
DATAFLOW ANALYSIS OF THE Π-CALCULUS

by

Sam B. Sanjabi

School of Computer Science

McGill University, Montreal

June 2004

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Master of Science

Copyright c© 2004 by Sam Sanjabi

Abstract

Static analysis [NNH99] is technique used to compute information about the run-

time behaviour of a program prior to execution. Traditionally, it has been used in the

context of optimizing compilers, but it has recently been applied to more formalized

languages in order to develop provable policies that can be used to verify the security

of networks. Best results are naturally achieved with the most precise information

flow techniques, though complex systems impose feasibility constraints. Accuracy of

results, particularly with respect to relative cost of computation is thus an important

quality.

This thesis presents a series of dataflow analyses of the π-calculus, an extensively

studied concurrent language that has been used to model and verify security protocols.

Some of the presented analyses are equivalent to previous work done in the field, but

the framework in which the analysis is done is new in that it immediately suggests

an iterative implementation.

There are also analyses presented that improve on existing approaches in two ways.

First, by fully treating the sequentiality of potential actions in a protocol, thereby

improving the accuracy of previous approaches. Second, by considering the potential

environment that a process could be running in, the computed results are correct

independent of any context that the analyzed process may be in parallel composition

with.

i

Résumé

L’analyse statique [NNH99] est une technique qui permet à prédire de l’information

à propos du comportement d’un programme avant l’exécution. Traditionnellement,

elle a été utilisé durant l’optimisation des programmes durant la compilation, mais

récemment cette mthode a été appliqué aux langages formelles pour formuler des

politiques démontrable qui peuvent être utiliser pour vérifier la sécurité des réseau.

Naturellement, les meilleurs résultats sont achevé avec les techniques les plus précis,

donc l’exactitude des résultats, particulièrement à l’égard du prix relatif de l’exécution

est une qualité importante à considérer.

Cette thèse présente une série d’analyses de l’écoulement de l’information dans

le calcul-π, un langage concourant qui peut être utilisé pour modeler et vérifier les

protocoles de sécurité. Certain des analyses présentés sont égales aux analyses qui

existent déjà, mais la méthode avec lequel les analyses sont décris est nouvelle et

suggère immdiatement des algorithmes itératives.

Des analyses qui améliorent les algorithmes éxistantes sont aussi inclus, et ces

avancements sont fait de deux façons. Premièrement, en considérant la séquence

des actions dans un protocole, améliorant la préçision de l’analyse. Deuxièmement,

en considérant l’environnement potentiel dans lequel le procès pourrait exécuter, les

résultats de l’analyse seront correcte sans dépendence sur le contexte avec lequel le

programme est composé.

ii

Acknowledgements

First and foremost, my most heartfelt thanks must go to my thesis supervisor

Clark Verbrugge. While we were both fairly new to the field, his constant encourage-

ment and insistence on my solicitation of feedback through peer review and workshop

attendance was absolutely vital to my timely completion of this thesis. Beyond that,

professor Verbrugge is to be thanked for his valuable comments, and constant will-

ingness to listen to my ideas.

I would also like to thank the FQRNT and NSERC for their partial financial

support of this work.

My warm thanks also go to all of the members of the Sable Computing Laboratory

at McGill that I have dealt with during my time here, it was a pleasure to work among

such a fine group of people. Finally, I would like to thank my friends and family for

their moral support and guidance over the past year.

iii

Contents

Abstract i

Résumé ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Roadmap . 4

2 Related Work 6

2.1 System Description . 6

2.2 System Analysis . 9

2.2.1 Static Analysis . 9

2.2.2 Semantic Analysis . 12

3 Background: The Π-Calculus 15

3.1 Syntax . 15

iv

3.2 Semantics . 16

3.2.1 Structural Congruence . 18

3.2.2 Operational Semantics . 18

4 Static Dataflow Analysis 21

4.1 A First Abstraction of Processes . 22

4.1.1 Flow Insensitive Representation 23

4.1.2 Abstract Execution . 25

4.1.3 Correctness . 32

4.2 Implementation . 34

4.2.1 Intuition: Andersen’s Points-to Analysis 34

4.2.2 A Simple Example . 36

5 Tracking Environment Knowledge 42

5.1 Expansion of the Solution Space . 43

5.1.1 Abstract Execution . 45

5.1.2 Correctness . 48

5.2 Considering Matching . 62

5.2.1 Refined Process Representation 62

5.2.2 Abstract Execution . 64

5.2.3 Correctness . 66

6 Sequencing and Sub-Process Structure 69

6.1 Blocking on All Prefixes . 70

6.1.1 Abstract Representation . 70

6.1.2 Abstract Execution . 71

6.1.3 Correctness . 76

6.2 Sub-Process Structure . 79

v

6.2.1 Abstract Representation . 80

6.2.2 Abstract Execution . 82

7 Application: Examples in Security 88

7.1 Confidentiality In The Π-Calculus . 89

7.1.1 Example: Context Dependency 89

7.1.2 Example: Wide-Mouthed Frog 91

7.2 Integrity . 93

7.2.1 Example: Accuracy . 93

7.3 Benefits of Sequential Analysis . 96

8 Future Work and Conclusions 99

8.1 The Spi-Calculus: A Cryptographic Extension 100

8.2 Refined Solution Space . 103

8.3 Eliminating Approximation Points . 104

8.3.1 Blocking Conditions . 104

8.3.2 Replication . 105

8.4 Full Context Independence . 106

8.5 Efficiency . 107

Appendices

A Static Analysis Using Flow Logics 109

A.1 Flow Insensitive Analysis . 109

A.2 Flow Sensitive Analysis . 111

Bibliography 115

vi

List of Figures

1.1 The Wide-Mouthed Frog Protocol . 3

4.1 Example: Andersen’s points-to analysis 36

4.2 Example: Flow-Insensitive DFA of Π-Calculus 39

6.1 Example tree representation of a π-calculus process 83

vii

List of Tables

3.1 Informal Description of the Π-Calculus 17

3.2 Structural Congruence for the Π-Calculus 19

3.3 Operational Semantics of the Π-Calculus 20

4.1 Evolution of the Flow-Insensitive Analysis Solution 38

A.1 Flow Insensitive CFA for the Π-Calculus 110

A.2 Localization Operator on Processes 112

A.3 Flow Sensitive CFA for the Π-Calculus 113

viii

Chapter 1

Introduction

Static program analysis is a technique often used in optimizing compilers to as-

certain information about the run-time behaviour of a computer program prior to

execution. Recently, static analysis techniques have been used in various other set-

tings to compute information that would be useful beyond optimization. Notably,

static analysis techniques can be used on parallel languages to ascertain properties

of concurrent systems. One such language is the π-calculus, which models concur-

rency through name-passing semantics. This thesis develops a static analysis of the

π-calculus that computes dataflow information through the modelled network. One

notable application of such an analysis is the compile-time checking of various security

properties of a network.

Traditionally, the security of networks has been enforced by the use of local tech-

nologies such as cryptography, and has been analyzed and validated through inspec-

tion by experts. With the advent of widespread heterogeneous public networks, infor-

mation security has become a critical global issue rather than a locally desired one.

Consequently, traditional security paradigms have become antiquated: while cryp-

tography is an essential tool in network security, its very presence is not sufficient to

1

provide desired security guarantees, as its misuse can easily lead to insecure systems.

For instance, consider a protocol between two agents A and B in which a message

M is sent from A to B by encrypting it with a shared key KAB . Let {M}AB represent

such an encrypted message under the assumption that it is impossible to recover the

message without knowledge of the key. Even with perfect encryption technologies

used as tools, it is possible to write insecure protocols: if A were to simply send the

key K to B over a public channel, then an eavesdropper could easily recover the secret

message by intercepting K.

More subtly, consider a system in which some number of agents communicate with

a trusted server S in order to establish shared keys, which could then be used to send

encrypted messages. Letting A and B range over the agents, consider the following

protocol (taken from [AG98]) in which A sends a message M to B encrypted with a

shared key KAB established with the help of S:

Message 1 A→ S : A, {B,KAB}AS on cS

Message 2 S → B : {A,KAB}SB on cB

Message 3 A→ B : A, {M}AB on cB

KXY represents a shared key between agents X and Y , cX represents a public

channel on which agent X is awaiting input, and each line of the protocol of the form

Message i X → Y : M on cY

represents X sending message M to Y on channel cY . The two agent version of

this protocol is the well known Wide-Mouthed Frog protocol, and it is shown dia-

grammatically in figure 1. Note that it is initially assumed that the keys KAS and

KSB are already established. While it is not immediately obvious, this protocol is

seriously flawed with respect to authentication (see [AG98]): specifically, it is suscep-

tible to a replay attack in which an adversary E could convince B that he is A by

intercepting and replaying A’s messages.

2

B

S

A

{M}(3)

(2)(1)

CAS CSB

CAB

{K }AB AS SB{K }AB

AB

Figure 1.1: The Wide-Mouthed Frog Protocol

In addition to the ease with which flaws can trickle into systems, it is impractical

to expect that each system can be correctly inspected by a knowledgeable party, as the

number of networks requiring such inspection is astronomical, and the possibility of

human error is always present. Thus the necessity of providing tools to automatically

detect (and possibly repair) security flaws in systems is evident. It should also be

noted that a reasonable solution to the problem should preferably not involve checking

any heuristic conditions, as these could in turn prove ineffective. Rather, it would be

better to use formal methods to precisely verify mathematically provable properties

of systems, where the systems and properties themselves are also formally specified.

This thesis focuses on a framework in which such an analysis could be performed.

Namely, a static analysis of the flow of data through concurrent systems as specified

by Milner, Parrow and Walker’s π-calculus [MPW92] is presented. This technique

has been shown to be consistent with currently known analyses of the π-calculus,

and has also led to algorithms that produce results that improve on the accuracy

of previous approaches. The abstract depiction of dataflow presented here provides

meaningful insight into the behaviour of processes, and makes further improvements

in accuracy very clear. For the sake of preserving this clarity, the most efficient

3

1.1. Roadmap

algorithms for doing such analyses are not always discussed, but the appropriate

references where efficiency is considered are cited in chapter 8. Efficiency is at best

a tertiary consideration of this work, the focus here is on developing a technique in

which flow analyses in concurrent systems (in the context of the π-calculus) can be

visualized and improved in terms of accuracy.

1.1 Roadmap

Chapter 2 provides an overview of some of the work done in the field of formal security

verification, this includes work that is quite distant in its scope from the particular

niche dealt with by the rest of the document. However, it provides the broad context

in which the work presented in this thesis can be placed. Chapter 3 presents the

technical background on the π-calculus required to understand the rest of the work.

Chapters 4, 5, and 6 develop a series of dataflow analyses of the π-calculus. The

presentation of each such analysis is comprised of three parts:

1. A simplified representation of each π-calculus process that underlies the analysis

itself

2. A description of the analysis algorithm that exploits the representation in order

to compute some correct information about the process

3. A correctness proof

The sections detailing the proofs of correctness can safely be left out of a first reading

without hindering the reader’s comprehension of later chapters. Chapter 4 devel-

ops a simple flow insensitive analysis of the π-calculus that is a simplified version

of previous work [BDNN01b] adapted into the iterative framework used to express

subsequent analyses. Chapter 5 extends the analysis to produce some context in-

dependent results, and integrates a partial treatment of the sequential behaviour of

4

1.1. Roadmap

processes from [BDNN01b] into the framework, effectively providing a generalized

version of the analysis presented there. Chapter 6 further extends the analysis to

provide a full treatment of the sequentiality of processes, and is fully sensitive to the

control flow of the process. The latter analysis is the most accurate analysis of the

π-calculus known. Chapter 7 provides examples of the analyses of the previous chap-

ters, and discusses how they can be used to statically check various security properties

of programs. Lastly, chapter 8 discusses some of the limitations of the analyses, and

provides extensions that could be integrated into the framework in the future in order

to address them.

5

Chapter 2

Related Work

This chapter provides an overview of work done in the field of formal security

verification. We begin with an enumeration of the formal languages used to express

both systems and security properties, and then proceed with a list of the techniques

that can be used to analyze these systems. An excellent survey of the work done in

this area up to the end of 2002 is provided in [SM03].

2.1 System Description

Any security analysis of a system must be done with respect to a language in which

that system can be expressed, thus we begin with a brief description of several for-

malisms suited for expressing sequential programs, concurrent systems, mobility, and

cryptographic protocols.

Concurrency is often formally studied in the context of the π-calculus [MPW92],

a process algebra introduced by Milner, Parrow and Walker. It provides a framework

for the study of parallelism in a formal setting, and has been used extensively. The

language is composed of building processes which represent agents that are able to

6

2.1. System Description

communicate by sending elements from a set of names over channels that are elements

of the same set, i.e., there is no distinction in the language between data and the

medium over which it is sent. It is this property that embodies the concept of mobile

computation: this identification allows network structure to dynamically evolve, and

is precisely what give the calculus its expressive power.

There is a lack of consensus on what the “standard” π-calculus is, but a formal

definition of the calculus used as the basis of the analyses in this thesis is presented

in the next chapter.

Other formalisms modelling concurrent systems include Hoare’s CSP [Hoa85] and

Milner’s CCS [Mil89] which define calculi of communicating processes without the

mobility aspect of the π-calculus, The Linda [CG89] language models parallelism as a

globally shared space from which data can be synchronously or asynchronously read

and written by agents. The Chemical Abstract Machine (CHAM) [BB92] defines

machine states in a chemical model, i.e., a state is a “solution” (context) where

floating “molecules” (processes) can “interact” (communicate) according to “reaction

rules” (operational semantics).

While parallel languages such as the π-calculus could in principle be used to de-

scribe cryptographic protocols such as the one described in chapter 1, it can be more

convenient to assume the existence of basic cryptographic operations with which to

write protocols. The primary advantage of this approach is that it shifts the focus of

security analysis away from the particular cryptographic operations available, and to-

wards the actual usage of the assumed operations within a larger system. Abadi and

Gordon’s spi-calculus [AG99, AG98] achieves this by extending the π-calculus with

(assumed perfect) primitives that allow for the encryption and decryption of trans-

mitted data. Any security property that has been proven for a system expressed in

the spi-calculus can be weakened to apply to the same system with actual encryption

and decryption operations taking the place of the ideal ones.

7

2.1. System Description

A standard communication-based model is not the only object of study when con-

fronting the issues pertinent to the today’s global computational landscape. Not only

do individual processes communicate with one another, they also have the capability

to do so within different computational sub-networks. This version of mobile comput-

ing is modelled by Cardelli and Gordon’s ambient calculus [CG98]. The intention is

to model the capability of computational systems (such as a laptop) to move between

networks with different properties, or equivalently to move about within a heteroge-

neous network. This model of mobile computing can be contrasted with the mobile

computation of the π-calculus.

The ambient calculus as described in [CG98] is comprised of two components: the

pure ambient component which describes ambients which model the localization of

processes and how processes can move from ambient to ambient, and the communica-

tion component which describes how processes can communicate within an ambient.

The latter is effectively equivalent to the π-calculus and is therefore Turing complete,

but the purely mobile subset of the calculus is also Turing complete [Zim00].

Various other formalisms exist to study different computational models. Sequen-

tial programs can be expressed by purely functional calculi such as the untyped λ-

calculus [Bar84], typed languages such as PCF [Mit96], and imperative languages

such as Idealized Algol (IA). In addition to process algebraic approaches, there are

also ways in which sequents in some formal logic can be used to express and ana-

lyze systems. As remarked by Schmatikov and Hughes [HS02], while it is relatively

easy to express a system in a process algebra, it is harder to formulate information

hiding properties based on them. Conversely, it is quite easy to express system prop-

erties with modal logics such as [SS99,FHMV95,ABN89] but much more difficult to

express the systems themselves. Schmatikov and Hughes’ work [HS02] attempts to

rectify this by bridging the gap between logics and algebrae through the introduction

of an interface layer built on the theory of function views.

8

2.2. System Analysis

2.2 System Analysis

Once an appropriate formalism in which to describe the system to be analyzed has

been chosen, there are numerous techniques which can be used in order to infer the

behaviour of that system. This section describes a number of such techniques.

2.2.1 Static Analysis

Static program analysis [NNH99] computes information about the execution of a pro-

gram at compile-time. Traditionally, it has been used in optimizations of the machine

code generated by a programming language compiler. In such cases, the properties

ascertained may have been the detection of redundant memory operations [CX02],

compile-time type determination in languages with references [PR94], or virtual func-

tion resolution in object oriented languages [PR96,Sun99,SHR+00]. Recent work on

language-based security has seen static analysis techniques applied to various process

formalisms in order to compute information about the possible flow of data through a

system at run-time. Such analyses can then be used to formulate security policies that

can be used as safety criteria in networking applications. Static analysis ascertains

properties of a program that will hold in all possible executions. These properties

will hold independently of the input to the program and the context in which it is

run.

The analysis is “static” in the sense that it computes information about programs

based only on their syntax, the results will therefore apply to any possible execution

of the program regardless of any variance in the inputs. The results can hence be

used to accept or reject programs based on some criteria, i.e., they can be viewed as

a type checking algorithm that restrict syntactically valid programs in some language

from being considered “valid” according to some rule.

There are generally two ways to define a static analysis: expressing the analysis

9

2.2. System Analysis

as a type system, or as an abstract interpretation. These approaches are described

below.

Type Constraints

As noted above, a static analysis can be viewed as a type-checking algorithm in

that it may be used to compute some information about the program (in traditional

type-checkers, this would be referred to as the “type” of the program in question),

and rejecting some programs based on this information (possibly because the type-

checking failed, or the program’s type was not the expected one).

Debbabi et al. [DDMM03] present a security analysis of protocols in which the

sought type is an actual attack scenario on the input protocol. Thus if the proto-

col specification successfully type checks, this implies that a security flaw has been

found. Aiken et al. present a line of research in [AW92,AW93,AFFS98a,AFF99] in

which they build a framework for doing static analysis using type constraints. This

theory is ultimately used to do points-to analysis on an imperative language with

references [AFF97,AFF00], detecting races in RLL programs [AFS00], and exception

tracking in ML [AFFC98]. This type theory also led to the creation of a toolkit for

implementing constraint-based analyses [AFFS98b]. Volpano et al. [VSI96] present

a type system specific to secure flow analysis. Bodei et al. present a series of work

in [BDNN98,BDNN01b,BDPZ03] which deals with data flow analysis in the π-calculus

by establishing the existence of a solution through its characterization in a flow logic,

then by proving its correctness with a standard subject reduction result with respect

to the operational semantics of the calculus. An actual solution that satisfies this

characterization is then computed by solving a set of statically checkable type con-

straints. This work is discussed in greater detail in appendix A as it is used as a point

of comparison for the analyses presented in this thesis. Quite similar techniques are

10

2.2. System Analysis

used in [BDNN01a] and [NNHJ99] for static analyses on the spi-calculus and the am-

bient calculus respectively. Finally Oxhöj, Palsberg, and Schwartzbach [OPS92,PS95]

have also done work on safety analysis and type inference.

Abstract Interpretation

Abstract interpretation [CC77] of programs is the process of describing the com-

putations of a program (which can be viewed as functions over some set) in some

abstract universe of objects, such that the results of the corresponding abstract exe-

cution gives some information about the actual computations. An intuitive example

from arithmetic (which is borrowed from [CC77]) is the rule of signs. Integer arith-

metic operations denote computations over the set of integers, i.e., the operations

∗ :
�
×

�
→

�
and + :

�
×

�
→

�
can be viewed as functions over

�
. Thus the

“program” −213∗11 can be said to “execute” (or evaluate) to yield the result −2343.

However, rather than viewing these operations over integers, we may abstractly view

them as functions over the much smaller set � = {(+), (−), (⊥)} with the standard

domain ordering � such that (+) � (⊥) � (−). In other words, we abstract (or

represent) integers by their sign, and ignore their value. Thus the execution of the

above “program” −213 ∗ 11 ⇒ −2343 would be interpreted in the abstract universe

as (−)∗̃(+) � (−) (using the abstract operations ∗̃ : � × � → � and +̃ : � × � → �),

thereby proving that the program −213 ∗ 11 evaluates to a negative number without

actually having to evaluate it. Thus, in a sense, we can say that this interpretation

has yielded a static analysis of the language of the arithmetic operators + and ∗ over

the integers
�

(modulo any overflow that could occur in practice). Letting ⇒ and

� represent the concrete and abstract execution operators respectively, and defin-

ing γ̃ and α̃ as the abstraction (i.e., taking the sign of) and concretion operations

respectively, this process can be illustrated by the following diagram:

11

2.2. System Analysis

�
×

� ⇒ //

�

γ

��

�

� × � �
// �

�

α

OO

Observe that this abstraction has provided a summary of some facet of the actual

execution of the program, but that the summary itself is incomplete. This is why

the concretion arrow above is dotted: concretion is a hypothetical operation, infor-

mation is lost during the abstraction process that cannot be regained. For example,

consider the program −213 + 11 ⇒ −202, our abstract interpretation would execute

(−) +̃ (+) � (⊥) which would not yield any information about the sign of −213+11.

This illustrates the fact that abstract interpretation allows us to compute correct in-

formation about the run-time behaviour of a program in the sense that the computed

information does not yield any false results. However, the abstract results are only a

conservative approximations of the concrete execution of the program, i.e., they are

ideal for expressing static analysis results.

Nielson et al. [NHN03] define an abstract interpretation of mobile ambients in a

set-constraint based formalism. Malacaria and Hankin [MH98a] present an abstract

interpretation of sequential programs based on game semantics [AM98, BDER97]

which is used to compute an information flow analysis leading to a provable secu-

rity property in Idealized Algol [MH98b, MH99]. Feret develops an abstract inter-

pretation of a variant of the π-calculus which tracks multiple occurrences of sub-

processes [Fer01], and is also used to prove a confidentiality property [Fer00].

2.2.2 Semantic Analysis

In contrast to the static techniques discussed above, there has also been work done on

a different approach to ensure language-based security. Namely, the approach involves

12

2.2. System Analysis

the design of a language such that a desired security policy cannot be violated by

programs written in the language. While this thesis focuses only on static techniques,

a mention of this alternative approach is included for context.1

Often, the security property that such a language imposes will be some variant

of “non-interference” which essentially means that a variation of confidential input

does not cause a variation of public output. This notion can be rigorously formalized

using a language’s semantics by assuming that the state s of a program point at some

level involves the listing of the high (secret) and low (public) variables at that point,

i.e., s = (sh, sl). Letting S denote the set of states, we can view the semantics
�
C �

of a program C as a function
�
C � : S → S⊥ (where S⊥ = S ∪ {⊥}) that maps an

input state s ∈ S either to an output state
�
C � s ∈ S, or to ⊥ if C fails to terminate.

