode .

v

8544
| Integer

(x)

Figure 5.2:SplayTree snapshots (part 2).

42

5.3. Combinatorial Topology Results

2640
SimpleBinaryTree

A 4

8008
TreeODbject

8664
TreeODbject

8288
TreeODbject

v

v
1128 9232
TreeObject TreeODbject

(@)

o464 9800
TreeObject TreeODbject

o c b h
n ¢ i
g d
f e
f

&
< <

(b)

Figure 5.3: (a) Shows a snapshot of a binary tree, and (b) shows the cordisgosurface in
combinatorial topology.

43

5.3. Combinatorial Topology Results

corresponding surfaces shown in figure 5.3 (b) are:

albe = 1 e ik = 1
b~lde = 1 a 1
ctfg 1 f~lm 1
dhi = 1 g lno = 1

Inputing these equations in the combinatorial topologylya®a produces the following
output:

Equation: -abc -bde -cfg -dhi -ejk a -flm -gno

Joining -abc and -bde to get c-ade
Joining c-ade and -cfg to get -adefg
Joining -adefg and -dhi to get efg-ahi
Joining efg-ahi and -ejk to get fg-ahijk
Joining fg-ahijk and a to get hijkfg
Joining hijkfg and -fim to get ghijkim
Joining ghijkim and -gno to get hijklmno
Input surface: hijklmno

Result: hijkimno
Result: hijkimno
Extra cuff.
Result:

handles=0, crosscaps=0, cuffs=1
B=0

Listing 5.1: Output generated from the combinatorial toggl analyzer given the above
equations
From the output above, once the original equations are esjuge have this resulting
equation:

Resulting Equation: hijklmno = 1

44

5.3. Combinatorial Topology Results

We also get these parameter results:

handles = 0, crosscaps =0, cuffs=1
B=0

The result shows that this snapshot of a binary tree is acdth one cuff, which
cannot be cut without dividing it into separate pieces. Nbtg although we only show
a simple snapshot of a binary tree, the result we get fronhalshapshots is the same as
here. Results from analysis of a simple splay tree also giveiéas result as shown here.

These results tell us, analytically, that a doubly conrédtee structure maintains
reachability between all nodes. For identifying actualpghahis technique is less use-
ful. Consider the grid example shown in figure 5.4 (a). As inlilmary tree example, we
have to assume that all edges have an edge that goes the iotioéiod to make the graph
fully doubly-connected. The corresponding surface shawfigure 5.4 (b) gives this set of

equations:
a = 1 h=te lik = 1
albe = 1 j g7 iUm = 1
b~ tde 1 i~'no 1
d~'fg 1 n~tk~1pq 1
cthi = 1 pimTlrs = 1

Once these equations are reduced, we have this resultiadgeofu
Resulting Equation: qoflrs = 1
We also get these parameter results:

handles = 0, crosscaps =0, cuffs =1
B=0

Both structures thus reduce to a surface with one cuff. Thigesesting with respect to
determining reachability or partitionability of data sttures for parallelization, but forms
too coarse a categorization of shape for more general datztste analyses. Thus while
this technique helps demonstrate the ability of our frant&vamd approach to accumulate
new analyses, further investigation and application «f #malysis are left for future work.

45

5.3. Combinatorial Topology Results

7808
GridNode

7810 7814
GrldNode GrldNode
7812 7816 7820
GrldNode GridNode GridNode
7818 7822
GrldNode GrldNode

7824
GridNode

o

(b)
Figure 5.4:(a) Shows a snapshot of a grid, and (b) shows the correspondiiagein combinato-
rial topology. 46

5.4. Analysis & Numerical Summary Results

5.4 Analysis & Numerical Summary Results

Non-trivial benchmarks are not amenable to literal datacstire representations, and so
we present aggregated data from analyses run in the shalyeerat each data structure
modification. We use data from three main analyses: a tre®/Dykle shape classification,
reachability analysis, and purity.

Shape classification data is based on the number of entryspgbit reach single-node,
tree, DAG, and cycle type data structures, plotted over.tifoe portability of results, time
is measured abstractly, as either bytecodes executed temis of number of data struc-
ture modifications. To compress the visual representatiatg shown is also sometimes
a sampled subset; sample periods vary up to every 100k \paatd are indicated in the
individual descriptions.

Reachability is given both in terms of the number of live verdead objects, and in
terms of number of connected structures. The former malkasit to see general trends in
volume of data and garbage, and for a limited visual inspaaf GC drag. The latter gives
a better impression of the number of connected data stes{of size a least 2) actually
used in the program.

Purity data is used in two forms, entry point purity and tyg@sed purity, as described
in section 3.2.4.

Furthermore, using the analyses mentioned above, we cawetsct program phases.
This feature would be quite useful for dynamically adapeaylstems as they need to accu-
rately detect changes within procedures.

The goal of this experiment is to see how much information ae gather about the
programs’ behaviour on data structures using all the aaalgready mentioned. An ob-
servation for each benchmarks investigated is describ#etifollowing sections where we
work in parallel with the source code to confirm our obseoradi

Only benchmarks which extensively make use of the heap waosen from each
benchmark suites. However, a few of them, especially froemSpecJVM98 suite, were
left out as they took too much time to be analyzed. We have te timt Jess from the
SpecJVM98 suite, which is one of the more complex benchntadk more than two
weeks to be analyzed.

47

5.4. Analysis & Numerical Summary Results

5.4.1 JOlden Suite

This section shows analysis results for BiSort, Barnes-Hm3d, Power, and TSP along
with some analysis of the graphs. The complete set of graphsaich benchmark can be
found following the link provided in appendix A.

BiSort

BiSort performs two bitonic sorts, one forward and one backwh works in two phases.
The first phase is the tree construction, and the second phteesorting. Our analysis is
done on BiSort sorting 128k integers.

In figure 5.5 we can easily see the first phase, where the trbeing constructed.
A number of single nodes are allocated, and then consumeastraction of the base
tree. At about 1/3 of the way through execution the progratarsrits second phase; here
many changes are performed on the tree, and the number afttovetures becomes quite
variable. As the tree is modified the data types fluctuate &etmMDAG types and tree types
in a complementary fashion: nodes are being rearrangedi@rcbpied or deleted. Note
that there are not in fact as many disjoint structures asuheer of trees and DAGs would
indicate; call chains and recursive calls in particulap\alfor the stack to contain multiple
entry points to the same structure, magnifying the apparantber of structures. This
is more evident in figure 5.6 — in the second phase there isevdy 1 or 2 connected
structures.

