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Abstract

There has been relatively little work done in the compilesegch community for in-
corporating aspect-oriented features in scientific andadyo programming languages.
MaTLAB ® is a dynamic scientific programming language that is comgnaskd by sci-
entists because of its convenient and high-level syntaarfays, the fact that type declara-
tions are not required, and the availability of a rich setmflecation libraries. This thesis
introduces a new aspect-oriented scientific language, cisfadlab.

AspectMatlab introduces key aspect-oriented featuresvilmyathat is both accessible to
scientists and where the aspect-oriented features coateioih array accesses and loops,
the core computation elements in scientific programs. Ondeinain contributions of
this thesis is to provide a compiler implementation of thedé&Matlab language. It is
supported by a collection of scientific use cases, which destnate the potential of aspect-
orientation for scientific problems.

Introducing aspects into a dynamic language such asuB also provides some new
challenges. In particular, it is difficult to statically éemine precisely where patterns
match, resulting in many dynamic checks in the woven code. AgpectMatlab compiler
uses flow analyses to eliminate many of those dynamic checks.

This thesis reports on the language design of AspectMatialamccompiler implementa-
tion, and also provides an overview of the use cases thapauifie to scientific program-
ming. By providing clear extensions to an already populaglege, AspectMatlab will
make aspect-oriented programming accessible to a new griopgpgrammers including
scientists and engineers.






Résum é

Relativement peu de travailege accomplis dans le milieu de la recherche du compilateur
pour I'intégration des caragtistiques oriertesa I'aspect dans les domaines scientifique et
dynamique des langages de programmatioaTdB ® est un langage de programmation
scientifique dynamique qui est couramment wilgar les scientifiques en raison de sa
pratique et la syntaxe de qué&lipour des tableaux; du fait que lescthrations de type
ne sont pas@&cessaires, et de la disponild@lide vastes biblio#ques d’applications. Cette
these introduit un nouvel aspect de langue de recherche ifigeat AspectMatlab.

AspectMatlab introduit fonctionnaés d’aspect oriebes d’'une maeire qui esta la fois
accessible aux scientifiques et kes fonctionnaliés d’aspect oriebes se concentrent sur
les aces Eseau et des boucles, Esments de calcul de base dans les programmes scienti-
fiques. L'une des principales contributions de cetésghest de fournir une imgghentation

du compilateur du langage AspectMatlab. Il est soutenualtoilection de cas d'utilisa-
tion scientifique, qui montre le potentiel de I'orientatiaspect pour des prabhes scien-
tifiques.

L'introduction des aspects dans un langage dynamique comMam AB represente aussi
guelques nouveauxéfis. En particulier, il est difficile deaterminer statiquementides
modeles concident,asultant dans de nombreux cdnés dynamiques dans le code &ss
Le compilateur d’AspectMatlab utilise le flux d’analysesupéliminer un grand nombre
de ces contiles dynamiques.

Cette these signale la conception du language d’AspectMatlabneplémentation du com-
pilateuramc Elle fournitégalement un aperu de l'utilisation des cas qui soatgjguesa
la programmation scientifique. En fournissant des exteissitaires avec un langagéjd



populaire, AspectMatlab rendra la programmation oéeatl'aspect accessibkun nou-
veau groupe de programmeurs y compris des scientifiques étgbmieurs.



Acknowledgements

This work was supported, in part, by the Natural Science€anyineering Research Coun-
cil of Canada (NSERC).

We acknowledge contributions by M.Sc. student Jesse Dghetplementor of the name
resolution analysis and M.Sc. student Anton Dubrau, foettemple scientific use cases.

We acknowledge the support and guidance given by our thegegsor, Professor Laurie
Hendren.



Vi



Abstract

Résune

Acknowledgements

Table of Contents

List of Figures

List of Tables

Table of Contents

1 Introduction

Table of Contents

Vil

Xi

Xiii

XV

1.1 Contributions. . . . . . . . . . e

1.2 Thesis Outline

2 Language Definition

2.1 ASPECIS. . . . . e e e e e

2.2 Patterns. . . . . . . e e e e

Vil



2.2.1 FunctionPatterns. . . . . . . . . . . ... 11

2.2.2 ArrayPatterns. . . . . . .. 12
2.2.3 Selective Matching . . . . ... .. .. ... ... .. .. ..., 14
224 LoopPatterns .. . . . . . . .. e 15
225 ScopePatterns . . . . ... 17
2.2.6 CompoundPatterns. . . . . . . . ... ... ... 18
2.3 ACHONS . . . . . e 19
2.3.1 Context EXpoOSUre. . . . . . . . . e e e e 20
2.3.2 Around AcCtions . . . . . . . ... 21
2.3.3 PrecedenceOrder. . . . . .. . ... ... 23
24 SmallExample. . . . . . . .. 24
Scientific Use Cases 27
3.1 Tracking operations thatgrow arrays . . . . . .. .. ... ... .... 28
3.2 Trackingarraysparsity. . . . . . . . .. 29
3.3 Measuring floating pointoperations . . . . . . ... .. ... ...... 34
3.4 Addingunitstocomputations. . . . . .. ... . L 00 36
3.5 Interpreting loop iterationspace . . . . .. .. ... ... ... ..., 40
3.6 Otherpossibilities . . . . .. .. ... ... .. .. . 42
Compiler 45
4.1 Compiler Structure. . . . . . . . . 45
4.2 Separator & Aspectinfo. . . . ... . Lo L 47
4.3 Transformations . . . . . . . . . ... 48
4.3.1 Expression Simplification. . . . . ... .. ... ... .. ..., 48

viii



4.3.2 LoopRewriting. . . . . . . ... .. e 49
4.4 Name Resolution Analysis . . . . . . . . .. . . . e 50
45 MatchingandWeaving . . . . . . . . . . . e 53
45.1 Weaving at the functionlevel. . . . . . ... ... ... ..... 53
45.2 Weaving atthelooplevel. . . . . .. ... ... ... ...... 54
45.3 Weaving at the statementlevel. . . . ... ... ... ...... 55
45.4 Weavingaround actions . . . ... ... ... 0oL 55
4.6 POSt-processing . . . . . . i i e e e e e e 58
4.7 WovenExample . . . . . . . .. e 59
4.8 PerformanceOverhead. . . . . . ... ... .. ... ... ....... 62
Related Work 65
9.1 Aspectd. . . . .. e e 65
5.1.1 Extension: Array specific pointcuts . . . . . . .. ... ... .. 66
5.1.2 Extension: Multi-dimensional array specific poitgcu. . . . . . . 66
5.1.3 Extension: Loop specific pointcuts . . . . .. ... .. ... .. 67
5.2 AspectCobol . . . ... ... e 69
53 AOPINMATLAB . . .t o v it e e e e e e e e 69
5.4 Summary . . . ... e e e e e 70
Conclusions and Future Work 73
6.1 Conclusions. . . . . . . . ... 73
6.2 Future Work. . . . . . . . . . 75
A AspectMatlab Grammar 77



B User Manual 81

B.1 Flags. . . . . . . . o e e 81

C Directory Structure 83

D Scientific Aspects 87
D.1 Tracking operationsthatgrow arrays . . . . . . .. .. .. ... .... 87
D.2 Trackingarray sparsity. . . . . . . . . . o e e e 91
D.3 Measuring floating pointoperations . . . . . .. ... ... ... .. .. 96
D.4 Adding unitsto computations. . . . . . .. ... ... 0oL 102
D.5 Interpreting loop iterationspace . . . . . . ... .. ... ... ... .. 110

Bibliography 113



2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7

List of Figures

Syntaxof an Aspect. . . . . . . ... 8
Syntaxof Patterns. . . . . . . . . . .. .. 10
FunctionJoinPoints. . . . . . . . . ... ... . .. 12
Array JoinPoints. . . . . . . . . L e 13
Array Join Points-Order . . . . . . . .. ... 13
LoopJoinPoints. . . . . . . . . . 16
Syntax of Actions. . . . . . . . . .. e 19
Actions Precedence Order . . . . . . . . . . . . . o 24
Aspect to count all calls made with at least 2 arguments . . . . . . .. 25

Simple MATLAB Function . . . . . . . . . . . . e 26
Outline of array growingaspect . . . . . . . . . . . ... .. ... ... 30
Output of the array growing benchmark. . . . . ... ... ... .... 31
Outline of sparsityaspect. . . . . . . . . .. . . . . . .. . ... 32
Output of the sparsity benchmark . . . . .. ... ... ... ...... 33
Outlineofflopsaspect. . . . . .. . .. .. .. ... .. .. ... ..., 35
Output of the flops benchmark . . . . . .. .. ... ... .. ...... 37
Outlineofunitsaspect. . . . . . . . . . . . .. . . . 38

Xi



3.8 Exampleofunitsaspect. . . . . ... ... ... .. . o 39

3.9 Outlineofloopsaspect . . . ... .. .. .. .. ... ... ... 41
3.10 Exampleofloopsaspect . . . . . .. .. ... .. ... ... 42
3.11 Outputofloopsaspect . . . .. .. ... .. ... ... 42
4.1 Overall structure of theamcAspectMatlab compiler . . . . . .. ... .. 46
4.2 Aspect with multiple patterns on the sameentity. . . . . ... ... .. 51
4.3 Weaving without Name Resolution Analysis . . . . .. ... ...... 51
4.4 Weaving with Name Resolution Analysis . . . . .. .. ... ...... 52
4.5 Matching and Weaving processoutline . . . . . ... ... ... .... 53
4.6 Example of aaround function. . . . ... .. ... ... ... ... ... 56
4.7 Aspect for multiplearound actions. . . . . ... ... oL oL, 57
4.8 Translated multipleround functions . . . . . .. ... ... ... .... 58
4.9 MATLAB class generated fromtheaspect. . . . .. ... ... ..... 60
4.10 Woven MATLAB function. . . . . . . . . . ... ... 61
5.1 Example of AspectJ multi-dimensional array pointcéren [CC07) . . . 67
5.2 Example of Aspectd loop pointcut (fromdG0g) . . . . . L o oL L L. 68
5.3 Example of AspectCobol (frombPS0S) . . .. ... .. ... ... ... 70

Xii



2.1
2.2
2.3

4.1

List of Tables

List of Primitive Patterns. . . . . . . . . . . . .. .. .. ... .. .... 11
Selective Pattern Matching . . . . . . . ... ... ... .. ... ..., 15
Context Selectors with respectto Join Points. . . . . . .. ... .. .. 21
Performanceoverhead . . . . . . . . . ... .. L L oo 63

Xiii



Xiv



2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

List of Listings

Atypical MATLAB classexample. . . . . .. ... ... .. ... .... 6

Atypicalaspectexample . . . . . . . ... .. L oo 8
Function Patterns . . . . . . . . . . . . . . e 12
Array Patterns . . . . . . . . . e e 14
Selective Matching. . . . . . . . . .. . . 14
Loop Patterns. . . . . . . . . . . . 17
Example of loop patterns . . . . . . . . . ... 17
Scope Patterns. . . . . ... 18
Compound Patterns. . . . . . . . . . . . . e 18
Before and After Actions . . . . . . . . ... . o 20
Context EXposure . . . . . . . . . e e e e 20
An around action withoydroceed . . . . . . .. .. ... ... ... 22

An around action witproceed . . . . .. .. ... oL 22

XV



XVi



Chapter 1

Introduction

MaTLAB ® is a programming language that provides scientists witmgeractive devel-
opment loop, high-level array operations and a rich cal@cdf built-in and library func-
tions [Mat]. MATLAB is also a very dynamic language in which variable types ate no
declared, and in which new functions and scripts are loagedrdically. Although NMAT-

LAB recently incorporated object-oriented programming fesguthere are currently no
aspect-oriented features.

Our challenge was to define and implement a new aspect-edgmbgramming language
that was a natural extension of AViLAB. We wanted to build upon the successes of lan-
guages such as Aspecidp03 KHH " 01], but at the same time tailor our approach to the
needs of the scientific programmer. In particular, we wamteshtroduce new language
features for matching array and loop operations, both o€lwvhre central to scientific pro-
gramming. We also wanted to introduce aspect-orientedranogning in a way that was a
natural extension to the MLAB language and so that it would be understood and adopted
by the scientific programmers.

AspectMatlab is a component of a larger effort known as théaboproject. The overall
goal of the project is to find ways to improve the performamsefulness and accessibility
of current scientific programming languages.

lwww.sable.mcgill.ca/mclab
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Introduction

We have defined an extension ofAWLAB, AspectMatlab, which supports the notions of
patterns (pointcuts in AspectJ terminology), amdmed actions (advice in AspectJ termi-
nology). An aspect in AspectMatlab looks very much like &slim the object-oriented part
of MATLAB. Just like classes, an aspect can have properties (fieldshatnods. However,
in addition, the programmer can specify patterns (poisicand before, after and around
actions (advice). Each action is declared with a name (arddvice in AspectJ, which do
not have names).

AspectMatlab supports traditional patterns (pointcutg)hsascall andexecution
but we have also concentrated on an effective desigrgéor and set patterns which
naturally deal with arrays. Loops are key control strudurescientific programs and we
have developed a collection of patterns which allow one tacman loops in a variety of
ways. We have also been inspired by AspectCobblg05 in that we expose join point
context information via selectors that are associated agtfons.

In order to motivate our new patterns, we have developedlaatmin of use cases which
we believe illustrates uses that are specific to scientifig@mming.

We have implemented themc compiler which translates AspectMatlab source files to
pure MATLAB source files. The generated code can be run using asmt. M8 system.
The overall structure of the compiler was inspired from the [ACH " 05, abd system and

is built as an extension of the McLabAVILAB front-end. In implementing the compiler
it became clear to us that weaving intoAM.AB code offers new challenges that are dif-
ferent from weaving into more statically-typed, tradi@fanguages such as Java. As one
example, the expressi@(i) may be either a call to functioa or a get of tha 'th ele-
ment of arraya. Even worse, the precise rules for looking up names diff@rgunctions,
inner functions and scripts. Thus, a naive weaving strategiMATLAB requires a lot of
dynamic checks to determine if an expression matches.

To deal with the special challenges of weaving imNAB, we have utilized some intra-
procedural flow analyses using the McLab analysis framewdekeloped at Sable Re-
search Lab, which enables us to statically determine whethames correspond to vari-
ables or functions. Applying these analyses before weaallow's us to greatly reduce the
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number of dynamic checks required.

1.1 Contributions

This thesis makes the following contributions:

e Design of an aspect-oriented extension to a scientific pragring language, Mr-
LAB.

¢ Design and implementation of an extensible AspectMatlab Gilemamcg enriched
with a set of aspect-oriented features.

¢ Introduction of new scientific patterns to cross-cut thecawns related to arrays and
loops. Both of these constructs are essential parts of atsméanguage.

Finally, we aim to makeamca viable aspect-oriented compiler which should become in-
creasingly usable by end-users for real-world scientifgliaptions. Based on our experi-
ence with AspectMatlab, we propose promising future dioastfor dynamic languages to
adopt aspect-oriented features. We identify key factomimimplementation and propose
ways to improve upon the performance results we have olatainidn the AspectMatlab
Compiler.

1.2 Thesis Outline

This thesis is divided into 6 chapters (including this idimotion chapter)Chapter 2 intro-
duces the AspectMatlab language and discusses key sesdiithe language in detail. In
Chapter 3 we present some use-cases to demonstrate the importancagpect-oriented
language for a scientific programming langua@ghapter 4 examines the AspectMatlab
compiler’s architecture and its different phases in dettdlso discusses issues associated
with the MATLAB programming language design that make matching and weahfiig
cult. Chapter5 discusses related work done in some other languages, whipkdus to

3



Introduction

form the base of our research, and the ways in which our apprdiffers with them. Fi-
nally, chapte6 presents our conclusions and outlines some possible ftegearch work
in this domain beyond what we have achieved.



Chapter 2

Language Definition

Although AspectMatlab’s design is mostly inspired by Aggdethere are distinctive fea-
tures of our language which are based upon two driving glasi (1) the ability to cross-
cut multidimensional MTLAB array accesses and loops, and (2) the ability to bind context
information from the join point shadow as part of the acti@tldration. While design-
ing the syntax for the aspect constructs, we focused ondngia couple of goals. First,
enriching the patterns structure for enhanced selectivehimg and secondly, not to de-
viate from the existing language constructs for the sakeetitb accessibility for existing
MATLAB programmers.

This chapter elaborates the design of an aspect-orientedsean to a scientific program-
ming language. We discuss the structure of an Aspect ankdeatidnstructs an aspect may
contain, i.e., Properties, Patterns, Methods and Actithpsovides important details about
the features of MTLAB we extended and on which we based our design. We discuss sup-
ported types of patterns and actions in detail. We also tesaerays to create compound
user-defined patterns and how to weave actions in diffenelars.
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2.1 Aspects

In AspectMatlab, aspects are defined using a syntax sinoil®MATLAB classes. A MT-
LAB class typically contains properties, methods and evenssinfAther object-oriented

languages, properties in MLAB class encapsulate the data that belongs to instances of

classes, which can be assigned default values, initiaiizextass constructors, and used
throughout the class. Data contained in properties can blargel public, protected, or

private. This data can be a fixed set of constant values, @nitbo@ dependent on other
values and calculated only when queried. Different attabwcan be applied over a block
of properties and property-specific access methods cangoffispl.

