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Abstract

There has been relatively little work done in the compiler research community for in-

corporating aspect-oriented features in scientific and dynamic programming languages.

MATLAB R© is a dynamic scientific programming language that is commonly used by sci-

entists because of its convenient and high-level syntax forarrays, the fact that type declara-

tions are not required, and the availability of a rich set of application libraries. This thesis

introduces a new aspect-oriented scientific language, AspectMatlab.

AspectMatlab introduces key aspect-oriented features in away that is both accessible to

scientists and where the aspect-oriented features concentrate on array accesses and loops,

the core computation elements in scientific programs. One ofthe main contributions of

this thesis is to provide a compiler implementation of the AspectMatlab language. It is

supported by a collection of scientific use cases, which demonstrate the potential of aspect-

orientation for scientific problems.

Introducing aspects into a dynamic language such as MATLAB also provides some new

challenges. In particular, it is difficult to statically determine precisely where patterns

match, resulting in many dynamic checks in the woven code. The AspectMatlab compiler

uses flow analyses to eliminate many of those dynamic checks.

This thesis reports on the language design of AspectMatlab,theamccompiler implementa-

tion, and also provides an overview of the use cases that are specific to scientific program-

ming. By providing clear extensions to an already popular language, AspectMatlab will

make aspect-oriented programming accessible to a new groupof programmers including

scientists and engineers.
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Résum é

Relativement peu de travail áet́e accomplis dans le milieu de la recherche du compilateur

pour l’intégration des caractéristiques orient́eesà l’aspect dans les domaines scientifique et

dynamique des langages de programmation. MATLAB R© est un langage de programmation

scientifique dynamique qui est couramment utilisé par les scientifiques en raison de sa

pratique et la syntaxe de qualité pour des tableaux ; du fait que les déclarations de type

ne sont pas ńecessaires, et de la disponibilité de vastes biblioth̀eques d’applications. Cette

thèse introduit un nouvel aspect de langue de recherche scientifique : AspectMatlab.

AspectMatlab introduit fonctionnalités d’aspect orientées d’une manière qui est̀a la fois

accessible aux scientifiques et où les fonctionnalit́es d’aspect orientées se concentrent sur

les acc̀es ŕeseau et des boucles, leséléments de calcul de base dans les programmes scienti-

fiques. L’une des principales contributions de cette thèse est de fournir une implémentation

du compilateur du langage AspectMatlab. Il est soutenu d’une collection de cas d’utilisa-

tion scientifique, qui montre le potentiel de l’orientationaspect pour des problèmes scien-

tifiques.

L’introduction des aspects dans un langage dynamique commeMATLAB repŕesente aussi

quelques nouveaux défis. En particulier, il est difficile de d́eterminer statiquement où les

mod̀eles concident, résultant dans de nombreux contrôles dynamiques dans le code tissé.

Le compilateur d’AspectMatlab utilise le flux d’analyses pour éliminer un grand nombre

de ces contr̂oles dynamiques.

Cette th̀ese signale la conception du language d’AspectMatlab et l’implementation du com-

pilateuramc. Elle fournit également un aperu de l’utilisation des cas qui sont spécifiques̀a

la programmation scientifique. En fournissant des extensions claires avec un langage déjà
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populaire, AspectMatlab rendra la programmation orientéeà l’aspect accessiblèa un nou-

veau groupe de programmeurs y compris des scientifiques et des inǵenieurs.
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Chapter 1

Introduction

MATLAB R© is a programming language that provides scientists with an interactive devel-

opment loop, high-level array operations and a rich collection of built-in and library func-

tions [Mat]. M ATLAB is also a very dynamic language in which variable types are not

declared, and in which new functions and scripts are loaded dynamically. Although MAT-

LAB recently incorporated object-oriented programming features, there are currently no

aspect-oriented features.

Our challenge was to define and implement a new aspect-oriented programming language

that was a natural extension of MATLAB . We wanted to build upon the successes of lan-

guages such as AspectJ[Asp03, KHH+01], but at the same time tailor our approach to the

needs of the scientific programmer. In particular, we wantedto introduce new language

features for matching array and loop operations, both of which are central to scientific pro-

gramming. We also wanted to introduce aspect-oriented programming in a way that was a

natural extension to the MATLAB language and so that it would be understood and adopted

by the scientific programmers.

AspectMatlab is a component of a larger effort known as the McLab project1. The overall

goal of the project is to find ways to improve the performance,usefulness and accessibility

of current scientific programming languages.

1www.sable.mcgill.ca/mclab

1
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Introduction

We have defined an extension of MATLAB , AspectMatlab, which supports the notions of

patterns (pointcuts in AspectJ terminology), andnamed actions (advice in AspectJ termi-

nology). An aspect in AspectMatlab looks very much like a class in the object-oriented part

of MATLAB . Just like classes, an aspect can have properties (fields) and methods. However,

in addition, the programmer can specify patterns (pointcuts) and before, after and around

actions (advice). Each action is declared with a name (unlike advice in AspectJ, which do

not have names).

AspectMatlab supports traditional patterns (pointcuts) such ascall and execution ,

but we have also concentrated on an effective design forget and set patterns which

naturally deal with arrays. Loops are key control structures in scientific programs and we

have developed a collection of patterns which allow one to match on loops in a variety of

ways. We have also been inspired by AspectCobol [LDS05] in that we expose join point

context information via selectors that are associated withactions.

In order to motivate our new patterns, we have developed a collection of use cases which

we believe illustrates uses that are specific to scientific programming.

We have implemented theamc compiler which translates AspectMatlab source files to

pure MATLAB source files. The generated code can be run using any MATLAB system.