Variation of secret input can be described as an equivalence relation =L on states,

which says that two states are equal whenever they agree on public values (i.e., s =L s
′

iff sl = s′l). Then the observational power of a potential attacker can be modelled by

a relation ≈L on behaviours such that two behaviours are related by ≈L iff they are

indistinguishable to an attacker. The choice of ≈L depends on the specific security

property desired (and thus on the attacker model). Thus non-interference can be

formalized as follows: C is secure iff

∀s1, s2 ∈ S.s1 =L s2 =⇒
�
C � s1 ≈L

�
C � s2

Examples of this approach include the SLam calculus [HR98], an extension of the

λ-calculus that enforces secrecy and integrity properties. Agat [Aga00] discusses how

imperative programs could be transformed so that information leaks due to timing

channels could be closed. Abadi and Gordon [AG99, AG97] prove security proper-

ties based on process equivalences in the spi-calculus. Finally, [CGG02] provides an

extension of the π-calculus using sorts (or “groups”) that ensure a secrecy property

1Much of this brief discussion is taken from [SM03]

13

2.2. System Analysis

through sort checking.

While semantic analyses can formalize extremely accurate properties of a program,

they are often based on equivalences that aren’t decidable in general. Thus the

truly interesting area of research is the connection between the static and semantic

approaches, i.e., getting results that are as accurate as possible while maintaining

practicality. This thesis focuses on that connection in the context of concurrent

networks.

14

Chapter 3

Background: The Π-Calculus

This section presents the background required to comprehend the rest of the thesis.

Specifically, a complete description of the formal semantics of the variant of the

monadic π-calculus studied in the following sections is presented.

3.1 Syntax

Assuming a countably infinite set of names N = {a, b, . . . , x, y, . . .}, and a distin-

guished element τ such that N ∩ {τ} = ∅. A process in the π-calculus is a term built

from the following syntax:

π ::= τ | x〈y〉 | x(y) | [x = y]

P ::= 0 | π.P | P + P | P‖P | (νx)P | !P

The production π defines the allowable prefixes (or actions) of a process P . Given

a process P , the set of output prefixes (i.e., prefixes of the form x〈y〉) of P is denoted

OP , and the set of its input prefixes (i.e., prefixes of the form x(y)) is denoted IP .

The set of match prefixes (i.e., prefixes of the form [x = y]) is denoted MP . The set

15

3.2. Semantics

of observable prefixes of P is defined as XP = OP ∪ IP . The name playing the role

of the communication channel in an observable prefix π is called the channel of π

(denoted cha[π]), and the datum of π (denoted dat[π]) is similarly defined. Formally:

Definition 3.1.1.

cha[x(y)] � x cha[x〈y〉] � x

dat[x(y)] � y dat[x〈y〉] � y

The functions cha[·] and dat[·] are not defined on any other inputs. Lastly, the set

of all prefixes of a process (observable prefixes and matches, excluding τ) is denoted

by ΠP = XP ∪MP .

The trailing 0 is hereafter omitted from any sequence of prefixes, i.e., π is written

rather than π.0 for any prefix π. Input prefixes and restrictions bind names, e.g., the

name y in the process x(y).P is bound in (or scoped to) P . Given a process P , the

set of names n(P), and the set of bound names bn(P) are defined in the obvious way.

The set of free names (fn(·)) of P is defined as fn(P) = n(P) \ bn(P). A process P

is closed if fn(P) = ∅, and open otherwise. Furthermore, the set β(P) is defined as

the set of names occurring as the bound parameter in an input prefix in P , and its

complement (with respect to P) is denoted by χ(P) = n(P) \ β(P).

Finally, a notion of substitution on processes is defined as follows: given a process

P , the process P{x 7→ y} is defined as the same process as P with every free occur-

rence of the name x replaced by the name y (under the assumption that y /∈ fn(P)).

3.2 Semantics

This section begins by informally introducing the meanings of the process constructors

defined in the syntax above. The prefixes x(y), x〈y〉, τ represent a process attempting

synchronous input, output, and an unobservable (silent) action respectively. The

match prefix [x = y] models an idle process unless the names x and y are identical, in

16

3.2. Semantics

Construct Name Description

0 nil
An idle process, a process that can take no
actions

x(y).P input
Binds the name y in P , waits until it syn-
chronously receives inputm on channel x, and
then behaves as P{y 7→ m}

x〈y〉.P output
Waits until it can synchronously send output
y on channel x and then behaves as P

τ.P silent
Takes one step to do action τ at any point and
then behaves as P

[x = y].P match
Behaves as P if the name x is the same as the
name y, and behaves as 0 otherwise

P1 + P2 choice
Non-deterministically behaves as either P1 or
P2 but not both

P1‖P2
composition

Behaves as P1 and P2 executing in parallel,
allowing them to communicate synchronously

(νx)P restriction
Binds the name x in P , generates a new name
x to be used in the scope of the process P

!P replication
Behaves as an infinite number of copies of P
in parallel composition (i.e., as P‖P‖P‖ . . .)

Table 3.1: Informal meanings for the various syntactic constructs of the π-calculus.

which case the process is allowed to execute. The nil process 0 represents an inactive

process. The + operator forces a non-deterministic choice between its operands, while

the ‖ operator places two processes in parallel composition with one another allowing

them to execute simultaneously. The restriction operator ν creates new names, and

the replication operator ! models the behaviour of its operand placed in parallel

composition with infinite copies of itself. These informal behaviours are summarized

in table 3.1.

These descriptions are formalized by a trio of relations on processes defined through

precise logical inference rules on the structure of processes. These relations are defined

formally in the following sections.

17

3.2. Semantics

3.2.1 Structural Congruence

First, it is noted that α-equivalence (=α) is defined as in [BDPZ03] by assuming that

names are “stable”, i.e., that for each name a ∈ N there is a canonical representative

bac ∈ bNc. Two names are said to be α-convertible only if they have the same

canonical names, although hereafter we shall just write a for bac. In other words, if

the set N is partitioned into countably infinite subsets {a, a′, a0, . . .}, {b, b′, b0, . . .},

. . . , then two names can only be α-converted if they belong to the same subset. This

statement may be a technicality, but it is worth mentioning in order to statically

maintain the identity of names that may be lost through unrestrained α-conversions.

The α-equivalence relation =α is necessary in order to rename the bound names of a

process in order to avoid conflicts between them as the computation takes place.

Structural congruence on processes is then defined as the least relation on closed

processes satisfying the rules in table 3.2. Most of these rules describe standard

properties that processes should emulate (e.g., commutativity and associativity of

processes), allowing us to identify processes that behave in the same way. We only

point out the rule (S Rep) that allows copies of the process P to be “peeled off”

from the replicated process !P as needed. This rule emulates the behaviour that !P

behaves as P‖P‖

3.2.2 Operational Semantics

The complete operational semantics are given as a labelled transition system in ta-

ble 3.3. The semantic rules define an early transition system defining a set of rela-

tions
µ

−→ between processes, with µ ranging over the set {ab, ab, a(b), τ} of labels for

{a, b} ⊆ N . A process P is said to reduce to a process Q if, using these inference

rules, it can be proven that P
τ

−→ Q. The binary predicate ψ (defined at the top of

table 3.3) is purely a notational convenience, and is only used as a condition for the

18

3.2. Semantics

(S Switch) (S Extrude)

(νx)(νy)P ≡ (νy)(νx)P
x/∈fn(P)

(νx)(P‖Q) ≡ P‖(νx)Q

(S Assoc) (S Commute) (S Rep)

P‖(Q‖R) ≡ (P‖Q)‖R P‖Q ≡ Q‖P !P ≡ P‖!P

(S Refl) (S Drop) (S Symm)

P ≡ P
x/∈fn(P)

(νx)P ≡ P
P ≡ Q
Q ≡ P

(S Trans) (S Par) (S Res)

P ≡ Q Q ≡ R
P ≡ R

P ≡ P ′

P‖Q ≡ P ′‖Q
P ≡ P ′

(νx)P ≡ (νx)P ′

Table 3.2: Structural Congruence for the Π-Calculus

rule (R Par), note that the functions bn(·) and fn(·) are extended to labels in the

obvious way.

An interesting property of the π-calculus that is relevant to dataflow analysis is

scope extrusion. It refers to the ability of a process to send its bound names outside

of its own scope, and is a consequence of the (R Close) rule. Consider the parallel

composition P‖Q with P � (νa)x〈a〉.P ′ andQ � x(b).Q′. The process P has a private

name a, and wishes to send it on channel x, and by the (R Open) and (R Out) rules it

can be derived that P
x(a)
−→ P ′. Meanwhile, Q is waiting to receive a value on the very

same channel x, and by the (R In) rule, Q
xa
−→ Q′{b 7→ a} can be derived. Thus the

(R Close) rule can be used to derive that P‖Q
τ

−→ (νa)(P ′‖Q′{b 7→ a}) is derivable.

Effectively, the name a which was bound in P has been sent to another process,

and its scope has been “extruded” to encompass both processes. This phenomenon

is obviously important when trying to develop dataflow analyses that are correct

independent of context.

19

3.2. Semantics

ψ(µ, P) � (bn(µ) ∩ fn(P) = ∅)

(R Tau) (R In) (R Out)

τ.P
τ

−→ P a(y).P
ab
−→ P{b7→y} a〈b〉.P

ab
−→ P

(R Par) (R Sum) (R Close)

P0
µ

−→ Q0 ψ(µ,P1)

P0‖P1
µ

−→ Q0‖P1

P0
µ

−→ Q0

P0+P1
µ

−→ Q0

P0
a(b)
−→ Q0 P1

ab
−→ Q1

P0‖P1
τ

−→ (νb)(Q0‖Q1)

(R Res) (R Open) (R Com)

P
µ

−→ Q a/∈n(µ)

(νa)P
µ

−→(νa) Q

P
ab
−→ Q b6=a

(νb)P
a(b)
−→ Q

P0
ab
−→ Q0 P1

ab
−→ Q1

P0‖P1
τ

−→ Q0‖Q1

(R Match) (R Var)

P
µ

−→ Q

[x=x].P
µ

−→ Q

P ′≡P P
µ

−→ Q Q≡Q′

P ′
µ

−→ Q′

Table 3.3: Operational Semantics of the Π-Calculus

20

Chapter 4

Static Dataflow Analysis

The π-calculus language described in the previous chapter can be used to model

systems of processes executing in parallel. These can range in behaviour from mod-

elling database servers and their potential clients, cryptographic protocols (perhaps

with an extension to the language as in Abadi and Gordon’s spi-calculus [AG99]), or

even standard sequential operations such as arithmetic or propositional logic expres-

sions. Regardless of the process in question, static analysis techniques can be applied

to the formulation in order to efficiently compute an approximation of the process’

potential behaviour. Such an approximation can be used to provide guarantees about

the execution of the process (which can represent anything from a calculator to a net-

work), such as the potential usage limits of the network, or the fact that the protocol

that it represents respects a particular security policy.

As mentioned in chapter 2, static analyses can generally be formulated as a type

system or as an abstract interpretation. This chapter begins the development of

a new abstract interpretation for π-calculus processes. This abstraction is used to

compute a dataflow analysis of the calculus, and the technique is shown to be able to

model previous analyses [BDNN98,BDNN01b,BDPZ03]. Subsequent chapters work

21

4.1. A First Abstraction of Processes

to enhance the abstraction presented here in order to obtain increasingly refined

process representations, and thus more accurate results than had previously been

possible. The tradeoffs of such refinements are also discussed.

4.1 A First Abstraction of Processes

Analyzing π-calculus processes in general is a hard, and often undecidable problem.

The semantic techniques described in section 2.2.2 are dynamic approaches that,

while capable of providing extremely accurate results in theory, rely on the existence

of an equivalence relation on the denotations of the systems under scrutiny. In the

context of the π-calculus, such equivalences (bisimulations [Par81] or other observa-

tional equivalences) have not been shown to be decidable in general, and thus are

questionable in terms of their practicality. Static analyses provide polynomial time

algorithms because they safely approximate the behaviour of the process, and this

approximation can then be used to efficiently check that a process conforms to a

desired property.

In order to achieve such results, it is necessary to represent π-calculus processes

in a simpler form that abstracts some of their behaviour, while still yielding correct

results. The analogy to the discussion from section 2.2.2 is the representation of

integers by their signs, this abstraction allows for the computation of partial infor-

mation about an arithmetic expression (namely the sign of the final result), by using

the efficient abstract operations ∗̃ and +̃ instead of the (relatively) expensive multi-

plication and addition operators on integers. In the same way, a π-calculus process

can be abstracted to a simpler form that is amenable to worst-case polynomial time

execution.

22

4.1. A First Abstraction of Processes

4.1.1 Flow Insensitive Representation

The only action (aside from the unobservable τ action) that a π-calculus process

can take is that of synchronous communication between two processes composed in

parallel with the ‖ operator. A natural first abstraction on such a process is to

view it as the set of actions that it could potentially perform as a whole, regardless

of the sequencing or structure in which these actions could occur during the actual

execution of the process. Specifically, we can view a π-calculus process P as the set

of observable prefixes (actions) that it contains, while ignoring the operators that

sequence (through the . operator) or structure (with the ‖, +, and !) these actions in

particular ways. These ideas are formalized by the following definition

Definition 4.1.1. Given a π-calculus process P , and recalling the definition of XP =

OP ∪ IP as the set of input and output prefixes of a process, the flow insensitive

abstraction function
�
P � ∅ is defined as follows:

�
P � ∅ = XP

It is assumed that the bound names of P are first α-converted to avoid repetition.

Note that the match prefixes MP of P are also omitted from the denotation. The ∅

subscript indicates that no information about the preceding behaviour of each prefix is

included in the representation. The representations in subsequent chapters, however,

pair each prefix with subsets of the actions that precede them in order to reason

about the sequential nature of the process. The analysis presented in this section

therefore implicitly assumes that all tests (matches) succeed, and do not block any

subsequent actions. This simplification is very conservative, but the analysis discussed

in this section is useful nonetheless, as it is used as a building block for more accurate

analyses.

23

4.1. A First Abstraction of Processes

The abstraction is flow insensitive because it ignores all sub-process structure, i.e.,

the following equations are satisfied for any names a,b,c,d:

�
a(b) + c〈d〉 � ∅ =

�
a(b)‖c〈d〉 � ∅ =

�
a(b).c〈d〉 � ∅ = {a(b), c〈d〉}

An identical property applies for the abstractions of the replicated versions of the

above processes. Briefly, given any process P , this abstraction does not differentiate

between P and P̃ where P̃ is the same as P with all prefixing and choice operators

replaced by ‖ and replication operators moved to the top level. The unobservable τ

action is excluded from the representation because it contributes nothing to dataflow

within a process. The abstraction is context insensitive because the representation

of the subprocess P does not change if it is abstracted in another context. These

properties directly imply the compositionality of the abstraction process stated here

as a proposition (which could in fact be used as an alternative definition):

Proposition 4.1.1.

�
P‖Q � ∅ =

�
P +Q � ∅ =

�
P � ∅ ∪

�
Q � ∅ ∀P,Q

�
(νx)P � ∅ =

�
τ.P � ∅ =

�
!P � ∅ =

�
P � ∅ ∀P ∀x ∈ N

�
π.P � ∅ = {π} ∪

�
P � ∅ ∀P ∀π ∈ XP

Proof. Immediate from definition 4.1.1.

Definition 4.1.1 requires that P be α-converted to avoid name repetition. This is

done in order to avoid needlessly identifying our analysis results for repeated names.

Consider the process P = x〈a〉 + (νa)(x〈a〉) representing a process that has the

capability of sending the name a over the channel x in one of two ways, however

the name a in the left sub-process is semantically distinct from the one in the right

sub-process because the latter is bound in (νa)(x〈a〉). In fact, P has the capability

of transmitting two different names over the channel x. Applying our abstraction to

P without first α-converting the names appropriately would lose this distinction, i.e.,

24

4.1. A First Abstraction of Processes

the denotation of P would be the singleton set {x〈a〉}. By α-renaming the process

to make the difference explicit, we can preserve that information in the abstract set,

i.e., by renaming P =α x〈a〉 + (νa′)(x〈a′〉) the abstraction would more accurately be

computed as
�
P � ∅ = {x〈a〉, x〈a′〉}. This assumption applies to all processes considered

in this thesis and is formally stated here:

Assumption 1. Any analyzed process P is pre-processed by α-converting it to avoid

syntactic repetition of bound names

Furthermore, it is assumed that each prefix in the process is labelled so as to

distinguish between multiple occurrences of a prefix pair, and that a mapping between

labels and occurrences of prefixes exists. It is these labels that are actually used in

the representations presented in this thesis. In fact, any reference to a prefix actually

refers to a label mapped to the occurrence of a prefix. For clarity, this additional step

has been omitted from this treatment, and the examples presented avoid multiply

occurring prefixes. However, this assumption must be kept in mind, and is stated

formally here:

Assumption 2. Every prefix in a process is labelled, and there exists a mapping

from labels to occurrences of prefixes. A reference to a prefix in the remainder of

the document is actually a reference to a label denoting a particular occurrence of a

prefix.

4.1.2 Abstract Execution

The development of an abstract representation of processes as sets of prefixes yields

a simplified universe which is much easier to analyze than the universe of all possible

processes. The next step is to develop a concept of execution in this universe that

would glean some partial information about the potential behaviour of the original

25

4.1. A First Abstraction of Processes

π-calculus process. In order to do so, it is important to formally characterize the

information that one wishes to compute.

Given that the only dataflow action that a π-calculus process can take is the

transmission of names over channels, it is quite natural that the final solution of the

abstract execution function include this information. Specifically, given the denota-

tion of a π-calculus process
�
P � ∅, the abstract execution should compute a function

K taking each name n ∈ n(P) to a superset of the names that could be transmitted

over n. In other words, if it is possible for P to perform an action P
nx
−→ P ′ for some

name x (i.e., if P can send x over n), the final solution K of the abstract execu-

tion should include x ∈ K(n). While this notion is necessary for a full treatment of

dataflow, it is insufficient, as the transmitted name x could itself be bound by input

(i.e., x ∈ β(P)). In this case, the name x could actually be substituted for other

names during execution (because x acts as a datum in some input prefix), and thus

these names should also be kept track of by the analysis. The set of names that a

name x could assume during execution is denoted by R(x), and if it is possible for a

process P to transmit x over a channel n as above, then we must ensure that the final

solution of the analysis includes the entirety of R(x) in K(x). Using like reasoning,

we formally develop the characterization of our analysis solution below.

A Lattice Of Solutions

For a given process P , the solutions computed by the abstract execution function will

consist of pairs of functions (R,K), where R : N → 2N will yield the set of names

that a name could assume during execution (where names not in β(P) are mapped

to themselves), and K : N → 2N will yield the set of names that could directly be

transmitted over the given name acting as a channel in an output prefix. Any names

not involved in the process in question will be taken to bottom (i.e., the empty set)

26

4.1. A First Abstraction of Processes

by these functions.

It is a standard result that, given any countable set S, the powerset of S (denoted

2S) forms a complete lattice L in which inclusion (⊆) is the partial ordering (vL) in

L, the union (∪) and intersection (∩) operations are the least upper bound (tL) and

greatest lower bound (uL) operations in L respectively, and ∅ and S are the bottom

(⊥L) and top (>L) elements of L respectively. Furthermore, it is known that the

total function space between a countable set S and a lattice L also forms a complete

lattice under the standard pointwise operations:

Fact 4.1.1. Given a countable set S and a lattice (L,vL,tL,uL,⊥L,>L), let [S ⇒ L]

denote the set of all total functions from S to L. Given any f, g ∈ [S ⇒ L], define

the following:

f v g ⇔ ∀x ∈ S : f(x) vL g(x)

(f t g)(x) = (f(x) tL g(x))

(f u g)(x) = (f(x) uL g(x))

⊥(x) = ⊥L

>(x) = >L

for any x ∈ S, then ([S ⇒ L],v,t,u,⊥,>) also forms a complete lattice.

It then trivially follows that the set [N ⇒ 2N] forms a complete lattice. The

bottom element is the function that takes every input to the empty set, and shall be

denoted ⊥K as it will act as the bottom element for the K component of the analysis

solution.

Now, consider any subset I ⊆ S, and take any function ⊥I
S ∈ [S ⇒ 2S] that takes

each element in I to the singleton set composed of itself, i.e., ⊥I
S(i) = {i} for each

i ∈ I, and takes all other elements of S to ∅. The subset of [S ⇒ 2S] composed of

functions greater than ⊥S
I also forms a complete lattice for any I:

27

4.1. A First Abstraction of Processes

Proposition 4.1.2. Given a countable set S, its induced function space lattice [S ⇒

2S], and given any subset I ⊆ S, if the function ⊥I
S is defined as

⊥I
S(x) =

{x} , if x ∈ I

∅ , otherwise

for any element x ∈ S, then the set LI
S = {f ∈ [S ⇒ 2S] | ⊥I

S v f} forms a

complete sub-lattice of [S ⇒ 2S] with the same partial ordering, least upper bound and

greatest lower bound operations, and top element, and with bottom element ⊥I
S.

Proof. The relation v is trivially still a partial ordering on the subset LI
S, and ⊥I

S v f

for any f ∈ LI
S by definition, and thus in fact is the bottom element of LI

S. Since

f v > for any f ∈ [S ⇒ 2S] then > is certainly greater than any function in LI
S,

so the top element does not change. For any subset F ⊆ LI
S, ⊥I

S is a lower bound

of F by definition of LI
S. Furthermore, tF is an upper bound of F by definition of

t. Thus ⊥I
S v tF by transitivity of v, and hence tF ∈ LI

S by the definition of LI
S.

Finally, ⊥I
S is a lower bound on F because it is the bottom element, and uF exists

in [S ⇒ 2S] because it is a lattice. Now suppose that it is not in LI
S, this implies

that some i ∈ I is mapped to ∅ by uF . Since the u function takes the intersection of

the images of each element of S under uF , this implies that some function in F also

mapped i to the empty set, contradicting the fact that F ⊆ LI
S, yielding the desired

result that uF ∈ LI
S.

This proposition implies that the set LI
S ⊆ [N ⇒ 2N] generated as above for some

I ⊆ N forms a complete lattice denoted LI
R. The bottom element of this sub-lattice is

denoted ⊥I
R, and shall act as the bottom element for the R component of the analysis

solution. As indicated by the notation, the subset I taken will depend on the process

in question: namely I shall be defined as I = χ(P). This will have the effect of

“initializing” the R function to return {x} for every name x ∈ χ(P)1.

1This captures the notion that every name not bound by input will at least represent itself during

28

4.1. A First Abstraction of Processes

Since complete lattices are closed under Cartesian product (again by ordering

pairs pointwise), the set of all pairs of such functions (R,K) also forms such a lattice,

which shall be denoted by LP
∅ , and its bottom element is denoted ⊥P

∅ = (⊥χ(P)
R ,⊥K).