Encapsulation using methods is also a familiar concept obgact-oriented systems. M-
LAB class methods are a little different as they act as an engdsock, which can host a
variety of functions. Common types of methods are ordinangfions, class constructors,
class destructors and property access functions. Mettmzkdlcan be configured with
different attributes, including access specifiers.

Listing 2.1 shows a typical MTLAB class,myClass , which can be used as a simple
counter. This class declares a propedyunt , which has default scalar value 0. The
counting functionality is provided through two functionsncCount increments the
counter andyetCount can be used to query the current value of count, which ismetlur
through variableout . One important point to notice here is thakM.AB class methods
always have the calling object automatically passed as$teafigument.

cl assdef myClass
properties

count = 0;
end

met hods

functi on incCount(this)
this.count = this.count + 1;
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end

function out = getCount(this)
out = this.count;
end

end

end

Listing 2.1 A typical MATLAB class example

In this chapter, we outline the grammar of AspectMatlab acps as we go through related
concepts and constructs. If you have a coloured version®tittument, you will see that
all references to productions in the McLab implementaiothefbase MTLAB grammatr,
are given in red. The complete grammar specification is pexvin AppendixA.

As shown inFigure 2.1, the base McLalprogram rule is extended to include aspects,
along with functions, scripts and classes, as a progranyedtist like a MATLAB class
structure, araspect is named and contains a body. An aspect retains the propertie
and methods constructs, while adding two aspect-relatesteats: patterns and actions.
Patterns are formally known as pointcuts in AspectJ and see as picking out certain
join points in the program flow. AspectMatlab actions copeewd to AspectJ advice, which
essentially is a block of code intended to be executed aiogubints in the program. This
choice of terminology was intended to convey that pattepeciéy where to match and
actions specify what to do.

Moreover, it is important to explain tr@mt _separator non-terminal, imported from
McLab. Unlike other high level languages, aAM.AB statement can be terminated in
multiple ways. These statement separators include thdinewa comma or a semi-colon.

With the addition of patterns and actions, Listin@ shows an extension to the class pre-
sented in Listing2.1. myAspect counts how many times a function namied is in-
voked. To achieve this functionality, we first define a pattdPatterrcallFoo  provides
us the way to specify the target join points. Once we match faio points in the source



Language Definition

© 0 N O OB~ WN P

NN NDNRRRRRR R R B
WNEPO®OO®-NO®OUAWNDNIERL O

(program ::=(scriph | (function list) | (class | (aspect

(aspect ::="aspect ' IDENTIFIER (stmtseparator (help.commeny
(aspectbody)* ' end’

(aspectbody) ::=
{(propertiesblock) (stmt.separatdr

(patternsblock) (stmtseparator

(methodsblock) (stmtseparator

(actionsblock) (stmtseparator

Figure 2.1 Syntax of an Aspect

code, then we can call the corresponding actemtCall . This action triggers before the
call to functionfoo and increments the counter.

aspect myAspect

properties
count = O;
end

patterns
callFoo : cal | (foo);
end

nmet hods
functi on incCount(this)
this.count = this.count + 1,
end
end

actions
actCall : bef ore callFoo
this.incCount();
end
end

end

Listing 2.2 A typical aspect example

In the compiled code, an aspect is transformed into a clag$henactions are translated
into corresponding methods of the resulting class. As destrearlier, MATLAB class
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methods have the invoking class object as an argument. Smeéktieods created out of
actions are also provided that object, which we nariesl for the purposes of clarity
and consistency. Inside an action baidlys should be used to interact with the properties
and methods for the specific object.

We present a detailed discussion on patterns and actiohs foltowing sections.

2.2 Patterns

Just like any other aspect-oriented language, Aspectblatlavides a variety of patterns
that can be used to match basic language constructs. Inadtiitstandard patterns such
as those supported by AspectJ, a scientific programmingibegelike MATLAB possesses
other important cross-cutting concerns. IMAB, array constructs are heavily used and
programs are written in the form of large functions or s&igintaining many loops.

Grammar rules for patterns are presentedrigure 2.2. Patterns are contained inside
blocks, and an aspect can contain any number of such blocgatt#rns. A pattern is
formed by its unique name and the pattern designators. Adgpdab provides a number
of primitive patterns targeting different constructs oRMAB. These primitive patterns
can be logically combined to form the compound pattern dedmys. We will discuss this
concept in detail irBection 2.2.6.

While providing the basic function-related patterns like¢ | andexecuti on, we also in-
troduce two new sets of patterns: (d9t/set patterns, enabling the facility to capture
array-related operations along with useful context expmsand (2) loop patterns, which
will help programmers to handle the loop iteration spacedetdils of loop-intensive com-
putation. AspectMatlab also supports a spegiahi n pattern, which allows us to restrict
the scope of matching to certain constructs of the source,@ch as functions, scripts,
classes or loops.

Towards the bottom dfigure 2.2, we introduce some grammar rules to enable a program-
mar to perform selective matching. AVILAB syntax allows us to make a function call,
without even providing the exact number of parameters §pdan the function signature.
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(patternsblock) ::="patterns ' (stmtseparator (patternsbody)*’ end’
(patternsbody) ::=IDENTIFIER "’ (patterndesignators(stmtseparator
(patterndesignators::=
(patterndesignatorsand
| (patterndesignators’|’ (patterndesignatorsaand
(patterndesignatorsand ::=
(patterndesignatorsinary)
| (patterndesignatorsand ‘&’ (patterndesignatorsunary)
(patterndesignatorsunary) ::=
(patterndesignator
| '~ (patterndesignatoyr
(patterndesignator ::=
(" (patterndesignators’)’
| 'set '’ (" (patternselect’)’
| 'get '’ (" (patternselect’)’
| 'call '’ ( (patternselect’)’
| 'execution '’ (’ (patternselect’)’
| "mainexecution (")
| 'loop '’ (" (patternselect’)’
|
|
|
|

"loopbody '’ (" (patternselec} )’
"loophead '’ (’ (patternselec}’)’
'within ’’ (" (constructtype) ', (patternselec} ’)’
IDENTIFIER
(patternselecf ::=
(patterntarge}

| (patterntarge} '(* (list_dotdo} ')’
(patterntarge} ::=

(patterntargetunit)

| (patterntarge} (patterntargetunit)
(patterntargetunit) ::="*" | IDENTIFIER
(list_dotdo} ::=-¢

| (list_stan

| (list_stan’, ..
(list_stan ::="*

| (list_stan '’/ ™
(constructtype) ::="*" | 'function ’
'class ' |’'aspect ’

'script ' | 'loops

Figure 2.2 Syntax of Patterns
10



2.2. Patterns

Arrays can be indexed in a similar fashion. So AspectMatlalviges a functionality to
enhance the matching based on the actual parametersémavodéved. We explain the idea
of selective matching igection 2.2.3.

Moreover, matching can be performed based on the expressanaining the wild card
symbol ™*”, which results in a broader scope of matching.

A list of primitive patterns supported by AspectMatlab isgpented iMable 2.1. We discuss
the different kinds of patterns in the following sections.

call captures calls to functions or scripts

functions| execution captures the execution of function or script bodies
mainexecution captures the execution of the main function or script body
get captures array accesses

arrays .
set captures array assignments
loop captures execution of a whole loops

loops loophead captures the header of a loop
loopbody captures the body of a loop

scope within restricts the scope of matching

Table 2.1 List of Primitive Patterns

2.2.1 Function Patterns

AspectJ and other aspect-oriented languages provide hasiton-related cross-cutting
features, which enable a programmer to track, for examp&ecalls made to all or some
specific functions matching the specified pattern. Othecgdeof interest in a function
source code are the entry and exit points of the body.

Figure 2.3 shows an example of the function-related join points in therse code. The
whole body of the functiomain matches arxecut i on pattern, whereas every call to a
function is captured by theal | pattern.

AspectMatlab also supports bathl | andexecut i on patterns, not only for functions but
to cross-cut scripts as well. Because there is no specific erany point to MATLAB

11
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A W N PR

function myMain()

.e>§ecut!on_ foo () } call join point
join point

end

Figure 2.3 Function Join Points

programs, so we introducen@inexecution  pattern. This pattern will match the execution
of the main function or script, (i.e., the first function oript executed). The function
patterns given in Listin@.3 show example uses, whep€allFoo pattern matches all
calls made to the function or script namied andpExecutionMain  pattern captures
the entry and exit points of the main function.

patterns

pCallFoo : cal | (foo);

pExecutionMain : mai nexecut i on();
end

Listing 2.3 Function Patterns

2.2.2 Array Patterns

AspectJ provides array pointcuts functionality. Howevle pointcuts of AspectJ do not
support array objects in full. When an element of an array alige set or referenced,
the corresponding index values and the assigned value aisxposed to the advice. As-
pectJ was extended to add array pointcuts but these extsnsither just work for one-
dimensional arrays or they force programmers to use othatquas in order to be able to
perform selective matching and to fetch context infornmatio

In contrast, AspectMatlab provides simple, yet powerfatigrns to capture array accesses,
get andset. As shown isFigure 2.4, the first assignment statement isea join point

12
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wherearrl is being assigned a new value. The second statement is atsojain point
forarr2 , but the right hand side actually reamsl . So the right hand side of the second
assignment statement iget join point.

set arrl = [1, 2, 3];
join point

arr2 =larr1(1)j

[
get

join point

Figure 2.4 Array Join Points

Figure 2.5 shows an example of a more complicated match. Here we have array ac-
cesses within another array access and we have to sort cutddein which all these join
points are matched. We decided to follow the evaluationronfian expression, where all
the sub-expressions are evaluated before the containprg®sion. So, the firgfet join
point in the second assigment statement is the accesdafowed by the secongdet join
point fory and finally, the thircyet join point is the whole right hand side.

set ~|:arr1 = [1, 2, 31;
join point

11 |
join point
get get #3
join point  join point
#1 #2

arr2

Figure 2.5 Array Join Points - Order

Examples of array patterns are given in Listidg. PatternpGetX matches all the join
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points in the source code where any array okTMAB matrix access operation is per-
formed. Similarly, all the write operations on the arrays &g captured using pattern
pSetX .

patterns

pGetX : get(*);
pSetX : set(*);
end

Listing 2.4 Array Patterns

2.2.3 Selective Matching

As compared to other aspect-oriented languages, Aspdetdlaliminates the need of a
separate pattern for capturing arrays and then using arnuektern to specialize the match-
ing. In MATLAB a function call does not necessarily have to provide exadlynany
arguments as specified in a function signature. Also in tise cd array operations, sub-
arrays can be accessed by providing fewer dimensions tleaadiual dimensions of an
array.

Moreover, the syntax to make a function/script call andyagecess in MTLAB is the
same. So the pattern specification grammar was enricheaddoporate matching based
upon the number of arguments involvegection 2.2.1 and Section 2.2.2 describe simple
function and array-related patterns. In this section, vexide examples of more selective
matching.

As shown in the Listin@?.5, patterncall2args  will match all calls, but only the ones
made with two or more parameters, thus ignoring the calls arie or no parameters. If we
want to match on all the arrays which are being initializedeplaced completely, pattern
fullSet  will help us achieve that.

patterns
call2args : cal I (*(*,..);
fullSet : set (*();

end

Listing 2.5 Selective Matching

14
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AspectJ also provides this facility of selective matchibgt it uses separate notations for
different pointcuts. The MTLAB syntax allows us to come up with a general matching
notation applicable for both call/execution and get/sétigpas. A list of possible use cases
of such matching for the call pattern is givenTable 2.2.

call(foo) matches all calls tioo (function or script)

call(foo()) matches calls with no arguments (function ar=g
call(foo(*))  matches calls with exactly one argument (fuoic only)
call(foo(..))  matches calls with 1 or more argument(s) ¢tion only)
call(foo(*,..)) matches calls with 2 or more arguments (ftion only)

...and so on
set(arr) matches all assignmentsato
set(arr()) matches assignments with no indices
set(arr(*)) matches assignments with exactly one index
set(arr(..)) matches assignments with 1 or more indexdexdi
set(arr(*,..))  matches assignments with 2 or more indices
...and so on

Table 2.2 Selective Pattern Matching

2.2.4 Loop Patterns

The original AspectJ language definition did not contain Bogp-related pointcuts. In
MATLAB, loops are extensively used and having the ability to coagshe loops is equally
important in such a language. AspectMatlab provides a rahgeincuts for loopsloop ,
loopbody andloophead .

As shown inFigure 2.6, theloop join point presents only an outside view of the loop;
because the points before and after the loop are not witleinaibp itself. For some ap-
plications it might be desirable to advise the loop body.ocAlbe loop iterators are good
candidates to be advised. Because iaTMAB, loop headers are evaluated completely
before the loop itself. So thieophead join point is not contained inside theop join
point.

In aspect-oriented systems, the means of selection fomgpint is, in most cases, ulti-
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loophead

for|i = 1:n join point

loop loopbody

join point ) join point
end

Figure 2.6 Loop Join Points

mately based on the naming of some source element chasaugetie join point, possibly
using a regular expression. For example, to advise a metibor@ group of methods, the
pointcut has to contain an explicit reference to some namasacterising the method sig-
natures, for instance, a pattern matching the name of thieadet Since loops can not be
named in MATLAB, a hame-based pattern to write a pointcut that would selpattacular
loop will not work.

If it is known for certain that all the loops within a functi@are to be advised, it would
be possible in AspectMatlab to use certain scope-relatéédrpdo restrict the loop pattern
to all the loops contained in the functions picked up in thetrieted scope. However,
selecting only one of several loops within the same functions out to be impossible
without any further mechanism. So for the sake of loops ifleation, we decided to use
the loop iterator variables to match a loop pattern.

Examples of simple loop patterns are given in Listih§ All three patterns will match on
all the loops, eithefor orwhile , which iterate on variable.

16
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patterns
pLoopl : 1 oop(i);
pLoopHeadl : | oophead(i);
pLoopBodyl : | oopbody(i);
end

Listing 2.6 Loop Patterns

For example, consider the two loops shown in Listthg where both display the numbers
from 1 to 10. Both loops match the patterns given in Listing

for i = 1:10
disp(i);
end

i=1;
whi | e (i<=10)
disp(i);
i = i+1;
end

Listing 2.7 Example of loop patterns

2.2.5 Scope Patterns

There are certain cases in aspect-oriented systems, whraeekauilt-in language features
are required to restrict the scope of matching of the pattdfar example, in AspectMatlab
we use loop iterator variables to identify loops. The questnight arise that names for
loops iterator variables are often very general (for examnpbr j), so we might end up

over-matching loops unintentionally. Theéthin  pattern comes in very handy in such
situations to restrict the scope of matching to specific tants.

AspectMatlab supports a list of MLAB constructs, such dsnction , script ,class
aspect andloops .

Listing 2.8 presents examples of different cases ofithienhi n pattern. ThgoWithinFoo

pattern will match every kind of join point, only inside thenictionfoo . Similarly, the
pWithinBar  pattern will match every join pointinside the scrijgtr and thepWithinMyClass
pattern will match every join point inside the clasyClass . ThepWithinLoops pat-
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tern captures all join points within all the loops. LaspgyVithinAllAbc will restrict the
scope to all kinds of constructs, which are naraéd .

patterns
pWithinFoo : wi t hi n(functi on, foo);
pWithinBar : wi t hi n(script, bar);
pWithinMyClass : wi t hi n(cl ass, myClass);
pWithinLoops : wi t hi n(1 oops, *);
pWithinAllAbc : wi t hi n(*, abc);

end

Listing 2.8 Scope Patterns

2.2.6 Compound Patterns

As in other aspect-oriented languages, AspectMatlab atsodges a programmer the facil-
ity of creating compound patterns. Such user-defined petie in fact logical combina-
tion of user-defined patterns and primitive patterns givefable 2.1.

Examples of compound patterns given in Listia@ display the level of flexibility a pro-
grammer can achieve in order to create different logicalpaunds of primitive patterns.
PatternpCallFoo matched all calls made to functidoo , but only the ones from within
the loops, eithefor or while loops. On the other hand, the pattggGetOrSet
will match all array read or write operations, but the onely evithin the functionbar .
pCallExec shows a combination of an already defined patgallFoo with a prim-
itive patternexecuti on.

patterns
pCallFoo : call (foo) & w thin(loops, =*);
pGetOrSet : ( get(*) | set(*)) & within(function, bar);
pCallExec : pCallFoo | execut i on(foo);

end

Listing 2.9 Compound Patterns

Care should be taken while ANDing patterns of different kjnascause a shadow in the
source code has only one specific type. For example, repl& with an AND in the
patternpGetOrSet above will result in no match, simply because an array cdreele
read or written to, not both at the same time.

18
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2.3 Actions

An action is simply a named piece of code which is executedrin points in the source
code, matched by the specified patterns. An aspect can oanty actions, and as in
other aspect-oriented languages, therebafere , around andafter actions.