The overall structure of the compiler was inspired from the abc [ACH+05, abc] system and

is built as an extension of the McLab MATLAB front-end. In implementing the compiler

it became clear to us that weaving into MATLAB code offers new challenges that are dif-

ferent from weaving into more statically-typed, traditional languages such as Java. As one

example, the expressiona(i) may be either a call to functiona or a get of thei ’th ele-

ment of arraya. Even worse, the precise rules for looking up names differs for functions,

inner functions and scripts. Thus, a naive weaving strategyfor MATLAB requires a lot of

dynamic checks to determine if an expression matches.

To deal with the special challenges of weaving in MATLAB , we have utilized some intra-

procedural flow analyses using the McLab analysis framework, developed at Sable Re-

search Lab, which enables us to statically determine whether names correspond to vari-

ables or functions. Applying these analyses before weavingallows us to greatly reduce the

2



1.1. Contributions

number of dynamic checks required.

1.1 Contributions

This thesis makes the following contributions:

• Design of an aspect-oriented extension to a scientific programming language, MAT-

LAB .

• Design and implementation of an extensible AspectMatlab Compiler, amc, enriched

with a set of aspect-oriented features.

• Introduction of new scientific patterns to cross-cut the concerns related to arrays and

loops. Both of these constructs are essential parts of a scientific language.

Finally, we aim to makeamc a viable aspect-oriented compiler which should become in-

creasingly usable by end-users for real-world scientific applications. Based on our experi-

ence with AspectMatlab, we propose promising future directions for dynamic languages to

adopt aspect-oriented features. We identify key factors inour implementation and propose

ways to improve upon the performance results we have obtained with the AspectMatlab

Compiler.

1.2 Thesis Outline

This thesis is divided into 6 chapters (including this introduction chapter).Chapter 2 intro-

duces the AspectMatlab language and discusses key structures of the language in detail. In

Chapter 3 we present some use-cases to demonstrate the importance of an aspect-oriented

language for a scientific programming language.Chapter 4 examines the AspectMatlab

compiler’s architecture and its different phases in detail. It also discusses issues associated

with the MATLAB programming language design that make matching and weavingdiffi-

cult. Chapter5 discusses related work done in some other languages, which helped us to

3



Introduction

form the base of our research, and the ways in which our approach differs with them. Fi-

nally, chapter6 presents our conclusions and outlines some possible futureresearch work

in this domain beyond what we have achieved.

4



Chapter 2

Language Definition

Although AspectMatlab’s design is mostly inspired by AspectJ, there are distinctive fea-

tures of our language which are based upon two driving principles: (1) the ability to cross-

cut multidimensional MATLAB array accesses and loops, and (2) the ability to bind context

information from the join point shadow as part of the action declaration. While design-

ing the syntax for the aspect constructs, we focused on achieving a couple of goals. First,

enriching the patterns structure for enhanced selective matching and secondly, not to de-

viate from the existing language constructs for the sake of better accessibility for existing

MATLAB programmers.

This chapter elaborates the design of an aspect-oriented extension to a scientific program-

ming language. We discuss the structure of an Aspect and all the constructs an aspect may

contain, i.e., Properties, Patterns, Methods and Actions.It provides important details about

the features of MATLAB we extended and on which we based our design. We discuss sup-

ported types of patterns and actions in detail. We also describe ways to create compound

user-defined patterns and how to weave actions in different orders.

5



Language Definition

2.1 Aspects

In AspectMatlab, aspects are defined using a syntax similar to MATLAB classes. A MAT-

LAB class typically contains properties, methods and events. As in other object-oriented

languages, properties in MATLAB class encapsulate the data that belongs to instances of

classes, which can be assigned default values, initializedin class constructors, and used

throughout the class. Data contained in properties can be declared public, protected, or

private. This data can be a fixed set of constant values, or it can be dependent on other

values and calculated only when queried. Different attributes can be applied over a block

of properties and property-specific access methods can be specified.

Encapsulation using methods is also a familiar concept in anobject-oriented systems. MAT-

LAB class methods are a little different as they act as an enclosing block, which can host a

variety of functions. Common types of methods are ordinary functions, class constructors,

class destructors and property access functions. Method blocks can be configured with

different attributes, including access specifiers.

Listing 2.1 shows a typical MATLAB class,myClass , which can be used as a simple

counter. This class declares a property,count , which has default scalar value 0. The

counting functionality is provided through two functions.incCount increments the

counter andgetCount can be used to query the current value of count, which is returned

through variableout . One important point to notice here is that MATLAB class methods

always have the calling object automatically passed as the first argument.

1 classdef myClass

2

3 properties

4 count = 0;

5 end

6

7 methods

8

9 function incCount(this)

10 this.count = this.count + 1;

6



2.1. Aspects

11 end

12

13 function out = getCount(this)

14 out = this.count;

15 end

16

17 end %methods

18

19 end %classdef

Listing 2.1 A typical MATLAB class example

In this chapter, we outline the grammar of AspectMatlab in pieces as we go through related

concepts and constructs. If you have a coloured version of this document, you will see that

all references to productions in the McLab implementaion ofthe base MATLAB grammar,

are given in red. The complete grammar specification is provided in AppendixA.

As shown inFigure 2.1, the base McLabprogram rule is extended to include aspects,

along with functions, scripts and classes, as a program entity. Just like a MATLAB class

structure, anaspect is named and contains a body. An aspect retains the properties

and methods constructs, while adding two aspect-related constructs: patterns and actions.

Patterns are formally known as pointcuts in AspectJ and are used as picking out certain

join points in the program flow. AspectMatlab actions correspond to AspectJ advice, which

essentially is a block of code intended to be executed at certain points in the program. This

choice of terminology was intended to convey that patterns specify where to match and

actions specify what to do.

Moreover, it is important to explain thestmt separator non-terminal, imported from

McLab. Unlike other high level languages, a MATLAB statement can be terminated in

multiple ways. These statement separators include the new-line, a comma or a semi-colon.