This solution set is identical to that used by Bodei et al. in [BDNN98, BDNN01b]

(see section A.1 in the appendix for an overview). The superscripts P and χ(P) are

hereafter omitted when the process in question is clear from the context.

The Execution Function

As observed above, every prefix implies a potential communication: an output prefix

implies that its datum should be included in the set of names that its channel could

transmit, and an input prefix implies that the set of names transmitted over its

channel and allowed by its filter should be included in the set of names that its datum

could assume. This observation motivates the definition of the dataflow analysis as

a function that iterates over sets of prefixes, while updating the solution functions in

L∅.

Prefixes can be formalized by pairs as follows:

• An output prefix x〈y〉 is formalized as a pair of the form 〈x, y〉, for {x, y} ⊆ N ,

and the set of all such pairs 〈N ×N〉 is denoted by O

• An input prefix x(y) is formalized as a pair of the form (x, y), for {x, y} ⊆ N ,

and the set of all such pairs (N ×N) denoted by I

• The set of all observable prefixes is then denoted by X = O ∪ I.

The shape of the brackets around the pairs are used only to indicate that the two

isomorphic sets are kept distinguished. Viewed this way, the functions cha[·] and

dat[·] can be seen as the first and second projections over these sets. The function

execution.

29

4.1. A First Abstraction of Processes

Ω : 2X → L∅ → L∅ is then defined as our abstract execution function. Intuitively,

given a set of prefixes S ⊆ X, this function can then be viewed (by currying S) as

ΩS : L∅ → L∅ taking an initial pair of functions (R,K) ∈ L∅ and returning a pair

of functions that is updated by the information gleaned by iterating over the set S.

Functions f : L → L over elements of lattices are extended to sets of elements in the

obvious way, i.e., ∀L ⊆ L : f(L) =
⊔

x∈L f(x) with t denoting the join operation in

the lattice L. Similarly, the functions β(·) and χ(·) previously defined on processes

are extended to sets of prefixes, i.e., β(S) is the set of names occurring as the datum

in an input prefix etc.. For convenience, a special notation for singleton maps is

defined as follows: for a countable set X and a lattice L, the map in [X ⇒ L] that

takes an element x ∈ X and returns an element l ∈ L and maps every other element

of X to ⊥L is denoted by 〈x 7→ l〉.

The effect of ΩS varies according to the kind of prefixes in S; input prefixes

only affect the R component of the solution while output prefixes only affect the K

component. We thus define a function that operates on prefixes that handles these

behaviours. The function Ωπ : L∅ → L∅ (defined for π a prefix in X) takes a pair

(R,K) ∈ L∅ to the resulting pair after the effect of π has been considered. The

behaviour of the function on the two types of prefixes are given by the following

auxiliary functions:

ΩI
(x,y)(R,K) = R t 〈y 7→ K(R(x))〉

ΩO
〈x,y〉(R,K) =

⊔

z∈R(x)

(K t 〈z 7→ R(y)〉)

For every input prefix (x, y) ∈ S, ΩI
(x,y) adds names potentially transmitted over

every name that x (the channel) could assume (given by K(R(x))) to the names that

y (the datum) could itself assume. This is done by joining the given R with the

singleton map 〈y 7→ K(R(x))〉. Note that if x is not itself bound by input, then

30

4.1. A First Abstraction of Processes

R(x) = {x} by definition and only the set K(x) is added to the image of y in R (i.e.,

only the names directly transmitted over x are added). Note that this function takes

a pair (R,K) and only returns the resulting R component (as input prefixes do not

affect the K component).

For any given output prefix 〈x, y〉, ΩO
〈x,y〉 augments K at every name z that x

(the channel) could assume with the set of names that y (the datum) could assume,

and the results are combined by the usual join operations. Note, for instance, that

if neither x nor y are bound by input (i.e., in β(S)), then this equation reduces to

adding R(y) = {y} to the set K(x). Similar to the input function, this function takes

a pair (R,K) and only returns the resulting K component (since output prefixes do

not affect the R function).

Next, the functions are packaged into a function that operates on a prefix and

takes a pair λ = (R,K) to the resulting pair:

Ωπ(λ) =

(ΩI
π(λ), K) if π ∈ I

(R,ΩO
π (λ)) if π ∈ O

Lastly, this function is extended to operate over a full set of prefixes (the repre-

sentation of the desired function) to obtain an analysis step function that updates

the current solution with the information gleaned from the full set. Given S ⊆ X a

set of prefixes, the function ΩS : L∅ → L∅ is defined as:

ΩS(λ) =
⊔

π∈S

Ωπ(λ)

For λ = (R,K) a pair in L∅. Observe that the operation of the prefix functions ΩI
π

and ΩO
π can only increase the size of the image-sets of the functions R and K for any

name, i.e., they are monotone functions over their respective lattices. It therefore

follows that ΩS : L∅ → L∅ is a monotone function over L∅, i.e., that λ v ΩS(λ) for

any input pair λ ∈ L∅. The Knaster-Tarski fixed point theorem therefore asserts that

31

4.1. A First Abstraction of Processes

this function has a least fixed point in L∅, i.e., a least pair λ such that ΩS(λ) = λ, and

furthermore that this point can be computed by iterating ΩS from bottom some finite

number k times. Thus, given a π-calculus process P , and recalling the representation

of P as the set of its prefixes
�
P � ∅ (abbreviated in the equation below as

�
P � for

clarity), the solution λsol ∈ L∅ to the flow and context insensitive dataflow analysis

can be expressed as the least fixed point of Ω � P � in L∅, and is computed by the

following function:

λsol = (R,K) = lfp(Ω � P �) = Ω
(k)

� P � (⊥∅) (4.1)

for some sufficiently large finite integer k, and h(k)(x) denoting the application of the

function h to input x some integer k times. The number of iterations is finite, and in

fact quadratic in the size of the process P , because there are at most N sets in the

solution space for each function R and K (with N the number of names in P), and

a maximum of N names in each set.

4.1.3 Correctness

Correctness (with respect to a process P) in this setting implies that any reduction

that P could perform by communication is faithfully represented by the final solution

pair. More formally, if P
τ

−→
∗
P ′ and P ′ µ

−→ Q′ for some label µ, then the final

solution pair (R,K) computed for P includes the consequent of the communication

µ. Bodei et al. [BDNN01b] prove this as a subject reduction theorem for P (see the-

orem A.1.1 in the appendix). Correctness of the approach presented above is proven

here by proving that the solution (R,K) computed by the abstract interpretation is

a valid solution to the constraints generated by Bodei et al.’s analysis:

Theorem 4.1.3. Given a π-calculus process P , let (ρ, κ) be the least solution to the

constraints generated for P by the judgement in table A.1, and let (R,K) = lfp(Ω � P �),

32

4.1. A First Abstraction of Processes

then

(ρ, κ) v (R,K)

with v the partial ordering on solutions described in section 4.1.2.

Proof. Observe first that the two solutions are elements of the same lattice Lχ(P)
R ×LK

and thus can be compared by v. It is now possible to reason by the behaviour of

Ω � P � on the two kinds of prefixes.

Case. (Input) For any input prefix x(y) in P , the following equation holds:

R = R t 〈y 7→ K(R(x))〉

since R is the least fixed point of ΩI
(x,y). By instantiating the t operation to the union

of the image of y:

R(y) = R(y) ∪K(R(x))

and therefore that K(R(x)) ⊆ R(y). Expanding the application of K to R(x) yields

⋃

u∈R(x)

K(u) ⊆ R(y)

Since the union of all such subsets K(u) satisfies the inequality, each of the subsets

must also satisfy the same inequality, i.e.,

∀u ∈ R(x) : K(u) ⊆ R(y)

Which is the exact set of constraints satisfied by the solution pair (ρ, κ) for x(y).

Case. (Output) Similarly for any output prefix x〈y〉 in P , the following equation

holds:

K =
⊔

z∈R(x)

K t 〈z 7→ R(y)〉

since K is the least fixed point of ΩO
x〈y〉. Instantiating the t operation as in the above

case gives:

∀z ∈ R(x) : K(z) = K(z) ∪ R(y)

33

4.2. Implementation

and therefore that R(y) ⊆ K(z) for every z ∈ R(x) Which is the exact set of con-

straints satisfied by (ρ, κ) for x〈y〉.

Thus the solution pair (R,K) satisfies the same constraints satisfied by (ρ, κ)

yielding the result.

Note that equality does not hold in the above theorem because Bodei et al.’s

analysis does not generate such constraints for all prefixes. Specifically, because of

the rule for the match prefix in table A.1, constraints are not generated for prefixes

that follow matches prefixes [x = y] that don’t satisfy the equation (R(x)∩R(y)) 6= ∅.

This was not included in the analysis here because in fact, this implies a context

dependency in the result: a test [x = y] may not pass by the reduction of P as a

independent process, but it may very well pass if P were to run in an arbitrary context!

In fact, the subject reduction theorem (theorem A.1.1) only holds for closed processes

P . This drawback is further discussed and improved in the following chapter.

4.2 Implementation

The abstract interpretation presented above was inspired by algorithms used in op-

timizing compilers in order to statically predict the behaviour of references during

execution of sequential programs. This section presents a demonstrated relation be-

tween “traditional” compiler-driven points-to analysis and the above analysis of the

channel passing behaviour of π-calculus processes. This yields a simple polynomial

time algorithm for computing the abstract execution function ΩS discussed above.

4.2.1 Intuition: Andersen’s Points-to Analysis

The implementation of the dataflow analysis of the π-calculus is based on Ander-

sen’s technique for doing a flow and context insensitive points-to analysis on the C

34

4.2. Implementation

programming language [And99]. This is an inclusion based analysis which, for every

reference variable (pointer) x in a C program, computes a superset of the variables

that it could point to during the execution of the program. Consider the following

example program fragment:

1: int *p,*q,*r,n;

2: if (cond)

3: p = q;

4: else

5: q = r;

6: r = &n;

The first step of Andersen’s analysis is to strip out only the relevant statements in

the program (i.e., only those statements that affect assignments to pointers). Thus,

only the statements in lines 3, 5, and 6 are considered. Next, the analysis iterates

through these statements: for each pointer assignment, the program learns a new

constraint that it must satisfy. Let pts(x) be the set of variables that a pointer

variable x could point to and initialize this set to ∅ for each pointer in the program.

Then, in the first iteration of this example, the program first considers the statement

assigning q to p, from which it learns that pts(q) ⊆ pts(p). Thus it must add

everything in pts(q) (which is empty at this point) to pts(p). The same happens

when the algorithm considers statement 5. When it arrives at the next statement (r =

&n;), the deduction is made that the pointer r points to the variable n, thus n should

be added to pts(r). The situation can be expressed as a graph with variables as

nodes and a directed arc a→ b representing inclusion of b in pts(a) in the points-to

set. The iterations of Andersen’s analysis on our program fragment are represented

as such a graph in figure 4.1.

The algorithm continues to iterate through the relevant statements of the program

until a fixed point is reached (i.e., until none of the points-to sets change in a given

iteration). Once the fixed point is reached, every pointer element will contain n in its

points-to set (and thus, p, q, and r will all have an arc to n in the graph).

35

4.2. Implementation

p

q

r

n

(i)

p

q

r

n

(ii)

p

q

r

n

(iii)

Figure 4.1: The three iterations of Andersen’s analysis on our program fragment

4.2.2 A Simple Example

Andersen’s points-to analysis is analogous to dataflow analysis in the π-calculus in

that the algorithm implicitly represents a C program as the set of pointer assignment

statements it contains (much as the dataflow analysis represents a process P as the

set of prefixes it contains), and then updates the solution function pts based on a

flow equation. This iterative technique can be applied to π-calculus processes in an

effort to algorithmically compute the function ΩS. This is done by coming up with

an iterative algorithm for each of the auxiliary functions ΩI
S and ΩO

S . Luckily, this is

quite easy to do. Observe that the solution pair (R,K) ∈ L∅ can only take names

in the process P to a non-bottom value, thus the solutions are implemented by two

tables R and K (distinguished from the abstract functions R and K) of O(N) entries,

with N > |n(P)| the number of symbols in P , which can each map to a set of at most

O(N) elements. Thus only O(N 2) space is required to store the solution. The K table

is initialized to map each element to the empty set, while the R table is initialized

to map every element to a set containing only itself (representing the ⊥K and ⊥R

functions respectively).

Next, recall that the t operation in the ΩI
S function is a simple set union: for any

set S, given any function F in [S ⇒ 2S], the supremum of F with a singleton map

〈y 7→ Y 〉 (for y ∈ S and Y ∈ 2S) is the same function as F with every element of Y

36

4.2. Implementation

added to the image F (y), i.e.,:

F t 〈y 7→ Y 〉 = F{y 7→ (Y ∪ F (y))}

In the case where F is implemented by a table (as in R and K), this can be computed by

simply merging the set F (y) (obtained with a table lookup) with the set Y , a quadratic

operation in the worst case. Furthermore, because set unions are commutative and

associative, they can be done in any order, and thus the functions ΩI
S and ΩO

S can

be implemented by iterating through their respective prefix sets in any order, and

adding the appropriate elements for each prefix.

This section offers an example of the procedure outlined above in action, consider

the following π-calculus process:

Example 4.2.1.

P � a(x).(νb)(νc)((b〈a〉.x〈x〉.b(y).y〈c〉+!b〈d〉.a〈c〉) ‖ b(z).b〈z〉) ‖ d(w)

This is identical to example 3.1 in [BDNN01b] for comparison, except that the

extensions have been removed and the process has been α-converted in order to

eliminate ambiguities in naming. Note that β(P) = {x, y, z, w} and that n(P) \

β(P) = χ(P) = {a, b, c, d}. Note that the full filtered input functionality is not used

for clarity. Analogous to Andersen’s analysis where all statements are stripped of the

program except for pointer assignments, only input and output prefixes are considered

here. Specifically, the representation of P is computed as
�
P � ∅ = XP = IP ∪OP where

IP = {a(x), b(y), b(z), d(w)} and OP = {b〈a〉, x〈x〉, y〈c〉, b〈d〉, a〈c〉, b〈z〉}. The tables

K and R are next initialized appropriately, and these are updated by iterating through

the list of prefixes. The step-by-step evolutions of the analysis solution is depicted in

table 4.2.2.

In the first iteration, the procedure (while computing ΩI) encounters the input

prefix a(x). R(a) = {a} initially, thus R(x) need only be updated with the set of

37

4.2. Implementation

a(x) b(y) b(z) d(w) b〈a〉 x〈x〉 y〈c〉 b〈d〉 a〈c〉 b〈z〉

R x {} {} {} {} {} {} {} {} {} {}
I y {} {} {} {} {} {} {} {} {} {}

z {} {} {} {} {} {} {} {} {} {}
w {} {} {} {} {} {} {} {} {} {}

K a {} {} {} {} {} {} {} {} {c} {c}
b {} {} {} {} {a} {a} {a} {a, d}{a, d}{a, d}
c {} {} {} {} {} {} {} {} {} {}
d {} {} {} {} {} {} {} {} {} {}

R x {c} {c} {c} {c} {c} {c} {c} {c} {c} {c}
II y {} {a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}

z {} {} {a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}
w {} {} {} {} {} {} {} {} {} {}

K a {c} {c} {c} {c} {c} {c} {c} {c} {c} {c}
b {a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}
c {} {} {} {} {} {c} {c} {c} {c} {c}
d {} {} {} {} {} {} {c} {c} {c} {c}

R x {c} {c} {c} {c} {c} {c} {c} {c} {c} {c}
III y {a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}

z {a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}
w {} {} {} {c} {c} {c} {c} {c} {c} {c}

K a {c} {c} {c} {c} {c} {c} {c} {c} {c} {c}
b {a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}{a, d}
c {c} {c} {c} {c} {c} {c} {c} {c} {c} {c}
d {c} {c} {c} {c} {c} {c} {c} {c} {c} {c}

Table 4.1: The evolution of the analysis solution (R,K) as each prefix is encountered
over the three iterations of the algorithm

38

4.2. Implementation

(i)

b

d

c

a x

w

z

y

(ii)

b

d

c

a x

w

z

y

(iii)

b

d

c

a x

w

z

y

β(P)β(P) β(P)

Figure 4.2: The three iterations of the computation of Ω
(k)

� P � (⊥∅)

possible values that a could transmit, which by definition is currently K(a) = ∅.

Thus, no new information is gained from the prefix a(x), and similarly for the other

input prefixes. The computation of ΩO begins with the prefix b〈a〉, which yields that

K(b) = {a} since neither a nor b are bound by input. The next prefix (x〈x〉) does

not yield any new data because x ∈ β(P), and R(x) = ∅. Similarly, the prefixes y〈c〉

and b〈z〉 do not change the solution since there is no information about the input

bound names y and z. The prefixes b〈d〉 and a〈c〉, however, do tell us that K(b)

must include {d} and that K(a) must include {c} respectively. Hence, at the end of

the first iteration, we have that K(b) = {a, d} and K(a) = {c}. The solution pair

representing Ω � P � (⊥∅) is presented as a graph (similar to the graph generated for the

points-to example) in figure 4.2(i). Note that this figure presents the values of the

function K as solid arrows, and the values of R are shown as dotted arrows (the self

loops representing R(a) = {a} for the names in χ(P) are omitted for clarity).

The second iteration begins again by going through the list of input prefixes, but

this time, there is more information available than ⊥∅. The prefix a(x) at this point

tells us that anything transmitted over a must be part of the names received by x, thus

39

4.2. Implementation

R(x) = {c} after seeing this prefix because K(a) = {c}. Similarly, the prefixes b(y)

and b(z) assign everything in the K set of b to the R set of z yielding R(y) = {a, d}

and R(z) = {a, d}. The last input prefix d(w) yields no new information because

there is no knowledge of any names transmitted by d. No output prefix with both

names unbound by input will have any effect now because their direct effect was

already accounted for in the first iteration, this leaves x〈x〉, y〈c〉, and b〈z〉. The first

indicates that anything that x may have received (which is currently R(x) = {c})

could be transmitted over itself, thus K(c) = {c}. The second says that c could be

transmitted over anything that y may have received (R(y) = {a, d}), hence only c

is added to K(d) since c ∈ K(a) already. The third prefix (b〈z〉) says that anything

that z may have received could be transmitted over b, so all elements of R(z) = {a, d}

must be added to K(b). But a and d are already in this set so nothing needs to be

done. The solution Ω
(2)

� P � (⊥∅) after the second iteration is presented graphically in

figure 4.2(ii).

Finally, the third iteration of the function only adds the element c to R(w), and

the fourth iteration makes no change indicating that the fixed point has been reached.

The resulting graph representing the solution after the third iteration of the analysis

on P is shown in figure 4.2(iii). It is easy to check that Ω
(4)

� P � (⊥∅) = Ω
(3)

� P � (⊥∅), and

thus this is the final solution of the analysis.

In terms of efficiency, the trivial iterative algorithm takes O(N 6) time to compute

(quadratic iterations and a worse case time of O(N 4) in order to do the unions and

intersections required for each iteration), but this can be improved by expressing the

analysis as a set of Horn Clauses (see [NS01]) to compute the function Ω � P � in cubic

time. A similar procedure could be used to compute all subsequent flow analyses

discussed in this thesis, as these in general involve restricting the prefix set that

the function operates on based on various conditions. As long as the conditions are

checkable in polynomial time, then the analysis stays polynomial.

40

4.2. Implementation

Again, notice the context-dependent nature of this result: while it has been com-

puted that the name w can only have R(w) = {c}, this is not necessarily true in any

context. If P were to interact with a process C = d〈e〉 for some name e (i.e., if P

were plugged into the context C ‖ [·], then R(w) would also need to include e in order

to be a correct result. It is thus evident that the analysis results generated in this

chapter are only correct if the process P analyzed runs in isolation. This limits the

utility of the analysis for applications such as security (because protocols often run

in hostile environments), thus the next chapter is devoted to generating results that

consider the role of the potential environment that the process could run in.

41

Chapter 5

Tracking Environment Knowledge

The analysis of the previous chapter does not account for the environment in

which the process under scrutiny could run. This implies that the analysis results are

only correct for closed processes (see the simple example at the end of the previous

chapter). This severely limits the usefulness of such control flow analyses for many

applications, notably for security, as the properties proved don’t apply in every con-

text. For instance, Bodei et al. [BDNN01b] discuss the security property of a process

P having “no leaks”, which essentially formalizes the notion that a name bound to P

stays confined to P . However, the analysis that is described there does not assume

that all matches in MP pass (as the one described in the previous chapter does).

Thus the contribution of a prefix following a match that doesn’t succeed is not in-

cluded in the final solution. Unfortunately, this is not necessarily true, consider the

following process:

P � a(x).b(y).[x = y].(νc)(νd)(d〈c〉‖d(z).a〈z〉)

The analysis presented in [BDNN01b] (and in fact any other current analyses of the π-

calculus) would infer that [x = y] can not possibly pass, and thus the computation of

the subsequent subprocess (which shall hereafter be shortened to P ′) could not occur.

42

5.1. Expansion of the Solution Space

It would then be inferred that this process has no leaks (i.e., none of its bound names

are extruded). However, consider the interaction of P with the following process:

C � a〈e〉.b〈e〉.a(w).C ′

In other words, consider the reduction sequence of C‖P (reduced redices are under-

lined at each step):

Example 5.0.2.

C‖P �
C︷ ︸︸ ︷

a〈e〉.b〈e〉.a(w).C ′ ‖

P︷ ︸︸ ︷
a(x).b(y).[x = y].P ′

τ
−→ b〈e〉.a(w).C ′ ‖ b(y).[e = y].P ′{e 7→ x}

τ
−→ a(w).C ′ ‖ [e = e].P ′{e 7→ x}{e 7→ y}

τ
−→ a(w).C ′ ‖ (νc)(νd)(d〈c〉‖d(z).a〈z〉)

τ
−→ a(w).C ′ ‖ (νc)(νd)(0‖a〈c〉)

τ
−→ (νc)(C ′{w 7→ c} ‖ (νd)(0‖0))

Observe that in this context, the private name c has indeed been leaked out of P

to the environment C. This example not only illustrates the fact that a treatment of

the environment is vital to proper security analysis, but also that such a treatment

isn’t completely trivial. It is not sufficient to assume that any name not in P could

be received, as names bound to P can exit the scope of P , and such leaks must be

tracked. This chapter endeavours to add this feature to the dataflow analysis.