As shown inFigure 2.7, an aspect can contain any number of action blocks, whictrm t
can host multiple actions inside them. Unlike AspectJ oastin AspectMatlab are named.
Besides the name, an action is linked to a named pattern defirlee patterns block. The
type of an action specifies the weaving point of an action wepect to the join points
against the pattern specified. Just like a regulaTMB function, an action can have
input parameters. These parameters are special contextiation which is fetched from
the static shadow of each join point matched. Context exgoisudescribed in detail in
Section 2.3.1.
(actionsblock) ::=actions ' (stmtseparatdr (actionsbody)* ' end’
(actionsbody) ::=
IDENTIFIER "’ (actiontype) IDENTIFIER (stmtseparator
(help.commeny (stmtor_function) 'end’
| IDENTIFIER " (actiontype) IDENTIFIER "’ (input param$

(stmtseparator (help.comment (stmtor_function) 'end’
(actiontype) ::='before ' | after ‘around ’

Figure 2.7 Syntax of Actions

Simple examples of namdukfore andaround actions, which correspond to the pat-
ternspCallFoo andpExecutionMain  described irSection 2.2.1, are given in Listing
2.10 The actionaCountCall  will be weaved in just before each call to functitwo .
This action simply increments treunt property defined in the properties block of the
aspect. Now if we want to display the total number of calls enatkhe end of the program,
we can use thaExecution action. Assuming the end of functignain as the program
exit point,aExecution  action will be weaved in just after the whole function body.
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actions
aCountCall : bef or e pCallFoo
this.count = this.count + 1;
end
aExecution : af t er executionMain
total = this.getCount();
disp([ ’total calls: ’ , num2str(total)]);
end
end

Listing 2.10 Before and After Actions

2.3.1 Context Exposure

When it comes to capturing the context of a join point, Aspebtil's [LDS05 design
doesn'trely on the use of reflection inside the advice coslpeaformed in AspectXHH " 01].
Rather, it suggests that join point reflection on the statadsiwv should be a part of the
pointcut. The extraction of the context-specific inforratis described as part of the
pointcut designator. We extend the idea of binding the tesfldesired context variables
for subsequent use in the action code.

In AspectMatlab, access to the static program context tehainigs to the join point is
selector based. These selectors are specified along withtiam aefinition, because an
action corresponds directly to the static join point shadovthe example below, the action

actcall , which acts before the join points matching the patiat2args  given in
Listing 2.5. It will fetch the name andargs of the function call from the join point
shadow.
actcall : bef ore call2args : (name, args)

disp([ ’calling ’ , hame, ' with arguments(’ , args , YD;
end

Listing 2.11 Context Exposure

Of course, a selector is only applicable depending upondimegoint type. For example,
the counter selector is only meaningful when used on a loop join point.e @lgs
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selector fetches the array indices in case of array pafternereas the same selector is
used to get the function arguments/parameters in case didarpatterns.

A list of context selectors and their meaning with differgin points is given infable 2.3.

[ [ set [ get ] call [ execution [ Toop [ loopbody | Tloophead |
args indices arguments passed loop iteration space
obj variable before set variable | function handle - - iterator variable -
newVal new array - - - - - loop range
counter - - - - - current iteration -
name name of the entity matched - - -
pat name of the pattern matched
line line number in the source code
loc enclosing function/script name
file enclosing file name
aobj variable name - [ - [ - - - -
ainput - input var name(s) - - -
aoutput - - [ - | outputvar name(s) - - -

[ varargout [ cell array variable used to return data framound action

Table 2.3 Context Selectors with respect to Join Points

2.3.2 Around Actions

Consider thebefore action given inSection 2.3.1, which is woven in just before the
actual call to any function with 2 or more arguments. What ifwant to manipulate the
arguments before making such calls, or we want to add morereegts to the call, or we
want to provide fewer arguments, or we want to make such aroalé than one time, or
we want to call some other function instead, or we just do@hixto make such function
calls?

Thearound actions are the answer to all the questions. adound action is executed
instead of the actual join point matched. All the valid context infortoa can be fetched
in the around action and then used accordingly. The actuapjint can still be executed
from within an around action, using a spegiabceed call. Theproceed function can
be called any number of times or not at all.

Thearound actions can be used with all AspectMatlab supported patigras, except
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some patterns inside the script files due ta1UAB semantics. Tharound actions on
such join points require these join points to be moved intepagate function, which is not
possible inside a script. Unlikeefore andafter actions,around actions can return
data. A special MTLAB variable,varargout , is used for this purpose; which allows
us to return multiple arguments. Theoceed takes care of the returning arguments, but
varargout  should be set manually in case there isonoceed . varargout s a list

of output values, so it needs to be made sure that it containgay values as the original
join point would return.

For example, thearound action given in Listing2.12 captures all calls tdoo and in-
stead callsbar with the same arguments. A single value returned filman is set in
varargout variable.

actions
actcall : around callFoo : (args)

varargout{1} = bar(args{1}, args{2});
end
end

Listing 2.12 An around action without proceed

Listing 2.13shows thearound version of the actiomctcall ~ given in Listing2.11 It
simply prints out the function being called along with thguaments, before calling the

proceed .
actions
actcall : around call2args : (name, args)
disp([ ’before call of ’ , name, ’with parameters( ,args , )
proceed();
disp([ ’after call of ’ , name, ‘with parameters( ,args , ) );
end
end

Listing 2.13 An around action with proceed
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2.3.3 Precedence Order

As shown inFigure 2.8, since multiple actions can be triggered at the same joint@wid
if more than one such actions are of the same type, we needldpfacedence rules for
the actions:

e before actions are woven just before the join point. In case of pldtbef ore
actions, the order of the woven advice follows the exact oimlevhich the actions
were defined in source code.

e Next,af t er actions are woven just after the join point. In the case oftiplelaf t er
actions, the order of the woven advice follows the exact oimlevhich the actions
were defined in the source code.

e Last, multiplear ound actions are woven around the join point in the exact order in
which actions are defined in source code. So the outer-mdkeaf ound actions
will be the one appearing first in the woven code and it will gmad the nexir ound
action encountered, or the actual join point if there are ooaar ound actions.

In Figure 2.8a, multiple actions are targeting a singl& | join point. The weaving points
for a join point in the source code are shownFigure 2.8b. All the bef or e actions are
woven just before the join point in order they are specifiellith® af t er actions are woven
just after the join point. The call tioo is replaced by the call to the first ound action,
which in turn can call the second ound action through iter oceed function, and so on.

An important point to notice here is that the default ordgrules of AspectMatlab are sim-
pler and more restrictive than the precedence rules of A3pieiH "01]. However, our
action weaving strategy avoids complicated dependeneg rwill not lead to any depen-
dency cycles between actions, and is easy to comprehendafssientific programmer’s
point of view. Since our actions have names, it would alsoitmple for us to introduce
a declaration to over-ride the default ordering within eatkhe around, before and after
groups.
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Weaving before Weaving around

Original ) >
9 & after actions actions
actions
beforel : before pCall Foo beforel () ; beforel () ;
before2 () ; before2() ;
aroundl : around pCall Foo foo () ; |::> foo() ; |::> aroundl () ;
afterl () ; afterl () ;
afterl : after pcCallFoo after2(); after2() ;
before2 : before pCall Foo -
function aroundl ( function around2(
around2 : around pCall Foo proceed () ; proceed() ;
end‘ o end
after2 : after pCall Foo
function proceed ( function proceed (
around2 () ; foo () ;
end end end
(a) Actions List (b) Weaving Order

Figure 2.8 Actions Precedence Order

2.4 Small Example

In Figure 2.9, we present an example of an aspect, which counts all théidunzalls made
with at least two arguments. To do so, we need to have a pattern to capture all such
calls. Themainexecution  pattern is used to display the number of calls made at the end
of the program.

To demonstrate the application of the aspect ffogure 2.9, consider a small base program
consisting of the simple MrLAB function given inFigure 2.10.

The functionhisto takes one input argumentand returns three values,s,d . Values

are returned by declaring variables to be return parametetftse function header, then
assigning these variables a value. This function first ggaersome random-sized vectors,
then calls several MrLAB functions to generate a histogram, and finally computes some
basic statistics.
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2.4. Small Example

aspect myAspect

properties
count=0;
end

nmet hods
functi on out = getCount(this)
out = this.count;
end
functi on incCount(this)
this.count = this.count + 1;
end
end

patterns
call2args : cal | (*(*,.));
executionMain : mai nexecut i on();
end

actions
actcall : around call2args : (name, args)
this.incCount();
disp([ ’calling ’ , hame, ’with parameters(’ , args , oD,
proceed();
end
actexecution : af t er executionMain
total = this.getCount();
disp([ ’total calls: ’ , num2str(total)]);
end
end

end

Figure 2.9 Aspect to count all calls made with at least 2 arguments

Once compiled along with the aspect presenteBigure 2.9, patterncall2args  finds
only three matching join points (at lines 5, 6 and 9) wherdtinetion calls carry two argu-
ments each. So, corresponding action function calls wilvbgen only at those program
points. Note that the function calls with a single input angunt (at lines 11, 12 and 13) do
not match. Moreover, the acti@ttexecution is anaft er action, so it will be woven
at the end of the function. The woven code generated by thg@it@nis shown inFigure
4.10. It will be easier to follow the output after we explain howffdrent phases of the
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function [m, s, d] = histo(n)
% Generate vectors of random inputs
% x1 = Normal distribution N(mean=100,sd=5)
% x2 = Uniform distribution U(a=5,b=15)
x1 = ( randn(n,1) * 5 ) + 100;
X2 = 5 + rand(n,1) * (15 -5);
y = x2.72 ./ X1,
% Create a histogram of the results (50 bins)
hist(y,50);
% Calculate summary statistics
m = mean(y);
= std(y);
= median(y);

s
d
end
Figure 2.10 Simple MATLAB Function

compiler work inChapter 4.
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Chapter 3

Scientific Use Cases

Scientific programs rely heavily on arrays (i.e., matriGas) loops when performing com-
putations. One of the main goals of AspectMatlab is to explsse language constructs
to aspect-oriented programming in order to make it appad@rior use in the scientific
computing domain. In this chapter, we show some non-trivssd cases of some typical
MATLAB programs that were extended using AspectMatlab. Thus we tatustrate
both the usefulness of aspects in the numerical computingadoin general and the spe-
cial patterns in particular.

All examples can be found online on our websit@hey all include the aspects and the
programs that are modified, as well as woven code generatexnloyi.e., the compiler
is not needed to check the benchmarks). Only outlines of $heds are shown in this
chapter, the complete versions are provided in AppemtixThe example benchmarks
given inSection 3.2, Section 3.3 andSection 3.4 were created by a McLab group member,
Anton Dubrau, and were reported in a joint papBkii10]. The examples irsection 3.1
andSection 3.5 are new applications.

In general, we consider two possible use cases: (1) profiingrams, and (2) annotating
data to variables in a running program to extend functioyali

Profiling programs is particularly interesting for scidistiprograms, which are usually

Lhttp://sable.mcgill.ca/mclab/aspectmatlab/examples
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computationally intensive. Having knowledge about whatatly is going on during ex-
ecution can help increase efficiency, as showSdction 3.1 and the sparsity benchmark
(Section 3.2). Some information is hard to get by "traditional” means,,iby extending the
program to include profiling code. Adding an aspect reprissammuch cleaner solution,
with the additional advantage that they allow one to profiteecent programs without any
modification. Both the sparsityséction 3.2) and flopsEection 3.3) examples show this.

With regards to annotating functionality it is interestioghote that the McLab Project was
conceived as a framework not only to allow the addition oflgses and compilation of
Matlab into different back-ends. It is also a framework tmwalthe simple development
of language extensions, which is exactly what #mec compiler represents (an extension
of the base MTLAB compiler). Aspects are a quick way to prototype further fibss
language extensions without much work, as the usstion 3.4) and loops £ection 3.5)
benchmarks show.

3.1 Tracking operations that grow arrays

MATLAB semantics force the array to be handled in a different wayagpared to other
objects. Each time the array size increasesTMB has to allocate new space to the array.
We present a simple example aspect, that is used to trackoneng size of the arrays.
The purpose of this application is to monitor all the op@ragdiwhich may potentially alter
the shape or the size of an array, and in the end we should &¢cgbbint to the operations
in the source program at which the arrays attain the biggsest s

This aspect is helpful to be able to declare the arrays wir thnaximum size once at
the beginning of the program. It will reduce the performangerhead due to the array
copy operations, each time the size changes. In this contexshall be observing the
MATLAB assignment statements. So we need to track the shape actiamges for all the

array variables used in the program. The aspect propergessad to keep the profiling
information, such as the maximum size of an array along w#hoication in the source
code.
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An outline of the aspect is given Figure 3.1. This aspect contains a simplet pattern to
catch all the array assignments, and anoiieéexecution  pattern to display the profiled
results at the end of the execution of the program.

The actionaset acts just before the array assignment operations, anduirascthe new
value being set, i.e., the result of the right hand side oagsgnment statement, through
the use of the context selectoewVal . The context selectabj fetches the current array
object, and is used to compare the both old and new array staaquesizes. We get the
name of the array throughame and the line number of the assignment operation in the
source code usiniine context selectors respectively.

The actiondisplayResults simply goes through all the data properties which contain
the profiled data and prints out the results at the exit pditit@program.

We used this array size tracking aspect on an actual progvarh utilizes a RungeKutta4
ODE solver RLBO0O9] to solve the heat equation in 1D given some initial condii@and
time interval. The benchmark uses matrices to discretiedéat function in space. So we
can track the size and shape change of the matrices usedthoatithe program.

The output of the array size tracking benchmark is giveligure 3.2. As it can be seen in
the size change columns, some of the arrays are not thaeindgwpdated because most
of such arrays are the input/output parameters of the fomstiBut few arrays such & W
andt , increase their size during the execution of the prograne. fhhximum size attained
by all the arrays is shown along with the line number of thes®gode operation.

3.2 Tracking array sparsity

The sparsity benchmark is an aspect which helps to profile $pmarse matrices (arrays)
are. The sparsity of a matrix is the number of zero elementgpeaned to the number of

non-zero elements. If a matrix is sufficiently sparse, it barstored as a sparse matrix,
which is a special data type supported bnMAB. It stores only the non-zero elements
and their location. All arithmetic is supported both on sgadata types and between a
mixture of sparse and dense matrices.
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aspect arrayGrow

patterns

arraySet : set (*);
exec : mai nexecution();
end
actions
aset : before arrayset : (newVal,obj,name,line,args)
tmp = obj;

tmp(args{l:numel(args)}) = newVal;
newVal = tmp;

newSize = numel(newVal);
oldSize = this.arraySize{id};
this.arraySize{id} = newSize;

this.arraySet{id} = this.arraySet{id}+1,;

i f (‘this.sameShape(newVal,obj))

this.changeShape{id} = this.changeShape{id}+1;
end
i f (newSize < oldSize)

this.decreaseSize{id} = this.decreaseSize{id}+1;
end
i f (newSize > oldSize)

this.increaseSize{id} = this.increaseSize{id}+1;

this.lineNum{id} = line;
this.maxSize{id} = newSize;
end
end
displayResults : after exec
end
end

Figure 3.1 Outline of array growing aspect

30



3.2. Tracking array sparsity

>> program
tracking the operations that grow arrays in the following pr ogram...
computation finished

‘var’ ‘arraySet’  ’'size decrease’  ’'size increase’ ’'max size " line#
a [ 3 I 0 I 11 0 1 1]
'steps’ [ 1 0 o I 1 1 1 0 1]
N’ [ 1 0 1 [ 1 [ 17]
N’ [ a4 o I 11 [ 1 [ 18]
b’ [ 3 I o [ 17 1 [ 19
RS [ 17 0 0 I 11 0 299] [ 20]
uor [ 2] 1 0 17 0 299] [ 21]
D’ [ 3] [ 1] [ 2] [ 89401] [ 23]
tspan’ [ 2] 0 I 1 0 2] [ 56]
‘alpha’ [ 2] 0 [ 1] [ 299] [ 56]
o’ [ 2] 0 I 11 0 1 [ 56]
b [ 2] 0 I 1 [ 11 [ 69
W [ 1007] [ 2] [ 3] [ 149799] [ 86]
't [ 4002] [ 2] [ 2] [ 501 [ 73]
T [ 1002] [ 0 I 1 1 [ 79
u [ 4000] [ 0] [ 11 [ 299] [ 24]
y' [ 4000] [ 0] [ 1] [ 299] [ 25]
k1’ [ 1000] [ 0] [ 1] [ 299] [ 78]
k2’ [ 1000] [ 0 [ 1] [ 299] [ 79
k3’ [ 1000] [ 0] [ 1] [ 299] [ 80]
k4’ [ 1000] [ 0 [ 1] [ 299] [ 81]

Figure 3.2 Output of the array growing benchmark

If a matrix is very sparse, then matrix multiplication be@symuch cheaper to perform.
Since this is where most of the computation of many sciengifegrams happens, one
can achieve order of magnitude speedups in specific inga@tber operations on sparse
matrices, like indexing or adding new elements that wergipusly zero, are much more

expensive. This is because they require to traverse orldetng sparse matrix.

The overall structure of the aspect is givenFigure 3.3. The sparsity aspect identifies
which variables are good candidates to make sparse by emting every set and get of
every variable, and recording their size and sparsity. Aseasure of sparsity we use
ratio of nonzero to total number of elements in a matrix, itke MATLAB expression
nnz(A)/numel(A) . At the end of the program, a list of all variables along witie t
mean and standard deviation of their sizes and sparsiggsreated out along with counts
of accesses and shape as well as sparsity changes.