With the addition of patterns and actions, Listing2.2 shows an extension to the class pre-

sented in Listing2.1. myAspect counts how many times a function namedfoo is in-

voked. To achieve this functionality, we first define a pattern. PatterncallFoo provides

us the way to specify the target join points. Once we match such join points in the source

7



Language Definition

〈program〉 ::⇒〈script〉 | 〈function list〉 | 〈class〉 | 〈aspect〉
〈aspect〉 ::⇒’aspect ’ IDENTIFIER 〈stmt separator〉 〈help comment〉

〈aspectbody〉* ’ end ’
〈aspectbody〉 ::⇒

〈propertiesblock〉 〈stmt separator〉
| 〈patternsblock〉 〈stmt separator〉
| 〈methodsblock〉 〈stmt separator〉
| 〈actionsblock〉 〈stmt separator〉

Figure 2.1 Syntax of an Aspect

code, then we can call the corresponding action,actCall . This action triggers before the

call to functionfoo and increments the counter.

1 aspect myAspect
2

3 properties
4 count = 0;
5 end
6

7 patterns
8 callFoo : call(foo);
9 end

10

11 methods
12 function incCount(this)
13 this.count = this.count + 1;
14 end
15 end
16

17 actions
18 actCall : before callFoo
19 this.incCount();
20 end
21 end
22

23 end

Listing 2.2 A typical aspect example

In the compiled code, an aspect is transformed into a class and the actions are translated

into corresponding methods of the resulting class. As described earlier, MATLAB class

8



2.2. Patterns

methods have the invoking class object as an argument. So themethods created out of

actions are also provided that object, which we namedthis for the purposes of clarity

and consistency. Inside an action body,this should be used to interact with the properties

and methods for the specific object.

We present a detailed discussion on patterns and actions in the following sections.

2.2 Patterns

Just like any other aspect-oriented language, AspectMatlab provides a variety of patterns

that can be used to match basic language constructs. In addition to standard patterns such

as those supported by AspectJ, a scientific programming language like MATLAB possesses

other important cross-cutting concerns. In MATLAB , array constructs are heavily used and

programs are written in the form of large functions or scripts containing many loops.

Grammar rules for patterns are presented inFigure 2.2. Patterns are contained inside

blocks, and an aspect can contain any number of such blocks ofpatterns. A pattern is

formed by its unique name and the pattern designators. AspectMatlab provides a number

of primitive patterns targeting different constructs of MATLAB . These primitive patterns

can be logically combined to form the compound pattern designators. We will discuss this

concept in detail inSection 2.2.6.

While providing the basic function-related patterns likecall andexecution, we also in-

troduce two new sets of patterns: (1)get/set patterns, enabling the facility to capture

array-related operations along with useful context exposure; and (2) loop patterns, which

will help programmers to handle the loop iteration space anddetails of loop-intensive com-

putation. AspectMatlab also supports a specialwithin pattern, which allows us to restrict

the scope of matching to certain constructs of the source code, such as functions, scripts,

classes or loops.

Towards the bottom ofFigure 2.2, we introduce some grammar rules to enable a program-

mar to perform selective matching. MATLAB syntax allows us to make a function call,

without even providing the exact number of parameters specified in the function signature.

9
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〈patternsblock〉 ::⇒’patterns ’ 〈stmt separator〉 〈patternsbody〉* ’ end ’
〈patternsbody〉 ::⇒IDENTIFIER ’:’ 〈patterndesignators〉 〈stmt separator〉
〈patterndesignators〉 ::⇒

〈patterndesignatorsand〉
| 〈patterndesignators〉 ’ |’ 〈patterndesignatorsand〉

〈patterndesignatorsand〉 ::⇒
〈patterndesignatorsunary〉
| 〈patterndesignatorsand〉 ’&’ 〈patterndesignatorsunary〉

〈patterndesignatorsunary〉 ::⇒
〈patterndesignator〉
| ’∼’ 〈patterndesignator〉

〈patterndesignator〉 ::⇒
’(’ 〈patterndesignators〉 ’)’
| ’set ’ ’ (’ 〈patternselect〉 ’)’
| ’get ’ ’ (’ 〈patternselect〉 ’)’
| ’call ’ ’ (’ 〈patternselect〉 ’)’
| ’execution ’ ’ (’ 〈patternselect〉 ’)’
| ’mainexecution ’ ’ (’ ’ )’
| ’ loop ’ ’ (’ 〈patternselect〉 ’)’
| ’ loopbody ’ ’ (’ 〈patternselect〉 ’)’
| ’ loophead ’ ’ (’ 〈patternselect〉 ’)’
| ’within ’ ’ (’ 〈constructtype〉 ’,’ 〈patternselect〉 ’)’
| IDENTIFIER

〈patternselect〉 ::⇒
〈patterntarget〉
| 〈patterntarget〉 ’(’ 〈list dotdot〉 ’)’

〈patterntarget〉 ::⇒
〈patterntargetunit〉
| 〈patterntarget〉 〈patterntargetunit〉

〈patterntargetunit〉 ::⇒’*’ | IDENTIFIER
〈list dotdot〉 ::⇒ε

| ’..’
| 〈list star〉
| 〈list star〉 ’,’ ’..’

〈list star〉 ::⇒’*’
| 〈list star〉 ’,’ ’*’

〈constructtype〉 ::⇒’*’ | ’ function ’ | ’script ’ | ’ loops ’
| ’class ’ | ’aspect ’

Figure 2.2 Syntax of Patterns
10
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Arrays can be indexed in a similar fashion. So AspectMatlab provides a functionality to

enhance the matching based on the actual parameters/indices involved. We explain the idea

of selective matching inSection 2.2.3.