Figure 5.7 gives an indication of how well a static analysisld do in identifying the
data structure shape, assuming perfect alias informati@st references are pure, but the
second phase of execution contains several impure vasidoke to the tree modifications.
Statically these references would have to be consideredsDA®ss optimal alias infor-
mation may spread this conservative approximation. Furibee it is not surprising to see
that figure 5.8 shows some impurity in the fields since we hanmire entry points.

Figure 5.9 reinforces the observed phase behaviour of tteestlaictures: objects are
allocated (tree construction), followed by a long periodedtive stability. Interestingly,
there are no dead objects, an observation compatible wrtblaum that the data structure
is modified by moving nodes, not adding or deleting.

48

5.4. Analysis & Numerical Summary Results

20 T T T T T
Tree
Single node ——
%]
€ 15 E
o
o
z I
5 10— A .
5 .‘T ‘y\ [—
g | S
2 s \ 1
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08
bytecode count
14 T T t
DAG ---+---

12 —
i)
£ w0} 7
o
Pl
g 8r iy
(6]
S 6 i
@
Qo
S 4+ E
=}
c

2 - -

0 h— e e

0 5e+07 1le+08 .5e+08 2e+08 .5e+08 3e+08

bytecode count

Figure 5.5:BiSort analysis results by bytecode for every 10k updates. The togfidnows single
nodes and trees over bytecodes executed, and the bottom figure BAGss There are no cycles
in BiSort.

X T T
i\ data structure —+—

I TR R 8
WAN I IARANAVI
- 4 S A e E
1 1 1

1
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08
bytecode count

number of data structures
o B N W A OO N 0 ©
L e e
1

Figure 5.6:BiSort analysis over bytecode executed showing the number of codndsta struc-
tures for every 10k updates.

49

5.4. Analysis & Numerical Summary Results

20 T T T T T
T pure entry points —+—
18 - i impure entry points 7
o 161 AREY i A T
5 1t Rl Y l er T W .
f T i O O v
‘E 12 I il W—*ﬁ e ‘ i
L / | | i
3 N |
E op .y -
I8 . | 1
2 | ! U
-

L 1 1 1 1 |
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

o N M O ©

Figure 5.7:BiSort analysis over bytecode executed showing the number of puimpare entry
points for every 10k updates.

2 T T “1‘ T T T
/
I
S 15 [R
2 I
@ [
e /
> [
[~ -
5 1r m‘ ‘\”\
] | |1
o |11
E .
2 o5} | 1 pure type —+— R
| ‘H‘ \‘ impure type
[
0 I | | | T I
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 5.8:BiSort analysis over bytecode executed showing the purity of fields mierger all
objects of the same class type for every 10k updates.

50

5.4. Analysis & Numerical Summary Results

70000 T T T T T

60000 / i
Live Object —+—
w5 50000 GC Object i
(3]
<
S 40000 | 7 -
=} /
3 30000 | // .
g 20000 // B
/
10000 | / -
/
0 i L I ! I L
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 5.9:BiSort GC results by bytecode for every 10k updates, showing the numhbee and
dead objects over bytecodes executed. There are no dead objectsrin Bis

Barnes-Hut

Barnes-Hut solves the classic N-body gravitational ativagbroblem. Barnes-Hut works
in two phases; first is the tree construction, where a quaalitrconstructed, and second is
the force computation, where the tree is traversed. Ouysaisadf Barnes-Hut is done with
2000 bodies.

From the graph in figure 5.10 it is evident that this programuge dynamic in be-
haviour, and aggressive and frequent GC is used to limitrtieat of accumulated garbage.
As with BiSort there are no cyclic data structures at all. Thisnsurprising for tree-based
programs, but is also informative: it suggests, for instatitat the quadtree does not make
use of parent pointers in child nodes.

The phases are not obvious in the shape information, butl@aey}cshown in the GC
results graph of figure 5.11. The large spikes in number ofl ddgects indicate a rapid
accumulation of garbage data, and the short-lived natutieec$pikes suggests this is tem-
porary data, quickly collected. The frequent variation umber of tree and DAG entry
points is in this case mainly due to the use of allocatedynmeeliate data. Purity data
shown in figure 5.12 and in figure 5.13 show all references are, further supporting the
conclusion that the shapes of existing data structuresargemerally altered.

51

5.4. Analysis & Numerical Summary Results

25 T T I T T T T T T
‘ 4 Tree
| T i
o 20 1 { ! ‘ 4
£ ‘ T
2 :
% |
2 15 1 B
=] | i i ‘
5} T T
— + +H+++H+ T B T s (N A e
o T i e Hhu‘w:t—i A) e e
= 10 [t -tk st H + + A HHE g e et S e e i ey
[} HH - A L HLRA b b) e] AR
Q FHE 1 i HHr e e R b e
€ it ! v R U A B R
=] I T R HoA H- #H sl s S e
< 5 [+ fHE R R R e e A
++! + 1 + 3 I T S
+ 4+ + + H + + o+ 1
1 1 4’» + +
0 +I 1 1 T 1 1 1 1 1 |
0 1le+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08
bytecode count
a
£
<}
%
2
<
5}
kS
E WTT i 1 \]T T e \ H “m
2 H\ H\Ju 0T A A Al it b \W
. DAG ---+---
o 1 1 1 1 1 Slnglle nOde 1 1

0 le+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08
bytecode count

Figure 5.10:Barnes-Hut analysis results by bytecode for every 1k updates. CwogHegure is
shown the number of single node and tree entry points over “time” (byts@mdazuted), and on the
bottom the number of DAGs. Again, there are no cyclic structures.

30000 T T T T T T T T
Live Object —+—
25000 | GCOblect ‘ | w i
| i | [N N
5 I s vl [1
& 20000 \ ¢ 0 o Lo || N
g | e b R Lot L
B oas000 | L, ot oo
5 : A o X | |
g T BT
S 10000 r; e TR I I 1 I 3 i ; ! 4
= N I L R R L R
5000 | | ANy RN S IR, 4
O /I 1 1 1 1 1 1 1

0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08
bytecode count

Figure 5.11:Barnes-Hut GC results by bytecode for every 1k updates, showingutnéer of live
and dead objects over bytecodes executed.