The existence of the get and set patterns are particulanyetwent here, because we
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aspect sparsity

patterns

arraySet : set (*);
arrayWholeGet : get (*());
arraylndexedGet : get (*(..);
exec : mai nexecution();

end

actions
aset : before arrayset : (newVal,obj,name)
end

awget : before arrayWholeGet : (obj,name)

end

aiget : bef or e arraylndexedGet : (args,name)
end
displayResults : after exec
end
end

Figure 3.3 Outline of sparsity aspect

merely have to write actions in which we increase countess@ated with every vari-
able. Since the context information includes the name of &cimea variable as a string,
we can put all the variables in aMLAB structure to map between names and values. A
structure in MATLAB, unlike in static programming languages, allows the additf fields
during runtime. As new variables are encountered duringme) they are added into the
structure that tracks them, so we don’t have to specify thabk names in advance. Thus,
the aspect needs no modification to profile different progtam

Having special syntax allowing us to specify whether anyaisaccessed by indexing it or
whether it is accessed without indexing allows us to diffiéiete between these accesses,
and record them more easily.

32



3.2. Tracking array sparsity

Along with the aspect itself we coded our actual program,cwhitilizes a RungeKutta4
ODE solver RLB05] to solve the heat equation in 1D given some initial condsi@and
time interval. The benchmark uses matrices to discretigentfat function in space. The
needed derivative is computed using matrix multiplicatwith a differentiation matrix
which is very sparse and never changes. Most of the compatatithe program relies on
this multiplication. If this matrix is made sparse, it dexses the overall computation time
for this benchmark by 95% (tested in Matlab R2008a, on a linOxvith an AMD Athlon
64 X2 with 2GHz and 4GB of ram).

The output of the benchmark Fagure 3.4 clearly shows that the variable D is of large size,
never indexed, seldomly written or changing in shape orssfyabut often used without
indexes. We thus show a very simple benchmark using aspatte@special array patterns
to profile a certain feature of a program, leading to a usekult. Without aspects and these
patterns, one would need to inline profiling code manually.

>> program
tracking sparsities of all variables in the following progr am...
computation finished

‘var' 'size’ 'sparsity’ ‘arraySet’ ‘spty. inc.’” ’get’ 'ind . get’
a’ '1.0 0.0 '1.00 0.03" [ 2] [ 0] [2002] [ 0]
'steps’ 0.5 0.5 '1.00 0.000 [ 11 [ o [ 11 [ 0]
tN '0.5 0.5 '1.00 0.00" [ 1 [ o [ 1 [ 0]
‘N’ 1.0 0.1 '1.00 0.00" [ 3] [ 0] [507 [ 0]
'h’ '1.0 0.0 '1.00 0.00" [ 2] [ 0] [3504] [ 0]
X '149.5 149.5 '1.00 0.00" [ 1 [ o [ 1 [ 0]
'Uo’ '199.3 140.9’ '0.37 045 | 2] [ o [ 11 [ 0]
'D’ '89311.7 2823.6° '0.01 0.03° [ 3] [ 0] [2000] [ 0]
f '0.0 0.0° '1.00 0.000 [ 1 [ o [ 0o [ 0]
‘tspan’  '1.3 0.9’ '0.67 0.24' | 11 [ o [ 0o [ 2]
‘alpha’  '149.5 149.5 '0.55 045 | 1 [ o [ 11 [ 0]
0’ '0.0 0.0 '1.00 0.00" [ 1 [ o [ 0o [ 0]
b’ '0.7 0.5 '1.00 0.000 [ 11 [ o [ 21 [ 0]
W '149699.3 3863.3' '0.47 0.29' [ 504] [ 501] [ 1] [ 2500]
't '250.4 250.5’ '1.00 0.000 [ 2001] [ o [ 0 [ 2000]
i '1.0 0.0 '1.00 0.000 [ 501] [ 0] [6001] [ 0]
u '149.5 149.5 '0.98 0.09° [ 2000] [ 0] [2000] [ 0]
y’ '0.0 0.0 '1.00 0.000 [ 2000] [ o [ 0o [ 0]
k1’ '298.8 7.7’ '0.97 013" | 500] [ 0] [1000] [ 0]
k2’ '298.8 7.7 '0.97 013" | 500] [ 0] [1000] [ 0]
k3’ '298.8 7.7’ '0.97 013" | 500] [ 0 [1000] [ 0]
k4’ '298.7 9.5 '0.97 013" | 500] [ 0] [500] [ 0]

Figure 3.4 Output of the sparsity benchmark
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3.3 Measuring floating point operations

In numerical computing it is common to count computatiormahplexity in terms of float-
ing point operations, because they make up most of the apesatknowing exactly how
many floating point operations each part of a program pedoran be more useful than
knowing how much time the computations takes, because tindauof flops may be more
consistent, and is not subject to compiler optimizations.

The flop aspect, shown Figure 3.5, thus attempts to identify where in the program floating
point operations occur and counts them. For every occugrehan operation on matrices
(like times, mtimes, plus etc.), it uses an estimate on tinebaw of floating point operations
and records for every call site, the number of calls durirggrtin of the program, and the
total number of flops contained in all the calls.

This is done recursively, i.e., the output will list the totlmps of a call of a function,
but then it will also list the total flops for every call insidleat function. This is done by
keeping a stack that for every call records the number ofadjwers performed so far. When
encountering a new call, which is captured via a before adiwall calls, zero is pushed
onto the stack. When encountering a floating point operatitich is captured by using
around advice for every tracked operation, the number ofatipss are added to the top
of the stack. Finally, after every call, the number of operea encountered is added to the
total operations of the call-site, and the operations apped from the stack and is added
to the next level.

Note that currently we have not defined patterns to matchadipes *, -, .*, etc., thus for
this experiment such expressions have to be convertednaiodquivalent function form,
i.e., using mtimes, minus, times, etc.

Note the order of the before and after actions. Because we thwaribeforeTrack” and
“afterTrack” to happen before and after the “any” actiomsth&t we can record information
on the top level call that is being tracked, we have to listabions in the order shown in
Figure 3.5.

We used this aspect to weave into the computation of the Eingalue decompositionVfat02
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3.3. Measuring floating point operations

aspect flops

patterns
tracking: cal | (SVD);

pminus : cal | (minus ( *, *));
pmtimes : cal | (mtimes ( *, *));
ptimes : call (times ( *, *));

pplus : call (plus ( =, *));
psart : call(sqrt ( *));
prdivide: cal | (rdivide(  *, *));
pabs : call (abs ( *));

any : call (*);
end % patterns

actions
beforeTrack : bef ore tracking : (name)
% before tracked call set up vars
end

bany : before any
% before any call, take care of flops on stack(if recording)
% push new ’'stackframe’ info

end

% put info on stack for every tracked operation

aany : after any : (name,line,loc);
% after any call, store info in variables and on ’stackframe’

end
afterTrack : af ter tracking

% after tracked call print out results
end

end % actions
end % flops

Figure 3.5 Outline of flops aspect
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of a random matrix. The utilized algorithm is spread over yfdas and operates on many
2x2 sub-matrices as well as the whole matrix, and it is n@tralnich operations dominate.

As the output inFigure 3.6 shows, the aspect is able to uncover where most of the com-
putation happens, and presents it in a similar way a protfilews computation time (i.e.,
encapsulated information). In the listing, lines with O 8apere removed for brevity.

While it would be possible in MTLAB to override the behavior of plus, minus etc (i.e., the
atomic functions for which the aspect tracks the flops) tokithe number of operations, it
would be pretty much impossible to get that information ie Wy it is listed, i.e., with a
report for every call site, and with encapsulated inforomatwithout emulating the before
and after actions in some way.

3.4 Adding units to computations

The units aspect adds functionality by allowing matriceBawve International System (SI)
units associated with them, while not requiring any spdoggitment of these variables.

The outline of the aspect is given kigure 3.7. It turns all variables that are encountered
at calls into structures containing both a unit and the pabvalue. All basic operations
are overridden as well. In order to create a matrix with a@ased unit, one merely has
to multiply the matrix with the name of the unit.

The aspect intercepts all calls to functions that denotesifaig. ’'s’, '’Kg’, 'inches’, etc.),
overrides them and returns a structure containing a valuenefand the given unit. If
the requested unit is not a basic Sl unit (i.e., 'incheslotdns’) or if the value requested
is a physical constant (i.e., 'AU’, 'G’, 'dozen’) the valueilibe a factor relative to the
corresponding Sl unit. The point to note is that these fomstithat are getting called in a
program don’t exist anywhere on theAviLAB path. This is allowed in MTLAB, because
if a name cannot be resolved an error is only thrown when timena executed. But
since we use an around action to intercept these calls, gotaceethem with the actual
functionality they represent, they never get called bym\aB. In effect, we use around
actions to replace these "functions” with their real impéstation.
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3.4. Adding units to computations

>> runsvd
encountered call to SVD, recording flops...
finished tracking function call, here are the results:

‘call site’ '# of calls’ 'total flops’
'fro_150_times’ [ 1 [ 100]
'fro_150_sqrt’ [ 1] [ 1]
'SVD_13_fro’ [ 1] [ 101]
'SVD_14_abs’ [ 7 630]
'tinySVD_77_minus’ [ 270] [ 270]
'tinySVD_77_plus’ [ 270] [ 270]
'tinySVD_77_rdivide’ [ 270] [ 270]
'tinySVD_78_sqrt’ [ 270] [ 270]
'tinySVD_78_rdivide’ [ 270] [ 270]
'tinySVD_79_times’ [ 270] [ 270]
'tinySVD_81_mtimes’ [ 270] [ 3240]
‘tinySymmetricSVD_109_minus’ [ 270] [ 270]
‘tinySymmetricSVD_109_times’ [ 270] [ 270]
‘tinySymmetricSVD_109_rdivide'[ 270] [ 270]
‘tinySymmetricSVD_110_sign’ [ 270] [ 0]
‘tinySymmetricSVD_110_abs’ [ 270] [ 270]
‘tinySymmetricSVD_110_times’ [ 270] [ 270]
‘tinySymmetricSVD_110_plus’ [ 540] [ 540]
‘tinySymmetricSVD_110_sqrt’ [ 270] [ 270]
‘tinySymmetricSVD_110_rdivide'[ 270] [ 270]
‘tinySymmetricSVD_112_times’ [ 270] [ 270]
‘tinySymmetricSVD_112_plus’ [ 270] [ 270]
‘tinySymmetricSVD_112_sqrt’ [ 270] [ 270]
‘tinySymmetricSVD_112_rdivide'[ 270] [ 270]
‘tinySymmetricSVD_113_times’ [ 270] [ 270]
'tinySymmetricSVD_116_mtimes’ [ 540] [ 6480]
'fixSVD_137_mtimes’ [ 270] [ 3240]
'fixSVD_138_mtimes’ [ 270] [ 3240]
'fixSVD_141_mtimes’ [ 11] [ 132]
'fixSVD_142_mtimes’ [ 22] | 264]
'fixSVD_143_mtimes’ [ 11] [ 132]
‘tinySymmetricSVD_121_fixSVD’ [ 270] [ 7008]
'tinySVD_82_tinySymmetricSVD’ [ 270] [ 17268]
'tinySVD_83_mtimes’ [ 270] [ 3240]
'jacobi_42_tinySVD’ [ 270] [ 25368]
'SVD_17_jacobi’ [ 270] [ 25368]
'SVD_18_mtimes’ [ 540] [ 1026000]
'SVD_19 mtimes’ [ 270] [ 513000]
'SVD_20_mtimes’ [ 270] [ 513000]
'SVD_34_times’ [ 1] [ 100]
'Script_6_SVD’ [ 1] [ 2078199]

Figure 3.6 Output of the flops benchmark
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aspect unit

patterns

disp : call (disp);
plus : call (plus( *, *));
minus : cal | (minus( =, *));
mtimes : cal | (mtimes( *, *));
mrdivide : cal | (mrdivide(  *, *));
power : cal |l (power( *,*));
round : call (round( =*));
colon : call (colon( =*,.));
allCalls : cal I (*());
loopheader : | oophead(*);
end
;';ct i ons

| oop : around loopheader : (newVal)
range = this.annotate(newVal);
acell = {};
for i = (range.val)

acell{length(acell)+1} = i;

end
varargout{1} =
struct(this.annotated,true, 'val' ,acell, ’unit’ ,range.unit);

end

end
end

Figure 3.7 Outline of units aspect

All operations (again only the functions, not the opergtars overridden to both perform
the denoted operation on the .val field and the .unit field. tdJare stored as vectors,
denoting the power of every Sl unit. There are 7 Sl units, &eg aire ordered as metre,
kg, second, Ampere, Kelvin, candela and mol. Thus, [1 0 -2 @PWould denotem/s.
The function 'dis’ is overridden as well to show the matrixiwihe associated unit.

Because the data structures\M AB now computes with are changed, all the semantics in
the program change. In particular, for loops using the synta

for i = x
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3.4. Adding units to computations

t = mrdivide(AU,c);
disp(t);

bmi =
mtimes(180,mrdivide(lb,
ower(plus(mtimes(5,feet),mtimes(8,inches)),2)));

disp(bmi);

Figure 3.8 Example of units aspect

do not work anymore, becaugewill no longer be an array, but instead it will be a structure
containing an array in the field “val’. Thus we use the looghpattern and override the
loop initialization, to turn the array into a struct-arrdye struct-array is a MrLAB array
whose every element, when indexed, is a structure. Thistgptaworks with for loops
again, allowing us to emulate the correct semantics.

In Figure 3.7, the action takes the range expression, and iterates avgathes. These are
stored in a cell array, which is then passed to the structtimmevhich creates a structure
array. This is a feature of MrLAB - when ’struct’ receives a cell array, it will build a struct-
array. When looping over this new structure, every elemehtogia structure containing

the elements of value of the previous array.

For example, one could run the code giverfrigure 3.8, for which the result after weaving
and running would be:

s: 499.0052
m™-2 »Kg: 27.3686

This example demonstrates that AspectMatlab allows us ¢orioe the functionality of
matrices, adding support for numerous units, adding a laggextension supporting many
of the basic operations while keeping the semantics, afi aiitaspect that is less than 300
lines long.
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3.5 Interpreting loop iteration space

This aspect extracts ther loop iteration space and then interprets this space witten t
loop body. It can be useful in many applications, for examfaeiterative solvers that get
called a lot to see how many iterations are performed,oorloop dependency analyses
where we need to know the lower bound, upper bound and thenremt factor for the
for loops. This benchmark can also be used to track how long lngpshroughout the
program.

An outline of the aspect is shown Fgure 3.9. This aspect consists of several patterns to
first extract the loop iteration space using head and theoopbody patterns. Within
the loop body, a programmer can inquire about the differgnbates of the iteration space
by using the call expression. So the second set of pattertfisraspect are theal |
patterns, along withi t hi n patterns to restrict the scope to the loop body.

Action aLoopHead is called right after the evaluation of the loop iteratiorsigament
statement and it keeps the iteration array. This infornmaisopushed into a stack main-
tained in aspect properties. ActiahoopBody acts at the beginning of the each iteration
and updates the current iteration counter of the currergmtgy in the stack. ActioaLoop

is called after the loop, and it is used to pop the entry of tiog ffrom the stack.

The rest of the actions actually replace the calls made @ filetop iteration space from
within the loop. For example, when a user wants to fetch tmeeatiiteration number in a
loop, animaginary call can be madateration function. This aspect will capture such
calls made from within a loop and return the current iteratmmber for that particular
loop. Other information that can be asked for is lower bouBdynd ), upper bound
(uBound), and increment factoriicrement ). Its important to note here that its not
possible to have an increment factor for all loop iteratipaces. For example, if the
iteration array consists of random numbers in no specifinesece, then there is no concept
of increment and a MTLAB -specificNaNvalue is returned.

Consider the example given Figure 3.10 which consists of a loop iterating anand a
nested loop iterating on. It would generate the output shownhkigure 3.11, for the 19th
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3.5. Interpreting loop iteration space

aspect | oops

patterns

plhead : | oophead(*);
plbody : | oopbody(*);

ploop : | oop(*);

lbound : call (IBound) & within(loops, *);

ubound : call (uBound) & within(loops, *);

increment : cal I (increment) & wi t hi n(1 oops, *);

iteration : cal | (iteration) & wi t hi n(1 oops, *);
end % patterns

actions
aLoopHead : after plhead : (newVal)
% extracts the loop iteration space
% push the entry on the stack
end

aLoopBody : before plbody : (counter)
% extracts the loop iteration
% update the current top on the stack
end

aLoop : after ploop
% pop the top entry from the stack
end

aLBound : around Ibound
% returns the lower bound for the loop
end

aUBound : around ubound
% returns the upper bound of the loop

end
alncrement : around increment
% returns the increment factor of the loop
end
alteration : around iteration
% returns the current iteration number of the loop
end

end % actions
end % flops

Figure 3.9 Outline of loops aspect
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for i = 1:2:99
disp({ ’'Lower Bound i: ’ , IBound});
disp({ ’Upper Bound i: ’ , uBound});
for j = 10:-1:1
disp({ ’'Lower Bound j: ’ , IBound});
disp({ ’'Upper Bound j: ’ , uBound});
disp({ ’Increment j: ’ , increment});
disp({ ’Current Iteration j: ’ , iteration});
end
disp({ ’Increment i: ’ , increment});
disp({ ’'Current Iteration i: ’ , iteration});
end
Figure 3.10 Example of loops aspect
>

Lower Bound i: 1
Upper Bound i: 99

Lower Bound j: 10
Upper Bound j: 1
Increment j: -1
Current lteration j: 5

Increment i: 2
Current lteration i: 19

Figure 3.11 Output of loops aspect
iteration of outer loop and the 5th iteration of the nestemploskipping the ouput of the

other iterations.