Moreover, matching can be performed based on the expressions containing the wild card

symbol ”*”, which results in a broader scope of matching.

A list of primitive patterns supported by AspectMatlab is presented inTable 2.1. We discuss

the different kinds of patterns in the following sections.

functions
call captures calls to functions or scripts
execution captures the execution of function or script bodies
mainexecution captures the execution of the main function or script body

arrays
get captures array accesses
set captures array assignments

loops
loop captures execution of a whole loops
loophead captures the header of a loop
loopbody captures the body of a loop

scope within restricts the scope of matching

Table 2.1 List of Primitive Patterns

2.2.1 Function Patterns

AspectJ and other aspect-oriented languages provide basicfunction-related cross-cutting

features, which enable a programmer to track, for example, the calls made to all or some

specific functions matching the specified pattern. Other places of interest in a function

source code are the entry and exit points of the body.

Figure 2.3 shows an example of the function-related join points in the source code. The

whole body of the functionmain matches anexecution pattern, whereas every call to a

function is captured by thecall pattern.

AspectMatlab also supports bothcall andexecution patterns, not only for functions but

to cross-cut scripts as well. Because there is no specific mainentry point to MATLAB
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Figure 2.3 Function Join Points

programs, so we introduce amainexecution pattern. This pattern will match the execution

of the main function or script, (i.e., the first function or script executed). The function

patterns given in Listing2.3 show example uses, wherepCallFoo pattern matches all

calls made to the function or script namedfoo andpExecutionMain pattern captures

the entry and exit points of the main function.

1 patterns
2 pCallFoo : call(foo);
3 pExecutionMain : mainexecution();
4 end

Listing 2.3 Function Patterns

2.2.2 Array Patterns

AspectJ provides array pointcuts functionality. However,the pointcuts of AspectJ do not

support array objects in full. When an element of an array object is set or referenced,

the corresponding index values and the assigned value are not exposed to the advice. As-

pectJ was extended to add array pointcuts but these extensions either just work for one-

dimensional arrays or they force programmers to use other pointcuts in order to be able to

perform selective matching and to fetch context information.

In contrast, AspectMatlab provides simple, yet powerful, patterns to capture array accesses,

get andset. As shown isFigure 2.4, the first assignment statement is aset join point
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wherearr1 is being assigned a new value. The second statement is also aset join point

for arr2 , but the right hand side actually readsarr1 . So the right hand side of the second

assignment statement is aget join point.

.

.

.

arr1 = [1, 2, 3];

arr2 = arr1(1);

.

.

.

set
join point

get
join point

Figure 2.4 Array Join Points

Figure 2.5 shows an example of a more complicatedget match. Here we have array ac-

cesses within another array access and we have to sort out theorder in which all these join

points are matched. We decided to follow the evaluation order of an expression, where all

the sub-expressions are evaluated before the containing expression. So, the firstget join

point in the second assigment statement is the access ofx , followed by the secondget join

point fory and finally, the thirdget join point is the whole right hand side.

Figure 2.5 Array Join Points - Order

Examples of array patterns are given in Listing2.4. PatternpGetX matches all the join
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points in the source code where any array or MATLAB matrix access operation is per-

formed. Similarly, all the write operations on the arrays can be captured using pattern

pSetX .

1 patterns
2 pGetX : get( * );
3 pSetX : set( * );
4 end

Listing 2.4 Array Patterns

2.2.3 Selective Matching

As compared to other aspect-oriented languages, AspectMatlab eliminates the need of a

separate pattern for capturing arrays and then using another pattern to specialize the match-

ing. In MATLAB a function call does not necessarily have to provide exactlyas many

arguments as specified in a function signature. Also in the case of array operations, sub-

arrays can be accessed by providing fewer dimensions than the actual dimensions of an

array.

Moreover, the syntax to make a function/script call and array access in MATLAB is the

same. So the pattern specification grammar was enriched to incorporate matching based

upon the number of arguments involved.Section 2.2.1 andSection 2.2.2 describe simple

function and array-related patterns. In this section, we provide examples of more selective

matching.

As shown in the Listing2.5, patterncall2args will match all calls, but only the ones

made with two or more parameters, thus ignoring the calls with one or no parameters. If we

want to match on all the arrays which are being initialized orreplaced completely, pattern

fullSet will help us achieve that.

1 patterns
2 call2args : call( * ( * ,..));
3 fullSet : set( * ());
4 end

Listing 2.5 Selective Matching
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AspectJ also provides this facility of selective matching,but it uses separate notations for

different pointcuts. The MATLAB syntax allows us to come up with a general matching

notation applicable for both call/execution and get/set patterns. A list of possible use cases

of such matching for the call pattern is given inTable 2.2.

call(foo) matches all calls tofoo (function or script)
call(foo()) matches calls with no arguments (function or script)
call(foo(*)) matches calls with exactly one argument (function only)
call(foo(..)) matches calls with 1 or more argument(s) (function only)
call(foo(*,..)) matches calls with 2 or more arguments (function only)

...and so on

set(arr) matches all assignments toarr
set(arr()) matches assignments with no indices
set(arr(*)) matches assignments with exactly one index
set(arr(..)) matches assignments with 1 or more index/indices
set(arr(*,..)) matches assignments with 2 or more indices

...and so on

Table 2.2 Selective Pattern Matching

2.2.4 Loop Patterns

The original AspectJ language definition did not contain anyloop-related pointcuts. In

MATLAB , loops are extensively used and having the ability to cross-cut the loops is equally

important in such a language. AspectMatlab provides a rangeof poincuts for loops:loop ,

loopbody andloophead .

As shown inFigure 2.6, the loop join point presents only an outside view of the loop;

because the points before and after the loop are not within the loop itself. For some ap-

plications it might be desirable to advise the loop body. Also, the loop iterators are good

candidates to be advised. Because in MATLAB , loop headers are evaluated completely

before the loop itself. So theloophead join point is not contained inside theloop join

point.