52

5.4. Analysis & Numerical Summary Results

30 T T

. pu;e entry ;)O!nts -
25 impure entry[points <~ |
o ™
g 15 Tﬂ b Al ‘ TT‘M H q " h;r
g iy “‘ Fr i A I W“ L ik i
Soep | 1 ‘
0

0 1le+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08
bytecode count

Figure 5.12:Barnes-Hut analysis over bytecode executed showing the numbereofguimpure
entry points for every 1k updates. There are no impure entry points meBafut.

2 IH‘ Tt HIH T l‘ l“ ‘ll

o el | |

Q

S IO 111

5 - B

. NN

2 os| ‘ . pure type| —+— b

I |

Sl L W

0 1le+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08
bytecode count

Figure 5.13Barnes-Hut analysis over bytecode executed showing the purity of fiedtiged over
all objects of the same class type for every 1k updates. There are nceitypes in Barnes-Hut.

53

5.4. Analysis & Numerical Summary Results

Em3d

Em3d simulates the propagation of electro-magnetic wawesigth 3D object using nodes
in an irregular bipartite graph to represent electric andgmetic field values. For our anal-
ysis, Em3d simulated 2000 nodes of out-degree 100.

In figure 5.14, we can see that during the total execution efpitogram there are at
most 5 trees and 1 DAG at any point. Data structures in Em3@aite few as shown in
figure 5.16, and the ratio of live nodes to entry points sutggedimited number of larger
data structures are used. In fact, there is mainly a tablaked lists.

Behaviour is relatively stable throughout this benchmatkeast until near the end of
the program. At that point the data structures are reducedctmuple of single nodes and
one tree. In this case we are able to see the effect of teaning the data structures, some-
thing much less evident in the previous benchmarks. Thearsion of data to garbage
at the end of the program is confirmed by figure 5.15, whereaggrbises as live objects
reduce in number.

The stable behaviour can also be seen in figure 5.17 and irefigli8, where the purity
data shown in terms of both entry points and type indicatedlheeferences are pure; again
the shapes of existing data structures are not generadisedlt

5 T T T T T

Tree
DAG X
[Single node —x— ’]‘

number of entry points
/

O 1 1 1 1 1 =
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 5.14:Em3d analysis result by bytecode for every 1k updates. Single noées, tnd
DAGs are shown in this figure. There are no cycles in Em3d.

54

5.4. Analysis & Numerical Summary Results

18000 : : : : :
16000 - Live Object —+— E
14000 - GC Object \ |
12000 |- \ .
10000 \ g
8000
6000 \ e
4000 + \]
2000 | -

0 ! I} 4 | 1
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

number of object

Figure 5.15:Em3d GC result for every 1k updates, showing the number of live andl dlgjacts
over bytecodes executed.

3 T T , T ™ T
\
| \
] 25 \\ N
9 .
2 | \
S D T ———r \ i
7 \
s \
8 15} data structure —— A
5 \
o] 1+ ¥
Q
g
c 05 B
O 1 1 1 1 1
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 5.16:Em3d analysis over bytecode executed showing the number of connettesitidi-
cures for every 1k updates.

55

5.4. Analysis & Numerical Summary Results

number of entry points
w

2+ \ i
pure entry points —+— \
1 | impure entry points P
0 & & & 4 1
0 5e+07 le+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 5.17:Em3d analysis over bytecode executed showing the number of pure vseiemptoy
points for every 1k updates. There are no impure entry points in Em3d.

1 T T T bt T
~ pure type —+——
os | impure type |
o
2
g o6} i
=
kS
g o4} e
£
>
c
0.2 B
0 tessssmml e : L
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 5.18:Em3d analysis over bytecode executed showing the purity of fields mevgedlib
objects of the same class type for every 1k updates. There are no impesdartypma3d.

56

5.4. Analysis & Numerical Summary Results

Power

Power solves the Power System Optimization Problem, winerptice of each customer’s
power consumption is set so that the economic efficiencyefhole community is max-
imized. It works in two phases. The first phase is the treetoociton, and the second
phase is the price computation. The analysis of Power is dori®k customers.

Figure 5.19 shows there are only trees and single nodesnpresais is consistent
with the algorithm as it only constructs trees. Once the ¢aestruction is completed, the
behaviour is fairly stable as seen in figure 5.21 and the bogiaph of figure 5.20, where
the number of live and dead objects, and the number of datetstes remain fairly stable.

Although the second phase seems to be fairly stable in teroigect and data structure
creation, we can see from figure 5.19 that it is not as the nuofentry points fluctuates
a lot. This means that although there is not much data steuetttivities, the program is
by no mean idle. It is infact using and accessing the crea& structures as seen by the
fluctuation in the number of entry points.

From the top graphs of figure 5.19 and figure 5.20, we can séththfree construction
phase occurs within a very short time frame. However, fromttp graphs, we can see
that it consists of roughly half of the total data structunarmges. This difference is more
showing in section 5.4.2 when we describe results from Cosspre

Figure 5.22 and figure 5.23 show that although all entry gaan¢ pure, we do not have
any purity result for the types. That is due to the fact thhthe entry points are objects
from main ; therefore they have no parents nodes. To better explanake for example
figure 5.24 (a), wher®bjectB is the entry point and it is the left child @bjectA . For
that exampleQbjectB ’s data type i€ObjectA.left . However in (b) wher®bjectA
is the entry point, since it does not have a parent node, weotlbave a type. We know
it is a variable from main, but it is pointless to keep trackladse since we cannot merge
objects having the same static signature as all variablegin are unique.

Travelling Salesman Problem

TSP computes an estimate of the best Hamiltonian circuitterTravelling Salesman
Problem. There are two clear phases evident in both figug&ssdnd figure 5.28; a short

57

5.4. Analysis & Numerical Summary Results

35

30

25

20

15

10

number of entry points

35

30

25

20

15

10

number of entry points

5

0

X

T T
Tree

Single node —=— |

X
1 1 1 1

X

0 2e+08 4e+08 6e+08 8e+08
bytecode count

le+09 1.2e+09 1.4e+09

I Tree
Single node ——

I ——
0 10 20 30 40 50 60 70 80 90
per update

100

Figure 5.19:Power analysis result for every 1k updates. The top graph is plotted egfiect to

the total bytecodes executed, and the bottom graph with respect to theutodadnof data structure

changes. Both graphs show the number of single nodes and trees. arbaro DAGs or cycles in

Power.