3.6 Other possibilities

While we only presented a few use cases showcasing the @tehboth aspects in the
scientific computing domain as well as our special pattemngarticular, there are many
more possibilities.
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3.6. Other possibilities

For example, one could use the loop patterns to track how ritargtions an iterative

solver like iterative GEPP or solver based on the Newton biétiTrhis could be particu-

larly useful if it is used inside some larger computatiorel&kbackward Euler integration,
because it would allow one to track how many iterations areedehen and where.

Tracking loop counts could also be interesting for loop delemcy analyses. One could
use aspects there to collect run time information and featllihck to the compiler and
write specializing code optimizing the encountered ruetproperties. This could be done
for many possible optimizations.

Another interesting aspect that overrides all possibleasicould be one that overrides
all computation with equivalent operations utilizing intal-arithmetic. Variables could be
initialized to small intervals corresponding to the uniegsion, which get larger as more
computation is performed. The advantage would be thatvaterithmetic gives hard
bounds on the computed values so that there are no surptise® dounding arithmetic.
One could also use more simplified runtime forward error pgagion schemes.

AspectMatlab provides some interesting ways to combineanioal computing with aspect-
oriented programming, resulting in some of the use casesrshidany other possibilities
are conceivable, which motivate the development of thedagg in general and the array
and loop patterns in particular.
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Chapter 4

Compiler

The AspectMatlab compilerafng has been designed to be easily extensible so that it
is simple for us and other researchers to add further fematui® enable this we have
built the compiler using extensible toolkits and have airfegda very clean and modular
implementation.

This chapter examines the design of our AspectMatlab camnpildetail. We begin with
a discussion of the overall architecture of the compiler ancdverview of its different
phases. This is followed by a detailed discussion of eacheophases of the compiler. We
start with a discussion on how the front-end tools enableth useate the extension. We
describe a set of transformations on the source code thaéquéed in order to perform
accurate matching and weaving. Then we discuss the namleitresanalysis which is
used to eliminate most of the dynamic checks introduced bynthaving phase. Finally,
we conclude with a detailed example of a woven aspect andastieon on the performance
overheads introduced by the aspect woven code.

4.1 Compiler Structure

The overall structure oamg the AspectMatlab compiler, is given fgure 4.1. The
compiler takes as input, a collection ofAviLAB (.m) source files, plus a collection of
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AspectMatlab files, and produces a collection of wovesTMAB source files. These output
files can be executed using anyaM.AB system.

Base Matlab Aspects

| |

Front-end

* AST (Matlab+Aspects)

| Separator |
[ Aspectinfo ] §{  AST (Matlab Only)
| Expr. Simplification |
| Loop Rewriting |
| simplified AST

| Name Resolution

| Resolved Name
* Set

| Matcher&Weaver |

* Woven AST

Post—processing |

/N

Matlab Implementation of Aspect Code

Woven Base Matlab

Figure 4.1 Overall structure of the amc AspectMatlab compiler

The front-end of AspectMatlab was implemented as an exdartsi the Natlab front-end
(Natlab is a "neat” version of MTLAB, developed by the Sable Research Group). The
scanner is built using the MetalLexer to@lds09 and was specified as a simple and mod-
ular extension to the Natlab Metalexer specification. Thesgraand semantic checks
were modular extensions to Natlab’s parser, which is bibhg the extensible JastAdd
frameworkEHO7]. The Natlab grammar was extended to incorporate Aspedtdilgram-
mar rules using the JastAddParser. JastAdd provides poMiacilities for AST traversal,
associating attributes with nodes and modifying the ASTnaide rewriting.
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4.2. Separator & Aspectinfo

4.2 Separator & Aspectinfo

As indicated inFigure 4.1, after front-end processing, the AST generated includéls bo
MATLAB and aspect-specific AST nodes. Following titec model, the Separator com-
ponent harvests all the aspect-specific key informatiorobtlie AST, and transforms the
AST so that it becomes a pureAViLAB AST. This process allows us to process the result-
ing AST using our Matlab compiler analysis framework, andlso the first key step in
converting the aspect source files taaMAB source files.

The separation phase records the aspect information intdlecton of data structures,
calledAspectinfo. Aspectinfo consists of several data structures, which are used toinonta
the aspect lists, pattern lists, action lists and the in&diom about their association.

Aspectinfo contains the following structures:

e Pattern lists encode simple mappings of the pattern desiggarzen names to the
actual pattern designator expressions. These lists acktasgerform expression
simplification Gection 4.3.1) before matching.

e An action defined in the aspect files is translated into a nbkrerLAB function and
related information is stored in an object calksetioninfo. It keeps the action name,
associated pattern designator name, type of the actiorie@nee to the translated
function corresponding to the action and the host aspecen&mtion lists are lists
of all such objects. In order to match and weave, both acist® &nd their mapping
to corresponding patterns are us&ecfion 4.5).

e Aspectinfo also keeps a simple list of all the aspect files presentedet@dmpiler.
This list of aspects is mainly used in the post-processi@gehwhich we will discuss
in Section 4.6.
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4.3 Transformations

In order to perform matching and later weaving, some joimfsoiequire transformation.
There are two notable code transformations: name/paraizetieexpressions simplifica-
tion and loops rewriting.

4.3.1 Expression Simplification

An expression in MTLAB can be very complex with a lot of computation being performed
within a single expression. This computation can be in thenfof function/script calls
or complex operations on arrays. So some kind of refactafngpmplex expressions is
required to expose all the matching and weaving points inctie. To avoid inserting
meaningless and redundant code, we consult the Aspectiéostructures at this stage.
All the name or parameterized expressions, which can patlsntatch the specified pat-
terns, are taken out of the parent expression. An expresstbe source code is a potential
match, if there exists a pattern in the pattern list fetcmeflgpectinfo. An important point
to notice here is that a pattern can be used by an actiony aitthely or in combination
with other patterns, or none of the actions end up using acpéat pattern. So, at this
stage we go through all the patterns and simplify the comgkgxessions in order to facil-
itate matching and weaving later. This results in simplewabke statements with precise
locations for before, after or around actions.

For example, given the following line in the base program:

z = sum(x) / length(y);

and assuming that there is only one pattern for cafum, the above line gets translated
into this:

AM_CVar_1 = sum(x);

z = AM_CVar_1 / length(y);

Now assuming that patterns exist for both calls and variabtesses, the above line gets
translated into the following:
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4.3. Transformations

AM_CVvar_1 = x;

AM_CVar_2 = sum(AM_CVar_1);
AM_CVar_3 = vy;

AM_CVar_4 = length(AM_CVar_3);

z = (AM_CVar_2 / AM_CVar_4),

It should be noted that arguments of the function calls am@eted out for the sake of their
own weaving. So the arguments always get evaluated befereitiction call. In the case
of abef or e action or araf t er action, it doesn’'t change the semantics of a function call. |
turn, in thear ound case, if the function never gets called throuyghceed, its arguments
would still be evaluated before passed on toadheund action.

4.3.2 Loop Rewriting

The second kind of transformation occurs on the loops. WrdB for loops have a
loop iteration space defined before the loop executes -loops contain an assignment
statement, which allocates the iteration space to the ltaptor. In order to perform
weaving on that assignment statement itself, it needs takentout of the loop body and
be replaced by appropriate code.

For example, consider the following loop:
for i=1:step:size(dx,1)

end

This loop would be transformed to the following. Note that loops are transformed
regardless of the existence of any patterns or actionstiaggigem, for reasons we shall
describe in the following section.

AM_CVar_5 = 1:step:size(dx,1);
for AM_CVar_6 = Ll:length(AM_CVar_5(:,))
i = AM_CVar 5(:;,AM_CVar_6);

end

A different challenge is presented i | e loops. The conditional expression can contain
several instructions inside it. Refactoring the expressidhbe our solution again. But
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since the condition is supposed to be evaluated at the $&ath iteration, we have to take
care of all the back edges of the loop finishing at the loop éeachich means just before
the syntactic end of loop body and also at all te@tinue statements.

For example, consider the following loop.

while x <y

continue;

end

In the transformed version below, thei | e loop’s conditional expressions are factored out
and placed before all the edges in the loop header.

AM_CVar_7 = x <y,

whil e AM_CVar_ 7

AM_CVar 7 = x <y,
continue;

AM_CVar_7
end

X <y,

4.4 Name Resolution Analysis

In MATLAB, a function call or an array access has the same syntax uiivey pist the
name of the entity or passing a number of parameters withoifo&1, 2) can either
be an access to an array nanfed , if the array exists in the current scope, or it could be
a function call with two parameters. This name resolutiamlba achieved with the help of
runtime checks, but doing so we compromise on the efficiehggoerated woven code.

Figure 4.2 shows an aspect which contains two different kinds of pastéargeting the
same entityfoo in the source code, i.eget andcal | . There are twaef ore actions
matching on both patterns respectively.
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4.4. Name Resolution Analysis

aspect nameRes

patterns
pGetFoo : get (foo);
pCallFoo : cal | (foo);
end

actions
aGetFoo : before pGetFoo

end
aCallFoo : before pCallFoo

end
end

end
Figure 4.2 Aspect with multiple patterns on the same entity

When this aspect is applied to a source code containing tlwvioly line:

x = foo(3);

The entityfoo needs to be resolved as a function call or an array accesslan tw be
accurately matched with the patterns given in the aspectweéaeed to insert dynamic
checks for each action at the point of weaving, as showsidare 4.3.

if (exist( ’foo’ , 'var ) == 1)
AM_GLOBAL.nameRes.nameRes_aGetFoo();

end

i f (exist( ’foo’ , ‘’var = 1)
AM_GLOBAL.nameRes.nameRes_aCallFoo();

end

x = foo(3);

Figure 4.3 Weaving without Name Resolution Analysis
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The call to the aspect action depends on the outcome of thentigrcheck, i.e., ifoo isa
variable then call taGetFoo action is madeaCallFoo action is called ifoo happens
to be a function.

But once we have all the names resolved in the source code giénvvg process becomes
very simple. As shown ifrigure 4.4, if foo is resolved as an array at the joint point then
only theget pattern is matched and thel | pattern is not considered. Vice versa in the
case offoo being a function.

AM_GLOBAL.nameRes.nameRes_aGetFoo();
x = foo(3);

OR

AM_GLOBAL.nameRes.nameRes_aCallFoo();
x = foo(3);

Figure 4.4 Weaving with Name Resolution Analysis

So we essentially need to have a flow analysis, to determenexict type of a join point at
the time of matching The goal of this analysis is to determine if a given name aveng
program point corresponds to a function, variable or asslgrariable. To accomplish this
goal, the analysis is implemented as a data flow analysig tisshMcLab Analysis Frame-
work. This flow analysis builds up a set of information for leatatement in the program,
that we call resolved names set. This set contains namdsdabih the information about
those names.

The MATLAB semantics for determining if a name is a variable or a functithin func-
tion bodies are fairly static. Because of this, the Name Ré&soliAnalysis is capable of
accurately determining all names that are variables. Tlowathe compiler to eliminate
all runtime checks for this property. By eliminating thosecks the compiler also elim-
inates all uses oéval . The analysis can also be fairly successful in eliminatungtime
checks to determine if a variable is defined in a function. €again this is due to the more

1This analysis was developed as part of Jesse Doherty’s Mabtsis

52



4.5. Matching and Weaving

static semantics of functions. The analysis can deternhiaeroughly half of the variable
uses in our example programs giverGhapter 3 are guaranteed to be well defined. Script
semantics are more dependent on runtime behaviour. Bechilsg the Name Resolution
Analysis is less successful at determining how names aoéveskin scripts bodies.

4.5 Matching and Weaving

The previous name resolution phase populates the resoaredsiset, which is then used
as one input to the matcher and weaver, along with purgMB AST andAspectinfo
structure.

An outline of the matching and weaving process is showhigure 4.5. In a single pass
through the AST, all the join points are matched against titeems specified for all the
actions. In case a shadow of a join point matches a patteigragsr, the corresponding
action is woven at the appropriate place with respect todtation and type of the shadow.
for each base file
for each join point j
s = j.getShadow();
for each action a
p = a.getPattern();

i f(p.match(s))
s.weave(a);

Figure 4.5 Matching and Weaving process outline

4.5.1 Weaving at the function level

AspectMatlab provides aexecution  pattern to match at the level of the functions and
the scripts. Since both the functions and the scripts areedantities, matching by name is
straight forward. The matching actions are woven as a caliéaction member function
of the class generated from the aspect definition. Alllibéore actions are woven in
order just above the first statement in the body, and alafter  actions go right below

53



Compiler

the last statement, or just before all tregurn  statements. In case of tleeound of
execution (and other kinds of patterns as well), the semantics afDMB force us to
develop a different strategy, which is described in secti@G4

4.5.2 Weaving at the loop level

AspectMatlab provides a set of loop patterns for liath andwhi | e loops, hamelyoop ,
loopbody andloophead . Unlike other program constructs, loops are not named enti-
ties. So we match the loops based on the variables involwdédrihe loop header. There
is a single loop iteration variable iror loops, whereas the conditional expression of the
whi | e loop can contain any number of named entities. The questightrarise here that
names for loops iterator variables are often very geneoalgample, i or j), so we might
end up over-matching loops unintentionally. Tkie hi n pattern comes in very handy in
such situations to restrict the scope of matching to spemifinstructs.

Weavingf or loops is also different thamni | e loops with regard to the context information
they provide. We can fetch the loop iteration space (out atlwkhe action function can
infer start, end and stride values of the loop iterator)plberator variable and loop counter.
In order to weave aafter action on doopbody pattern, we have to analyze the loop
body, because it's not just the syntactical end of the bodg al¥o have to taker eak,
cont i nue andr et ur n statements into account, as they mark the end of body too.

For theloop join point, all thebefore actions are woven in order just above the loop,
and all theafter actions go right below the loop. In case of thepbody join point,

all the before actions are woven in order just above the other statemerttseitody,

and all theafter actions go right before the end of the loop body, or beforearthe

br eak, cont i nue andr et ur n statements. Because loop headers were translated into sepa-
rate statements in an earlier phase, they get matched arehvjuest like other statements

as described iection 4.5.3.
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4.5.3 Weaving at the statement level

Since we have simplified the complex statements already gadrer pass, it only comes
down to assignment statements or even simple expressimm&ats. The left hand side
of an assignment statement is matchedder patterns, and right hand side expression
for get orcall patterns. This is where we can use the name resolution st \Wwalps

us determine if the expression iggat orcall join point. Without the name resolution
optimizations we must weave in a dynamic check. All before actions are woven in
order just above the statement, and alldffter actions go right below the statement.

4.5.4 Weaving ar ound actions

In the AspectJ around advice case, the concerned piece efisoektracted out of the

context and replaced with a call to the around advice. Thaetdd code is placed inside a
new method of the same class, which is then called from aspbtice function. Because

the code stays in the same class, there are no scoping isblosgever, in the case of

MATLAB’s non object-oriented version, this weaving strategyaesdly not possible. When

we move a piece of code out of its scope, we have to providéhalhecessary context
information required.

The solution we came up with is partially inspired by Kuzimgrk on efficient imple-
mentation of around advice for the AspectBench CompHerzp4]. Taking advantage of
the MATLAB's nested functions, we create a nested function, napelyeed, inside the
around action function. This function containsa t ch statement to host the extracted
code from all the around join points of this particular actid@ he join points are assigned
a simple number id, one id for each around action. Along with id, a join point has to
pass the context information to execute the extracted cetwgylmoved inside a different
scope.

The translated standardAiLAB function for thear ound action from the example given in
Figure 2.9is shown inFigure 4.6. The first thing to notice here is that theoceed function
is created inside ther ound function as a sub-function. As explained earlier, this fiorc
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function [varargout] = myAspect_actcall(this, AM_caseNum, AM_obj
AM_args, name, args)

this.incCount();
disp([ ’calling ’ , hame, ’with parameters(’ ,args, )
proceed(AM_caseNum, AM_obj, AM_args);
function [] = proceed(AM_caseNum, AM_obj, AM_args)
switch AM_caseNum
case O
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
case 1
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
case 2
AM_obj(AM_args{1}, AM_args{2});
end
end
end

Figure 4.6 Example of an ar ound function

builds switch cases for all the join points matched for thastipular action. If applied to
the code given irFigure 2.10, this action matches at lines 5, 6 and 9. Accordingly there
are three switch cases added to pheceed function. AMobj contains the actual object
from the shadow, which can either be a variable or a functemen AMargs represents
the actual arguments used at the shadow.

AspectMatlab supports the concept of multipieund actions. As shown iSection 2.3.3,
multiple ar ound actions are woven around the join point in the exact orderhickvactions
are defined in source code. So in case of multipleund actions, the actual join point is
executed in the very last action, and all other actions josa@und each other in order.
Figure 4.7 shows an aspect which contains tarmund actions on the same pattern, which
matches all calls made to functidéoo .

Consider this aspect is applied to a source code containefptiowing line:

x = foo(3);

Figure 4.8 shows the translated MLAB functions for thear ound actions. Thepr oceed
in multiAround  _actAroundl only contains a call toultiAround  _actAround2
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4.5. Matching and Weaving

aspect multiAround
patterns
pCallFoo : cal | (foo);
end
actions
actAroundl : around pcCallFoo
disp( ’'before around action 1’
proceed();
disp( ’'after around action 1’
end
actAround2 : around pCallFoo
disp( ’'before around action 2’
proceed();
disp( ’'after around action 2’
end
end
end

Figure 4.7 Aspect for multiple ar ound actions

which actually executes the actual join point througlpitsceed. All context info is passed
from the join point shadow in case af ound actions.