In aspect-oriented systems, the means of selection for a join point is, in most cases, ulti-
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Figure 2.6 Loop Join Points

mately based on the naming of some source element characterising the join point, possibly

using a regular expression. For example, to advise a method call or a group of methods, the

pointcut has to contain an explicit reference to some names characterising the method sig-

natures, for instance, a pattern matching the name of the methods. Since loops can not be

named in MATLAB , a name-based pattern to write a pointcut that would select aparticular

loop will not work.

If it is known for certain that all the loops within a functionare to be advised, it would

be possible in AspectMatlab to use certain scope-related pattern to restrict the loop pattern

to all the loops contained in the functions picked up in the restricted scope. However,

selecting only one of several loops within the same functionturns out to be impossible

without any further mechanism. So for the sake of loops identification, we decided to use

the loop iterator variables to match a loop pattern.

Examples of simple loop patterns are given in Listing2.6. All three patterns will match on

all the loops, eitherfor or while , which iterate on variablei .
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1 patterns
2 pLoopI : loop(i);
3 pLoopHeadI : loophead(i);
4 pLoopBodyI : loopbody(i);
5 end

Listing 2.6 Loop Patterns

For example, consider the two loops shown in Listing2.7, where both display the numbers

from 1 to 10. Both loops match the patterns given in Listing2.6.

1 for i = 1:10
2 disp(i);
3 end
4

5 i=1;
6 while (i<=10)
7 disp(i);
8 i = i+1;
9 end

Listing 2.7 Example of loop patterns

2.2.5 Scope Patterns

There are certain cases in aspect-oriented systems, where some built-in language features

are required to restrict the scope of matching of the patterns. For example, in AspectMatlab

we use loop iterator variables to identify loops. The question might arise that names for

loops iterator variables are often very general (for example, i or j), so we might end up

over-matching loops unintentionally. Thewithin pattern comes in very handy in such

situations to restrict the scope of matching to specific constructs.

AspectMatlab supports a list of MATLAB constructs, such asfunction , script , class ,

aspect andloops .

Listing 2.8presents examples of different cases of thewithin pattern. ThepWithinFoo

pattern will match every kind of join point, only inside the function foo . Similarly, the

pWithinBar pattern will match every join point inside the scriptbar and thepWithinMyClass

pattern will match every join point inside the classmyClass . ThepWithinLoops pat-
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tern captures all join points within all the loops. Lastly,pWithinAllAbc will restrict the

scope to all kinds of constructs, which are namedabc .

1 patterns
2 pWithinFoo : within( function, foo);
3 pWithinBar : within( script, bar);
4 pWithinMyClass : within( class, myClass);
5 pWithinLoops : within( loops, * );
6 pWithinAllAbc : within( * , abc);
7 end

Listing 2.8 Scope Patterns

2.2.6 Compound Patterns

As in other aspect-oriented languages, AspectMatlab also provides a programmer the facil-

ity of creating compound patterns. Such user-defined patterns are in fact logical combina-

tion of user-defined patterns and primitive patterns given in Table 2.1.

Examples of compound patterns given in Listing2.9 display the level of flexibility a pro-

grammer can achieve in order to create different logical compounds of primitive patterns.

PatternpCallFoo matched all calls made to functionfoo , but only the ones from within

the loops, eitherfor or while loops. On the other hand, the patternpGetOrSet

will match all array read or write operations, but the ones only within the functionbar .

pCallExec shows a combination of an already defined patternpCallFoo with a prim-

itive patternexecution.

1 patterns
2 pCallFoo : call(foo) & within( loops, * );
3 pGetOrSet : ( get( * ) | set( * )) & within( function, bar);
4 pCallExec : pCallFoo | execution(foo);
5 end

Listing 2.9 Compound Patterns

Care should be taken while ANDing patterns of different kinds, because a shadow in the

source code has only one specific type. For example, replacing OR with an AND in the

patternpGetOrSet above will result in no match, simply because an array can either be

read or written to, not both at the same time.
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2.3 Actions

An action is simply a named piece of code which is executed at certain points in the source

code, matched by the specified patterns. An aspect can contain many actions, and as in

other aspect-oriented languages, there arebefore , around andafter actions.

As shown inFigure 2.7, an aspect can contain any number of action blocks, which in turn

can host multiple actions inside them. Unlike AspectJ, actions in AspectMatlab are named.

Besides the name, an action is linked to a named pattern definedin the patterns block. The

type of an action specifies the weaving point of an action withrespect to the join points

against the pattern specified. Just like a regular MATLAB function, an action can have

input parameters. These parameters are special context information which is fetched from

the static shadow of each join point matched. Context exposure is described in detail in

Section 2.3.1.

〈actionsblock〉 ::⇒’actions ’ 〈stmt separator〉 〈actionsbody〉* ’ end ’
〈actionsbody〉 ::⇒

IDENTIFIER ’:’ 〈action type〉 IDENTIFIER 〈stmt separator〉
〈help comment〉 〈stmt or function〉 ’end ’
| IDENTIFIER ’:’ 〈action type〉 IDENTIFIER ’:’ 〈input params〉
〈stmt separator〉 〈help comment〉 〈stmt or function〉 ’end ’

〈action type〉 ::⇒’before ’ | ’after ’ | ’around ’

Figure 2.7 Syntax of Actions

Simple examples of namedbefore andaround actions, which correspond to the pat-

ternspCallFoo andpExecutionMain described inSection 2.2.1, are given in Listing

2.10. The actionaCountCall will be weaved in just before each call to functionfoo .

This action simply increments thecount property defined in the properties block of the

aspect. Now if we want to display the total number of calls made at the end of the program,

we can use theaExecution action. Assuming the end of functionmain as the program

exit point,aExecution action will be weaved in just after the whole function body.
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1 actions
2 aCountCall : before pCallFoo
3 this.count = this.count + 1;
4 end
5

6 aExecution : after executionMain
7 total = this.getCount();
8 disp([ ’total calls: ’ , num2str(total)]);
9 end

10 end

Listing 2.10 Before and After Actions

2.3.1 Context Exposure

When it comes to capturing the context of a join point, AspectCobol’s [LDS05] design

doesn’t rely on the use of reflection inside the advice code, as performed in AspectJ [KHH+01].