58

5.4. Analysis & Numerical Summary Results

25000

20000

15000

10000

number of object

5000 |

Live Object —+—
GC Object

‘ ; ‘ ‘ I‘ L — ‘

‘I““I‘“H"‘I ﬂ'&

0

25000

2e+08 4e+08 6e+08

bytecode count

8e+08 1le+09 1.2e+09 1.4e+09

20000

15000

10000

number of object

5000

P

Live Object —+——
GC Object

M
10 20 30

1
40

50

| 1 1 Y 1 VYN
60 70 80 90 100

per update

Figure 5.20:Power GC result for every 1k updates. At the top the time axis is in terms afduyes
executed, and at the bottom in terms of total data structure updates.

35

30
25+
20
15 F

10

number of data structures

T T
data structure —+—

— ~
1 1 1

i A +'

2e+08 4e+08 6e+08

8e+08 le+09 1.2e+09 1.4e+09

bytecode count

Figure 5.21:Power analysis over bytecode executed showing the number of codmizttestruc-

tures for every 1k updates.

59

5.4. Analysis & Numerical Summary Results

35 T

30

number of entry points

T T
pure entry points —+—
impure entry points

0 2e+08

4e+08

6e+08
bytecode count

8e+08 le+09 1.2e+09 1.4e+09

Figure 5.22:Power analysis over bytecode executed showing the number of purepuge entry

points for every 1k updates. There are no impure entry points in Power.

l T T T T T T
pure type —+—
impure type
S 05F —
2
)
[=8
=
B O e 1
@
Qo
E
c -05¢F —
-1 1 1 1 1 1 1
0 2e+08 4e+08 6e+08 8e+08 1le+09 1.2e+09 1.4e+09

bytecode count

Figure 5.23:Power analysis over bytecode executed showing the purity of fields thexge all

objects of the same class type for every 1k updates. There are neiteargrumpure type results

in Power.

ObjectA

(@)

ObjectB

ObjectA

ObjectB @

(b)

Figure 5.24:Tree example wittObjectA as the rootObjectB as the left child andbjectC

as the right child. In the left grapi@bjectB
point isObjectA .

is the entry point, and in the right graph the entry

60

5.4. Analysis & Numerical Summary Results

initial phase constructing the problem, and a longer ph&aealysis. The analysis of TSP
is done on 10k cities.

TSP is our first presented benchmark to actually includeicyldta structures. There
are also a very large number of tree data structures, ordenagnitude more than single
nodes, DAGS, or cycles. In fact the algorithm mainly buildses, and the few cycles can
be attributed to a double-linked threading of trees fornpagtial solutions to the input
problem.

References are uniformly pure as shown in figure 5.26 and fig@/é This suggests a
mainly static heap structure. However, since the numbentrf goints in different shape
categories does fluctuate, the data structures clearly dogeh In this program the use
of heap data at different stages in the computation is veglksated—entry points used in
processing and generating the tree structures are di§jomtthose used for DAGs and for
cyclic structures.

There is no garbage collection apparent in figure 5.28. Hewdlie number of live
objects decreases dramatically twice; there is necegsanhe garbage generated by these
reductions. In this benchmark the generation of dead nodédheir collection occurs
between snapshots, leaving no direct evidence of dead nmodessampled results. Larger,
more detailed graphs or actual numbers would reveal thierdifice. In terms of general
trends, though, it is clear that TSP, particularly in congar with Barnes-Hut, does not
produce or carry much garbage.

5.4.2 SPECjvm98 Suite

This section shows analysis results for Jess, Compress, Mg, DB, and Javac along
with some analysis of the graphs. The complete set of graphsaich benchmark can be
found following the link provided in appendix A.

Jess

Jess produces a lot of structures of all types, although aidlsem are single node objects,
as shown in figure 5.29. There are no cycles, and there is hmyfpattern of tree/DAG
construction. This behaviour roughly corresponds withetigerithm and input, which does

61

5.4. Analysis & Numerical Summary Results

20000 T T T T T
18000 |- Tree -
» 16000 .
S 14000 | .
o
2 12000 | .
& 10000 |- .
ks
g 8000 —
€ 6000 | .
=)
€ 4000 | -
2000 -
0 1 1 1 1 1
0 le+07 2e+07 3e+07 4e+07 5e+07 6e+07
bytecode count
25 T T T T T
X
X X X
o 20 X X06e-K X X X ook
€ XX X X X XX KX HHORK
=3 XK X *OX XX XX X X 3 X X
= XX O PSS XX X
X X X KXXK X, X X
> 15 X X X X 4
E X X
o X
- 10} DAG -+ ¢
a Cycle %
€ Single node —*—
c 5)ﬁ -
ox K i
M F—:
0 ARl A o 1t el AR A A
0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07

bytecode count

Figure 5.25:TSP analysis results by bytecode for every 1k updates. On the top ese dred on
the bottom single nodes, DAGs and cycles.

20000 : T T T —
1 pure entry points —+—

18000 |- | impure entry points
o 16000 T .
S 14000 | | -
e f
2 12000 [| .
s |
S 10000 - | ﬁ 1
o
g 8000 1 f -
€ 6000 [|| i
2 I

a000 |t] .

O | i “’ 1 L !)} |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

bytecode count

Figure 5.26:TSP analysis over bytecode executed showing the number of connetdetrdictures
for every 1k updates. There are no impure entry points in TSP.

62

5.4. Analysis & Numerical Summary Results

4 LA L R ‘
35 —
3r ‘ _ pure type ——— —
impure type
25 \

number of type.field

L ! !]
le+07 2e+07 3e+07 4e+07 5e+07 6e+07
bytecode count

Figure 5.27:TSP analysis over bytecode executed showing the purity of fields mexgedl
objects of the same class type for every 1k updates. There are no impesdrypSP.

50000 T T T

T T
i Live Object —+—
45000 - | GC Object 1
40000 T .
35000 |- | % -
30000 | | | #
25000 |- j
20000 |1 |7

+ 07
15000 —+ i E
10000 -
5000 [

number of object

0 le+07 2e+07 3e+07 4e+07 5e+07 6e+07
bytecode count

Figure 5.28:TSP GC results by bytecode for every 1k updates. Again, there areatbabjects
evident in this graph.

63

5.4. Analysis & Numerical Summary Results

repeated, tree-based searches to solve an input comlahatablem. This behaviour can
be better seen in figure 5.30.