5.1 Expansion of the Solution Space

The analysis described in the previous chapter produces a solution in the lattice

LP
∅ = Lχ(P)

R ×LK for a given process P . This solution space is extended with a third

component E ⊆ N that keeps track of the set of names that the environment knows

about, and is thus called the environment knowledge. Bodei et al. [BDPZ03] provided

43

5.1. Expansion of the Solution Space

a partial treatment of this component, which is expanded (and proved correct) in this

chapter. Observe first that the set of potential solutions for E is just the power set of

N , i.e., 2N , and thus forms a complete lattice with ∅ as bottom, and N as top. An

initialization property similar to proposition 4.1.2 for the R component applies here

as well:

Proposition 5.1.1. Given a countable set S, let L denote the usual lattice of subsets

of S, and consider any subset I ⊆ S, the set LI = {T ∈ L | I v T} of subsets of S

that include I forms a complete sub-lattice of L with I as bottom, and N as top.

The proof is trivial, and closely follows the proof of proposition 4.1.2, and is thus

omitted. Just as for the R component, this is used to “initialize” E for a given process

P .

This initialization is done by defining the special name ξP to denote the set of

names that do not appear in P , i.e., ξP = N \ n(P). Inclusion or non-inclusion

in this infinite set can be tested easily by testing for non-inclusion or inclusion in

n(P) respectively. This “set”, together with the set of free names of P , will act as

the initialization set for the environment knowledge component E of the solution:

it describes the set of names that the environment of a process P may know about

before it begins its reduction sequence.

The new solution lattice is denoted by LP
E and defined as the triple LP

E = Lχ(P)
R ×

LK ×LξP ∪fn(P)
E , where LξP∪fn(P)

E denotes the sub-lattice of 2N comprising the elements

that include the set (ξP ∪ fn(P)), as constructed by proposition 5.1.1, and therefore

having bottom element (ξP ∪ fn(P)) denoted ⊥E. Once again, the process-dependent

superscripts P , χ(P), and ξP ∪ fn(P) are omitted when the process in question is

clear from the context.

44

5.1. Expansion of the Solution Space

5.1.1 Abstract Execution

Using the same abstract representation
�
P � ∅ of a process P , it is possible to modify

the abstract execution function ΩS in order to obtain a fully context independent

analysis. Thus the input component will again take a solution triple (R,K,E) to the

next R component. Furthermore, given an input prefix x(y), all the names known to

the environment must be added to R(y) if any of the names that x could assume (i.e.,

R(x)) are in the environment. Formally, letting λ = (R,K,E), the modified prefix

function ΦI
(x,y) is now defined as:

ΦI
(x,y)(λ) =

ΩI
(x,y)(R,K) t 〈y 7→ E〉 if (R(x) ∩ E) 6= ∅

ΩI
(x,y)(R,K) otherwise

In words, the function is identical to the corresponding function in the previous

analysis, unless the environment may have knowledge of the communication channel

x (determined by the condition (R(x) ∩ E) 6= ∅), in which case it is conservatively

assumed that any name in the environment knowledge could potentially be received,

and thus must be added to R(y). The Greek letter Φ is used as mnemonic for PHlow

Insensitive.

In contrast, an output prefix can actually expand the knowledge of the environ-

ment by transmitting a private name to it. Specifically, given an output prefix x〈y〉,

the environment knowledge is expanded with R(y) if the environment knows about

any name in R(x). Thus, the modification of the output component must take a

solution triple λ = (R,K,E) to a pair (K ′, E ′) representing the new transmission

component K ′ as well as the expanded environment knowledge E ′. Formally, the

ΩO
〈x,y〉 function is modified to ΦO

〈x,y〉 as follows:

ΦO
〈x,y〉(λ) =

(ΩO
〈x,y〉(R,K), E ∪ R(y)) if (R(x) ∩ E) 6= ∅

(ΩO
〈x,y〉(R,K), E) otherwise

45

5.1. Expansion of the Solution Space

This is identical to the previous definition, except that the expansion of the environ-

ment is performed as described above. Since the environment is always expanded,

and the function is otherwise identical to the previous definition, this function is also

monotone.

This function can again be packaged into a function Φπ operating over any prefixes

and taking any triple λ = (R,K,E) ∈ LE as input:

Φπ(λ) =

(ΦI
π(λ), K, E) if π ∈ I

(R,ΦO
π (λ)) if π ∈ O

Observe that the equation above actually generates a pair of the form (R, (K,E)) for

output prefixes, but these are taken to be triples (R,K,E) in a clarifying abuse of

notation. Lastly, this can again be trivially extended to a function ΦS that operates

with S a set of prefixes just as for ΩS :

ΦS(λ) =
⊔

π∈S

Φπ(λ)

The full dataflow analysis solution λsol = (R,K,E) can thus be expressed as the least

fixed point of ΦS in LE computed by the following iteration:

λsol = (R,K,E) = lfp(Φ � P �) = Φ
(k)

� P � (⊥E) (5.1)

where the bottom element ⊥E denotes the triple (⊥R,⊥K,⊥E) corresponding to the

process being analyzed. It is obvious that given a set of prefixes S, the above function

is of type ΦS : LE → LE , and its monotonicity implies that its least fixed point exists

and can be computed by the iteration above with k ≤ |P |2. Furthermore, since the

condition (R(x)∩K(x) 6= ∅) is polynomially checkable for a finite process, the entire

analysis remains computable in polynomial time.

Example 5.1.1. Revisiting example 4.2.1:

P � a(x).(νb)(νc)((b〈a〉.x〈x〉.b(y).y〈c〉+!b〈d〉.a〈c〉) ‖ b(z).b〈z〉) ‖ d(w)

46

5.1. Expansion of the Solution Space

Recall that

fn(P) = {a, d}

β(P) = {x, y, z, w}

χ(P) = {a, b, c, d}

Thus ⊥E = fn(P) ∪ ξP = {a, d, ξP}, by the definition of ⊥E. Note that the free

channels a and d are initially known to the environment. The new function Φ � P �

performs the same computations as Ω � P � , except for the following instances:

• In the first iteration of Φ � P � , the output component must account for the fact

that the prefix a〈c〉 transmits the bound name c on the free channel a. This is

detected by the fact that (R(a) ∩ E) = {a} 6= ∅, thus the names R(c) = {c}

must be added to the environment knowledge by the definition of ΦO .

• The second iteration now must compute in the context that the bound name

c may be a part of the environment knowledge. Therefore, the input prefixes

a(x) and d(w) now imply that R(x) and R(w) must include E = {a, d, c, ξP} in

addition to all of the names in R(a) and R(d) respectively.

The final solution of the analysis is as follows (with the self-loops for the R(u) = {u}

for u ∈ χ(P) omitted for clarity):

R(x) = {a, d, c, ξP} K(a) = {a, d, c, ξP}

R(y) = {a, d} K(b) = {a, d}

R(z) = {a, d} K(c) = {a, d, c, ξP}

R(w) = {a, d, c, ξP} K(d) = {a, d, c, ξP}

And the final environment knowledge E = {a, d, c, ξP}. Contrast this with the final

solution of Ω � P � in figure 4.2(iii), and it is obvious that the only difference is that

every set that contained c (the extruded bound name) in the previous solution now

also contains the initial environment knowledge ⊥E .

47

5.1. Expansion of the Solution Space

5.1.2 Correctness

Due to the fact that the potential knowledge of the environment is now being tracked

by the analysis, the correctness result that can be proven will apply to the analyzed

process running concurrently with any environment. Before this is done however,

it is useful to prove a lemma relating the current analysis to the previous context-

dependent one:

Lemma 5.1.2. Let P be a closed π-calculus process, and let (R,K) = lfp(Ω � P �) and

(Re, Ke, Ee) = lfp(Φ � P �), then

(R,K) = (Re, Ke)

where equality is taken in the L∅ lattice.

Proof. Observe that if P is closed, the environment Ee is initialized to ξP , i.e., the

environment only knows about the names not appearing in P as expected. This

makes it impossible for the condition (Re(x) ∩ Ee) 6= ∅ to pass in any iteration of

Φ � P � . Thus, by the definition of Φ, Ee is never modified and Φ behaves as Ω yielding

the result.

The full proof of correctness that applies over any process cannot rely on the

constraint based analysis of Bodei et al. to establish its result because the latter is

context dependent. In order to use that technique, a new flow logic would need to

be defined and proved correct in order to prove the validity of the solution. This

technique is avoided in this thesis in favor of a more direct approach whereby the

result of the analysis is compared to the actions that could occur in all possible traces

of a process. The justifications for not adapting Bodei et al.’s technique here are

twofold:

48

5.1. Expansion of the Solution Space

1. A flow-logic approach abstracts the constructive algorithm and entwines the

algorithm description with the proof of correctness. This thesis is intended to

be read so that proofs of correctness can be skipped if desired, and the present

approach allows the dissociation of algorithm from proof which allows this to

occur.

2. A new approach to a correctness proof may provide new insight about the inner

workings of the dataflow analysis.

In order to prove correctness, first observe that there are only three possible ways

that a process P can reduce:

1. A silent prefix τ can be removed (rule (R Tau) in table 3.3).

2. A match prefix [x = x] can be removed (rule (R Match) in table 3.3).

3. A communication between an input and output prefix in parallel composition

(rules (R Com) and (R Close) from table 3.3).

Furthermore, observe that no name can be substituted for more than once: if it is

bound by an input prefix at some program point, the same name cannot appear

bound in some later subprocess because of assumption 1.

To adequately compare a dataflow analysis solution to an actual execution trace

of a process, a mechanism is required to retrieve the original names (i.e., those given

as the input to the dataflow analysis algorithm) appearing in each prefix occurence.

This is because the names in any given prefix may change through substitution as

the process executes.

Definition 5.1.1. Let π ∈ XP denote the occurence of a prefix in a process P given

as an input to the dataflow analysis algorithm, and let π ′ ∈ XP denote the same

prefix occurence some number of steps into the execution of P . Suppose that name

49

5.1. Expansion of the Solution Space

substitutions during executions may have caused cha[π ′] 6= cha[π], or dat[π′] 6= dat[π],

or both. Then define the function σ : XP → XP by

cha[σ(π′)] = cha[π]

dat[σ(π′)] = dat[π]

i.e., the function σ returns the prefix as it appeared in P prior to execution.

In order to precisely define the dataflow that actually occurs during the reduc-

tion of a process, a communication action α is defined by an input/output pairing

of prefixes α = (πi, πo). Such an action completely describes a single-step com-

munication in the execution sequence of a process. For example, given the process

P � a(x).x〈c〉‖a〈b〉 the only possible action is α = (a(x), a〈b〉), or using the pairs

notation for prefixes:

α = ((a, x), 〈a, b〉)

This action represents the name b being sent over the channel a, and saved into x. As

an example of the usage of the σ mapping, consider P after the action α is taken, i.e.,

the process b〈c〉. If P were given as the input to the flow analysis, then by definition:

σ(b〈c〉) = x〈c〉

because the occurence of the prefix b〈c〉 was originally x〈c〉 in P prior to the action

α.

This definition of actions excludes τ and match actions as described above because

these do not affect dataflow in any way. It is now possible to define a trace of a process

as a sequence of actions:

Definition 5.1.2. Given a process P , a trace of P is a (possibly infinite) sequence of

reductions P
τ

−→ . . . that P may take. Each reduction step that involves a communi-

cation can be labelled by a communication action as defined above. A dataflow trace

50

5.1. Expansion of the Solution Space

of a process P can be formalized by a (potentially infinite) sequence of such actions

α1, α2,

The original process P is assumed to be α-converted to avoid repeated bound

names as above, but it is then assumed that no further α-conversions occur during

the execution of P . This condition is imposed to preserve the names that occur

inside replicated sub-processes; i.e., if the reduction applies the structural congruence

rule (S Rep) to the process !(νa)P to obtain (νa)P‖!(νa)P , it is assumed that the

name a is preserved in the unfolded process instance. This name preservation is an

approximation of the actual behaviour of P that provides the following features useful

for the purpose of proving correctness:

• The trace can be compared with the result of the dataflow analysis, which does

not account for the distinction between the infinite bound names in a replicated

process.

• The set of possible actions becomes finite for a given process P , implying that

infinite traces are only infinite because they repeat actions.

The second point here requires some elaboration. For any process P , the syntactic

set of names n(P) is finite because the process term is finite. As noted above, each

bound name in a replicated process represents an infinite set of semantically distinct

names. The approximation above identifies all of these names, thus the set of names

of a process is kept distinct, the number of substitutions between them is also finite,

and hence the set of actions of the process that can occur during reduction is also

finite. Thus, any infinite reduction sequence in this model implies an infinite number

of repeated actions.

Correctness is proved by defining a function ΛR is taking traces to a dataflow

solution R. This function essentially defines an approximate (because of the name

51

5.1. Expansion of the Solution Space

identification above) dataflow solution that is known to be correct (because it is built

from the actual traces of the process P). Correctness is proved by showing that the

analysis solution is at least as great as this function. The function ΛR is first defined

as operating on a single action:

ΛR(α) = 〈dat[πi] 7→ {dat[π
o
]}〉

where

α = (πi, πo)

is an action with πi, πo an input and output prefix respectively. Notice that this

function returns a function in LR mapping the datum of the input prefix to the

datum of the ouput prefix, i.e., it records the the actual communication as a function

in LR. For example, letting α = (a(x), a〈b〉) be the action from the above example

then by definition:

ΛR(α) = 〈x 7→ {b}〉

i.e., R(x) = {b}. In words, this encodes the fact that the name b was transmitted and

stored into the name x. The function ΛR is then compositionally extended to sets of

traces by combining the results of individual actions over all traces. Formally, letting

S be a set of traces, tr an individual trace, and α an action:

ΛR(S) =
⊔

tr∈S

⊔

α∈tr

ΛR(α)

Now, observe that ΛR(α) is only locally dependent on the action α. Thus, repeated

actions in a trace have no effect on the result of the Λ function. Thus the effect of

ΛR over some infinite trace tr∞ is identical to the result computed by computing ΛR

over the finite trace resulting from removing all repeated actions from tr∞. Removing

repeated actions results in a finite trace because the only source of repeated actions

(keeping in mind that each action refers to syntactic occurrences of prefixes) is a

52

5.1. Expansion of the Solution Space

replicated process. The set of all such finite traces generated from a process P is

denoted H[P].

Note that only the R component of the interaction is recorded. The context

independence proof only compares this component of the generated dataflow analysis

with the actual solution generated by ΛR. This feature simplifies the analysis as well

as the proof because it does not require the analysis to account for the possibility of

the context transmitting over channels that P does not transmit over. Formally, if x

were bound in P , but later extruded to the environment, the analysis would need to

account for the fact that any name known to the environment could be transmitted

over x (through the presence of an output prefix π with cha[π] = x appearing in the

context). The analysis as it stands does not do this, but doing so would require an

extension of the function ΦO
S that would add the names in the environment to the K

set of every name that the datum of the output prefix could assume. Intuitively, this

would account for the cases where a given communication occurs in the environment.

This aspect is omitted from the results presented here in order to keep the analysis

as simple as possible, to simplify the proof of correctness, and because there is a

philosophical issue regarding whether such information is actually useful (see the

concluding chapter 8). Consider, for instance, a process P that is comprised of a

single input prefix b(x). The current analysis would compute that the set of names

that x could become (i.e., R(x)) could be b ∪ ξP because the name b is free in P

and could thus receive input from the environment. However, the dataflow analysis

computes that no names could be transmitted by b (i.e., K = ∅). Unfortunately, this

is not necessarily true if the context uses b to transmit names without interacting in

any way with P . This leads to the question of whether it is useful in any way to

keep track of such information by initializing K(x) to E for every free name in the

analyzed process, and also performing this action when a bound name is extruded

to the environment. The position taken by this thesis answers that question in the

53

5.1. Expansion of the Solution Space

negative, the justification being that such actions do not discuss the dataflow actions

of the the analyzed process.

Thus, the K component is compared to the result of a function ΛK
C , which records

the transmitted name in each action in the traces into a function in LK, but ex-

cludes those actions whose name transmissions occurs in the process environment C.

Formally, the operation of ΛK
C on an action α = (πi, πo

) is as follows:

ΛK
C (α) =

〈cha[πi] 7→ {dat[πo]}〉 if πo /∈ XC

⊥K otherwise

This simply says that the transmission is recorded only if the output prefix is not

in the context (and in fact is in the analyzed process). The results can again be

combined over all actions in the traces as above.

A similar function can be computed for the E component, which only records the

result if the the action involves a prefix not in C sending a value to a prefix in C (i.e.,

if the action involved the transmission of a name from the analyzed process to the

environment). This function is defined in the obvious way and denoted ΛE
C .

A context is modelled by an arbitrary π-calculus process with which P may run in

parallel, i.e., the result of an analysis of a process P is proved as correctly predicting

the dataflow in C‖P for any process C. Similar results for arbitrary contexts C[·] are

left for future work (see chapter 8).

The correctness of a dataflow analysis can now be established by showing that

the analysis solution R (for some process P) is greater than R̂ = ΛR(H[C‖P]) in the

lattice LR for any process C, and the analysis solution K (for some process P) is

greater than K̂ = ΛK
C (H[C‖P]). However this comparison cannot be made directly

because R̂ may be defined over names that appear only in the context. Thus, a

restriction operator ∇ is defined to remove these names from the domains of the

trace solution R̂. Specifically, given a function R ∈ LR, the function R∇P is defined

54

5.1. Expansion of the Solution Space

as follows:

R∇P =
⊔

x∈n(P)

〈x 7→ R(x)〉

i.e., the values of the functions over the names in P are preserved, and all other names

are mapped to ∅.

One final notion needs to be introduced before the correctness result can be proved.

Consider an action α0 = (πi, πo) in a trace tr. Each name in the pairs σ(πi) and

σ(πo) that is different from the names in α0 implies an action that precedes α0 in tr

that caused the substitution to occur. If the substitutions in each of these preceding

actions are themselves not empty, then this process can be repeated to find preceding

actions for each of them. The tree generated by iterating this procedure is called the

dependency tree of action α0, and is finite for any process P where the trace tr is

taken from H[P]. The tree is finite because the trace is finite and each child always

goes to a previous action in the trace. The leaves of the tree are actions where the

prefixes in the action appear in their original form (prior to execution).

The proof of correctness of the dataflow analysis reasons on the structure of the

dependency tree to establish its result. The proof requires a few preliminary lemmas

that establish the correct behaviour of Φ on individual actions, and sub-trees of the

dependency tree of an action in H[C‖P]. First, a few basic definitions are presented:

Definition 5.1.3. Given an action α in H[C‖P] for some process P and some context

C. The set of prefixes appearing in the dependency tree of α is denoted X(α). The

subset of this set comprising prefixes occurring in P is denoted XP (α).

The following lemma establishes the correctness of the analysis at the leaves of

the dependency trees in a trace:

Lemma 5.1.3. Given an action α = (πi, πo) in H[C‖P], for some process P and

55

5.1. Expansion of the Solution Space

context C, such that

σ(πi) = πi

σ(πo) = πo

i.e., α has no children in the dependency tree. Furthermore, let

(R̂, K̂, Ê) = (ΛR(α),ΛK
C (α),ΛE

C(α))

and

(R,K,E) = lfp(ΦXP (α))

then

(R̂∇P, K̂, Ê) v (R,K,E)

Proof. Since α is in H[C‖P], and has no dependencies, it is known that cha[πi] =

cha[πo] because the prefixes can communicate. Assume without loss of generality that

πi = c(x) and πo = c〈b〉, then

ΛR(α) = 〈dat[πi] 7→ {b}〉, def’n of ΛR

= 〈x 7→ {b}〉 (5.2)

The process C‖P can reduce by communication in only three ways:

1. The communication occurring between two prefixes in C

2. The communication occurring between two prefixes in P

3. The communication occurring in an interaction between C and P

The result is now proved by case analysis on these possibilities:

56

5.1. Expansion of the Solution Space

Case. (πi /∈ P ∧ πo /∈ P) In this case XP (α) = ∅ and c and b are either free in P or

do not appear in P as in the previous case. The name x cannot appear in P because

it is bound in C. The results of the analysis for this action is computed as:

lfp(Φ{}) = (⊥R,⊥K ,⊥E)

Since x is not in P , Λ(α)∇P = ⊥, where ⊥ again denotes the function returning the

empty set for each input. In this case the analysis result is certainly greater than the

actual interaction because ⊥ ⊆ ⊥R by definition, yielding the R component of the

result. The other two components are likewise empty under the Λ mapping because

the entire prefix interaction is in C.

Case. (πi ∈ P ∧ πo ∈ P) If both prefixes are in P , then ΛR(α)∇P = Λ(α) and

XP (α) = X(α) = {πi, πo}. By the definition of Φ

lfp(ΦX(α)) = (⊥R t 〈x 7→ {b}〉,⊥K t 〈c 7→ {b}〉,⊥E)

and since 〈x 7→ {b}〉 is included in the analysis solution, the result for the R compo-

nent follows from equation 5.2. The results for the other components follow because

ΛK
C (α) = 〈cha[πi] 7→ {b}〉, def’n of ΛK

C

= 〈c 7→ {b}〉

ΛE
C(α) = ⊥E because both prefixes are in P (5.3)

and the analysis solution is consistent with both of them.

Case. (πi /∈ P ∧ πo ∈ P) This case involves an interaction between a prefix in P

wanting to transmit to the environment C. Since the input prefix c(x) /∈ P , then

XP (α) = {c〈b〉}, and the name c must be free in P (because it is known to C and there

are no preceding actions that got it there because all the substitutions are empty).

Furthermore, x /∈ n(P) because it is bound by c(x) ∈ C, and b is not bound by input

57

5.1. Expansion of the Solution Space

because its substitution is empty. The analysis result is given by

lfp(Φ{c〈b〉}) = (⊥R,⊥K t 〈c 7→ {b}〉,⊥E ∪ {b})

which yields the result for the R component when compared with ΛR(α)∇P = ⊥

(because x /∈ P). The symbol ⊥ here denotes the function that returns the empty

set for every input. The other two components follow trivially.

Case. (πi ∈ P ∧ πo /∈ P) This case handles the situation whereby the environment

transmits a value into P . In this case XP (α) = {c(x)} and c is again free in P .

Furthermore, b is either free in P or does not appear in P because there is no previous

action that could have extruded b and substituted it for some bound name in C (since

the substitutions in the action are empty). The result of the analysis for this action

is computed as:

lfp(Φ{c(x)}) = (⊥R t 〈x 7→ ⊥E〉,⊥K,⊥E)

In contrast, ΛR(α) maps x to {b}. However, since ⊥E = fn(P)∪ ξP , if b ∈ fn(P) then

it is included in ⊥E, and if b /∈ n(P) then it is included in ξP by definition and thus

also in ⊥E, yielding the result for the R component of the claim. The K component

is computed as:

ΛK
C (α) = ⊥K

because the output prefix is in C, and the E component follows trivially.