Rather, it suggests that join point reflection on the static shadow should be a part of the

pointcut. The extraction of the context-specific information is described as part of the

pointcut designator. We extend the idea of binding the results of desired context variables

for subsequent use in the action code.

In AspectMatlab, access to the static program context that belongs to the join point is

selector based. These selectors are specified along with an action definition, because an

action corresponds directly to the static join point shadow. In the example below, the action

actcall , which acts before the join points matching the patterncall2args given in

Listing 2.5. It will fetch the name and args of the function call from the join point

shadow.

1 actcall : before call2args : (name, args)
2 %
3 disp([ ’calling ’ , name, ’ with arguments(’ , args , ’)’ ]);
4 %
5 end

Listing 2.11 Context Exposure

Of course, a selector is only applicable depending upon the join point type. For example,

the counter selector is only meaningful when used on a loop join point. The args
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selector fetches the array indices in case of array patterns, whereas the same selector is

used to get the function arguments/parameters in case of function patterns.

A list of context selectors and their meaning with differentjoin points is given inTable 2.3.

set get call execution loop loopbody loophead

args indices arguments passed loop iteration space
obj variable before set variable function handle - - iterator variable -
newVal new array - - - - - loop range
counter - - - - - current iteration -
name name of the entity matched - - -
pat name of the pattern matched
line line number in the source code
loc enclosing function/script name
file enclosing file name
aobj variable name - - - - - -
ainput - input var name(s) - - -
aoutput - - - output var name(s) - - -

varargout cell array variable used to return data fromaround action

Table 2.3 Context Selectors with respect to Join Points

2.3.2 Around Actions

Consider thebefore action given inSection 2.3.1, which is woven in just before the

actual call to any function with 2 or more arguments. What if wewant to manipulate the

arguments before making such calls, or we want to add more arguments to the call, or we

want to provide fewer arguments, or we want to make such a callmore than one time, or

we want to call some other function instead, or we just don’t want to make such function

calls?

Thearound actions are the answer to all the questions. Anaround action is executed

instead of the actual join point matched. All the valid context information can be fetched

in the around action and then used accordingly. The actual join point can still be executed

from within an around action, using a specialproceed call. Theproceed function can

be called any number of times or not at all.

The around actions can be used with all AspectMatlab supported patterntypes, except
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some patterns inside the script files due to MATLAB semantics. Thearound actions on

such join points require these join points to be moved into a separate function, which is not

possible inside a script. Unlikebefore andafter actions,around actions can return

data. A special MATLAB variable,varargout , is used for this purpose; which allows

us to return multiple arguments. Theproceed takes care of the returning arguments, but

varargout should be set manually in case there is noproceed . varargout is a list

of output values, so it needs to be made sure that it contains as many values as the original

join point would return.

For example, thearound action given in Listing2.12captures all calls tofoo and in-

stead callsbar with the same arguments. A single value returned frombar is set in

varargout variable.

1 actions
2 actcall : around callFoo : (args)
3 % proceed not called, so varargout is set
4 varargout{1} = bar(args{1}, args{2});
5 end
6 end

Listing 2.12 An around action without proceed

Listing 2.13shows thearound version of the actionactcall given in Listing2.11. It

simply prints out the function being called along with the arguments, before calling the

proceed .

1 actions
2 actcall : around call2args : (name, args)
3 disp([ ’before call of ’ , name, ’with parameters(’ , args , ’)’ ]);
4 proceed();
5 disp([ ’after call of ’ , name, ’with parameters(’ , args , ’)’ ]);
6 end
7 end

Listing 2.13 An around action with proceed
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2.3.3 Precedence Order

As shown inFigure 2.8, since multiple actions can be triggered at the same join point and

if more than one such actions are of the same type, we need default precedence rules for

the actions:

• before actions are woven just before the join point. In case of multiple before

actions, the order of the woven advice follows the exact order in which the actions

were defined in source code.

• Next,after actions are woven just after the join point. In the case of multiple after

actions, the order of the woven advice follows the exact order in which the actions

were defined in the source code.

• Last, multiplearound actions are woven around the join point in the exact order in

which actions are defined in source code. So the outer-most ofthearound actions

will be the one appearing first in the woven code and it will go around the nextaround

action encountered, or the actual join point if there are no morearound actions.

In Figure 2.8a, multiple actions are targeting a singlecall join point. The weaving points

for a join point in the source code are shown inFigure 2.8b. All the before actions are

woven just before the join point in order they are specified. All theafter actions are woven

just after the join point. The call tofoo is replaced by the call to the firstaround action,

which in turn can call the secondaround action through itsproceed function, and so on.