Memory usage in Jess is more complicated than in the JOldegrams. From figure
5.31 we can see that a large number of objects are dead, ysuaty more than are live
at any one time. Moreover, while the live set is overall stalihe number of dead nodes
seems to have a a general upward slant, increasing over Tifnis.is also true of single
node structures shown in figure 5.29.

We believe this to be an artifact of heap adaptation. Jessai#ts a lot of temporary
objects (single nodes). The heap pressure due to the usmpbtary object allocations
results in the heap being expanded to accommodate the yEatamemory requirements.
However, the core, necessary and retained data is not sicgeand a larger heap merely
provides more room for garbage to accumulate. In this sanahe amount of drag in-
creases as the heap increases, suggesting that more agg@&Gsrather than increasing
heap size may result in more efficient execution.

Compress

Most of the benchmarks produce extremely similar graphghenehe time axis is formed
of bytecode executions, or expressed in terms of data steiatodifications, where data
structure updates are quite regular. Compress shows thi iglways the case. In the
bottom graph of figure 5.32 the number of entry points arggdbhgainst total number of
data structure updates. The results shows quite regulaxtzetn, with three obvious phases
of execution, each consisting of two sub-phases. This lade® nicely with the known
behaviour of Compress under our input parameters, whichderpress and decompress
three files. The three phases in Compress are also evidentt@amrpéormed by garbage
objects shown in figure 5.33.

The top graph shows the same data plotted with respect todj¢s executed. Here the
phases are considerably less evident—the time spent cesipgeand decompressing each
file is clearly uneven. Regularity of changes is a useful prtyder adaptive program opti-
mization. Compress is quite deterministic in the sequeneeidn executed, but duration
of program phases, a large part of predicting behaviouelis hn input property.

64

5.4. Analysis & Numerical Summary Results

6000 T T T T
Single node —+—

5000

4000

3000

2000

il

5e+08 1e+09 1.5e+09 2e+09 2.5e+09
bytecode count

250 T T T T

number of entry points

T
_—t

—

o

200 | -

100

number of entry points

50 |

0 5e+08 le+09 1.5e+09 2e+09 2.5e+09
bytecode count

Figure 5.29Jess analysis results by bytecode for every 100k updates. On thetsipgle nodes,
and on the bottom trees and DAGS. There are no cycles in Jess.

20 \‘M .'T ‘
gw— T l _
e wmww LTI
: data structure —+—

0 ' : L !

0 5e+08 le+09 1.5e+09 2e+09 2.5e+09
bytecode count

Figure 5.30:Jess analysis over bytecode executed showing the number of condattstiuctures
for every 100k updates.

65

5.4. Analysis & Numerical Summary Results

40000
35000

T T T T
Live Object —+—

- GC Object
30000 |

25000
20000
15000

number of object

10000 -

5000

0 5e+08 1le+09 1.5e+09

bytecode count

2e+09 2.5e+09

Figure 5.31:Jess GC results by bytecode for every 100k updates.

10 } L L i T T l T
) 8 ¥ ‘|'» J‘r J:f “f + -
< BN |
S koLt + +
o | ! |
> 6 ¥ =
2P B I
N— I i
5 4F .
'g K + + Tree ——+ +
2 2 DAG ---x--- i
B Single node —x—
X X, X
0 P I I N B TREEEI
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09
bytecode count
10 T T T T T T T
HHH+ HH HHHT
) 8 | + +# + + + + - + + —
'§_ H\)\f + | ﬁ ¥+ +H v T + +
i A Wl
D B [RKOKORORRORE K SPRRORRC K R XK X FORRREOROF ¥ T
1S ‘ POV WA WV AW A VAUV L
5) ‘|
8 4 ¥ 4+ + +4 + + -
2 N
S | ’ R e
= 2 * Single node —*— 7]
0 1L L ;o L L R L Lol
0 20 40 60 80 100 120 140 160
per update

Figure 5.32:Compress shape analysis result by both bytecodes executed (abdva)raber of
heap updates (below) for every update. There are no cycles in Cesnpre

66

5.4. Analysis & Numerical Summary Results

350 T T T T T T T
300 Live Object —+— o
]‘L GC Object
5 250 | .
2 ‘
S \
© 200 | R
5 [
8 150 7 i
E J
2 100 | “]
50 + e
e
O #z* L i 1 H 1 L i
0 20 40 60 80 100 120 140 160
per update

Figure 5.33:Compress GC result for every update, showing the number of live et algjects
in terms of total data structure updates.

MpegAudio

In this benchmark, we will show graphs in terms of total nunidfedata structure updates
instead of bytecode executed as they show more information.

MpegAudio decodes a compressed audio file twice under out pgrameters, and fig-
ure 5.34 clearly shows the two phases. Moreover, MpegAuelnahstrates the potentially
large effect of good alias analysis on a static shape asalifgyure 5.35 shows that while
there are a large number of entry points, they are entirelg.gdowever, a shape analysis
that relies on less precise alias information may not be asessful as this suggests—
figure 5.36 shows that when minimal alias data is availal®@ectlare proportionally many
impure reference.

DB

DB performs several database functions on a database stoneeémory. Therefore, the
first phase of this program is to construct the database,lrenseicond phase is to retrieve
data from it.
The top graph of figure 5.37 and figure 5.38 show that the firasphiakes the major
part of program execution, about two thirds of the time juststructing the database.
Figure 5.39 and figure 5.40 show that all references are pihis. is an unsurprising
result for a program that only utilizes trees. Since onlgs$rand single nodes are used in

67

5.4. Analysis & Numerical Summary Results

number of entry points

1000

2000 3000 4000 5000
per update

number of entry points

+

H

-3 kX
i
i

80

1000

2000 3000 4000 5000
per update

6000

70
60
50
40
30
20

number of entry points

10

Single node —+—

1000

2000 3000 4000 5000
per update

6000

Figure 5.34:MpegAudio analysis result for every updates with respect to the total eucillata

structure changes, where the top graph shows the number of trees, thie shidws the number of

cycles and DAGs, and the bottom one shows the number of single nodes.

68

5.4. Analysis & Numerical Summary Results

900
800
700
600
500
400
300
200

number of entry points

pure entry points —+—
100 impure entry points < E

0 1000 2000 3000 4000 5000 6000
per update

Figure 5.35:MpegAudio analysis for every updates with respect to the total numbeatafaruc-
ture changes, showing the number of pure vs. impure entry points. dten® impure entry points
in MpegAudio.