If the call to functionfoo just prints out the number passed to it, then the output of the

multiple ar ound actions would be:
> pefore around action 1
before around action 2
foo 3
after around action 2
after around action 1
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function [varargout] = multiAround_actAround1(this, AM_caseNum, AM_obj,
AM_args, [context info])
disp( ’'before around action 1’ );
proceed(AM_caseNum, AM_obj, AM_args);
disp( ’'after around action 1’ );
function [] = proceed(AM_caseNum, AM_obj, AM_args)
switch AM_caseNum
case O
varargout{1} = this.multiAround_actAround2(AM_caseNum , AM_obj,
AM_args, name, args);
end
end
end
function [varargout] = multiAround_actAround2(this, AM_caseNum, AM_obj,
AM_args, [context info])
disp( ’'before around action 2’ );
proceed(AM_caseNum, AM_obj, AM_args);
disp( ’'after around action 2’ );
function [] = proceed(AM_caseNum, AM_obj, AM_args)
switch AM_caseNum
case O
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
end
end
end

Figure 4.8 Translated multiple ar ound functions

4.6 Post-processing

At the end of the weaving, a post-processing phase takes.pks explained earlier, the
aspect files are translated into classes. So the aspeatsatie woven as a call to a cor-
responding class methods. These class objects shouldtbatiated at the program entry
point. As compared to AspectJ where Java provides a desjratry point througmain ,
MATLAB does not has the same feature. Using therM\B interpreter, a user can choose
any entry point for the woven program files, including fuoatiists, scripts and classes.

58



4.7. Woven Example

So unless a user designates a function or a script to be tii@gtaoint of execution at the
time of weaving, we need to embed the startup checking code at the startfofations
and scripts. As it can be seenfingure 4.10: lines 2-8, these checks determine the very
first function or script to be executed and then instantiditéha aspect objects. These
objects need to be live and accessible throughout the ezacervironment over several
program files, so we save them in a global structure, c#llddGLOBAL In all the woven
functions and scripts, declaration of this global variablevoven as their first statement.
At the program exit point, the contents of the global vagednie cleared to start afresh next
time, Figure 4.10: lines 33-36. Finallyamcgenerates standardAviLAB code which can
be executed by any MLAB system.

4.7 Woven Example

After this detailed description of all phases, we come badké example given ifection
2.4, where we used a simple aspect to count the function callsa$pect itself is translated
into a standard MTLAB class file, as shown iRigure 4.9. The class extends the NLAB
built-in handle class, which enforces this subclass to be a reference &a$srence classes
in MATLAB use a handle to reference to multiple objects of the classpapared to the
value classes where a new object is always created in calse obpy operation.

It can be noticed that the generated class preserves therpegpand methods blocks from
the aspect. The patterns block gets eliminated, and thaalh¢tions are translated into
standard MTLAB class methods.

The woven code for the example givenSection 2.4 is shown inFigure 4.10. Expression
simplification is very noticeable, as we transform compl&tesnents into easy-to-weave
statements. With the help of our name resolution analysesang able to distinguish be-
tween function calls and array accesses. All the calls nmagdhecall pattern are woven
accordingly. Notice the extra bit of code added by the postgssing phase, at the start
and the end of the function.

2java -jar amc.jar -main myFuncl.m myFunc2.m myAspect.m
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cl assdef myAspect < handle
properties
count = O;
end
nmet hods
function [out] = getCount(this)
out = this.count;
end
function [] = incCount(this)
this.count = (this.count + 1);
end
end
met hods

function [varargout] = myAspect_actcall(this, AM_caseNum, AM_obj
AM_args, name, args)
this.incCount();

disp([

‘calling ’ , hame, ’with parameters(’ , args, )

proceed(AM_caseNum, AM_obj, AM_args);
function [] = proceed(AM_caseNum, AM_obj, AM_args)

switch AM_caseNum
case O
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
case 1
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
case 2
AM_obj(AM_args{1}, AM_args{2});
end
end
end
function [] = myAspect_actexecution(this)
count = this.getCount();
disp([ ‘’total calls: ’ , hum2str(count)]);
end
end

end

Figure 4.9 MATLAB class generated from the aspect
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4.7. Woven Example

function [m, s, d] = histo(n)

global AM_GLOBAL,;
i f (isempty(AM_GLOBAL))
AM_EntryPoint_ 0 = 1;
AM_GLOBAL.myAspect = myAspect;
el se
AM_EntryPoint_0 = O;
end
AM_CVar 0 = n;
AM_CVar_1 = AM_GLOBAL.myAspect.myAspect_actcall( 0, @ra
{AM_CVvar_0, 1}, randn’ , {AM_CVar_0, 1});

x1 = ((AM_CVar_1 =+ 5) + 100);

AM_CVar_2 = n;

AM_CVar_3 = AM_GLOBAL.myAspect.myAspect_actcall(1l, @ra
1}, ‘’rand’ , {AM_CVar_2, 1});

x2 = (5 + (AM_CVar_ 3 == (15 - 5)));

AM_CVar_4 = x2;

AM_CVar_5 = x1;

y = ((AM_CVar_4 " 2) ./ AM_CVar_5b);

AM_CVar 6 = v;

AM_GLOBAL.myAspect.myAspect_actcall(2, @hist, {AM_CVa
‘histt , {AM_CVar_6, 50});

AM_CVar_7 Y,

AM_CVar_8 = mean(AM_CVar_7);

m = AM_CVar_8;

AM_CVar_ 9 = v,

AM_CVar_10 = std(AM_CVar_9);

s = AM_CVar_10;

AM_CVar_11 = vy;

AM_CVar_12 median(AM_CVar_11);

d = AM_CVvar_12;

i f AM_EntryPoint_0
AM_GLOBAL.myAspect.myAspect_actexecution();
AM_GLOBAL = [];

end

end

Figure 4.10 Woven MATLAB function
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4.8 Performance Overhead

In this section, we briefly discuss the performance overlrganduced by the woven code.
We performed a comparative execution of the benchmarksisksd inChapter 3. We
tested in Matlab R2008a, on a linux PC with an AMD Athlon 64 X22GHz and 4GB
of RAM.

The results are shown in Tabfel All the times are given in seconds. It is worth men-
tioning that the first two benchmarks operate mostly on theioes, whereas the other two
benchmarks operate mostly on scalars. With the introdaaifdhe aspects, we timed the
resultant woven code in two ways: without the action codetaed with the action code.
Timing the woven code without the action body gives us tha idethe slowdown factor
introduced purely by the aspect action calls.

We seem to get a slowdown with factor 1.23 to 2.72 in four berauks. The number
is very high with counting the floating point operations baeink, 47.69, because this
particular aspect was used to weave into an algorithm foctmeputation of the singular
value decomposition of a random matrix. The woven algorjtipnead over multiple files,
triggers an action call for each operation, hence resuitifiggher slowdown.

So the aspect overhead is largely due to a couple of facthr)€ése benchmarks cross-cut
on all the arrays being set or being read, or all the functails ®eing made, which means
frequent calls to the aspect actions, and (2) the large oestare being inquired by the
action code as part of the context information, and the feadttMATLAB creates the copies
of all the arrays being assigned or modified inside a functidren passed as an argument,
resulting in the performance slowdown.

We believe that the performance overhead due to the aspattgsecremarkably reduced
with the help of code in-lining, as it is proven by AspectJeTimplementation of a copy
elimination analysis can also play a vital role, if we cangoide® large arrays just by refer-
ence instead of making copies.
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) Woven run time Woven run time
Benchmark| Run time . . . . Slowdown factor
(without action code) (with action code)
Grow 3.463019s 9.414565s 18.035407s 2.72
Sparsity 3.761089s 5.733333s 40.175475s 1.52
Flops 0.057600s 2.746667s 19.364130s 47.69
Units 0.040411s 0.071931s 23.769422s 1.78
Loops 0.025776s 0.031704s 0.626242s 1.23
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Chapter 5
Related Work

AspectMatlab is targeted at dynamic scientific programd thas deals with a different set
of challenges as compared to other aspect-oriented laegxdgnsions. In this chapter, we
review a number of such works, and contrast them with theagmbr taken in AspectMat-
lab.

We begin with the most popular aspect-oriented systema@lpectJ, an extension to
Java. Basic concepts and constructs of AspectMatlab areyrnspired by AspectJ,
though customized for MrLAB semantics. We discuss Aspect] and a set of extensions
to AspectJ that were directly related to our work3sttion 5.1.

Our research is also inspired by another aspect-orientggiéaye, called AspectCobol. We
discuss the similarities of AspectCobol to our workSection 5.2. We conclude with a
brief reference to another effort made to introduce aspged%ATLAB.

5.1 Aspectd
Aspect] KHH"01] was one of the main languages that popularized aspecttedepro-

gramming. AspectJ provides array pointcuts functionastych that a type name pattern
or subtype pattern can be followed by one or more sets of sguackets to make ar-
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ray type patterns. SO@bject[] is an array type pattern, aseem.xerox.. *[][]
andObject+[] . However, the pointcuts of AspectJ do not support arrayabjie full.
When an element of an array object is set or referenced, tihespamding index values and
the assigned value are not exposed to the advice. The aligilabsuch information can
be very helpful in multiple ways, such as the ability to bosHatheck the array, optimization
of array usage and profiling related to arrays. The origingdect] does not support any
loop pointcuts.

Researchers have experimented with array and loop pointeerngons to AspectJ using
abc, an extensible AspectJ compil&cH " 05).

5.1.1 Extension: Array specific pointcuts

Harbulot extended the set pointcut to capture arraysathis proposal, the pointcut des-
ignatorargs() exposes both the array index value and the object beingreeskimp an
array element, and the pointcut designadsoget() exposes the array object being as-
signed. However, this extension bases its implementatioimeating an array element set
as a call to sset(int index, Object newValue) method, and thus works only
for one-dimensional arrays.

5.1.2 Extension: Multi-dimensional array specific pointcuts

As compared to Harbulot’s extension, ArrayPT(07 works for multi-dimensional ar-
rays. The core of the implementation is a finite-state machased pointcut matcher that
can handle arrays of multiple dimensions in a uniform wayeyltook the standard field
set pointcut as the basis and developed this extension aogloé it. All array field set join
points are treated as having a variable number of argumr@sequence of index values
and the value the field is being set to. At a join point, thedaescan be obtained using
anargs() pointcut designator and then passed to the advice for fugieecessing. It
enables the programmer to perform selective matching omamper of specified indices.

Post to theabc-users  mailing list, November 2004.
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aspect Monitor {
before( int ix1, int ix2, int newVal):
arrayset( * Watch. *) &&
args(ixl, ix2, newVval) {
i f (newVal > B.bounds[ixl, ix2]) {

ArraySetSignature sig =
(ArraySetSignature)thisJointPoint.getSignature();

String field = sig.getFieldType() + sig.getName();

t hrows new RuntimeException(  "Bad change" + field)

}
}
}

Figure 5.1 Example of AspectJ multi-dimensional array pointcuts (from [CCO07])

For example, the aspect givenhingure 5.1 uses the arrayset() and args() pointcut desig-
nators to monitor the assignments to any array fields of Megsh. Notice the use of the
pointcut designatoargs(ixl, ix2, newVal) to get the array index values and the
assigned value of the array field assignments. Hegs(ix1, ix2, newVal) also
serves as the selective matching, because it makes the asieb only on the assignments
on the arrays with two indices.

AspectMatlab enhances this idea of selective matchingramadporates it within the defini-
tion of a pattern designator. It eliminates the need of arsép@attern for capturing arrays
and then using another pattern to specialize the matchirgpe&Matlab also can more
easily detect array set and get join points as it matchegadurce code level, whereas the
AspectJ approaches all must match and weave at the Javabtgtievel.

5.1.3 Extension: Loop specific pointcuts

Another extension to the abc compiler, LoopsAJF0q, provides AspectJ with a loop
pointcut. Loop selection is a major issue here, becauskauather pointcuts for variables
and functions, loops don’t have a named identification aaset with them. In Aspect-
Matlab, loop patterns are equipped with a facility to matehlbops based on the variables
being used in loop headers. Certain context exposure isqgd\td make the advice more
effective.
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void around( int min , int max , int step ):
loop() && args (min, max, step, ..) {
i nt numThreads = 4;
Thread[] threads = new Thread[numThreads];
for (int i = 0; i < numThreads; i++) {
final int t mn = min+i
final int t max = max;
final int t step = numThreads *  step;
Runnable r = new Runnable() {
public void run() {
proceed(t_min, t max, t step );

}
threads[i] = new Thread(r);
}
for (int i = 1; i < numThreads; i++) {
threads]i].start();
}
threads[0].run();
try {
for(int i = 1; i < numThreads; i++) {
threads]i].join();
}
} catch (InterruptedException €) { }

}

Figure 5.2 Example of Aspectd loop pointcut (from [HG06])

The example given ifigure 5.2 shows an application of tHeop()  pointcut, namely par-
allelization of loops. The example advice executes in pelr@ising cyclic loop scheduling)
all the loops which are recognized as iterating over a rahgeaepers.

This model of a loop join point presents only an outside viéthe loop; the points before
and after the loop are not within the loop itself. For someliappons it might be desir-
able to advise the loop body. Also, the loop iterators aredgmandidates to be advised.
AspectMatlab provides a range of poincuts for loops: looppbody and loophead.
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5.2 AspectCobol

AspectCobol [DS04 is inspired from AspectJ in many ways, but it incorporatagioal
techniques for join point identification and context captukspectCobol’s design strongly
suggests that join point reflection on the join point shadbausd be viewed as part of
the pointcut as opposed to using reflection in the advice.cAdpectCobol allows one to
extract such details from the join point. The extractionesatibed as part of the pointcut
designator, while the results are bound to variables fosasgient use in the advice code.
Hence data is extracted from the shadow of the join point, the static program context
that belongs to the join point.

For example, inFigure 5.3 we show an aspect that determines an error condition at the
time of accessing a file’s record, even though Cobol’'s runsgstem does not report any
error whatsoever. i.e., any read access to a file’s record etguarded by a test for
the FILESTATUS field to be equal to ZERO (meaning no unhandkedr occurred previ-
ously). Notice the several bindings of the context inforimato local variables just before
the advice.

While agreeing with the basic approach of AspectCobol, Adpattab makes the extrac-
tion of context available only at the advice definition levéd enhances the clarity and
structure of the whole aspect and also it makes more sensguie only the required con-
text information from the static shadow of the join poinghi where it is being utilized.

53 AOPiIn MATLAB

There has been some effort made to introduce aspect-atiéedéures in MTLAB. Joao

M. P. Cardoso, et alJMPCMO0§ suggest various useful AOP features, especially those to
specify different numeric data types. They have also pdiot# the importance of AOP
for MATLAB and their work suggests some further use cases. Howeveappuoach in-
cludes both general-purpose aspects and specific patterssdntific applications, as well

as a complete and extensible language specification andsopeoe compiler, including
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| DENTI FI CATI ON DI VI SI ON.

ASPECT-ID. ASPECTS/UNSAFEREAD.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

COPY "BOOKS/PANIC.DD" .
PROCEDURE DI VI SI ON.

DECLARATI VES.

USE
AND
AND
AND
AND
AND
AND
AND
AND

BEFORE ANY STATEMENT

BIND VAR-ITEM TO SENDER

VAR-ITEM | S FILE-DATA

BIND VAR-FILE TO FI LE OF VAR-ITEM

BIND VAR-STATUS TO FILE-STATUS OF VAR-FILE
BIND VAR-NAMETO NAMEOF VAR-FILE

BIND VAR-LOC TO LOCATION

EXISTS PROCEDURE PANIC-STOP

EXISTS DATA PANIC-FIELD.

MY-UNSAFEREAD-ADVICE.

| F VAR-STATUS NOT' = ZERO
I NI TI ALI ZE PANIC-FIELD
MOVE VAR-NAMETO PANIC-RESOURCE
MOVE "UNSAFE READ" TO PANIC-CATEGORY
MOVE VAR-LOC TO PANIC-LOCATION
MOVE VAR-STATUS TO PANIC-CODE
GO TO PANIC-STOP.

END DECLARATI VES.

Figure 5.3 Example of AspectCobol (from [LDSO05])

analyses for the dynamic properties oAM.AB .

5.4 Summary

In this chapter, we presented a number of aspect-orientgdrag and few extensions to

them. While giving an overview of our inspirations from thaestixg systems, we also

discussed the contrast with the approach taken in Aspeleblat

Although AspectMatlab carries on the basic idea of the poist and the advice from

Aspect], it also introduces a more generic and powerfulfgedtberns (pointcuts) and the
simplified actions (advices). AspectMatlab enables a siieprogrammer to cross-cut
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the basic program constructs like functions/scripts,ya&remnd loops.

AspectMatlab provides the facility of selective matchirgtain join points based on both
its actual location in the source code (by uswghi n pattern to restrict the scope), and
also depending upon the syntax of the join point (by spewgfyiumber of arguments used).