An important point to notice here is that the default ordering rules of AspectMatlab are sim-

pler and more restrictive than the precedence rules of AspectJ [KHH+01]. However, our

action weaving strategy avoids complicated dependency rules, will not lead to any depen-

dency cycles between actions, and is easy to comprehend froma scientific programmer’s

point of view. Since our actions have names, it would also be simple for us to introduce

a declaration to over-ride the default ordering within eachof the around, before and after

groups.
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actions

   before1 : before pCallFoo

   ...

   around1 : around pCallFoo

   ...

   after1 : after pCallFoo

   ...

   before2 : before pCallFoo

   ...

   around2 : around pCallFoo

   ...

   after2 : after pCallFoo

   ...

end

(a) Actions List (b) Weaving Order

Figure 2.8 Actions Precedence Order

2.4 Small Example

In Figure 2.9, we present an example of an aspect, which counts all the function calls made

with at least two arguments. To do so, we need to have acall pattern to capture all such

calls. Themainexecution pattern is used to display the number of calls made at the end

of the program.

To demonstrate the application of the aspect fromFigure 2.9, consider a small base program

consisting of the simple MATLAB function given inFigure 2.10.

The functionhisto takes one input argumentn and returns three valuesm,s,d . Values

are returned by declaring variables to be return parametersin the function header, then

assigning these variables a value. This function first generates some random-sized vectors,

then calls several MATLAB functions to generate a histogram, and finally computes some

basic statistics.
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1 aspect myAspect
2

3 properties
4 count=0;
5 end
6

7 methods
8 function out = getCount(this)
9 out = this.count;

10 end
11 function incCount(this)
12 this.count = this.count + 1;
13 end
14 end %methods
15

16 patterns
17 call2args : call( * ( * ,..));
18 executionMain : mainexecution();
19 end
20

21 actions
22 actcall : around call2args : (name, args)
23 this.incCount();
24 disp([ ’calling ’ , name, ’with parameters(’ , args , ’)’ ]);
25 proceed();
26 end
27 actexecution : after executionMain
28 total = this.getCount();
29 disp([ ’total calls: ’ , num2str(total)]);
30 end
31 end %actions
32

33 end %myAspect

Figure 2.9 Aspect to count all calls made with at least 2 arguments

Once compiled along with the aspect presented inFigure 2.9, patterncall2args finds

only three matching join points (at lines 5, 6 and 9) where thefunction calls carry two argu-

ments each. So, corresponding action function calls will bewoven only at those program

points. Note that the function calls with a single input argument (at lines 11, 12 and 13) do

not match. Moreover, the actionactexecution is anafter action, so it will be woven

at the end of the function. The woven code generated by the compiler is shown inFigure

4.10. It will be easier to follow the output after we explain how different phases of the
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1 function [m, s, d] = histo(n)
2 % Generate vectors of random inputs
3 % x1 = Normal distribution N(mean=100,sd=5)
4 % x2 = Uniform distribution U(a=5,b=15)
5 x1 = ( randn(n,1) * 5 ) + 100;
6 x2 = 5 + rand(n,1) * ( 15 - 5 );
7 y = x2.ˆ2 ./ x1;
8 % Create a histogram of the results (50 bins)
9 hist(y,50);

10 % Calculate summary statistics
11 m = mean(y);
12 s = std(y);
13 d = median(y);
14 end

Figure 2.10 Simple MATLAB Function

compiler work inChapter 4.
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Chapter 3

Scientific Use Cases

Scientific programs rely heavily on arrays (i.e., matrices)and loops when performing com-

putations. One of the main goals of AspectMatlab is to exposethese language constructs

to aspect-oriented programming in order to make it appropriate for use in the scientific

computing domain. In this chapter, we show some non-trivialuse cases of some typical

MATLAB programs that were extended using AspectMatlab. Thus we want to illustrate

both the usefulness of aspects in the numerical computing domain in general and the spe-

cial patterns in particular.

All examples can be found online on our website1. They all include the aspects and the

programs that are modified, as well as woven code generated byamc (i.e., the compiler

is not needed to check the benchmarks). Only outlines of the aspects are shown in this

chapter, the complete versions are provided in AppendixD. The example benchmarks

given inSection 3.2, Section 3.3 andSection 3.4 were created by a McLab group member,

Anton Dubrau, and were reported in a joint paper [TAH10]. The examples inSection 3.1

andSection 3.5 are new applications.

In general, we consider two possible use cases: (1) profilingprograms, and (2) annotating

data to variables in a running program to extend functionality.

Profiling programs is particularly interesting for scientific programs, which are usually

1http://sable.mcgill.ca/mclab/aspectmatlab/examples
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computationally intensive. Having knowledge about what exactly is going on during ex-

ecution can help increase efficiency, as shown inSection 3.1 and the sparsity benchmark

(Section 3.2). Some information is hard to get by ”traditional” means, i.e., by extending the

program to include profiling code. Adding an aspect represents a much cleaner solution,

with the additional advantage that they allow one to profile different programs without any

modification. Both the sparsity (Section 3.2) and flops(Section 3.3) examples show this.

With regards to annotating functionality it is interestingto note that the McLab Project was

conceived as a framework not only to allow the addition of analyses and compilation of

Matlab into different back-ends. It is also a framework to allow the simple development

of language extensions, which is exactly what theamc compiler represents (an extension

of the base MATLAB compiler). Aspects are a quick way to prototype further possible

language extensions without much work, as the units (Section 3.4) and loops (Section 3.5)

benchmarks show.

3.1 Tracking operations that grow arrays

MATLAB semantics force the array to be handled in a different way as compared to other

objects. Each time the array size increases, MATLAB has to allocate new space to the array.

We present a simple example aspect, that is used to track the growing size of the arrays.

The purpose of this application is to monitor all the operations which may potentially alter

the shape or the size of an array, and in the end we should be able to point to the operations

in the source program at which the arrays attain the biggest size.

This aspect is helpful to be able to declare the arrays with their maximum size once at

the beginning of the program. It will reduce the performanceoverhead due to the array

copy operations, each time the size changes. In this context, we shall be observing the

MATLAB assignment statements. So we need to track the shape and sizechanges for all the

array variables used in the program. The aspect properties are used to keep the profiling

information, such as the maximum size of an array along with its location in the source

code.
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3.2. Tracking array sparsity

An outline of the aspect is given inFigure 3.1. This aspect contains a simpleset pattern to

catch all the array assignments, and anothermainexecution pattern to display the profiled

results at the end of the execution of the program.