16 T T T T
pure type ——— — X X X
14 |impure type — < | x x x x| —
Pox xR x X Ix|
3 12r B 3
2 | O MEX X X X |
¢ 10 Loxom X 3 i
S [3
5 8 ! i
5 =
Q 6 I 4
£ x
c 4 + R >“< -
.| ! -
0 = 1 1)
0 1000 2000 3000 4000 5000 6000
per update

Figure 5.36:MpegAudio analysis for every updates with respect to the total numbeatafstruc-
ture changes, showing the purity result of fields merged over all objétte same class type.

69

5.4. Analysis & Numerical Summary Results

450 T T T T T T T

400 Tree E
350 | R
300 | R
250 R
200 1
150 1
100 —

number of entry points

50 —

0 L 1 1 ! 1 1 1
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

bytecode count

6 T T T T HHH’HHH\HH\HH T T
/ Single node —+—
5k - \H\‘HHH\HHH\HH i
.é / /]’]HE
g 4} 7 /4 \
2 I/
s 3fF
G /
5 /
s 2+ / ‘ _
1S /
g /'/
1F/ IR
/
/
/ I I I I I I I

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
bytecode count

Figure 5.37:Db analysis results over bytecode executed for every update. On thesttees, and
on the bottom single nodes. There are no DAGs or cycles in Db.

this program, there is no way for an entry point or a type to beampure. Nevertheless it
demonstrates how simple the use of data structure can bereaaron-trivial program.

Javac

Javac is the JDK 1.0.2 Java compiler compiling JavaLex. Fiigore 5.41 and figure
5.43 it is obvious that there are two major phases, where itstephase does not produce
much objects, and the second phase consists of 2 sub-phEsess consistent with its
behaviour since the first phase is to scan the file to ensureatiect grammar, and this
does not require significant object allocations. The seqarase begins by creating the
abstract syntax tree, and this is evident by the increasbjétts, trees and connected data
structures, and also in the reachability results of figud@ 5Symbol tables creation is the

70

5.4. Analysis & Numerical Summary Results

1000 T T T T T T T
900 Live Object —+— — f\ —
800 L GC Object |

700 E

600 E

500 E

400 E

300 E

\

number of object

200 \ .
100 | \ ¥ .

0 - 1 1 L 1 1 1
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

bytecode count

Figure 5.38:Db analysis over bytecode executed showing the number of live and dgaxdsofor
every update.

450 T T T T T T T
400 pure entry points —+— g T
impure entry points
2 350 i
£
8 300 i
>
e 250 B
()
S 200 | 4
& 150 | e
£
2 100 - i
50 —
0 L T p 1 1 1

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
bytecode count

Figure 5.39:Db analysis over bytecode executed showing the number of pure vs. éreptny
points for every update. There are no impure entry points in Db.

71

5.4. Analysis & Numerical Summary Results

3 T T T T T T T
pure type —+—

25 L impure type]
k=4
bq—i 2 + TH—O—O—O—& + + —
i} \
=3 \
2
s 15 ‘ E
Q \
£ 1 ﬁ—‘» — -
> / |
c

osf | 1

‘ ! «‘“I 1 1
0 200000 400000 600000 800000 1le+06 1.2e+06 1.4e+06 1.6e+06
bytecode count

Figure 5.40: Db analysis over bytecode executed showing the purity of fields mergedativ
objects of the same class type for every update. There are no impurényipes

second part of that phase, and this can be seen in the numbyreesf(top of figure 5.41)
and in the number of connected data structures shown in figdB

5.4.3 Summary

Even small Java programs make extensive use of heap sesacand so a dynamic data
structure analysis has the ability to provide a great deadfofmation about program exe-
cution. Literal snapshots of data structures are mostnmétive, but do not in general scale
to being able to represent real program data. Even from aeitrge/DAG/cycle descrip-
tions of data structures, however, a surprising amount tdilden program behaviour is
discernible in our numerical summary graphs. Most obvipasgecution phases are clearly
visible in most of our graphs—programs, especially indusenchmarks, tend to behave in
relatively regular ways, and data-centric algorithms shaerresponding regularity in data
manipulations. Regularity is also seen in the kind of dataluiee composition of trees,
DAGs and cycles shows that while most of our benchmarks dfoernumerous data
structure modifications, they do not generally tend to bemerin their usage—there are
surprisingly few cyclic structures found in our suites. &ttf there are surprisingly few
actual connected structures (as opposed to entry pointspst programs. This lack of
complexity in data structure usage is further supportedusyparity data—certainly some
entry points in some benchmarks do vary in the shape fourtdnbat entry points are in

72

5.4. Analysis & Numerical Summary Results

100 T T
90 Tree

80 |-
70 |
60 |-
50 |-
40 |
30 —
20 | —
0 Foo -
O i’*i % 1 1 1 1 1 1

0 2e+06 4e+06 6e+t06 8e+06 le+07 1.2e+07 1.4e+07
bytecode count

4 T T T =T T T

number of entry points

35 DAG -+ g

25

15

number of entry points
N
T
=+

05| i -

0 L. 1 |;1 1 1 1 1 \
0 2e+06 4e+06 6e+06 8e+06 1le+07 1.2e+07 1.4e+07

bytecode count

12 T T T T T T
Cycle -+

:
r |

number of entry points
(o2}
T

0 1 1 L bt
0 2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07 1.4e+07

bytecode count

2500 T T T T T T
Single node —+—

2000 - ,Z'Z.T

1500 -

1000 -

500 | f
O TRETEETY 1 1 L 1 1 1

0 2e+06 4e+06 6e+06 8e+06 1le+07 1.2e+07 1.4e+07
bytecode count

number of entry points

Figure 5.41.Javac analysis results over bytecode executed for every 10 up@ihgegraphs shown

from top to bottom are trees, DAGS, cycles, and single nodes.
73

5.4. Analysis & Numerical Summary Results

14000 T T T T T T
12000 Live Object —+—
GC Object <

5§ 10000 |
L
Ke)
° 8000 |
o
L 6000 |-
§
c 4000

2000 |

0 lssta | ! W

0 2e+06 4e+06 6e+06 8e+06 1le+07 1.2e+07 1.4e+07
bytecode count

Figure 5.42:Javac GC results over bytecode executed for every 10 updatesnghye number
of live and dead objects.