The result is now extended to arbitrary actions α in a trace by reasoning on the

structure of the dependency tree of α:

Lemma 5.1.4. Given a π-calculus process P , let α = (πi, πo) be an action in some

trace tr in H[C‖P], and let (R,K,E) = lfp(ΦXP (α)) in LE , then

(ΛR(α)∇P,ΛK
C (α),ΛE

C(α)) v (R,K,E)

58

5.1. Expansion of the Solution Space

Proof. By induction on the dependency tree of α, which admits induction because it

is finite. The base case is where the tree is just the action α, i.e., α has no children,

and its proof is given by the previous lemma. The case where the α is not a leaf

implies that there are three actions αc
i
, αc

o
, αd

o
preceding α (i.e., that are α’s children

in its dependency tree) that caused each name to differ from its original expression,

and these are of the form:

α̃ = (π̃i, π̃o)

for α̃ ∈ {αc
i
, αc

o
, αd

o
}. The cases where some of the substitutions are empty and some

are not are special cases of this one. The induction hypothesis states the following:

(ΛR(α̃)∇P,ΛK
C (α̃),ΛE

C(α̃)) v λ̃

where λ̃ = (R′, K ′, E ′) = lfp(ΦXP (α̃)) for each α̃ a child of α in the dependency tree.

The induction step is now proved by generalizing the case analysis on α shown in the

proof of the previous lemma. In the following, the triple (R̃, K̃, Ẽ) is defined as the

join of the solutions computed inductively for each subtree:

(R̃, K̃, Ẽ) =
⊔

λ̃

λ̃

i.e., the join of the sub-solutions for each sub-tree. As the generalization follows a

similar pattern in each case, only one of these is explicitly shown. Suppose without

loss of generality that α is the following action:

α = (a(w), a〈b〉)

and that

σ(a(w)) = x(w)

σ(a〈b〉) = y〈z〉

are the original forms of the prefixes in the action.

59

5.1. Expansion of the Solution Space

Case. (πi ∈ P ∧ πo /∈ P) In this case the environment is transmitting a value to

P . It is thus known that XP (α) = {x(w)} ∪
⋃

α̃ XP (α̃), i.e., the output prefix is

not in the set of prefixes in the dependency tree of α that also occur in P . Here

ΛR(α)∇P = 〈w 7→ {b}〉 because w ∈ n(P). Therefore, it must be shown that the R

component of the analysis includes b in the set R(w). The analysis solution can be

computed by adding the contribution of x(w) to the intermediate solutions for the

subtrees:

lfp(ΦXP (α)) = (R̃ t 〈w 7→ K̃(R̃(x)) ∪ Ẽ〉, K̃, Ẽ)

This follows from the definition of ΦI . Thus it is sufficient to show that b ∈ (K̃(R̃(x))∪

Ẽ) to prove the R component of the result. Multiple applications of the induction

hypothesis can now be used to track the flow of b through the process in order to

establish the result. Because of the datum of the output prefix in α was originally z

(and is now b), it is known that αd
o

must have been an action that transmitted b and

stored the transmitted name into z. However, since πo is in the environment C, the

action αd
o

must at least have its input prefix in the environment (because the name

z must have been bound by an input prefix preceding πo). This leaves the sub-cases

where αd
o
’s output prefix is in P or in C. In the former case, the Ed

o
of the induction

hypothesis applies to αd
o

and yields that b ∈ Ed
o
. In the second case, the name b must

either be free in P or not appear in P (because it is known to C at this point), which

also implies that it is in Ed
o

because it is in ⊥E. Since Ẽ is just the join of E ′ for each

α̃ ∈ {αc
i
, αc

o
, αd

o
}, it is also true that b ∈ Ẽ yielding R component of the result. The

other cases are demonstrated in a similar fashion.

This lemma essentially states that the operation of the analysis on all of the

prefixes in P that a particular action depends on is sufficient to compute a correct

result for that action. The full correctness of the dataflow analysis can now be shown

60

5.1. Expansion of the Solution Space

by the following theorem:

Theorem 5.1.5. Given a π-calculus process P , and any context C, let λ = (R̂, K̂, Ê) =

(ΛR(H[C‖P]),ΛK
C (H[C‖P]),ΛE

C(H[C‖P])) and let (R,K,E) = lfp(Φ � P �) in LE with
�
P � =

�
P � ∅, then

(R̂∇P, K̂, Ê) v (R,K,E)

Proof. Suppose some name c ∈ (R̂∇P)(x) for some name x ∈ n(P). This implies the

existence of some action α in some trace tr in H[C‖P] such that (ΛR(α))(x) = {c}

because Λ compositionally combines its result over each action. By lemma 5.1.4 the

following statement is true:

Λ(α)∇P v R̃ (5.4)

where (R̃, K̃, Ẽ) = lfp(ΦXP (α)). By definition, XP (α) ⊆
�
P � , and by the definition of

Φ, this yields

lfp(ΦXP (α)) v lfp(Φ � P �) (5.5)

because adding prefixes to the representation can only increase the final solution.

Finally, making the appropriate substitutions into equations 5.4 and 5.5 yields

ΛR(α)∇P v R̃ v R

and since x ∈ n(P) this implies that c ∈ R(x) yielding the result. The other two

components are proved in the same way.

Notice that this proof shows that the R component of the solution is the only one

that is independent of the context with which P is placed in parallel composition for

the reasons stated above.

61

5.2. Considering Matching

5.2 Considering Matching

Having developed a correct context independent dataflow analysis of the π-calculus,

it now makes sense to begin discussions of making it more accurate. This is essentially

done by refining the representation of processes to contain more information about

the original π-calculus process being analyzed, and modifying the abstract execution

function to properly exploit this information. In order to illustrate this idea, a simple

refinement of the representation above is presented that is equivalent to the implicit

representation used by Bodei et al. in [BDNN01b]. Informally, the feature exploited

is based on the observation that an input or output prefix π in process P can’t

communicate unless all of the matches that precede it can successfully pass.

5.2.1 Refined Process Representation

Recall from section 4.1.1 that a π-calculus process P was represented by its set of

observable prefixes XP under the representation function
�
· � ∅. This representation

makes it impossible to determine whether a prefix is blocked from communicating

due to a match. For instance, if P � (νa)(νb)([a = b].(c〈a〉‖c(x))), then the function

Φ � P � would compute that a ∈ R(x) due to the fact that a can be transmitted over c

and received by the prefix c(x). However, this is clearly impossible because the action

is blocked by the match prefix [a = b], which can never pass because both a and b are

bound to the process. In order to detect such a blockage, it is necessary to refine the

naive process representation
�
· � ∅ as follows: rather than storing prefixes individually,

they are paired with the set of match prefixes that precede them.

Recall that MP denotes the set of match prefixes of process P . Just as was

done for input and output prefixes (which were formalized as pairs in I = (N ×N)

and O = 〈N × N〉 respectively), a match prefix [x = y] is formalized as a pair

[x, y] ∈ [N × N] (note the square brackets for distinction), and the set of all such

62

5.2. Considering Matching

prefixes is denoted by M. As with the other prefix sets, the universal sets of all

possible prefixes (excluding τ) is denoted Π = X ∪M.

Subsets of M are paired with each observable prefix to form the set X× 2M, and

the refined representation of a process P will be a set of such pairs. This refined

representation is computed as follows:

Definition 5.2.1.

�
P‖Q � C

M =
�
P +Q � C

M =
�
P � C

M ∪
�
Q � C

M ∀P,Q
�
(νx)P � C

M =
�
τ.P � C

M =
�
!P � C

M =
�
P � C

M ∀P ∀x ∈ N
�
π.P � C

M = {(π, C)} ∪
�
P � C

M ∀P ∀π ∈ XP

�
[x = y].P � C

M =
�
P � C∪{[x,y]}

M ∀P

where C ⊆ M. The final match-sensitive representation function
�
· � M is computed

by
�
P � M =

�
P � ∅M for any P .

Notice that this definition is identical to the inductive definition of
�
· � ∅ given by

proposition 4.1.1 with the exception of the match prefix set C. This set carries with

it the set of all matches encountered while descending the parse tree of the process.

Observe that each prefix is added to the set in the rule for [x = y].P , and the entire

set C is paired with each input/output prefix when encountered in the rule for π.P

(for π ∈ XP). For illustrative purposes, we contrast the two representations by using

the process P from example 5.0.2:

Example 5.2.1. Consider the following process:

P � a(x).b(y).[x = y].(νc)(νd)(d〈c〉‖d(z).a〈z〉)

The representations
�
P � ∅ and

�
P � M are computed as follows:

�
P � ∅ = {a(x), b(y), d〈c〉, d(z), a〈z〉}

�
P � M = {(a(x), ∅), (b(y), ∅),

(d〈c〉, {[x = y]}), (d(z), {[x = y]}), (a〈z〉, {[x = y]})}

63

5.2. Considering Matching

The cardinalities of the two sets are equal, but the prefixes that precede the test

[x = y] (i.e., a(x) and b(y)) are paired with the empty set while those that follow it

are paired with the singleton set containing the match prefix.

This representation can be exploited to improve the accuracy of the analysis, and

this is done in the following section.

5.2.2 Abstract Execution

The modification of the iterative execution function must preserve the context-independence

of the Φ function, thus the solution computed will still be a triple in LE . In fact,

only a simple modification is required to account for the blockage of prefixes due to

an unpassable match.

Now, given a set S ⊆ (X×2M), the new abstract execution function Φ̃S : LE → LE

is defined as follows:
Definition 5.2.2.

Φ̃S(λ) =
⊔

(π,M)∈S

Φπ(λ) if ∀[x, y] ∈M : (R(x) ∩ R(y)) 6= ∅

⊥E otherwise

Where (π,M) is a prefix π matched with a set of matches M . Since the restricting

condition

∀[x, y] ∈M : (R(x) ∩R(y)) 6= ∅

is checkable in polynomial time for any finite process (because |M | is at worst linear

in the size of P), the entire flow analysis remains computable in polynomial time.

This function is identical to Φ � P � for
�
P � =

�
P � ∅ if

�
P � ∅ is viewed as pairings in

the set (X × 2∅) rather than individual prefixes (this explains the motivation of the

∅ subscript in the notation). Formally, if
�
P̃ � is taken as the set

�
P � ∅ viewed as such

pairs, and
�
P � =

�
P � ∅, then it is obvious that:

Φ̃ � �

P � = Φ � P �

64

5.2. Considering Matching

The Φ̃ function simply has the effect of applying the Φ function only to those prefixes

whose preceding matches can pass (as given by the condition R(x)∩R(y) 6= ∅), other

prefixes have no effect on the result (reflected by having them contribute ⊥E to the

solution). This is exactly the same property shared by the constraint based model of

Bodei et al. [BDNN01b] (see appendix A.1), where constraints are only imposed for

such prefixes. It would be expected that the least solution satisfying Bodei et al.’s

constraint system should be equivalent to the solution computed by Φ̃S. However,

Bodei et al.’s solution does not consider the environment of the analyzed process, and

thus is only correct for closed processes. Thus, as expected, the two solutions are

only equivalent for closed processes:

Proposition 5.2.1. Given a closed π-calculus process P , let (ρ, κ) be the least so-

lution to the constraints generated for P by the judgement in table A.1, and let

λ = (R,K,E) = lfp(Φ̃ � P �) with
�
P � =

�
P � M. Then

(ρ, κ) = (R,K)

with equality taken in L∅.

Proof. By the definition of Φ̃, (R,K) = Φ̃ � P � = ΦT for T the following set:

{π ∈
�
P � ∅ | (π,M) ∈

�
P � M ∧ ∀[x, y] ∈M : R(x) ∩ R(y) 6= ∅}

In words, Φ̃ acts as Φ operating on only the prefixes whose matches can pass.

Lemma 5.1.2 yields that ΦT behaves as ΩT because P is a closed process. The-

orem 4.1.3 yields that the solution ΦT satisfies the same constraints as (ρ, κ) for

prefixes in T , and by the observations made about the rule for matching in table A.1

(namely that constraints are not imposed for prefixes not in T) it is known that no

additional constraints are satisfied yielding the result.

65

5.2. Considering Matching

Note that this proposition’s statement closely follows the statement of theo-

rem 4.1.3, except that it establishes the equivalence of the two approaches. This

result establishes the correctness of the solution for closed processes. The next sec-

tion proves the correctness of the solution in any context.

5.2.3 Correctness

The main advantage of the proof technique used in section 5.1.2 is that it makes sim-

ilar context-independent proofs for subsequent analyses rather easy. This is because

the accuracy of these analyses are achieved by restricting the contributions of prefixes

in the analyzed process P based on a particular condition. In the case of the above

analysis based on preceding matches, the dataflow contributions of prefixes that suc-

ceed matches [x = y] that cannot pass (as given by the condition R(x) ∩ R(y) = ∅)

are added to the final solution. The correctness of the algorithm can thus be proved

with a technique similar to that used to prove proposition 5.2.1 for closed processes.

The context-independent result is proved because the basic correctness theorem (i.e.,

theorem 5.1.5) for such an analysis has been established.

Specifically, the correctness of Φ̃ is proved by appealing to the correctness of Φ

and then showing that the condition R(x) ∩ R(y) 6= ∅ doesn’t exclude any prefixes

that could communicate. First, a new operator on processes is introduced:

Definition 5.2.3. Given a process P , and a set of match prefixes M ⊆ MP , define

the process P ⇑ M as the process P “pruned” at the prefixes in M , i.e., P ⇑ M is

the same process P with all of the subprocesses that succeed every match prefix in

M removed.

Formally, the process P ⇑ M is defined by applying the operator ⇑ to each sub-

process in the structural definition of P with the exception of the following cases:

[x = y].P ⇑M = 0 if [x, y] ∈M

66

5.2. Considering Matching

0 ⇑M = 0

Otherwise, the operator is just pushed into the subprocesses in the definition until

one of the above rules is reached. The correctness of the algorithm is proved only for

the R component, as it is the one that is correct independent of context, and thus

presents the most interesting result without cluttering the section with similar proofs

for the other components. The correctness is given by the following theorem:

Theorem 5.2.2. Given a π-calculus process P , and any context C, let R̂ = ΛR(H[C‖P]),

and let (R,K,E) = lfp(Φ̃ � P �) in LE with
�
P � =

�
P � M, then

R̂∇P v R

Proof. Let M ⊆ MP be the set of match prefixes [x = y] of P such that R(x)∩R(y) =

∅, i.e., M is the set of match prefixes in P that did not pass in any iteration of the

analysis. By the definition of Φ̃ it is known that:

(R,K,E) = lfp(Φ̃ � P �) = lfp(Φ̃ � P⇑M �) (5.6)

i.e., the solution does not change if the prefixes whose preceding matches don’t pass

are excluded from the representation because they only contribute ⊥E to the final

solution. Furthermore, also by the definition of Φ̃:

lfp(Φ̃ � P⇑M �) = lfp(Φ � P⇑M � ∅) (5.7)

i.e., the operation of the new function on those prefixes whose preceding matches pass

is identical to the operation of the previous function (that did not consider blocking

matches) on those prefixes. This claim is justified because it is exactly how the Φ̃

function was defined in definition 5.2.2. Letting (R̃, K̃, Ẽ) = lfp(Φ � P⇑M � ∅), i.e., the

solution to the previous dataflow analysis on the abbreviated process, the correctness

of the Φ function, as given by theorem 5.1.5 implies the following:

ΛR[H[C‖(P ⇑M)]]∇P v R̃ (5.8)

67

5.2. Considering Matching

By equations 5.6 and 5.7 it is also known that R̃(x)∩ R̃(y) = ∅ for each match prefix

[x, y] ∈M . Therefore, this result also applies to ΛR[H[C‖(P ⇑M)]] by equation 5.8,

which in turn implies that the match prefix [x = y] does not pass in any trace of

C‖P , and thus none of the potential subsequent actions appear in the traces, i.e.,

H[C‖P] = H[C‖(P ⇑M)] (5.9)

Combining equations 5.6, 5.7, 5.8, and 5.9 yields

R̂ = ΛR[H[C‖P]]∇P = ΛR[H[C‖(P ⇑M)]]∇P v R̃ = R

Which is the claimed result.

The technique presented in the latter part of this chapter essentially gives a partial

treatment of the π-calculus sequencing operator (“.”) by testing for unpassable match

prefixes. This approach can be extended to apply for input and output prefixes as

well. This is formally developed in the first sections of the following chapter. The

latter part of the chapter also adds the consideration of the parallel composition (“‖”)

and choice (“+”) operators in order to provide the most accurate dataflow analysis of

the π-calculus to date, in that the pairs of prefixes that can potentially communicate

are further limited by the analysis.

68

Chapter 6

Sequencing and Sub-Process Structure

The analysis developed in the latter half of the previous chapter provides a context-

independent extension of the analysis of Bodei et al. from [BDNN01b]. The analy-

sis extended the one presented in chapter 4 by pairing each prefix with the set of

match prefixes that precede it, and not applying the contribution of the potential

communications of that prefix unless it has been determined that the matches that

precede it can pass. The latter determination was made by testing the condition

(R(x) ∩ R(y) 6= ∅) for each match prefix [x, y].

This suggests a natural extension: pairing each prefix with all prefixes that precede

it in the process, and only applying the contribution of the prefix if it has been deter-

mined that all of its predecessors can communicate (if they are observable prefixes)

or pass (if they are match prefixes).

The first section of the this chapter develops the analysis described here, and

the second section provides another extension that further improves the accuracy of

the solution. The last section gives some insight as to how the analysis could be

implemented in order to improve its efficiency.

69

6.1. Blocking on All Prefixes

6.1 Blocking on All Prefixes

An analysis that considers blocked input and output prefixes requires the development

of the following elements:

• A modification of the representation to allow for all preceding prefixes to be

paired with each prefix

• An appropriate condition that can be used to test if a prefix has communicated

according to the current solution

The first is handled by the next subsection, and the second is integrated into the

definition of the abstract execution function.

6.1.1 Abstract Representation

Recall that Π was defined in chapter 3 as the set of all prefixes (excluding τ), i.e.,

Π = X ∪M. This motivates the alteration of the representation
�
P � M of process P

as a set of pairings in (X× 2M) to a representation
�
P � Π comprising a set of pairings

in (X × 2Π) in the obvious way:

Definition 6.1.1.

�
P‖Q � C

Π =
�
P +Q � C

Π =
�
P � C

Π ∪
�
Q � C

Π ∀P,Q
�
(νx)P � C

Π =
�
τ.P � C

Π =
�
!P � C

Π =
�
P � C

Π ∀P ∀x ∈ N
�
π.P � C

Π = {(π, C)} ∪
�
P � C∪{π}

Π ∀P ∀π ∈ Π

where C ⊆ Π. The final prefix-sensitive representation function
�
· � Π is denoted

�
P � Π =

�
P � ∅Π for any P .

Recall that assumption 2 states that the “prefixes” in the representation are ac-

tually referring to occurrences of prefixes to keep these distinct, thus each prefix π ′

in the predecessor set C of a pair η = (π, C) is associated bijectively to another pair

70

6.1. Blocking on All Prefixes

η′ = (π′, C ′) in the representation. Since the association is one-to-one, the prefix π is

used interchangeably with the pair η. When distinction is required, projections are

defined on a pair η = (π, C) as follows:

Definition 6.1.2. Given a pair η = (π, C) ∈ (Π × 2Π) the projection returning the

prefix of the pair is denoted this[η] = π, and access to the set of predecessors is

provided by the function pset[η] = C.

Due to the correspondence, it should cause no confusion to talk about a prefix

pair η = (π, C) as being an input, output, or match prefix. Thus the notation η ∈ I,

η ∈ O, etc. is used to mean this[η] ∈ I, etc..

The next section develops an execution function that exploits the additional in-

formation included in this representation.

6.1.2 Abstract Execution

As observed above, a necessary requirement of a correct analysis that exploits the

potential of blocking prefixes is the development of a condition that correctly captures

the ability of a prefix to communicate. The latter half of the previous chapter already

provides such a condition for match prefixes. However, observable prefixes in X

differ from matches in that they need to be paired with another prefix in order to

communicate: an input prefix must have an output prefix to communicate with and

vice versa. As such, a notion of which prefixes are able to synchronize must be

defined. In order to do so, a predicate is defined to define the conditions under which

the action of a prefix may occur.

Definition 6.1.3. Given an intermediate solution λ = (R̂, K̂, Ê) ∈ LE , an observable

prefix π ∈ X is environment enabled (denoted λ `E π) with respect to λ if, and only

if

Ê ∩ R̂(cha[π]) 6= ∅

71

6.1. Blocking on All Prefixes

This definition is extended to prefix/predecessor pairs η ∈ Π×2Π in the obvious way,

i.e.,

λ `E η ⇔ λ `E this[η]

This definition captures the ability of a prefix to communicate with the environ-

ment. If π is an input prefix, then λ `E π denotes that π could receive a communica-

tion from the environment, and similarly that π could transmit to the environment if

π is an output prefix.

Similarly, the ability of a match prefix to pass, according to the condition used

in the previous chapter, is encapsulated into the enabling relation by the following

definition:

Definition 6.1.4. Given an intermediate solution λ = (R̂, K̂, Ê) ∈ LE , a match

prefix [x, y] ∈ M is match enabled (denoted λ `M [x = y]) with respect to λ if, and

only if

R̂(x) ∩ R̂(y) 6= ∅

This definition is extended to prefix/predecessor pairs η ∈ Π×2Π in the obvious way,

i.e.,

λ `M η ⇔ λ `M this[η]

Finally, the ability of an input/output prefix pair to communicate is encapsulated

into an enabling relation as follows:

Definition 6.1.5. Given an intermediate solution λ = (R̂, K̂, Ê) ∈ LE , a prefix pair

(πi, πo) ∈ I × O is communication enabled (denoted λ `C (πi, πo)) with respect to λ

if, and only if

R̂(cha[πi]) ∩ R̂(cha[πo]) 6= ∅

72

6.1. Blocking on All Prefixes

This definition is extended to prefix/predecessor pairs η ∈ Π×2Π in the obvious way,

i.e.,

λ `C (η, η′) ⇔ λ `C (this[η], this[η′])

This captures the notion that the input prefix can communicate with the output

prefix if both their channels could be the same name (as given by the R̂ function).