Following the AspectCobol design, all necessary contexirinftion is only extracted at
the actual action level and simply bound to an action’s leeailables. As compared to the
approach taken in AspectJ, where a programmer has to usipieoliher pointcuts to fetch

the context details, AspectMatlab’s approach enhanceddhigy.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this section we discuss the contributions made by thisish&\Ve start with an overview
of the driving principles in the designing of the new aspaiented scientific language,
AspectMatlab. Then we discuss the AspectMatlab compierd and its different phases.
We conclude with a brief description of the scientific useesas

The Design of AspectMatlab is inspired by some motivatirgides, such as the introduc-
tion of the cross-cutting features for those language coctst, which were not included
in the original definitions of the other aspect-orientedlaages. Such language constructs
include special patterns for arrays, multi-dimensionedys and loops. Having the ability
to cross-cut these language constructs is of utmost impaetior a scientific programming
language. On top of that, AspectMatlab provides the othdepes (pointcuts) related to
the calling and execution of the functions and scripts. ®Hi@tpatterns is completed with
a special scope-restricting pattern used to limit the matrprocess within a specified
program construct.

Another motivating factor behind the design of AspectMatheas to introduce a simpler,
yet extensive, design for the actions (advives). Aspedtatliminates the need for pat-
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terns to extract the context information from the staticdslvaof the join point, rather the
required context information is defined at the action-deé@nilevel and later bound to the
action’s local variable. AspectMatlab enables a user toinegabout an extensive set of
information from the shadow of the join point in the sourcel€o The default ordering
rules for actions are simpler and less restrictive than tbeoaspect-oriented languages.
So the accessibility factor for existing and newaM AB programmers was kept in mind,
while designing AspectMatlab.

We have also designed and implemented the AspectMatlabitsni@mcg compiler for

the new language. Themccompiler is designed to be easily extensible, so that other r
searchers can easily experiment with other new featurdsldsescientists. The compiler

is a source-to-source compiler, producing ordinaryTAB as its output. This means that
any MATLAB system can be used to execute the woven code. The compiteelg avail-

able online at our website Example programs and the generated code for them are also
available.

Theamccompiler consists of several phases after the front-endderdo make the match-

ing and weaving process accurate. The expression simfiicghase converts a complex
MATLAB expression into a number of easy to weave statements, dhly slub-expressions

might match to the patterns specified in the aspect. All top lstatements in the source
code are transformed, again for the sake of creating easgdoenstatements.

AspectMatlab presents some challenges for producing coared efficient woven code.
We have described our approach to weaving, including ourcagh toaround advice,
and the use of a static flow analyses that enabled us to relseic@mber of dynamic checks
required in the woven code.

We have provided some example use cases that we think iadieapotential for an aspect-
oriented system for a scientific programming language. éserexamples, the aspects can
perform profiling on program features, or they can attribexesting functionality. For
example, an aspect can track the growing size of the arraysegort the source code line
number of the operations which increase the size. Anothercaisan track the sparsity of

lwww.sable.mcgill.ca/mclab/aspectmatlab
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6.2. Future Work

the arrays and can be helpful in making the programs effici@ntaspect can profile the
number of floating point operations during the executionhef program. With regard to
attributing aspects, an aspect can associate Sl units teatiebles. Another aspect can
interpret the loop iteration space within the loop.

6.2 Future Work

In this section we look into possible improvements to Asplattab which would address

some of the more important functionality and performansees with our current imple-

mentation. AspectMatlab has the scope to be further evaduatd the performance and
functionality can be enhanced.

As far as the extension to the language itself is concernéereht kinds of patterns can be
added on top of the existing system. These patterns car thifgeent language constructs,
for example, range expressions, try/catch, etc. Sevguaktgf operations can be cross-cut
as well, for example, array copy operations, arithmeticdatens, etc.

Currently in AspectMatlab, actions only obey the precedeules with respect to the order
in which the parent aspect file was presented toattme compiler. The precedence of one
specific aspect with respect to the other aspects could lo#fispleas a future extension.

Performance improvement is also part of our future work. €ntly, all the aspects are
transformed into MTLAB classes, and all the actions calls are actually made to theoche
in the class objects. It proves to be an overhead when sesadlsbre made. As compared
to Java, there is no code in-lining provided byaM AB . We believe that the performance
of the woven code can be improved using an efficient codeningi as it is the case with
AspectJ. Improving the performance is vital, since mosheffiatterns target a lot of static
shadows, for example, all the array assignments, or aly ataesses, or all the function
calls, etc., resulting in frequent aspect class method ealtl a performance slowdown.

Another factor which plays an important role in the perfonte overhead is the M-
LAB’s semantics for array copying. The context informatiomirthe static shadow of the
join point is passed on to the actions, and the actual objeetdved as a copy. A copy
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elimination analysis can further enhance the performahteecaspect woven code.

It is our expectation that scientists will have new and dédfe uses for aspect-oriented
programming. In addition to the example use cases we prdyiude hope that others will
continue to use the language and find new uses and new langxi@gsions.
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Appendix A

AspectMatlab Grammar

In Chapter 2, the grammar rules for all the concepts and constructs ireéispatlab lan-
guage are outlined in pieces. Here we provide a completeitiafiof the AspectMatlab
language definition. If you have a coloured version of thisuinent, you will see that all
references to productions in the McLab implementaion obtee MATLAB grammar, are
given in red.

(program ::=(scripy | (function.list) | (clasg | (aspect
(aspect::='"aspect 'IDENTIFIER (stmtseparatdr(help.commeny

(aspectbody)* ' end’
(aspectbody) =

{(propertiesblock) (stmt.separatgr

| (patternsblock) (stmtseparator

| (methodsblock) (stmtseparatdr

| (actionsblock) (stmtseparator
(patternsblock) ::='patterns ' (stmtseparator (patternsbody)* ' end’
(patternsbody) ::=IDENTIFIER "’ (patterndesignators(stmtseparator
(patterndesignators::=

(patterndesignatorsand

| (patterndesignators’|’ (patterndesignatorsaand
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(patterndesignatorsaand ::=
(patterndesignatorsinary)

| (patterndesignatorsand ‘&’ (patterndesignatorsunary)

(patterndesignatorsunary) ::=

(patterndesignatoy

| '~ (patterndesignator
(patterndesignator ::=

'(" (patterndesignators’)’

| 'set '’ (’ (patternselec}’)’

| 'get '’ (" (patternselec}’)’

| 'call '’ (" (patternselect’)’

| 'execution '’ (’ (patternselect’)’

| 'mainexecution (")
| 'loop '’ (" (patternselect’)’
| 'loopbody '’ (' (patternselec}’)’
| 'loophead '’ (’ (patternselec}’)’
K
| IDENTIFIER
(patternselecf ::=

(patterntarge}

| (patterntarge} '(* (list_dotdo} ')’
(patterntarge} ::=

(patterntargetunit)

| (patterntarge} (patterntargetunit)
(patterntargetunit) ::="*" | IDENTIFIER
(list_dotdop ::=¢|"..

| (list_stan

| (list_stan ', .’
(list_stan ::="" | (list_stap ', "™
(constructtype) ::="*" | 'function | ’script

| 'class ' | 'aspect ’
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" | "loops ’



(actionsblock) ::="actions ’ (stmtseparatdr(actionsbody)* ' end’
(actionsbody) ::=
IDENTIFIER "’ (actiontype) IDENTIFIER (stmt separatdr
(help.comment (stmtor_function) "end’
| IDENTIFIER " (actiontype) IDENTIFIER "’ (input param$
(stmtseparator (help.comment (stmtor_function) 'end’
"around ’

(actiontype) ::=’before ' | after '
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Appendix B

User Manual

A beta-release of the AspectMatlab Compilanig is freely available to download from
www.sable.mcgill.ca/mclab/aspectmatlab

Once you have a copy of amc.jar, you can execute the jar firedh a list of standard
MATLAB files along with AspectMatlab aspect files.

For example, one might run
java -jar amc.jar myFunc.m myAspect.m

The woven code generated aBynccan be found inveaved directory in the current work-
ing directory, which can be executed by anpaMAB system.

B.1 Flags

amcsupports the following list of flags:
e A non-aspect MTLAB file can be specified as a starting point of execution with the

help of a-main flag. For examplemyFuncl.m is nominated as the entry point.
java -jar amc.jar -main myFuncl.m myFunc2.m myAspect.m
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User Manual

e If standard MATLAB code needs to be translated into Natlab compatible code, use
-m flag. In the example below, all files followingn flag will be translated first.
java -jar amc.jar -m myFunc.m myAspect.m

e An output directory other than the default one can be spécifséng a-out flag.
For example:
java -jar amc.jar -out output myFunc.m myAspect.m

e The version number of themccan be checked using-gersion  flag. For exam-
ple:
java -jar amc.jar -version myFunc.m myAspect.m

e The usage of thamccan be checked using-h or a a-help flag. For example:
java -jar amc.jar -h
java -jar amc.jar -help
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Directory Structure

The AspectMatlab project source has the following direcstructure:

e metaLexer - AspectMatlab scanner definition files, which are actuatlgxtension
to the base Natlab scanner. This directory is an input to taMexer tool.

aspect.mic  : MetalLexer component for an Aspect

aspect _action.mic : MetaLexer component for an Action

aspect _pattern.mic : MetalLexer component for a Pattern

aspects _base.mic : Metalexer component which extends the Natlab base

component
— aspects _matlab.mll  : MetalLexer language file for the AspectMatlab
— aspects _start.mic . MetalLexer component for the aspect starting state

e parser - AspectMatlab parser definition files, which are actuallyeatension to
the base Natlab parser. This directory is an input to thé\diafarser tool.

— aspects.parser : AspectMatlab grammar definition

— header.parser : Header file to specify package name and imports

83



Directory Structure

e jastadd - AspectMatlab abstract syntax tree (AST) and a collectibatibute
files. These attribute files encode the several integral coweqts of the Aspect-
Matlab compiler at the AST node level. They contain the fiomzlity for weeding
the source code, expression simplification, loop transébion, context information,
matching and weaving, and finally pretty printing the wovede. This directory is
an input to the JastAdd tool.

— aspects.ast  : AspectMatlab abstract syntax tree

— AspectsCorrespondingFunctions.jrag . JastAdd attribute for ex-
pression simplification phase

— AspectsinheritedEquations.jrag : JastAdd attribute to specify equa-
tions for the attributes inherited from Natlab

— AspectWeave.jrag . JastAdd attribute for weaving phase

— AssignStmtWeavability.jadd . JastAdd attribute to determine the weave-
abilty of an assignment statement (used to distinguish téitersents inserted
by the compiler)

— Contextinfo.jadd . JastAdd attribute to keep the line number for each
statement node

— FetchTargetExpr.jrag . JastAdd attribute to determine the target vari-
able within an expression

— FileName.jadd : JastAdd attribute to keep the file names

— GlobalStructure.jrag . JastAdd attribute for the post-processing phase

— LoopTransformation.jadd . JastAdd attribute for loop transformation
phase

— PrettyPrint.jrag : JastAdd attribute to print out the standarchAB
code

— ProceedTransformation.jrag . JastAdd attribute to translate theceed

calls within anaround action
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— ShadowMatch.jrag : JastAdd attribute for matching phase

— WeavelLoopStmts.jrag . JastAdd attribute for inserting the action calls
inside a loop’s body at certain points with respecbteak , continue , and
return  statements

— Weeding.jadd : JastAdd attribute for weeding phase

e aspectMatlab - AspectMatlab source Java files, which includes the program
try point and the complete AspectMatlab system.

— Actioninfo.java : Class definition for théctioninfo structure used
in Aspectinfo

— AspectEngine.java : Class definition for the complete AspectMatlab func-
tionality

— Main.java : AspectMatlab entry point
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Appendix D

Scientific Aspects

D.1 Tracking operations that grow arrays

aspect grow
% this aspect catches every set and records data that should b
% useful in determining which operations increase or decrea
% array size. to that effect the size of every variable during
% run of the program is checked. In the end, the line number of t
% operation at which the size of each array was maximum, is pri
% out along with the size.

properties

variables = struct(); % creates the mapping ’'variable’ -> index
changeShape = {}; % how often the dimensions of the array changed

(has to exist previously)

se the
the
he
nted

decreaseSize = {}; % how often the size decreased (i.e. a previously
nonzero element was set)

increaseSize = {}; % how often the size increased

arraySize = {}; % size of the array

maxSize = {}; % maximum size of the array

lineNum = {}; % at line number

arraySet = {}; % the number of 'set’ operations
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nextld = 1; % next available index
end

nmet hods
function b = sameShape(this,a,b)
% returns true if a and b have the same shape
i f (ndims(@) "= ndims(b))

b = false;
el sei f (size(a) == size(b))
b = true;
el se
b = false;
end
end

function id = getVarld(this,var,line)
% get id of variable by string-name, update 'variables’ if

necessary
i f (Tisfield(this.variables,var))
this.variables = setfield(this.variables,var,this.nex tid);

id = this.nextld,;
this.nextld = this.nextld+1;
% initialze entry <id> for all the cell arays
this.arraySet {id} = 0; % the number of 'set’ operations
this.changeShape{id} = O; % how often the dimensions of the
array changed (has to exist previously)
this.decreaseSize{id} = 0; % how often the size decreased (i.e.
a previously nonzero element was set)
this.increaseSize{id} = 0; % how often the size increased
this.arraySize{id} = 0;
this.maxSize{id} = 0;
this.lineNum{id} = line;
el se
id = getfield(this.variables,var);
end
end
end
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patterns

arraySet : set (*);

exec : executi on(program);
end
actions

message : before exec

disp( ’tracking the operations that grow arrays in the following

program...’ );
end

displayResults : after exec

vars = fieldnames(this.variables);

result = { ‘’var ,’arraySet’ , 'shape
changes’ , 'decrease’ |, ’increase’ , ‘max size’

pm = [" ' , char(0177)];
for i=1:length(vars)

result{i+1,1} = vars{i};

result{i+1,2} = this.arraySet{i};

result{i+1,3} = this.changeShape{i};

result{i+1,4} = this.decreaseSize{i};

result{i+1,5} = this.increaseSize{i};

result{i+1,6}

result{i+1,7}
end
disp(result);

end

this.maxSize{i};
this.lineNum{i};

set : before arraySet : (newVal,obj,name,line,args)
t = obj;
t(args{l:numel(args)}) = newVal,
newVal = t;

i f (Cisnumeric(newVal))
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return;
end;

id = this.getVarld(name,line);

newSize = numel(newVal);
oldSize = this.arraySize{id};

this.arraySize{id} = newSize;

this.arraySet{id} = this.arraySet{id}+1;

i f (this.sameShape(newVal,obhj))

this.changeShape{id} = this.changeShape{id}+1;
end
i f (newSize < oldSize)

this.decreaseSize{id} = this.decreaseSize{id}+1;
end;
i f (newSize > oldSize)

this.increaseSize{id} = this.increaseSize{id}+1;
this.lineNum{id} = line;
this.maxSize{id} = newsSize;
end
end
end
end
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D.2 Tracking array sparsity

aspect sparsity
% this aspect catches every set and records data that should b
% useful in determining which variables can safely be declar
% as sparse. to that effect the sparsity of every variable dur
% the run of the program is checked, as well as how often the siz
% of the array and the sparsity changes. the standard deviati
% the sparsity is checked as well. also tracks sizes of variab
% (and stdev). these values are tracked for all variables ove
% run of the whole program, for all sets and gets

properties

variables = struct(); % creates the mapping 'variable’ -> index

sizeSum = {}; % the sum of size of variables

sizeSumSquared = {}; % the sum size of variables squared - to
calculate stdev

sparsitySum = {}; % the sum of sparsity

sparsitySumSquared = {}; % the sum of the sparsity squared - to

calculate stdev

changeShape = {}; % how often the dimensions of the array changed

(has to exist previously)

decreaseSparsity = {}; % how often the sparsity decreased (i.e. a
previously nonzero element was set)

increaseSparsity = {}; % how often the sparsity increased
arraySet = {}; % the number of 'set’ operations
arrayGet = {}; % how often the whole array is retrieved
arraylndexedGet = {}; % how often the array is indexed into
nextld = 1; % next available index

end

nmet hods

function b = sameShape(this,a,b)
% returns true if a and b have the same shape
i f (ndims(a) "= ndims(b))
b = false;
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el sei f (size(a) == size(b))
b = true;
el se
b = false;
end
end

function s = stdev(this,sum,sumSquared,N)
mean = sum/N;
s = sgrt(sumSquared/N - mean™2);
i f (sumSquared/N < mean’2) % make numerical errors not report
imaginary results
s = 0;
end;
end

function id = getVarld(this,var)
% get id of variable by string-name, update ’'variables’ if
necessary
i f (Tisfield(this.variables,var))

this.variables = setfield(this.variables,var,this.nex tid);
id = this.nextld;
this.nextld = this.nextld+1;
% initialze entry <id> for all the cell arays

this.sizeSum{id} = 0; % the sum of size of variables

this.sizeSumSquared{id} = 0; % the sum size of variables
squared - to calculate stdev

this.sparsitySum{id} = 0; % the sum of sparsity

this.sparsitySumSquared{id} = O; % the sum of the sparsity
squared - to calculate stdev

this.arraySet {id} = 0; % the number of 'set’ operations

this.changeShape{id} = 0; % how often the dimensions of the

array changed (has to exist previously)
this.decreaseSparsity{id} = 0; % how often the sparsity
decreased (i.e. a previously nonzero element was set)
this.increaseSparsity{id} = 0; % how often the sparsity
increased
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this.arrayGet{id} = O;
this.arraylndexedGet{id} = 0;