60 T T T T T T
data structure —+—

40

30 |

20 |

number of data structures

10 |

1
0 2e+06 4e+06 6e+06 8e+06 1le+07 1.2e+07 1.4e+07
bytecode count

Figure 5.43:Javac analysis over bytecode executed showing the number of cashdatdestruc-
tures for every 10 updates.

74

5.4. Analysis & Numerical Summary Results

fact pure, with many of our programs even having 100% of eptrints pure. This is less
well reflected in type-based purity, indicating the impada of alias information, but is
still quite encouraging for static approaches.

The impact of garbage on memory use is also intriguinglyalde. Barnes-Hut and
Jess generate great amounts of garbage, and certainlylaitdrecase dragged dead objects
can be seen as a potentially important factor. Other bendtsnsuch as TSP and BiSort
carry little to no garbage, and may benefit from a correspandeduction in GC; these
benchmarks are not strongly GC-dependent.

75

Chapter 6
Conclusions and Future Work

6.1 Conclusions

This thesis has shown that dynamic data structure analgsighe ability to show de-
tailed information on various aspects of program behavibhis can help identify program
characteristics, heap usage, and provide general undéeisgeof any calculable static or
evolving dynamic data structure property, advancing wexioptimization, understanding,
and analysis goals.

By comparing our runtime data with that achievable througticineans we have been
able to verify that static approaches have potential to lite @ecurate, at least for many of
our example programs.

Our framework design and experience have demonstratec#sabflity of this tech-
nigue, and also highlighted the research challenges iadolextracting and reconstruct-
ing data structure changes is itself a non-trivial effortrtRermore, we have demonstrated
that our framework has all necessary information to supih@rtmplementation of various
analyses such as tree/DAG/cycle, connectivity, puritgd @mbinatorial shape analysis.

We have shown two ways of representing the data gathereuiedivnto two main
categories based on the size of the program. For small pregriiteral representations
are natural and provide maximal information. Even at thaeschowever, the task is not
trivial. Usable animations, as we have shown, is not as giraplone would think. It is

76

6.2. Future Work

unfortunately also the case that this kind of representataes not scale very well to larger
benchmarks.

More abstract analysis data in the form of numerical grapimsare suitable for larger
benchmarks. This summarizes data structure analysistsesugr execution time. Al-
though this representation does not give us the same kindahnation as the literal one,
we can still provide useful and interesting information eagram behaviour, while main-
taining much of the accuracy provided by a dynamic, runtimed\sis.

6.2 Future Work

Dynamic data structure analysis is complex, and the puofwtcurate, complete results
implies a great many potential future directions for thigkvo

More benchmarks

More, and larger benchmark programs would of course be Lisefwould an examination
of benchmarks under different inputs. Our results here ssigdpta structure usage is often
quite simple; further experimental evidence is needed,evew to make strong, general
conclusions.

More analyses

We are also interested in evaluating the efficacy and acgwfanore detailed shape anal-
ysis techniques, such as those based on compact graphcéibstfdlCA™04], or shape
types [WSRO0O].

More efficient data gathering

Our analysis currently works offline, after the program isi@l@xecuting. In order to be
more efficient, we can run our analysis online by integratmig analysis using Aspect
oriented programming [Asb02]. With the help of dynamic wiegy we will be able to

analyze data structures during the program’s run-time angl retrieve information that

77

6.2. Future Work

we really require instead of reporting all events as it igently done with *J. That way

the analysis will not be as time consuming as it currenthE#iciency improvements are
important in order to scale dynamic data structure analgsigery larger programs. As
described in section 5.4, it took more than two weeks to aealgss from the SpecJVM98
benchmark suite.

Mapping to source code

We have compared our dynamic data to that achievable by stapiroaches. This could
be more refined by considering the state of variable at eatis statement in the program.
Our dynamic data, for instance, can be mapped to static cod¢idns for direct compar-
ison with static algorithms. This can help guide and meastatc algorithm design, and
would be a straightforward extension of our implementation

Visualization improvements

Visualization improvements are many of course. We have baast recently working on
improving animation quality by adapting existing tools tgpport incremental, if perhaps
sub-optimal, graph drawing. Integration of good animatith interactive visualization
techniques can help alleviate some of the scaling conceithditeral representations, and
can also be the basis for useful educational and debuggotg. té-urther, novel visual-
izations that compactly summarize graph properties ai iatportant, and a combined
approach that allows inspection of both literal and mordrabsrepresentations of heap
activity would greatly assist the understanding of how paogs use data structures.

78

Appendix A
Complete Benchmarks Graphs

A.1 Benchmark Results

The complete set of graphs for the benchmarks we have cofremadthe JOlden and the
SPECjvm98 suites can be found online following this link:

http://www.sable.mcgill.ca/"spheng/graphs.html

79

Bibliography

[Asb02]

[BDE*+02]

[BSO1]

[CAZ02]

[CMO1a]

R. Dale Asberry. Aspect oriented programming (a®fsing aspectj to imple-
ment and enforce coding standardhtp://www.daleasberry.com/
newsletters/200210/20021002.shtml , 2002.

Rhodes Brown, Karel Driesen, David Eng, Laurie HendrehnJinrgensen,
Clark Verbrugge, and Qin Wang. STEP: A framework for the edfitien-
coding of general trace data. RFroceedings of the 2002 ACM SIGPLAN-
SIGSOFT Workshop on Program Anaylsis for Software Tools auggh€ering
(PASTE) New York, New York, United States, November 2002. ACM Press.

Jeff Bogda and Ambuj Singh. Can a shape analysis workratime? In
Proceedings of the 1st Java Virtual Machine Research antni@ogy Sym-
posium USENIX, 2001.

Francisco Corbera, Rafael Asenjo, and Emilio ZapatawIshape analysis
and interprocedural techniques for automatic paralleémeof C codesint. J.
Parallel Program, 30(1):37—63, 2002.

B. Cahoon and K. S. McKinley. Data flow analysis for saftev prefetch-
ing linked data structures in Java controller. PACTO]1 pages 280-291,
Barcelona, Spain, September 2001.

80

Bibliography

[CMO1b] B. Cahoon and K.S. McKinley. Data flow analysis for sater prefetching
linked data structures in java. lmternational Conference on Parallel Ar-
chitectures and Compilation Techniqugmges 280-291, Barcelona, Spain,
September 8-12 2001.