It is obvious that each of these predicates are checkable in polynomial time given a

prefix. The ability of an individual prefix in a process P to communicate can now be

recursively encoded by the following definition:

Definition 6.1.6. Given an intermediate solution λ = (R̂, K̂, Ê) ∈ LE , and a set S of

prefixes paired with their predecessors, a pair η ∈ S is enabled (without qualification)

with respect to λ and S (denoted λ;S `∞ η) if, and only if

λ;S `∞ pset[η] ∧

λ `M η if η ∈ M

λ `E η ∨
(
∃η′ ∈ S : λ `C (η, η′) ∧

λ;S `∞ pset[η′]
)

if η ∈ X

The notation λ;S `∞ pset[η] extends the relation to sets in the obvious way, i.e.,

λ;S `∞ pset[η] ⇔ ∀η′ ∈ pset[η] : λ;S `∞ η′

This definition says that a prefix is enabled if all of its predecessors are enabled,

and:

• it is match-enabled if it is a match prefix, or

• it is either environment enabled, or it is communication enabled with some other

prefix whose predecessors are enabled if it is an observable prefix

Unfortunately, directly computing the predicate λ;S `∞ η for some η could poten-

tially lead to infinite regress due to the recursion on the `∞ predicate. However,

73

6.1. Blocking on All Prefixes

thanks to the iterative nature of the fixed point computation, an equivalent decid-

able condition can be computed by keeping track of which prefixes have potentially

communicated at each step of the abstract execution function.

This is done by expanding the solution LE space with a function C : Π⊥ → � ,

with Π⊥ the lifted set of prefixes and � the two point lattice ff v tt. The new solution

space is denoted LΨ and is comprised of all 4-tuples (R,K,E, C) with C initialized by

C[⊥] = tt and ff for every other value. The initialized function is the bottom element

⊥C in the lattice LC ⊆ [Π⊥ ⇒ �] comprised of all the functions above ⊥C.

Furthermore, define the immediate predecessor of a pair η = (π, C) in a set S of

such pairs as the unique prefix η′ ∈ C such that

pset[η] \ pset[η′] = {η′}

The immediate predecessor of η is denoted by the function ρ[·] : Π → Π⊥ such that

(pset[η] = ∅) ⇒ (ρ[η] = ⊥)

This property, combined with the fact that C is initalized to return tt on an input of

⊥, will have the effect of computing that the “predecessors” of a prefix with no prede-

cessors have communicated. The checkable condition used in the abstract execution

function is now given in terms of the function C as follows:

Definition 6.1.7. Given an intermediate solution λ = (R̂, K̂, Ê, Ĉ), and a set S of

prefixes paired with their predecessors, a pair η ∈ S is enabled (without qualification)

with respect to λ and S (denoted λ;S ` η) if, and only if

Ĉ[ρ[η]] ∧

λ′ `M η if η ∈ M

λ′ `E η ∨
(
∃η′ ∈ S : λ′ `C (η, η′) ∧

Ĉ[ρ[η′]]
)

if η ∈ X

Where λ′ denotes the triple (R̂, K̂, Ê).

74

6.1. Blocking on All Prefixes

This is identical to the definition of enabling given in definition 6.1.6 except that

the recursion is removed by appealing to the current values of the given function

Ĉ, thus given a function Ĉ this predicate can be checked in polynomial time. The

abstract execution function is now defined to ensure that the function Ĉ correctly

satisfies the definition of enabling given in definition 6.1.6.

The analysis function is defined over the lattice LΨ = LE × LC, i.e., it updates

the set of prefixes that are known to communicate in each iteration (given by the

function C ∈ LC).

Given λ = (R,K,E, C) ∈ LΨ, and a set S of pairs η = (π, C), the execution

function Ψ : LΨ → LΨ is defined as follows:

Definition 6.1.8.

ΨS(λ) =
⊔

η∈S

(Φη(R,K,E), 〈η 7→ tt〉) if λ;S ` η

⊥E otherwise

The Greek letter Ψ is used as a mnemonic for PSequential. Note the similarity

between this definition and the definition of Φ̃, which only added the contribution

of a prefix if its preceding matches passed. In this case, the contribution of a prefix

according to the flow insensitive function Φ is only added if it is enabled according

to the condition λ;S ` η. Furthermore, each such prefix whose contribution is added

is marked as having communicated by having its image under C set to true.

The final solution λsol is computed in the usual way by iterating this function

from bottom, given a π-calculus process P , the final solution is computed by

λsol = lfp(Ψ � P �)

with
�
P � =

�
P � Π. Since the relation ` can be checked in polynomial time, the analysis

function remains computable in polynomial time as well.

75

6.1. Blocking on All Prefixes

6.1.3 Correctness

The proof of correctness is going to be quite similar to the proof of the correctness of

the Φ̃ function that blocked on matches only, because the same ideas are used here

on all prefixes. The main difference is the condition used to determine if a prefix is

blocked, therefore the main result required to prove correctness is that the updates

of the C component of the solution correctly emulate the desired condition given by

the predicate `∞ at each iteration of the computation. That proof itself requires a

sub-lemma given below:

Lemma 6.1.1.

λ;S `∞ η ⇒ λ′;S `∞ η if λ v λ′

λ;S ` η ⇒ λ′;S ` η if λ v λ′

Proof Sketch. The result states that if a prefix is enabled under `∞ in the context

of a solution λ, then it is also enabled in the context of a larger solution. The result

is quite evident from the definition, because the checked conditions depend on the

intersections of sets defined by the functions R and E (which only get larger as λ

gets larger), and by checking the truth values of assigned to each prefix by the C

component of the solution (in the case of the ` relation) which can only set more

prefixes to true as the solution gets larger.

The next lemma shows that the ` and `∞ relations are in fact equivalent for

solutions generated by iterating Ψ on a process.

Lemma 6.1.2. Let λ = (R,K,E, C) = Ψ
(k)

� P � (⊥Ψ) for some π-calculus process P , with
�
P � =

�
P � Π, and some integer k, then

λ;S ` η ⇔ (R,K,E);S `∞ η

76

6.1. Blocking on All Prefixes

Proof. Both directions are proved by induction on k, but only the ⇒ direction is

explicitly shown as the proof of the reverse direction is practically identical. By in-

duction on k. When k = 0, λ = ⊥Ψ implying that pset[η] = ∅ by the definition of ⊥C ,

and that the recursive condition (R,K,E);S `∞ ∅ is met because the set is empty. If

η is match-enabled or environment enabled, then certainly (R,K,E);S `∞ η because

these conditions are identically checked in the `∞ definition. If there exists an η′ ∈ S

such that C[ρ[η′]] = tt, this implies that pset[η′] = ∅ as well because C = ⊥C . By the

same reasoning as above, this implies that the recursive condition (R,K,E);S `∞

pset[η′] is trivially true because the set pset[η′] is empty. For the induction step,

consider the tuple λk = (Rk, Kk, Ek, Ck) = Ψ
(k)

� P � (⊥Ψ), and the application of another

iteration of the function to generate λk+1 = (Rk+1, Kk+1, Ek+1, Ck+1) = Ψ � P � (λk).

Now consider a prefix η ∈ S such that λk+1;S ` η. By the definition of `, this

implies that Ck+1[ρ[η]] = tt. By the definition of Ψ, this then implies that ρ[η] was

enabled in the previous iteration, i.e., λk;S ` ρ[η]. By the induction hypothesis it is

then known that (Rk, Kk, Ek);S `∞ ρ[η], which implies that each of the predecessors

of ρ[η] satisfies the predicate `∞ under the solution (Rk, Kk, Ek), and by lemma 6.1.1,

each of these prefixes also satisfies `∞ under the solution (Rk+1, Kk+1, Ek+1) because

λk v λk+1 by the monotonicity of Ψ. Formally, it is known that:

∀η′ ∈ pset[η] : λk+1;S `∞ η′ (6.1)

and by the assumption that λk+1;S ` η it is known that η is either communication

enabled, environment enabled, or match enabled, and combined with equation 6.1,

this implies

λk+1;S `∞ η

by the definition of `∞, which completes the induction.

It is now possible to prove the correctness of the Ψ function in much the same

way as the correctness of the Φ̃ function was proved:

77

6.1. Blocking on All Prefixes

Theorem 6.1.3. Given a π-calculus process P , and any context C, let R̂ = ΛR(H[C‖P]),

and let λ = (R,K,E, C) = lfp(Ψ � P �) in LΨ with
�
P � =

�
P � Π, then

R̂∇P v R

Proof. Let S ⊆ ΠP be the set of prefixes η of P such that C[η] = ff, i.e., S is the set

of prefixes in P that were computed as not having communicated, because C[η] = ff

at the fixed point implies that λ;
�
P ��� η, and consequently that λ;S � ∞ η by the

previous lemma. thus the contributions of these prefixes were not added to the final

solution. Thus, by the definition of Ψ:

(R,K,E, C) = lfp(Ψ � P �) = lfp(Ψ � P⇑S �) (6.2)

i.e., the solution does not change if the prefixes whose preceding prefixes don’t com-

municate are excluded from the representation because they only contribute ⊥Ψ to

the final solution. Furthermore, also by the definition of Ψ:

lfp(Ψ � P⇑S �) = (lfp(Φ � P⇑S � ∅), C) (6.3)

i.e., the operation of the new function on those prefixes whose preceding prefixes

do not communicate is identical to the operation of the non-sequential function Φ

on those prefixes. This claim is justified because it is exactly how the Ψ function

was defined in definition 6.1.8. Letting (R̃, K̃, Ẽ) = lfp(Φ � P⇑S � ∅), i.e., the solution to

the previous dataflow analysis on the abbreviated process, the correctness of the Φ

function, as given by theorem 5.1.5 implies the following:

ΛR[H[C‖(P ⇑ S)]]∇P v R̃ (6.4)

By equations 5.6 and 5.7 it is also known that (R̃, K̃, Ẽ, C);
�
P ��� η for each prefix

η ∈ S. Therefore, this result also applies to ΛR[H[C‖(P ⇑ S)]] by equation 5.8, which

78

6.2. Sub-Process Structure

in turn implies that the prefix prefix η does not communicate in any trace of C‖P ,

and thus none of the potential subsequent actions appear in the traces, i.e.,

H[C‖P] = H[C‖(P ⇑ S)] (6.5)

Combining equations 6.2, 6.3, 6.4, and 6.5 yields

R̂ = ΛR[H[C‖P]]∇P = ΛR[H[C‖(P ⇑ S)]]∇P v R̃ = R

Which is the claimed result.

6.2 Sub-Process Structure

The last enhancement of the analysis developed in this thesis is based on a simple

observation. Up to this point, it has been assumed that any input prefix in a process

could potentially communicate with any output prefix in the process, so long as

they could potentially share a channel and that they are not blocked by preceding

prefixes. However, this is not necessarily the case, the two prefixes in the process

P � (νa)(νb)(a(x) + a〈b〉) satisfy both of these conditions, but it is still impossible

for them to communicate because they are on opposite sides of a choice operator. The

previous analysis would compute that R(x) = K(a) = {b} even though P is unable

to reduce in any context.

The main observations used to restrict the potentially communicating prefixes of

a process are then as follows:

• Prefixes on opposite sides of a choice operator can not communicate

• Prefixes on opposite sides of a parallel composition operator can communicate

• All prefixes in a replicated process can communicate with one another

79

6.2. Sub-Process Structure

This section focuses on formalizing these intuitive observations by developing yet

another process representation that is able to detect valid prefix pairs, and then again

modifying the previous abstract execution function Ψ to exploit the representation

with the goal of further improving the accuracy of the analysis.

6.2.1 Abstract Representation

In order to track communications in the process, prefixes that can potentially commu-

nicate with one another must be defined. In the flow-insensitive analyses previously

defined, where composition and choice operators are not taken into account, it is

assumed that every input prefix can communicate with every output prefix and vice

versa. The enhanced analysis of Bodei et al. in [BDPZ03] accounts for the fact that

prefixes on the opposite sides of a choice operator cannot communicate, but doesn’t

account for the fact that a prefix cannot communicate until all of it’s predecessors

have had a chance to do so. The representation here combines the ideas in [BDPZ03]

(summarized in appendix A.2) with the sequential representation defined in the pre-

vious section in order to improve the accuracy of the analysis.

The first step towards such a representation is the generation of the parse tree

of a process P . This is explicitly defined in order to illustrate how the sequencing

of prefixes is taken into account. Each pairing of a prefix π with its predecessor set

is represented by a node in the parse tree, as well as each of the process operators

“‖” and “+”. The definition of a parse tree consists of a set of nodes defined by the

following grammar:

Node ::= PrefixNode | OpNode | PrefixNodeSet

PrefixNode ::= (π, S)

PrefixNodeSet ::= {PrefixNode1, . . . ,PrefixNoden}

OpNode ::= ‖ | +

80

6.2. Sub-Process Structure

A node is either the pairing of a prefix π with its predecessor set S, a process operator,

or a set of prefix pairs. The latter is used to represent a replicated process, where

flow information is lost due to the structural congruence !P ≡ P‖!P which allows any

prefixes in P to appear on opposite sides of a composition operator. The functions

this[PrefixNode] and pset[PrefixNode] provide access to the elements of a PrefixNode

as before.

Process trees are then defined as follows:

ProcTree ::= ε | 〈Node,Children〉

Children ::= {ProcTree1, . . . ,ProcTreen}

A tree is either an empty tree ε, or the pairing of a Node (accessed by the projection

root[ProcTree]) and a pair of ProcTrees. The function childi[ProcTree] returns the

ith ProcTree in the set of Children. A PrefixNode η is defined to be in a ProcTree T

(denoted η ∈ T) if η is a node of T , or η ∈ S where S is a PrefixNodeSet that is a

node of T . The notation ΠP for the set of prefixes of a process P is extended to ΠT

denoting the set of PrefixNodes in a ProcTree T , and similar extensions XT , OT , IT ,

and MT are also defined.

Given these definitions, the abstract representation of a process P is defined by a

function
�
P � C

T taking a π-calculus process P and returning a ProcTree (the element

C is used to keep track of the predecessors as before). The tree representation can

now be defined inductively on the structure of P

81

6.2. Sub-Process Structure

Definition 6.2.1.

�
0 � C

T = ε
�
P‖Q � C

T = 〈‖, {
�
P � C

T ,
�
Q � C

T }〉�
P +Q � C

T = 〈+, {
�
P � C

T ,
�
Q � C

T }〉�
(νx)P � C

T =
�
τ.P � C

T =
�
P � C

T�
π.P � C

T = 〈(π, C), {
�
P � {π}∪C

T }〉
�
!P � C

T =
�
P � C

Π

The final abstract representation of a process
�
P � T is computed by

�
P � ∅T .

An example of the construction is presented in figure 6.2.1 on the process from

example 5.1.1:

P � a(x).(νb)(νc)((b〈a〉.x〈x〉.b(y).y〈c〉+!b〈d〉.a〈c〉) ‖ b(z).b〈z〉) ‖ d(w)

This representation simply generates the parse tree of P , with the exception of a

replicated process !P , which is interpreted as the set of its prefixes because of the

reasons outlined above. The next section defines a function that explicitly computes

the pairs of structurally compatible prefixes, and then refines the execution function

to exploit the representation.

6.2.2 Abstract Execution

The computation of the valid prefix pairs is done by a function E() : ProcTree →

(PrefixNode×PrefixNode) generating the pairs of prefixes that can structurally com-

municate:

82

6.2. Sub-Process Structure

||

(d,w)

(b,y)

(a,x)

(b,z)

||

<b,z>

+

<b,a>

<x,x>

<y,c>

<b,d>

<a,c>

Figure 6.1: The tree
�
P � T for the process P in example 5.1.1

83

6.2. Sub-Process Structure

Definition 6.2.2. Given a π-calculus process P , define the set of structurally com-

munication enabled prefixes as E(
�
P � T), with E() the following function:

E(ε) = ∅

E(〈η, {T}〉) = E(T)

E(〈+, {T1, T2}〉) =
⋃

i E(Ti)

E(〈‖, {T1, T2}〉) = ∆({T1, T2}) ∪
⋃

i E(Ti)

E(〈S, ∅〉) = (OS) × (IS)

where η is a PrefixNode, S is a PrefixNodeSet, T is a ProcTree, {T1, T2} is a Proc-

TreeSet, and ∆ is defined below.

The letter E() is used as a mnemonic for “edges”, indicating that “communication

edges” between PrefixNodes are being generated . The first equation in definition 6.2.2

handles the empty tree. The second says that a PrefixNode does not generate any

new pairs. The third handles the case that prefixes on opposite sides of a choice

operator can’t communicate by returning all the pairs in the summed children without

generating any pairs between the prefixes in them. The fourth equation handles

processes in parallel composition by generating the same set of pairs within each

child tree in addition to the set of pairs ∆({T1, T2}), where this set comprises each

input (output) PrefixNode in each tree Ti paired with each output (input) PrefixNode

in the other tree in the set, i.e.,

∆({T1, T2}) =
(
(IT1

×OT2
) ∪ (IT2

×OT1
)
)

The final equation in definition 6.2.2 handles the case of a replicated sub-process by

generating the set of all input/output pairs in the given NodeSet S.

Now, in order to show how to exploit this in the abstract execution function, recall

that the definition of an enabled prefix η (definition 6.1.7) in the context of a solution

84

6.2. Sub-Process Structure

λ = (R̂, K̂, Ê, Ĉ) and a prefix set S was as follows:

Ĉ[ρ[η]] ∧

λ′ `M η if η ∈ M

λ′ `E η ∨
(
∃η′ ∈ S : λ′ `C (η, η′) ∧

Ĉ[ρ[η′]]
)

if η ∈ X

Where λ′ denotes the triple (R̂, K̂, Ê). Specifically, observe that the communication

condition (in the case of an observable prefix) requires the existence of some other

prefix η′ ∈ S with which η can communicate. Thus, the only modification that needs

to be made to the abstract execution function in order to further restrict its solution is

to restrict this existential quantification to prefixes that are paired with η in E(
�
P � T).

Specifically, the notion of enabling with respect to a solution λ and a prefix set S is

defined below:

Definition 6.2.3. Given an intermediate solution λ = (R̂, K̂, Ê, Ĉ), and a ProcTree

T , a prefix η ∈ T is enabled with respect to λ and T (denoted λ;T ` η) if, and only if

Ĉ[ρ[η]] ∧

λ′ `M η if η ∈ M

λ′ `E η ∨
(
∃(η, η′) ∈ E(T) : λ′ `C (η, η′) ∧

Ĉ[ρ[η′]]
)

if η ∈ X

Where λ′ denotes the triple (R̂, K̂, Ê).

The abstract execution function is then modified to use this definition of enabling

rather than the previous one, i.e.,

Definition 6.2.4.

ΨT (λ) =
⊔

η∈T

(Φη(R,K,E), 〈η 7→ tt〉) if λ;T ` η

⊥E otherwise

Note that Ψ now operates on a tree T rather than a set S. The final solution is

computed in the standard iterative way, except that now
�
P � =

�
P � T . It is easy to

85

6.2. Sub-Process Structure

see that the correctness of this analysis follows from the correctness of the previous

one so long as the set E(
�
P � T) does not exclude any prefix pairs that could actually

communicate during the reduction of the process. This result is proved in the following

proposition:

Proposition 6.2.1. Given a π-calculus processes P and C, and any action α =

((πi, σ
c
i
,⊥σ), (πo, σ

c
o
, σd

o
)) in H[C‖P] such that πi ∈ XP and πo ∈ XP , then (πi, πo) ∈

E(
�
P � T)

Proof. The claim states that if a pair of prefixes that are in the prefix set of P

communicate at some point in some trace of C‖P , then that pair must be included

in E(
�
P � T). If there exists some subprocess !P ′ in P such that both πi ∈ XP ′ and

πo ∈ XP ′, then the result is achieved since all input/output pairs in P ′ are included

in E(
�
P � T) by definition. If this is not the case, then by the definition of prefix

communication there must exist subprocesses P1 and P2 of P such that P1‖P2 is a

subprocess of P , and (without loss of generality) that πi ∈ XP1
and πo ∈ XP2

. By

definition

E(
�
P1‖P2 � T) ⊆ E(

�
P � T)

because P1‖P2 is a subprocess of P , and by applying the rule for generating E(
�
P1‖P2 � T),

it is known that

∆({
�
P1 � T ,

�
P2 � T }) ⊆ E(

�
P1‖P2 � T)

and by the assumption that πi ∈ XP1
and πo ∈ XP2

, and the definition of ∆ it is

known that:

(πi, πo) ∈ ∆({
�
P1 � T ,

�
P2 � T })

and finally, the transitivity of set inclusion yields the desired result that (πi, πo
) ∈

E(
�
P � T).

86

6.2. Sub-Process Structure

This completes the formal definitions of the analyses of the π-calculus defined in

this thesis. The effect of these enhancements will now be explored through a series

of security examples in the next chapter. These examples will highlight some of the

abilities, as well as the limitations of, the dataflow analyses developed in the previous

chapters.

87

Chapter 7

Application: Examples in Security

Program analyses can be used to determine various properties of programs at

compile time. In the context of the π-calculus, programs define a concurrent system

in which agents can transmit data and channel capabilities to one another. The

program analyses presented in the previous chapters track the dataflow through such

a system, as described by a π-calculus process. One potential use for the information

gleaned in the analysis solution is to check whether the system in question satisfies

a particular security property. This chapter provides a discussion-style treatment

of how security properties can be checked using various degrees of accuracy in the

dataflow analysis solution.

Specifically, the accuracy of a dataflow analysis will affect the corresponding secu-

rity analysis as follows: inaccuracy in the dataflow analysis will lead to false positives

in the security analysis. An inaccurate analysis will always provide a correct analysis

– i.e. insecure processes will always be rejected – but the security analysis may also

reject secure processes. Improving the accuracy of the dataflow analysis will reject

fewer secure processes.

The first section describes how some basic security properties can be modelled

88

7.1. Confidentiality In The Π-Calculus

by the π-calculus, and presents examples that illustrate some of the abilities and

limitations of the analyses presented. The second section informally introduces an

extension of the π-calculus that adds basic cryptographic primitives to the calculus,

and discusses how the flow analyses presented in this thesis could simply be extended

to reason about properties of cryptographic protocols.

7.1 Confidentiality In The Π-Calculus

The term “secrecy” has numerous meanings in the program security literature, one

usage of the term is as a synonym for confidentiality where it is assured that a private

piece of data is not leaked to an agent that is not authorized to see it. This property

can naturally be expressed in the π-calculus, where names can be viewed as data.