el se
id = getfield(this.variables,var);
end
end

function s = getSparsity(this,val)
i f (numel(val) == 0)
s = 1;
el se
s = nnz(val)/numel(val);
end
end

function s = touch(this,id,value)
sp = this.getSparsity(value);
newSize = numel(value);
this.sizeSum{id} = this.sizeSum{id}+newsSize;
this.sizeSumSquared{id} = this.sizeSumSquared{id}+new Size™2;

this.sparsitySum{id} = this.sparsitySum{id}+sp;

this.sparsitySumSquared{id} = this.sparsitySumSquared {id}+sp72;
end
end
patterns
arraySet : set (*);
arrayWholeGet : get (*());
arraylndexedGet : get (+(.);

exec : executi on(program);
end
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actions

message : before exec

disp( ’tracking sparsities of all variables in the following
program...’ );

end

displayResults : after exec

vars = fieldnames(this.variables);

result = { ‘'var ,’size’ ,’sparsity’ , 'arraySet’ , 'shape
changes’ , 'decrease sparsity’ , 'increase sparsity’ ,'get’ ,’indexed
get' )

pm = [" ' , char(0177)];
for i=1:length(vars)
result{i+1,1} = vars{i};
touch =
this.arraySet{i}+this.arrayGet{i}+this.arraylndexed Get{i};

result{i+1,2} =

strcat(num2str(this.sizeSum{i}/touch, \%.1f ),pm,num2str(this.stdev(
this.sizeSum({i},this.sizeSumSquared{i},touch), \%.1f  ));

result{i+1,3} =
strcat(num2str(this.sparsitySum{i}/touch, \%21.2f ),pm,num2str(this.stdev(
this.sparsitySum{i},this.sparsitySumSquared{i},touc h), "\%21.2f ));

result{i+1,4} = this.arraySet{i};
result{i+1,5} = this.changeShape{i};
result{i+1,6} = this.decreaseSparsity{i};
result{i+1,7} = this.increaseSparsity{i};
result{i+1,8} = this.arrayGet{i};
result{i+1,9} = this.arraylndexedGet{i};

end

disp(result);

end

set : before arraySet : (newVal,obj,name,args)
t = obj;
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t(args{1:numel(args)}) = newVal;
newVal = t;

i f (Cisnumeric(newVal))
return;
end;

id = this.getVarld(name);

newSize = numel(newVal);
sparsity = this.getSparsity(newVal);
oldSparsity = this.getSparsity(obj);

this.arraySet{id} = this.arraySet{id}+1;

this.touch(id,newVal);

i f (Cthis.sameShape(newVal,obj))

this.changeShape{id} = this.changeShape{id}+1;
end
i f (sparsity < oldSparsity)

this.decreaseSparsity{id} = this.decreaseSparsity{id}
end;

i f (sparsity > oldSparsity)

this.increaseSparsity{id} = this.increaseSparsity{id}
end
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end

get : before arrayWholeGet : (obj,name)

i f (Cisnumeric(obj))
return;

end;

id = this.getVarld(name);

this.touch(id,obj);
this.arrayGet{id} = this.arrayGet{id}+1;
end

indexedGet : bef or e arraylndexedGet
i f (Cisnumeric(obj))
return;
end;

id = this.getVarld(name);

this.touch(id,obj);

. (obj,name)

this.arraylndexedGet{id} = this.arraylndexedGet{id}+1

end
end
end

D.3 Measuring floating point operations

aspect flops
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%
%
%
%
%

%

%
%
%

%
%
%
%

- the number of calls
per call site, and records the data recursively

uses a stack

before any call, creates a new ’'stack frame’ with number of f
of operation

after any call, destroys stack frame, puts the flops of that
stackframe

on the new top, and updates call site info

for builtin functions we use an around that adds the flops to
top
of the stack, with a proceed

this aspect gives detailed flops infor for every call of 'SV
but that behaviour can be overriden by simply changing the
‘tracking’ pointcut

properties

callSite = struct(); % callsite -> id

call =15 % number of calls per call site

flop = [I; % flops per call site

nextld = 1;

s = [1, O]; % put sth in stack=> calls can modify the ’'top’ without
error

record = false;

end

net hods

% stack methods - stack(1l) is the number of elements, which it
follow
function s=stack(this)
s=[0];
end
function stack=push(this,stack,element)
stack(stack(1)+2) = element;
stack(l) = stack(1)+1;
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end
function [stack,element]=pop(this,stack)
i f (stack(l) == 0)
error(  'trying to pop from empty stack’

end
element = stack(stack(1)+1);
stack(l) = stack(1)-1;

end

function id = getld(this,name,line,op)
location = strcat(name, " ,num2str(line),
i f (Tisfield(this.callSite,location))
this.callSite=setfield(this.callSite,location,this.
this.flop(this.nextld) = O;
this. cal | (this.nextld) = O;
id = this.nextld;
this.nextld = this.nextld + 1;
el se
id = getfield(this.callSite,location);
end
end
end

patterns
tracking: cal | (SvD);

pminus : cal |l (minus ( =, *));
pmtimes : cal | (mtimes ( *, *));
ptimes : call (times ( *, *));
pplus : call (plus ( =, *));
psart :  cal l(sqrt ( *));
prdivide: cal | (rdivide(  *, *));
pabs : call (abs ( *));
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any @ call (*);
end

actions
% before tracked call set up vars

beforeTrack : bef ore tracking : (name)
fprintf( ‘encountered call to %s, recording flops...\n’ ,name);
this.callSite = struct(); % callsite -> id
this. call =1]; % number of calls per call site
this.flop = [J; % flops per call site
this.nextld = 1;

this.s = this.stack();
this.record = true;
end

% before any call - take care of loops on stack (if recording)
% this gets called after the beforeTrack advice, so that the t racked
call can
% report information
bany : before any
i f (Tthis.record)

return; % return if we are not recording
end
this.s = this.push(this.s,0);
end
% after call - store info and put flops on previous ’stack fram e’
% ’aany’ should get called first, because a call to the tracki ng
function

% should still list said call with the corresponding flops
information
aany : after any : (name,line,loc);
i f (‘this.record)

return; % return if we are not recording
end
[this.s,f] = this.pop(this.s); % get flops and return stack

id = this.getld(loc,line,name);
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this. cal |l (id) = this. cal | (id) + 1;
this.flop(id) = this.flop(id) + f;

i f (this.s(1) "= 0)
[this.s, fold] = this.pop(this.s);
this.s = this.push(this.s,f + fold);
end
end

afterTrack : af ter tracking

fprintf( finished tracking function call, here are the

results:\n’ );
fields = fieldnames((this.callSite));
result = { ’call site’ , '# of calls’ , 'total flops’ h
format( ’long’ );
for i = l:numel(fields);
field = fields{i};

id = getfield(this.callSite, field);
result{i+1,1} = field,

result{i+1,2} = this. cal | (id);
result{i+1,3} = this.flop(id);
end

disp(result);

this.s = this.push(this.stack(),0);
this.record = false;
end

amtimes : around pmtimes : (args)
proceed();
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f = (2 xsize(args{1},2) - 1) * size(args{1},1)
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);

end

aminus : around pminus : (args)
proceed();
f = max(humel(args{1}),numel(args{2}));
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);

end

atimes : around ptimes : (args)
proceed();
f = max(numel(args{1}),numel(args{2}));
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);

end
aplus : around pplus : (args)
proceed();

f = max(humel(args{1}),numel(args{2}));
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);

end

ardivide : around prdivide : (args)
proceed();
f = max(numel(args{1}),numel(args{2}));
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);

end
asgrt : around psqrt : (args)
proceed();

f = (numel(args{1}));
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);
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end
aabs : around pabs : (args)
proceed(); % first perform call

f = (numel(args{1}));
[this.s,fold] = this.pop(this.s);
this.s = this.push(this.s,f+fold);
end
end
end

D.4 Adding units to computations

aspect unit
% allows adding units
% units are Sl and Sl derived units
% the unit is denoted by a vector
% ====[metre, kg, second, Ampere, Kelvin, candela, mol]===
% all acesses to functions denoted by units are overriden
% all operations are overriden
% indexing gets overriden
% uses structs using the aspect_annoted flag

properties
noUnit = [0, 0, 0, 0, 0, O, O];

annotated = ’aspect_annotated’ ;

one = struct( ’'aspect_annotated’ true, ‘val' 1, 'unit 0, 0, 0, O, O,
0, 0]);

units = structy(... % defines all SI and Sl derived unit names and

value (may be used for printing as well)
'm, [1, 0, 0, O, O, O, 0],...
'Kg , [0, 1, O, O, O, O, 0],...

s, [0, 0, 1, 0, 0, 0, 0],...
‘A", [0, 0, 0, 1, 0, 0, O],...
'K’ , [0, 0, 0, 0, 1, 0, 0],..

cd” , [0, 0, 0, 0, 0, 1, Q],...
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'mol" ,[0, O, O, O, O, O, 1],...

'y, [2, 1,-2, 0, O, O, 0],...

‘N, [1, 1,-2, 0, 0, O, O]);
constants = struct(...

km' , {[1, 0, O, O, O, 0, 0],2000},...

'vear , {[0, O, 1, 0, O, O, 0],31556926},...
b, {0, 1, 0, 0, O, 0, 0],0.45359237},...
'inches’ , {[1, 0, 0, O, 0, 0, 0],0.0254},...
'feet  , {[1, 0, 0, 0, 0, 0, 0],0.3048},...
‘G, {[3-1-2, 0, 0, O, 0], 6.6730e-11},...
'dozen’ , {[O0, O, O, O, O, O, 0],12},...

‘AU, {[1, 0, 0, 0, 0, 0, 0],149598000 +1000},...

'c , {1, 0,-1, 0, O, O, 0],299792458},...
'KY , {2, 1,-2, 0, 0, O, 0],2000},...
‘g’ , {0, 1, 0, O, O, 0, 0],0.001},...
L, {3 0, 0, 0, 0, 0, 0],0.001},...

’kilotons’ q[o, 1, 0, 0, 0, 0, 0],1000 *1000},...
'm_earth” , {[0, 1, 0, O, O, 0, 0],5.9742e24},...
'r_earth’ , {[1, 0, 0, 0, O, O, 0],6378100});

end

net hods

function s = annotate(this,x)

i f (isstruct(x) && isfield(x,this.annotated))

S = X;
el se

s = struct(this.annotated,true, val' X, 'unit’
end

end

function [ab,c] = prepareOp(this,args)
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i f (length(args) "= 2)
error(strcat( ‘binary operation needs exactly 2 arguments’ ));
end

a

b

c
end

this.annotate(args{1});
this.annotate(args{2});

this.one;

functi on display(this,v)
i f ((isstruct(v)) && isfield(v, this.annotated))
forintf(  '%s:’ this.unitString(v.unit)); disp(v.val);
el se
disp(v);
end
end

function s = unitString(this,v)

s ="
i f (v == this.noUnit)
return;
end
names = fieldnames(this.units);
print = zeros(length(names), 1);

whil e ("same(v,0 =*V))
newPNorm = (print =+ 0);
newMNorm = (print * 0);
for i = (1 : length(names))
u = getfield(this.units, names{i});
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newPNorm(i) = norm((v - u), 1);

newMNorm(i) = norm((v + u), 1);

end

[minPNorm, minPi] = min(newPNorm);
[minMNorm, minMi] = min(newMNorm);

i f (minPNorm < minMNorm)

print(minPi) = (print(minPi) + 1);
u = -getfield(this.units, names{minPi});

el se

print(minMi) = (print(minMi) - 1);
u = (getfield(this.units, names{minMi}));

end
v = (v + u)
end

for i = (1 : length(print))
i f (printi) "= 0)
s = strcat(s, strcat(
i f (print(i) ™= 1)
s = strcat(s, strcat(
end
end
end
s = s(2:length(s));

end

end

patterns
disp : call (disp);
plus : call (plus( =, *));
minus : cal | (minus( =, *));
mtimes : cal | (mtimes(
mrdivide : cal | (mrdivide(
power : cal | (power( =*, *));

*,*));
* *));

"' names{i}));

, num2str(print(i))));
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round : call (round( *));
colon : call (colon( =,.));
allCalls : cal | (x(Q);
loopheader : | oophead(*);
end
actions

| oop : around loopheader : (newVal)
range = this.annotate(newVal);

acell = {};
for i = (range.val)
acell{length(acell)+1} = i;
end
varargout{1} =
struct(this.annotated,true,

val' ,acell, ’unit’
end

acalls : around allCalls : (name)

i f (isfield(this.units,name))
varargout{1} =
struct(this.annotated,true,
el se
i f (isfield(this.constants,name))
pair = getfield(this.constants,name);
varargout{1} = struct(this.annotated, true,
this.constants,{2},name), unit’
getfield(this.constants,{1},name));
el se
proceed();
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end
end
end

adisp : around disp : (args)

i f (length(args) ™= 1)
error(  'Error using disp -- need exactly one argument)’
end
v = args{l};
i f (isstruct(v) && isfield(v,this.annotated))
this.display(v);
el se
disp(v);
end
end

aplus : around plus : (args)

[a,b,c] = this.prepareOp(args);
c.val = a.val+b.val;
i f (a.unit "= b.unit)
error(  'the units of the arguments for operation + must match’
end
c.unit = a.unit;
varargout{1} = c;
end

aminus : around minus : (args)

[a,b,c] = this.prepareOp(args);
c.val = a.val-b.val;
i f (a.unit "= b.unit)
error(  ’'the units of the arguments for operation - must match’
end
c.unit = a.unit;
varargout{1} = c;
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end

amtimes : around mtimes : (args)

[a,b,c] = this.prepareOp(args);
cval = a.val *b.val;
c.unit = a.unit+b.unit;
varargout{1} = c;

end

amrdivide : around mrdivide : (args)

[a,b,c] = this.prepareOp(args);
c.val = a.val/b.val;
c.unit = a.unit-b.unit;
varargout{1} = c;

end

power : around power : (args)

[a,b,c] = this.prepareOp(args);
c.val = a.al. b.val;
i f (b.unit "= this.noUnit)
error( 'cannot use power with a non empty unit’ );
end
i f (isscalar(b.val))
c.val = a.wval b.val;

c.unit = a.unit *p.val;
el se
i f (a.unit "= this.noUnit)
error( 'cannot use power operation resulting mixed unit matrix’ );
end

c.unit = this.noUnit;
end
varargout{1} = c;
end
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round : around round : (args)

i f (length(args) ™= 1)
proceed();
end
a = this.annotate(args{1});
a.val = round(a.val);
varargout{1} = a;
end

colon : around colon : (args)
i f (length(args) "= 2 && length(args) "= 3)

proceed();
end

a = this.annotate(args{1});
b = this.annotate(args{2});
¢ = this.one;
o = this.one;

o.unit = a.unit;

i f (b.unit "= a.unit)

error( ’error in colon: the units need to be the same’
end
i f (length(args) == 3)

¢ = this.annotate(args{3});

i f (c.unit "= a.unit)

error(  ’error in colon: the units need to be the same’

end
oval = a.val:b.val:c.val;

el se
o.val = a.val:b.val;

end

varargout{1} = o;

end
end
end
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D.5 Interpreting loop iteration space

aspect | oops
properties
stack = {};
top = 1,
end

met hods
function push(this, s)
i f (numel(s) > 0)
this.stack{this.top}.lbound = s(1);
this.stack{this.top}.ubound = s(numel(s));
this.stack{this.top}.increment = this.increment(s);
el se
this.stack{this.top}.lbound = NaN;
this.stack{this.top}.ubound = NaN;
this.stack{this.top}.increment = NaN;
end
this.stack{this.top}.iteration = 0;
this.top = this.top + 1;
end

functi on pop(this)
this.top = this.top - 1;
end

function Ib = getLBound(this)

Ib = this.stack{this.top-1}.Ibound;
end
function ub = getUBound(this)

ub = this.stack{this.top-1}.ubound;

end

function inc = getincrement(this)
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inc = this.stack{this.top-1}.increment;
end

function iteration = getlteration(this)
iteration = this.stack{this.top-1}.iteration;
end

function update(this, iteration)
this.stack{this.top-1}.iteration = iteration;
end

function inc = increment(this, s)
size = numel(s);
first = s(1);
last = s(size);
step = (last-first)/(size-1);
i T (s(1):step:s(size) == s)

inc = step;
el se
inc = NaN;
end
end
end
patterns
ploophead : | oophead(*);
ploopbody : | copbody(*);
ploop : | oop(*);

Ibound : call (IBound) & within(loops,*);
ubound : call (uBound) & within(loops,*);

increment : cal | (increment) & wi t hi n(l oops, *);
iteration : cal | (iteration) & wi t hi n(1 oops, *);
end
actions
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aLoopHead : after ploophead : (newVal)
this.push(newVal);
end

aLoopBody : before ploopbody : (counter)
this.update(counter);
end
aLoop : after ploop
this.pop();
end

aLBound : around Ibound

varargout{1} = this.getLBound();
end

aUBound : around ubound

varargout{1} = this.getUBound();
end

alncrement : around increment

varargout{1} = this.getIncrement();
end

alteration : around iteration
varargout{1} = this.getlteration();
end

end
end
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