[DDHVO03] Bruno Dufour, Karel Driesen, Laurie Hendren, andi&Mserbrugge. Dynamic
metrics for Java. IiProceedings of the ACM SIGPLAN 2003 Conference on
Object-Oriented Programming, Systems, Languages, anticagipns (OOP-
SLA '03) pages 149-168, 2003.

[DGKO2] Stephan Diehl, Carsten Görg, and Andreas Kerrdnimating algo-
rithms live and post mortem. IRevised Lectures on Software Visualization,
International Seminarpages 46-57, London, UK, 2002. Springer-Verlag.

[Duf04] Bruno Dufour. Objective quantification of programhaiour using dynamic
metrics. Master’s thesis, McGill University, Mogtrl, Qebec, Canada, 2004.
URL: <http://www.sable.mcgill.ca/metrics/ >.

[ECGN99] Michael D. Ernst, Jake Cockrell, William G. Griswpahd David Notkin. Dy-
namically discovering likely program invariants to suggmogram evolution.
In International Conference on Software Engineeripgges 213—-224, 1999.

[FM9O7] Pascal Fradet and Daniel Ledtayer. Shape types. ROPL '97: Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pragring
languagespages 27—-39, New York, NY, USA, 1997.

[GH96] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag,cgclic graph? a
shape analysis for heap-directed pointers in CPOPL '96: Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of progriug
languagespages 1-15, New York, NY, USA, 1996.

[GNOO] Emden R. Gansner and Stephen C. North. An open grapalization system
and its applications to software engineerirgpftware — Practice and Expe-
rience 30(11):1203-1233, 2000.
URL: <citeseer.ist.psu.edu/gansner99open.htmi >.

81

Bibliography

[GOP03] Thomas Gschwind, Johann Oberleitner, and Martizg&r. Using run-time
data for program comprehension.lWPC '03: Proceedings of the 11th IEEE
International Workshop on Program Comprehensipage 245, Washington,
DC, USA, 2003. IEEE Computer Society.

[HHN92] Joseph Hummel, Laurie J. Hendren, and AlexandruoMig. Abstract de-
scription of pointer data structures: an approach for imioigp the analysis
and optimization of imperative program®&CM Lett. Program. Lang. Syst.
1(3):243-260, 1992.

[HLLFO5] Abdelwahab Hamou-Lhadj, Timothy C. Lethbridge danianjiang Fu. Seat:
A usable trace analysis tool. IWPC '05: Proceedings of the 13th Inter-
national Workshop on Program Comprehensipages 157-160, Washington,
DC, USA, 2005. IEEE Computer Society.

[HN9OQ] Laurie J. Hendren and Alexandru Nicolau. Parallatizprograms with recur-
sive data structures. lEEE Transaction on Parallel and Distributed Systems,
Vol. 1, No. 1 pages 35-47, January 1990.

[HRO5] Brian Hackett and Radu Rugina. Region-based shape amaljtbi tracked
locations. INPOPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 310-323, New
York, NY, USA, 2005.

[Jam55] Robert C. James. Combinatorial topology of surfadathematics Magazine
29:1-39, 1955.

[KS93] Nils Klarlund and Michael I. Schwartzbach. Graphdgp InPOPL '93:
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Plésoof
programming languagepages 196—-205, New York, NY, USA, 1993.

[LD97] Mark Leone and R. Kent Dybvig. Dynamo: A staged compéechitecture for
dynamic program optimization. Technical Report No.490, CatapScience
Department, Indiana University, September 1997.

82

Bibliography

[LY96]

[NCA+04]

[PJ02]

[PS00]

[RAO5]

[Rei03]

[RR96]

[RRO5]

Tim Lindholm and Frank Yellin. The Java™ Virtual Machine Specificatian
Addison Wesley, 1996.

A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and Fapata. A new
dependence test based on shape analysis for pointer-badesl. cinLCPC
'04: Proceedings of the 17th International Workshop on Lizenges and Com-
pilers for Parallel Computing2004.

Tony Printezis and Richard Jones. GCspy: an adaptahle Visualisation
framework. INOOPSLA '02: Proceedings of the 17th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languagesapplications
pages 343-358, New York, NY, USA, 2002.

Wim De Pauw and Gary Sevitsky. Visualizing referepaterns for solving
memory leaks in JavaConcurrency: Practice and ExperiencE(14):1431—
1454, 2000.

URL: <citeseer.ist.psu.edu/depauw99visualizing.html >,

Easwaran Raman and David |. August. Recursive datatateiprofiling.
In Proceedings of the Third Annual ACM SIGPLAN Workshop on Mgmor
Systems Performance (MSBune 2005.

Steven P. Reiss. Visualizing java in action.SoftVis '03: Proceedings of the
2003 ACM symposium on Software visualizatipeges 57—ff, New York, NY,
USA, 2003. ACM Press.

Niklas Rojemo and Colin Runciman. Lag, drag, void and use - heap pmfilin
and space-efficient compilation revisited IGFP '96: Proceedings of the first
ACM SIGPLAN international conference on Functional prognaimg, pages
34-41, New York, NY, USA, 1996.

Steven P. Reiss and Manos Renieris. Jove: Java as it lrapgp&oftVis '05:
Proceedings of the 2005 ACM symposium on Software visualizgiages
115-124, New York, NY, USA, 2005.

83

Bibliography

[SKS00] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Oa #ifectiveness of
GC in Java. INSMM '00: Proceedings of the 2nd international symposium
on Memory managemergages 12—-17, New York, NY, USA, 2000.

[SPE98] SPEC Corporation. The SPEC JVM Client98 benchmatk.stittp://
www.spec.org/jvm98/jvm9o8/ , 1998.

[SRW98] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Sglghape-analysis
problems in languages with destructive updatiA@M Transactions on Pro-
gramming Languages and Syste28(1):1-50, January 1998.
URL: <citeseer.ist.psu.edu/sagiv96solving.html >,

[tom] Tom sawyer softwarehttp://www.tomsawyer.com/home/index.
php.

[WSR00] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. &haaglysis. In
Computational Complexifypages 1-17, 2000.

[yFi] yfiles. http://www.yworks.com/en/products_yfiles_about.
htm.

[2Z01] Thomas Zimmermann and Andreas Zeller. Visualizingnmory graphs. In
Software Visualizatiorpages 191-204, 2001.

84