Given a π-calculus process P , the names of P can be partitioned into two sets S and

P depicting the names that must be kept secret, and those that can be made public

respectively. It is then simple to check the result (R,K,E) of the dataflow analysis

to ensure confidentiality properties such as:

• Secret names are not transmitted over public channels (i.e., K(P) ∩ S = ∅)

• Private names are not leaked to the environment (i.e., S ∩ E = ∅)

• Publicly observable input variables don’t receive secret names (i.e., this implies

checking the condition R(P) ∩ S = ∅)

7.1.1 Example: Context Dependency

As a preliminary example, consider the process P from example 5.0.2:

P � a(x).b(y).[x = y].(νc)(νd)(d〈c〉‖d(z).a〈z〉)

89

7.1. Confidentiality In The Π-Calculus

and consider the behaviour of the match-sequential analysis Φ̃ � P � M defined in sec-

tion 5.2. By proposition 5.2.1, closing this process and computing its solution under

Φ̃ will produce the same result as the analysis of Bodei et al. from [BDNN01b], i.e.,

if (ρ, κ) is the solution of the latter analysis on P , and (R,K,E) = lfp(Φ̃ � (νa)(νb)P � M),

where (νa)(νb)P is the closed version of P , then

(ρ, κ) = (R,K)

In fact, this analysis produces ⊥E as a solution because both functions conclude that

the match prefix [x = y] can’t pass. Bodei et al.’s analysis does this on the open

process because it does not consider the environment, and the Φ̃ function arrives at

this conclusion because it was given a closed version of the process. However, note

that Bodei et al.’s analysis computed this result on the open version of the process

(i.e., without binding a and b). However, computing the lfp(Φ̃ � P � M) function on the

open version of the process produces the following solution:

R(x) = {a, b, c, ξP} K(a) = {c}

R(y) = {a, b, c, ξP} K(b) = {}

R(z) = {c} K(c) = {}

E = {a, b, c, ξP} K(d) = {c}

If the set of private names is set in the natural way to be the bound names of P ,

i.e., S = bn(P) = {x, y, z, d, c}, the solution above shows that the private name c

was leaked to the environment because E ∩ S = {c}, and also that it was sent over

the public channel a because a ∈ P and K(a) ∩ S = {c}. This example shows how

the analysis presented in section 5.2 accounts for the reduction sequence presented

in example 5.0.2 when P was run concurrently with a context C that received the

leaked name.

90

7.1. Confidentiality In The Π-Calculus

7.1.2 Example: Wide-Mouthed Frog

Recall the introductory example from chapter 1:

Message 1 A→ S : A, {B,KAB}KAS
on cS

Message 2 S → B : {A,KAB}KSB
on cB

Message 3 A→ B : A, {M}KAB
on cB

This protocol models the behaviour of two agents A and B that wish to transmit

an encrypted message, but lack the shared keys required to do so. In order to establish

such a key, the agents communicate with a server S that they both trust (and with

which they each share a key), and use a series of communications to perform the key

exchange. The agent A first generates a key KAB that it would like to use as a shared

key to send a message to B. It sends this key to S, paired with the name of the agent

with which it would like to communicate, and encrypted with the key KAS that it

shares with the server. The server in turn sends an encrypted message to B with the

key KAB paired with the name of the agent that would like to communicate with it.

After these steps are completed, A and B both know the key KAB , so A can encrypt

the message with it and send it to B.

Due to the lack of encryption and decryption primitives in the π-calculus, this

protocol must be modelled under the following assumptions (see [BDNN01b]):

1. Knowledge of a key is modelled by knowledge of a channel

2. Encryption is modelled by transmission over a channel

3. Decryption is modelled by reception on a channel

Under these assumptions, the Wide Mouthed Frog protocol can be expressed as fol-

lows in the π-calculus (adapted from [BDNN01b]):

A = (νM)(νcAB)cAS〈cAB〉.cAB〈M〉

91

7.1. Confidentiality In The Π-Calculus

S = cAS(x).cSB〈x〉

B = cSB(y).y(z)

P = (νcAS)(νcSB)(A‖S‖B)

The process A has the action of sending the “key” cAB to S “encrypted” with cAS,

and then waiting until it is able to send M to B encrypted with cAB . The server

S decrypts a message from A and puts it into x, and then sends the received value

(which will be the key cAB) to B encrypted with cSB. The process B waits for a value

from S which it decrypts with cSB, and then waits to decrypt a message with the key

it received.

As the process P is closed, and contains no prefixes that are unable to commu-

nicate, the basic analysis Ω � P � ∅ is sufficient to get the dataflow information, as all of

the subsequent analyses would produce the same result. This analysis produces the

following solution when iterated to a fixed point:

R(x) = {cAB} K(cAB) = {M}

R(y) = {cAB} K(cAS) = {cAB}

R(z) = {M} K(cSB) = {cAB}

K(M) = {}

This solution indicates the exact transmissions and encryptions of M and cAB through

the K function. It also indicates that the secrecy of the message M hinges on the

secrecy of the key cAB that it is encrypted with (because K(cAB) = {M}), and that

the secrecy of cAB hinges on the secrecy of the keys (cAS and cSB) that it is encrypted

with. The latter keys are not transmitted in any way according to the analysis, and

thus the secrecy of the message M is guaranteed.

Now observe what happens if the protocol were modified to have A explicitly leak

the key cAB after transmitting the message, i.e., if A were modified to the following

92

7.2. Integrity

process:

A′ = (νM)(νcAB)cAS〈cAB〉.cAB〈M〉.cAC〈cAB〉

which is the same as A suffixed by the transmission of the private key cAB encrypted

with some key cAC and sent to some outside party C. In this case, the result of the

analysis would compute that K(cAC) = {cAB}, and since cAC would be free in P (and

hence a public name by the above convention), then the secrecy of the message M

would be compromised because K(P) ∩ S is non-empty.

7.2 Integrity

Another oft-used term in the security literature is that of data integrity, and one

potential definition of it is the property that an agent’s data does not get corrupted

by another agent. There are various potential versions of a data integrity property,

but in this section we examine the particular one in which data integrity is secured

by only allowing the owner of a piece of data to access it. The simple example below

will also serve to illustrate how more accurate analyses than the basic flow insensitive

one may be needed to properly do this.

7.2.1 Example: Accuracy

The different levels of accuracy of the analyses developed in the previous chapters are

shown by analyzing and refining a simple example. Consider the following family of

processes:

Ci � inS〈ki〉.outS(xi)

S � inS(y).

 ∑

i∈{1,...,N}

[y = ki].outS〈Di〉

93

7.2. Integrity

The process S defines a server with two communication channels inS and outS for

input and output respectively. Upon receiving a name on its input channel, the

server compares it with one of N possible names k1, . . . , kn, and if any are successful

transmits a name Di on its output channel depending on which match succeeded.

This process can be viewed as modelling a password access database, where the ki’s

represent passwords, and the Di’s represent a private data record that is accessible

upon presentation of the name ki.

The processes Ci then represent potential clients of the database. Each client

transmits its password ki on the server’s input channel, and then waits for a reply on

the server’s output channel.

It is interesting to see in some detail how the analyses presented in the previous

chapters behave on configurations of these processes. First, the case of a single client

interacting with the server in isolation is considered. Let j be an integer such that

1 ≤ j ≤ N , then consider the process

P � (ν inS)(ν outS)(ν k1, . . . , kN)(ν D1, . . . , DN)(S‖Cj)

Under the first analysis in which only the set of all observable prefixes were considered,

the representation of the process would be the following set:

�
P � ∅ = {inS〈kj〉, outS(xj), inS(y), outS〈D1〉, . . . , outS〈DN〉}

and the analysis function Φ � P � ∅ iterated to a fixed point from bottom would compute

the following solution:

R(xj) = {D1, . . . , DN} K(outS) = {D1, . . . , DN}

R(y) = {kj} K(inS) = {kj}

K(ki) = {} ∀i K(Di) = {} ∀i

and notice that this analysis now computes that all of the private data records for

every user could potentially be sent to the client Cj (because they were received into

94

7.2. Integrity

xj). If this analysis were used as the basis for determining the security of this trivial

database design in terms of data ownership (i.e., if it were used to check if only the

owner of a piece of data can obtain it), then the check would fail and this simple

system would be deemed insecure with respect to this property. This is clearly not

the case, as can be seen by the inspection of the traces of P which are quite simple

in this case: the process can only send the record Dj to the client Cj in any trace.

This example serves to illustrate the drawbacks of the simple flow insensitive version

of the analysis: it may reject secure processes.

Now, consider what happens to the same process when the match prefix is con-

sidered:

�
P � M = {(inS〈kj〉, ∅),

(outS(xj), ∅),

(inS(y), ∅),

(outS〈D1〉, {[y = k1]}),

...

(outS〈DN〉, {[y = kN]})}

Notice that each prefix in the branches of the summation is paired with the unique

match prefix that precedes. Thus the analysis should be able to exploit this to

conclude that only one of them can possibly pass, and indeed lfp(Φ̃ � P � M) computes

the following solution:

R(xj) = {Dj} K(outS) = {Dj}

R(y) = {kj} K(inS) = {kj}

K(ki) = {} ∀i K(Di) = {} ∀i

Note that the analysis now correctly computes that only the datumDj can be received

by the client (i.e., R(xj) = {Dj}).

95

7.3. Benefits of Sequential Analysis

7.3 Benefits of Sequential Analysis

This section continues the database example above to show the accuracy benefits of

the sequential dataflow analysis presented in chapter 6. Consider what happens if the

clients from the above process were modified to ping the server, and then only send

their password if their initial communication were acknowledgement, i.e., the clients

would formally be modified to be the following processes:

C ′
i � inS〈ping〉.ping(zi).Ci

The client now sends an (arbitrary) name ping to the server’s input channel, and waits

to receive another (arbitrary) name ping now acting as a channel, before behaving as

the previous client Ci. If a particular client C ′
j were now allowed to interact with the

previous server in isolation:

P � (ν ping)(ν inS)(ν outS)(ν k1, . . . , kN)(ν D1, . . . , DN)(S‖C ′
j)

Then the representation of the process under the match-sensitive interpretation
�
· � M

would only add the two new prefixes to the set, i.e.,:

�
P ′ � M = {(inS〈ping〉, ∅),

(ping(zj), ∅)} ∪
�
P � M

And the least solution of the dataflow analysis is given by the following sets:

R(xj) = {Dj} K(outS) = {Dj}

R(y) = {kj, ping} K(inS) = {kj, ping}

R(zj) = {} K(Di) = {} ∀i

K(ping) = {} K(ki) = {} ∀i

This analysis computes that the datum Dj may reach the client, even though this is

actually impossible (because the client never gets a return message on ping). In fact,

96

7.3. Benefits of Sequential Analysis

the analysis even shows that the client receives the datum despite not receiving the

ping, because the K set of the name ping is empty. This would violate the above

property that the client should not send its password (which the analysis says it does

because kj ∈ K(inS)) unless it receives an acknowledgement from the server first.

In order to catch this property, the fact that the second prefix in C ′
i cannot occur

would need to be detected, and this can be done by using the fully sequential analysis

from chapter 6. The representation of P ′ under this analysis is as follows:

�
P ′ � Π = {(inS〈ping〉, ∅),

(ping(zj), {inS〈ping〉}),

(inS〈kj〉, {inS〈ping〉, ping(zj)}),

(outS(xj), {inS〈ping〉, ping(zj), inS〈kj〉}),

(inS(y), ∅),

([y = k1], {inS(y)}),

...

([y = kN], {inS(y)})

(outS〈D1〉, {inS(y), [y = k1]}),

...

(outS〈DN〉, {inS(y), [y = kN]})}

The top four entries represent the prefixes in the client (note how each one contains

the predecessor set of the prefix before it). Now the sequential analysis is able to

tell in the first iteration that the only two prefixes that can potentially communicate

are inS〈ping〉 and inS〈y〉, because both of their predecessor sets are empty, and thus

C[ρ[π]] will be set to true for both of them, and they are communication enabled. This

iteration will cause the C function to be set to true for these prefixes, and in the next

iteration, those prefixes that only contain one of these two in their predecessor sets

97

7.3. Benefits of Sequential Analysis

will be able to communicate if they are communication enabled. The only prefixes

whose entire predecessor sets are mapped to tt by C at this point are the ping(zj)

prefix in the client, and the match prefixes [y = ki] in the server. Since R(y) was set

to {ping} during the communication of the first iteration, and R(ki) = {ki} for each

ki by the initialization of R, none of th match prefixes are match-enabled. The input

prefix ping(zj) has no other prefixes to communicate with whose predecessors have

passed, thus the analysis adds no new information implying that the following fixed

point is reached:

R(xj) = {} K(outS) = {}

R(y) = {ping} K(inS) = {ping}

R(zj) = {} K(Di) = {} ∀i

K(ping) = {} K(ki) = {} ∀i

Which reflects the more accurate result that the client’s password is never transmitted,

and the interaction of the client with the server is safe with respect to the above

property. In fact, the solution accurately reflects that the only transmission that

occurred was the ping.

98

Chapter 8

Future Work and Conclusions

This thesis concludes by pointing out some limitations of the analysis developed in

the previous chapters, and discusses lines of research whereby some of these limitations

could be addressed. Some of the work discussed in the following involves integration

of previous work into the framework presented here and some involves new ideas that

could potentially improve the analyses in various ways.

Revisiting the database query example from the previous chapter will serve to

illustrate some of the limitations of the analysis as it stands:

Ci � inS〈ki〉.outS(xi)

S � inS(y).

 ∑

i∈{1,...,N}

[y = ki].outS〈Di〉

In the previous chapter, only the behaviour of a single client asking for access from

the server was analyzed. Consider now what occurs if all the clients are allowed to

interact with the server at once:

P � (ν inS)(ν outS)(ν k1, . . . , kN)(ν D1, . . . , DN)(S‖C1‖ · · · ‖CN)

Due to the non-determinism inherent in the π-calculus, even the most accurate anal-

ysis presented in this thesis produces undesirable results. Namely, the analysis from

99

8.1. The Spi-Calculus: A Cryptographic Extension

section 6.2 where the parse tree of the process is analyzed to only consider communi-

cation between structurally compatible pairs produces the following least solution:

R(x1) = {D1, . . . , DN} K(outS) = {D1, . . . , DN}
... K(inS) = {k1, . . . , kN}

R(xN) = {D1, . . . , DN} K(Di) = {} ∀i

R(y) = {k1, . . . , kn} K(ki) = {} ∀i

This indicates that any of the clients could receive any of the private data (because

R(xi) = {D1, . . . , DN}), even though any trace of the process only allows one of

the clients to communicate with the server. This occurs because the server has a

single channel for all inputs, and one for all outputs, thus the analysis conservatively

computes that each of the keys could arrive on the input channel, and thus any of the

data records could potentially be transmitted on the output channel. However, this

result is inaccurate because no one trace of the process allows this to happen, it is

only the amalgamation of the behaviours of all of the traces that lead to this result.

These (and other) drawbacks can be addressed in many ways, some of which are

discussed in the following sections.

8.1 The Spi-Calculus: A Cryptographic Extension

The spi-calculus [AG99] is an extension of the π-calculus where, in addition to the

set of names N , encrypted messages of the form {M}K (representing the name M

encrypted with the key K) are included. Defining the set H as the set of encrypted

names, encryption can be viewed as a function {·}[·] : N → N → H, which when

given a name K ∈ N defines a family {·}K : N → H of functions that encrypt the

input name with key K. This requires the addition of some construct used to decrypt

names, and thus a new prefix is added to our syntax that allows us to do so:

100

8.1. The Spi-Calculus: A Cryptographic Extension

π ::= . . . | decN(L ⇀ x)

The new prefix tries to decrypt the name L with key N . If L is a name of the

form {M}N , then the process behaves as P{x 7→M}, otherwise it is stuck. Note that

this is a slight variation in notation from Abadi and Gordon’s decryption primitive

in [AG99] and [AG98], but by definition decN(L ⇀ x).P ≡ case L of {x}N in P from

the original description. It is more convenient for the analyses presented in this thesis

to describe it as a prefix. It is important not to confuse the syntactic harpoon symbol

“⇀” with the semantic reduction relation “
µ

−→”. The “⇀” symbol in the decryption

prefix is only intended to indicate that the result of a successful decryption of L is

substituted for the bound variable x in P .

The semantics of the calculus only allow names in H to be used as transmitted

data, and never as channels or data in an input prefix that could be substituted for.

Furthermore the names in H are assumed to have the following properties [AG98]:

• The only way to decrypt an encrypted packet in {M}K ∈ H is to know the

corresponding key K.

• An encrypted packet does not reveal the key that was used to encrypt it.

• There is sufficient redundancy in messages (i.e., names in N) to detect whether

the decryption was successful

These assumptions imply that the cryptographic primitives used in the spi-calculus

represent a perfect symmetric cryptosystem. In order to add support for the spi-

calculus to the dataflow analyses presented in this thesis, it suffices to create a rule

whereby a decryption prefix can successfully occur. This is analogous to the enabling

rules for the other kinds of prefixes defined in chapter 6. Intuitively, a decryption

enabling rule for the decryption prefix decN(L ⇀ x) could conservatively go as follows:

101

8.1. The Spi-Calculus: A Cryptographic Extension

• for every name of the form {M}L ∈ R(L) (i.e., the names that L could be), the

set R(x) must include M .

It should be fairly trivial to add such a rule to the sequential analysis. If it were done,

then the database example from above could be rewritten to return encrypted data

to the clients:

Ci � inS〈ki〉.outS(xi).decKi
(xi ⇀ zi)

S � inS(y).

 ∑

i∈{1,...,N}

[y = ki].outS〈{Di}Ki
〉

where the upper case Ki represent an encryption key used by each client on its data

(as opposed to the lower case ki representing an access password). The result of such

an analysis would not change from the one shown at the start of the chapter, except

that the set of names substituted for each xi (i.e., R(xi)) would contain the encrypted

version of the data packet, i.e., for each i:

R(xi) = {{D1}K1
, . . . , {DN}KN

}

and the subsequent decryption prefix now included in each client would only be able

to decrypt the appropriate packet, thus the analysis would compute that

R(zi) = {Di}

for any i thereby, showing that each client can only access its own data record. A fully

flow insensitive analysis of the spi-calculus has already been developed in [BDNN01a],

but it would be useful to integrate the sequential granularity and sensitivity to flow

operators presented in the dataflow analyses here.

102

8.2. Refined Solution Space

8.2 Refined Solution Space

The solution space LΨ of functions of the form (R,K,E, C) can be refined to provide

more granular information about the process. For instance, consider the flow-logic

based analysis of Bodei et al. presented in appendix A.2. Rather than computing a

function K which only provides information about the names that were transmitted

over a channel, the analysis computes a function κ̃ that also takes as input a “sub-

process” address (which represents a program point by the set of prefixes that precede

a branch by a ‖ or + operator). The analysis is thereby able to provide information

about what names were transmitted over which channels, and at what program point

the transmission may have occurred.

Thanks to the precision of the sequential analysis in chapter 6, it is possible (and

perhaps, even quite easy) to compute a solution space that is even more precise than

this. Specifically, because the sequencing operator “.” is fully considered, in that the

analysis will not consider the contribution of prefixes that are blocked, it should be

simple to compute a function K̃ : O × N → N that computes information about

what names could be transmitted over a channel by a particular prefix.

This sort of granularity is already provided for the R function, because a name x

can only appear as the datum in an input prefix once as per assumption 1.

Such information could then be used to reason about further security properties

such as “authenticity”, which deals with validating the identity of the processes that

transmit to one another. This would be due to the fact that the analysis solution

would now contain information about which prefix occurences transmitted what data,

thus by determining the process containing each prefix, the identity of the transmit-

ting process can be established.

103

8.3. Eliminating Approximation Points

8.3 Eliminating Approximation Points

The analyses presented in this thesis present a mechanism whereby the actual execu-

tion of the process is analyzed in a more accurate way than in the past; however, there

are still conservative assumptions made by the techniques that could be improved

without losing the decidability of the analysis. The first of these is the conservative

nature of the conditions used to determine if a prefix is blocked, and the second is

the analyses’ treatment of replicated processes. The following subsections discuss the

work to be done for each of these.

8.3.1 Blocking Conditions

Consider a prefix π such that pset[π] contains a set of match prefixes [x1 = y2], . . . , [xn =

yn]. The dataflow analysis presented in the previous chapters determines that π could

fire if each of these matches passes under the condition

R(xi) ∩ R(yi) 6= ∅

for each match [xi = yi]. This condition considers each match prefix individually, but

it is quite possible for sequences of matches to be dependent on one another. For

instance, consider if {[x = y], [y = z]} ⊆ pset[π], the current analysis would require

that the following condition hold in order for these two matches to be enabled:

(R(x) ∩R(y) 6= ∅) ∧ (R(y) ∩ R(z) 6= ∅) (8.1)

However, this condition ignores the fact that in order for both matches to pass at once

(which is indeed what is required), the following more restrictive condition suffices:

R(x) ∩R(y) ∩R(z) 6= ∅ (8.2)

Namely that if both matches are to pass, the set of names that y could be must

overlap the names that z and x could be at once. Notice that 8.2 implies 8.1, but the

104

8.3. Eliminating Approximation Points

reverse is not true in general, thus the first condition may determine that a prefix is

not blocked, when in fact it is.

A forthcoming paper by Colussi et al. [CFG04] deals with such a refined blocking

condition, but does not consider the environment of the process in doing so, and also

provides no conditions under which output prefixes could block. Integrating that

work into the framework presented here should improve the accuracy of the analyses.

8.3.2 Replication

The analysis as it stands may produce different results for structurally congruent

processes. Consider a replicated sub-process !P such that bn(P) is not empty. Any a ∈

bn(P) actually represents an infinite set of names {a0, a1 . . .}. The current analysis

identifies the potential solution sets of these names by combining them. This is done

by representing a replicated sub-process as the set of its prefixes instead of reasoning

about its sub-structure.

However, if the algorithm were given the syntactically distinct (but structurally

congruent) process P‖!P as input, the α-conversion of the bound names would cause

the names in the unfolded occurrence of P to be re-named, thus potentially yield-

ing non-trivial results for the new names and a slightly smaller solution for the set

{a0, a1 . . .} (as the communications taken by the first unfolding of P would no longer

be included in the identification of the solutions for the replicated process).

This is not surprising, as a similar result applies to dataflow analyses working on

inputs with rolled or unrolled loops in sequential programs. In order to explicitly

relate these solutions (i.e., formally say that the solution for P‖!P is less than the

solution for !P alone as desired), the analysis would need to keep track of the fact

that P “came from” !P in some way. This would require a semantics that allows such

things to be tracked, and some work on such non-standard semantics for the calculus

105

8.4. Full Context Independence

has been done by Feret [Fer01].

Furthermore, while the current analysis has demonstrated useful techniques for

dealing with sequences of prefixes, it would be desirable to apply similar techniques

to obtain more accurate results for replicated processes. This could be done if the

unfolding processes in a replicated process were analyzed individually with the same

techniques. However, in order to keep the analysis from becoming undecidable, it

may be necessary to “cap” the number of times that a particular replicated process

is allowed to unroll. Such an analysis may also require additional constructs to be

added to the calculus to indicate when the unfoldings occur. For example, instead of

modelling the unfolding of a replicated process in the structural congruence relation,

one could possibly add a “signalling” construct to the syntax that would cause a

particular replicated subprocess to unfold a copy during reduction. These ideas are,

however, totally preliminary, thus the usefulness or feasibility of such an extension to

the language is not known.

8.4 Full Context Independence

The analysis presented provides a partial context independence result for the R com-

ponent of the solution. The result is partial because it only considers the possibility

of the analyzed process in parallel composition with another process, i.e., contexts of

the form C ‖ [·]. This could be potentially expanded in two ways:

1. Generating a K component that is also independent of concurrent processes

2. Generating results that are also independent of arbitrary contexts

The first point was briefly discussed in section 5.1.2 (the proof of the correctness of

the Φ function). That proof illustrated the fact that the only reason the K function

is not independent of a concurrent context is because of the possibility of the context

106

8.5. Efficiency

transmitting names over channels that were in the free names of the analyzed process,

or names that were extruded by the process. This could be fixed in the following way:

• setting the K set of every name in fn(P) to ⊥E initially

• setting the K set of each name in E that is also in P to the current environment

knowledge E every time a name is extruded

While these improvements are possible, their usefulness is in question, as such in-

formation no longer provides information about the dataflow through the analyzed

process P , and may potentially trivialize the generated results.

The applicability of generating results that are independent of arbitrary contexts

is also questionable. For instance, an arbitrary context could bind names that are

free in P , but the question then shifts to the interpretation of what such a context

would represent in terms of applications such as security. Concurrent contexts such

as C ‖ [·] model the ability of an adversary to potentially interact with a process

by communicating with it, but what does a context like (νb) [·], or x(y).[·] model

in terms of security? Such questions need to be answered before it is determined

whether generating results independent of such contexts actually have any practical

worth.

8.5 Efficiency

The basic analysis of chapter 4 was shown to be computable by an algorithm similar

to an Andersen-style points-to analysis that runs in polynomial time. All of the

other analyses in the thesis are computable with similar algorithms because they

only restrict the prefixes that are iterated based on polynomially decidable conditions,

and thus even the most accurate analysis presented here is still polynomial. However,

107

8.5. Efficiency

the question of how to compute these functions more efficiently has been completed

avoided.

There has been much work in the literature on the question of efficiency. Bodei et

al.’s match-sensitive analysis (i.e., the version of the function Φ̃ that doesn’t consider

the environment) has been shown to be computable in cubic time by Nielson and

Seidl [NS01] by expressing the analysis as a set of Horn Clauses and subsequently

using a standard algorithm to solve them. The forthcoming paper by Colussi et

al. [CFG04] (mentioned above) also provides an algorithm to compute its analysis in

cubic time. This is quite surprising because their analysis considers blocking matches

and input prefixes, and is thus much more accurate than the one discussed by Nielson

and Seidl.

Adapting these techniques to the analyses presented in this thesis should provide

means of developing efficient algorithms for the accurate and context independent

analyses developed here.

108

Appendix A

Static Analysis Using Flow Logics

Bodei et al. [BDNN98, BDNN01b, BDPZ03] approach the problem of statically

analyzing process algebrae by using flow logics. A solution is characterized by pre-

senting a judgement determining the correctness of a proposed solution with respect

to a given process. The advantage of such a system is that correctness can effectively

be proven by proving a fairly standard subject reduction result for the judgement

with respect to the operational semantics.

A.1 Flow Insensitive Analysis

The analysis in [BDNN98,BDNN01b] computes a pair of functions (ρ, κ) for a given

process P . Here ρ : N → 2N maps a name bound by input in P to a set of names

that it could potentially assume during execution, and κ : N → 2N maps a name not

bound by an input prefix to the set of names that could potentially transmitted over

it during the reduction of P .

Given a proposed solution (ρ, κ), the validity of the solution is checked by deriving

a judgement of the form

(ρ, κ) |= P

109

A.1. Flow Insensitive Analysis

(ρ, κ) |= 0 iff tt
(ρ, κ) |= τ.P iff (ρ, κ) |= P
(ρ, κ) |= x〈y〉.P iff (ρ, κ) |= P ∧

∀u ∈ ρ(x) : ρ(y) ⊆ κ(u)
(ρ, κ) |= x(y).P iff (ρ, κ) |= P ∧

∀u ∈ ρ(x) : κ(u) ⊆ ρ(y)
(ρ, κ) |= [x = y].P iff (R(x) ∩R(y)) 6= ∅ ⇒ (ρ, κ) |= P
(ρ, κ) |= P1 + P2 iff (ρ, κ) |= P1 ∧ (ρ, κ) |= P2

(ρ, κ) |= P1‖P2 iff (ρ, κ) |= P1 ∧ (ρ, κ) |= P2

(ρ, κ) |= (νx)P iff (ρ, κ) |= P
(ρ, κ) |=!P iff (ρ, κ) |= P

Table A.1: Flow Insensitive CFA for the Π-Calculus (modified from [BDNN01b])

using the rules provided in table A.1. Note that these rules have been modified

from [BDNN98] to fully utilize the disciplined α-conversion assumption made in sec-

tion 3.2.1. The modifications made only involve removing extreaneous labels from

the terms, and do not affect any of the results published in [BDNN98,BDNN01b].

Correctness here informally means that if (ρ, κ) |= P (i.e., (ρ, κ) is a valid ap-

proximation of P ’s behaviour), then any communication that could occur during any

possible execution (i.e., reduction sequence) of P is faithfully modelled by (ρ, κ).

In other words, if it is possible, in some execution sequence, that the name y is

sent on channel x by some prefix x〈y〉, then y ∈ κ(x). Formally, this result is ob-

tained by proving a subject reduction theorem like the following (again modified

from [BDNN98,BDNN01b]):

Theorem A.1.1. If (ρ, κ) |= P and P
µ

−→ Q then:

(1) if µ = τ then (ρ, κ) |= Q;

(2a) if µ = xy then (ρ, κ) |= Q ∧ (y ∈ κ(x));

(2b) if µ = x(y) then (ρ, κ) |= Q ∧ (y ∈ κ(x));

(3) if µ = xy then (y ∈ κ(x)) ⇒ (ρ, κ) |= Q.

110

A.2. Flow Sensitive Analysis

Proof. By induction on the construction of P
µ

−→ Q. See theorem 3.10 in [BDNN01b]

for details.

In addition to the characterization, it was proved that the set of possible solutions

(ρ, κ) of the analysis constitutes a Moore family, implying that a least (i.e., most

accurate) correct solution exists. Bodei et al. provided an algorithm whereby this

solution could be constructed by iteratively checking a set of constraints, and the

efficiency of this procedure was improved by Nielson and Seidl [NS01] by formulating

the problem as a set of Horn clauses with sharing. Note that the above theorem does

not consider the context that P could be running in, this drawback is discussed and

corrected in chapter 5.

A.2 Flow Sensitive Analysis

The control flow analysis above only considered the prefixes contained in a process

description when computing its approximation: constraints are only added to the

characterization in table A.1 when an input or output prefix not guarded by a blocked

match prefix is encountered. In fact, this approach does not distinguish between any

process operators: consider the following processes:

P1 � a〈c〉 ‖ a(b).b〈c〉 + a(b)

P2 � a〈c〉 ‖ a(b) ‖ b〈c〉 ‖ a(b)

The least solutions (ρ1, κ1) and (ρ1, κ2) such that (ρ1, κ1) |= P1 and (ρ2, κ2) |= P2

are in fact identical. The analysis takes neither the sequence (.), composition (‖),

nor choice (+) operators into account. Consequently, given a process such as x(y) +

x〈z〉, the analysis would compute that z could be transmitted over x (i.e., that z ∈

κ(x)) which is not a possible reduction for the process in question. Therefore, while

111

A.2. Flow Sensitive Analysis

∀a, b ∈ N ,
∀Y ⊆ N such that (|Y | 6= ∞) ∨ (Y = N),

for ϑ 6= ε: ∀ϑ:

a〈b〉.P@ϑ = P@ϑ P@ε = P
a(b ∈ Y).P@ϑ = P@ϑ (P0‖P1)@‖iϑ = Pi@ϑ

((νa)P)@ϑ = P@ϑ (P0 + P1)@ ++i ϑ = Pi@ϑ
τ.P@ϑ = P@ϑ

Table A.2: Localization Operator on Processes

ignoring process operators leads to a fast algorithm for computing the least solution,

it is also very conservative: a more accurate solution may be desired. Accuracy

can be improved by observing that prefixes can only communicate if they are on

opposite sides of a compsition operator, or on the same side of a choice operator.

This information is tracked in [BDPZ03] by defining an operator @ϑ recursively on

the structure of processes as in table A.2. Note that the results in that paper were

discussed in the context of a modified calculus which omits the match prefix in favor

of a “selective input” prefix x(y ∈ Y). The semantics of the latter are identical to

that of the usual input prefix that only synchronizes if the received name is in the set

Y .

Given a process P , P@ϑ refers to the subprocess of P that has address ϑ. The

symbol ε is defined as the empty address, and thus P@ε is P for any process P .

Addresses ϑ are finite strings over the alphabet {++i, ‖i}i∈{0,1}. The set Addr(P) =

{ϑ | ∃Q : P@ϑ = Q} is defined as the set of all sub-process addresses of the process

P . This definition assigns an address to every program point. The set A represents

the set of all possible addresses, i.e., A = {++0,++1, ‖0, ‖1}∗.

In order to track which subprocesses are able to communicate (i.e., those on

opposite sides of a ‖ or on the same side of a +), the notion of compatibiliity of

subprocesses is defined formally in [BDPZ03] as follows:

112

A.2. Flow Sensitive Analysis

Definition A.2.1. Given a process P and two addresses ϑ, ϑ′ ∈ Addr(P), ϑ and ϑ′

are compatible, written as compP (ϑ, ϑ′), if and only if

ϑ = ϑ0‖iϑ1, and

ϑ′ = ϑ0‖1−iϑ
′
1

for i ∈ {0, 1} and some ϑ1, ϑ
′
1.

This scheme encodes the ability of various program points in a π-calculus process

to communicate. This sensitivity to the choice and composition operators will allow

the accuracy of the analysis shown in table A.1 to be improved. The improved control

flow analysis computes a pair of functions (ρ̃, κ̃) – where ρ̃ is as ρ from above, and

κ̃ : (A × N) → 2N is a more granular version of κ which associates a name at a

particular subprocess address with a set of names which could be transmitted over it.

Note that these functions are again generalized to sets in the obvious way. The flow

logic characterization of the analysis solution is presented in table A.3. Observe that

this analysis carries the address of the current suprocess with it at each step. An

estimate for a process P is the pair (ρ̃, κ̃) such that (ρ̃, κ̃) |=ε P , and comp = compP .

Note that this characterization differs from the flow insensitive version in table A.1

only in that the condition the constraints from input prefixes are only imposed for

subprocesses which are compatible with the current subprocess. Given the least

solutions (ρ̃, κ̃) such that (ρ̃, κ̃) |=ε P and (ρ, κ) such that (ρ, κ) |= P for some process

P , then it is easy to prove that (ρ̃,
⊔

A κ̃(ϑ,−)) v (ρ, κ) (with
⊔

and v the standard

pointwise supremum and orderings on functions), and that in fact this inequality is

strict for appropriately chosen P (such as the process x(y) + x〈z〉 discussed above).

Thus this analysis is strictly more accurate than the previous flow insensitive CFA

(see [BDPZ03] for further information).

The contextual dependency alluded to in the previous section is partially handled

in [BDPZ03] by also tracking the potential environment knowledge of the reducing

113

A.2. Flow Sensitive Analysis

(ρ̃, κ̃) |=ϑ
0 iff tt

(ρ̃, κ̃) |=ϑ τ.P iff (ρ̃, κ̃) |=ϑ P
(ρ̃, κ̃) |=ϑ x〈y〉.P iff (ρ̃, κ̃) |=ϑ P ∧

∀u ∈ ρ̃(x) : ρ̃(y) ⊆ κ̃(ϑ, u)
(ρ̃, κ̃) |=ϑ x(y ∈ Y).P iff (ρ̃, κ̃) |=ϑ P ∧

∀u ∈ ρ̃(x) : ∀ϑ′ : comp(ϑ, ϑ′) :
(κ̃(ϑ′, u) ∩ ρ̃(Y)) 6= ∅ ⇒
(κ̃(ϑ′, u) ∩ ρ̃(Y)) ⊆ ρ̃(y)

(ρ̃, κ̃) |=ϑ P1 + P2 iff (ρ̃, κ̃) |=ϑ++0 P0 ∧ (ρ̃, κ̃) |=ϑ++1 P1

(ρ̃, κ̃) |=ϑ P1‖P2 iff (ρ̃, κ̃) |=ϑ‖0 P0 ∧ (ρ̃, κ̃) |=ϑ‖1 P1

(ρ̃, κ̃) |=ϑ (νx)P iff (ρ̃, κ̃) |=ϑ P

Table A.3: Flow Sensitive CFA for the Π-Calculus (modified from [BDPZ03])

process similarly to the analysis of chapter 5. However, [BDPZ03] provides neither

proof of correctness, nor constructive algorithms, although their existence is conjec-

tured.

114

Bibliography

[ABN89] M. Abadi, M. Burrows, and R.M. Needham. A logic of authentication.

Proceedings of the Royal Society of London A, 426:233–271, 1989.

[AFF97] A. Aiken, M. Fähndrich, and J.S. Foster. Flow-insensitive points-to anal-

ysis with term and set constraints. Technical Report 97-964, University

of California, Berkeley, Computer Science Division, Aug 1997.

[AFF99] Alexander Aiken, Manuel Fähndrich, and Jeffrey S. Foster. A theory of

type qualifiers. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’99), Atlanta, Georgia, Mar

1999.

[AFF00] Alexander Aiken, Manuel Fähndrich, and Jeffrey S. Foster. Polymorphic

versus monomorphic flow-insensitive points-to analysis for C. In Static

Analysis Symposium 2000, Santa Barbara, California, Jun 2000.

[AFFC98] Alexander Aiken, Manuel Fähndrich, Jeffrey S. Foster, and Jason Cu.

Tracking down exceptions in Standard ML programs. Technical Report

98-96, University of California, Berkeley, Computer Science Division,

Feb 1998.

115

Bibliography

[AFFS98a] A. Aiken, M. Fähndrich, J.S. Foster, and Z. Su. Partial online cycle

elimination in inclusion constraint graphs. In Proceedings of the 1998

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, June 1998.

[AFFS98b] Alexander Aiken, Manuel Fähndrich, Jeffrey S. Foster, and Zhendong Su.

A toolkit for constructing type- and constraint-based program analyses.

In X.Leroy and A. Ohori, editors, Proceedings of the second International

Workshop on Types in Compilation, volume 1473 of Lecture Notes in

Computer Science, pages 78–96. Springer-Verlag, Kyoto, Japan, Mar

1998.

[AFS00] Alexander Aiken, Manuel Fähndrich, and Zhendong Su. Detecting races

in relay ladder logic programs. Springer International Journal on Soft-

ware Tools for Technology Transfer (STTT), 2000.

[AG97] M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in

the spi-calculus. In CONCUR ’97: Concurrency Theory, volume 1243 of

Lecture Notes In Computer Science, pages 59–73. Springer-Verlag, 1997.

[AG98] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols - the

spi-calculus. Systems Research Center Report 149, Digital Equipment

Corporation, January 1998.

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols - the

spi-calculus. Information and Computation, 148:1–70, January 1999.

[Aga00] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Prin-

ciples of Programming Languages, pages 40–53, Jan 2000.

116

Bibliography

[AM98] S. Abramsky and G. McCusker. Game semantics. In U.Berger and

H.Schwichtenberg, editors, Computational Logic, volume 165 of NATO

Science Series, Series F: Computer and Systems Sciences, pages 1–55.

Springer-Verlag, Berlin, Germany, 1998.

[And99] Lars Ole Andersen. Program Analysis And Specialization for the C Pro-

graming Language. PhD thesis, University Of Copenhagen, May 1999.

[AW92] Alexander Aiken and E.L. Wimmers. Solving systems of set constraints.

In Proceedings, Seventh Annual IEEE Symposium on Logic in Computer

Science, pages 329–340, Santa Cruz, California, Jun 1992.

[AW93] Alexander Aiken and E.L. Wimmers. Type inclusion constraints and

type inference. In FPCA ’93 Conference on Functional Programming

Languages and Computer Architecture, pages 31–41, Copenhagen, Den-

mark, Jun 1993.

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics.

North-Holland, 1984.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical

Computer Science, 96(1):217–248, April 1992.

[BDER97] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. AJM’s games model

is a model of classical linear logic. In Proceedings of the 12th Annual

IEEE Symposium on Logic In Computer Science, pages 68–75, Warsaw,

Jun 1997. IEEE Computer Society Press.

[BDNN98] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control flow

analysis for the π-calculus. In Proceedings of CONCUR ’98, volume 1466

117

Bibliography

of Lecture Notes In Computer Science, pages 84–98. Springer-Verlag,

1998.

[BDNN01a] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis

for secrecy and non-interference in networks of processes. In Proceedings

of the 6th International Conference on Parallel Computing Technologies,

pages 27–41, September 2001.

[BDNN01b] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis

for the π-calculus with applications to security. INFCTRL: Information

and Computation (formerly Information and Control, 168, 2001.

[BDPZ03] C. Bodei, P. Degano, C. Priami, and N. Zannone. An enhanced CFA

for security policies. In Proceedings of the Workshop on Issues on the

Theory of Security (WITS ’03), pages 131–145, Warszawa, 2003.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation

of fixed points. In ACM Symposium on Principles of Programming Lan-

guages, pages 238–252, 1977.

[CFG04] L. Colussi, G. Filè, and A. Griggio. Precise analysis of π-calculus in

cubic time, to be published. In Proceedings of the 3rd IFIP International

Conference on Theoretical Computer Science, August 2004.

[CG89] N. Carriero and D. Gelernter. How to write parallel programs: A guide

to the perplexed. ACM Computing Surveys, 21(3):323–357, September

1989.

118

Bibliography

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations

of Software Science and Computation Structures: First International

Conference, FOSSACS ’98. Springer-Verlag, Berlin Germany, 1998.

[CGG02] Luca Cardelli, Giorgio Ghelli, and Andy Gordon. Secrecy and group cre-

ation. In Electronic Notes in Theoretical Computer Science, volume 40.

Elsevier, 2002.

[CX02] K. Cooper and L. Xu. An efficient static analysis algorithm to detect re-

dundant memory operations. In Proceedings of the Workshop on Memory

System Performance, pages 97–107, 2002.

[DDMM03] M. Debbabi, N. Durgin, M. Mejri, and J. Mitchell. Security by typing.

Software Tools for Technology Transfer (STTT), 4(4):472–495, 2003.

[Fer00] Jérôme Feret. Confidentiality analysis of mobile systems. In Proceedings

of the 7th International Static Analysis Symposium (SAS ’00), volume

1824 of Lecture Notes In Computer Science. Springer-Verlag, 2000.

[Fer01] Jérôme Feret. Occurence counting analysis for the π-calculus. In Elec-

tronic Notes in Theoretical Computer Science, volume 39. Elsevier Sci-

ence Publishers, 2001.

[FHMV95] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowl-

edge. MIT Press, 1995.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HR98] N. Heintze and J.G. Riecke. The SLam calculus: Programming with se-

crecy and integrity. In Proceedings of the ACM Symposium on Principles

of Programming Languages, pages 365–377, Jan 1998.

119

Bibliography

[HS02] D. Hughes and V. Shmatikov. Information hiding, anonymity and

privacy: A modular approach. Journal of Computer Security, 2002.

URL:<http://boole.stanford.edu/∼dominic/papers/kripke.html>.

[MH98a] P. Malacaria and C. Hankin. Generalised flowcharts and games. In Pro-

ceedings of the 25th International Colloquim on Automata, Languages,

and Programming, 1998.

[MH98b] P. Malacaria and C. Hankin. A new approach to control flow analysis.

In Computational Complexity, pages 95–108, 1998.

[MH99] P. Malacaria and C. Hankin. Non-deterministic games and program

analysis: An application to security. In Proceedings of the 14th Annual

IEEE Symposium on Logic In Computer Science, pages 443–452. IEEE

Computer Society Press, 1999.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mit96] John Mitchell. Foundations of Programming Languages. MIT Press,

1996.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, parts I and II. Information and Computation, 100(1):1–77,

1992.

[NHN03] Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson. Ab-

stract interpretation of mobile ambients. Science of Computer Program-

ming, 47:145–175, 2003.

[NNH99] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Anal-

ysis. Springer-Verlag, 1999.

120

Bibliography

[NNHJ99] Flemming Nielson, Hanne Riis Nielson, Rene Rydhof Hansen, and Ja-

cob Grydholt Jensen. Validating firewalls in mobile ambients. In Inter-

national Conference on Concurrency Theory, pages 463–477, 1999.

[NS01] F. Nielson and H. Seidl. Control-flow analysis in cubic time. In

Proc. ESOP ’01, number 2028 in Lecture Notes in Computer Science,

pages 252–268. Springer-Verlag, 2001.

[OPS92] Nicholas Oxhöj, Jens Palsberg, and Michael I. Schwartzbach. Making

type inference practical. In Ole Lehrmann Madsen, editor, ECOOP ’92,

European Conference on Object-Oriented Programming, Utrecht, The

Netherlands, volume 615 of Lecture Notes in Computer Science, pages

329–349. Springer-Verlag, New York, N.Y., 1992.

[Par81] David Park. Concurrency and automata on infinite sequences. In

Proceedings of the 5th GI-Conference on Theoretical Computer Science,

pages 167–183. Springer-Verlag, 1981.

[PR94] Hemant D. Pande and Barbara G. Ryder. Static type determination for

C++. In C++ Conference, pages 85–98, 1994.

[PR96] H. D. Pande and B. G. Ryder. Data-flow-based virtual function resolu-

tion. Lecture Notes in Computer Science, 1145:238–50, 1996.

[PS95] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type

inference. Information and Computation, 118(1):128–141, 1995.

[SHR+00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-

Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual

method call resolution for Java. ACM SIGPLAN Notices, 35(10):264–

280, 2000.

121

Bibliography

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1), 2003.

[SS99] P. Syverson and S. Stubblebine. Group principals and the formalization

of anonymity. In Proceedings of the World Congress on Formal Meth-

ods, volume 1708 of Lecture Notes in Computer Science, pages 814–833.

Springer-Verlag, 1999.

[Sun99] Vijay Sundaresan. Practical techniques for virtual call resolution in Java.

Master’s thesis, McGill University, School of Computer Science, June

1999.

URL: <http://www.sable.mcgill.ca/publications/>.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure

flow analysis. Journal of Computer Security, 4(3), 1996.

[Zim00] Pascal Zimmer. On the expressiveness of pure mobile ambients. In 7th

International Workshop on Expressiveness in Concurrency, volume 39

of Electronic Notes in Theoretical Computer Science. Elsevier, 2000.

122