The actionaset acts just before the array assignment operations, and it acquires the new

value being set, i.e., the result of the right hand side of theassignment statement, through

the use of the context selectornewVal . The context selectorobj fetches the current array

object, and is used to compare the both old and new array shapes and sizes. We get the

name of the array throughname and the line number of the assignment operation in the

source code usingline context selectors respectively.

The actiondisplayResults simply goes through all the data properties which contain

the profiled data and prints out the results at the exit point of the program.

We used this array size tracking aspect on an actual program,which utilizes a RungeKutta4

ODE solver [RLB05] to solve the heat equation in 1D given some initial conditions and

time interval. The benchmark uses matrices to discretize the heat function in space. So we

can track the size and shape change of the matrices used through out the program.

The output of the array size tracking benchmark is given inFigure 3.2. As it can be seen in

the size change columns, some of the arrays are not that frequently updated because most

of such arrays are the input/output parameters of the functions. But few arrays such asD, W

andt , increase their size during the execution of the program. The maximum size attained

by all the arrays is shown along with the line number of the source code operation.

3.2 Tracking array sparsity

The sparsity benchmark is an aspect which helps to profile howsparse matrices (arrays)

are. The sparsity of a matrix is the number of zero elements compared to the number of

non-zero elements. If a matrix is sufficiently sparse, it canbe stored as a sparse matrix,

which is a special data type supported by MATLAB . It stores only the non-zero elements

and their location. All arithmetic is supported both on sparse data types and between a

mixture of sparse and dense matrices.
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aspect arrayGrow
...
patterns

arraySet : set( * );
exec : mainexecution();

end

actions
...
aset : before arrayset : (newVal,obj,name,line,args)

% create the new obj by applying newVal
tmp = obj;
tmp(args{1:numel(args)}) = newVal;
newVal = tmp;

% fetch new size of the array
newSize = numel(newVal);
oldSize = this.arraySize{id};
this.arraySize{id} = newSize;

% update the number of ’set’ operations
this.arraySet{id} = this.arraySet{id}+1;

% compare the shape change and previous size
% profile the latest results
if (˜this.sameShape(newVal,obj))

% how often the dimensions of the array changed
this.changeShape{id} = this.changeShape{id}+1;

end
if (newSize < oldSize)

% how often the size decreased
this.decreaseSize{id} = this.decreaseSize{id}+1;

end
if (newSize > oldSize)

% how often the size increased
this.increaseSize{id} = this.increaseSize{id}+1;
this.lineNum{id} = line;
this.maxSize{id} = newSize;

end
end

displayResults : after exec
%display the results after the execution

end
end

Figure 3.1 Outline of array growing aspect
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3.2. Tracking array sparsity

>> program
tracking the operations that grow arrays in the following pr ogram...
computation finished

’var’ ’arraySet’ ’size decrease’ ’size increase’ ’max size ’ ’line#’
’a’ [ 3] [ 0] [ 1] [ 1] [ 1]
’steps’ [ 1] [ 0] [ 1] [ 1] [ 1]
’tN’ [ 1] [ 0] [ 1] [ 1] [ 17]
’N’ [ 4] [ 0] [ 1] [ 1] [ 18]
’h’ [ 3] [ 0] [ 1] [ 1] [ 19]
’X’ [ 1] [ 0] [ 1] [ 299] [ 20]
’U0’ [ 2] [ 1] [ 1] [ 299] [ 21]
’D’ [ 3] [ 1] [ 2] [ 89401] [ 23]
’tspan’ [ 2] [ 0] [ 1] [ 2] [ 56]
’alpha’ [ 2] [ 0] [ 1] [ 299] [ 56]
’o’ [ 2] [ 0] [ 1] [ 1] [ 56]
’b’ [ 2] [ 0] [ 1] [ 1] [ 69]
’W’ [ 1007] [ 2] [ 3] [ 149799] [ 86]
’t’ [ 4002] [ 2] [ 2] [ 501] [ 73]
’j’ [ 1002] [ 0] [ 1] [ 1] [ 75]
’u’ [ 4000] [ 0] [ 1] [ 299] [ 24]
’y’ [ 4000] [ 0] [ 1] [ 299] [ 25]
’k1’ [ 1000] [ 0] [ 1] [ 299] [ 78]
’k2’ [ 1000] [ 0] [ 1] [ 299] [ 79]
’k3’ [ 1000] [ 0] [ 1] [ 299] [ 80]
’k4’ [ 1000] [ 0] [ 1] [ 299] [ 81]

Figure 3.2 Output of the array growing benchmark

If a matrix is very sparse, then matrix multiplication becomes much cheaper to perform.

Since this is where most of the computation of many scientificprograms happens, one

can achieve order of magnitude speedups in specific instances. Other operations on sparse

matrices, like indexing or adding new elements that were previously zero, are much more

expensive. This is because they require to traverse or rebuild the sparse matrix.

The overall structure of the aspect is given inFigure 3.3. The sparsity aspect identifies

which variables are good candidates to make sparse by intercepting every set and get of

every variable, and recording their size and sparsity. As a measure of sparsity we use

ratio of nonzero to total number of elements in a matrix, i.e.the MATLAB expression

nnz(A)/numel(A) . At the end of the program, a list of all variables along with the

mean and standard deviation of their sizes and sparsities are printed out along with counts

of accesses and shape as well as sparsity changes.

The existence of the get and set patterns are particularly convenient here, because we
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aspect sparsity
...
patterns

arraySet : set( * );
arrayWholeGet : get( * ());
arrayIndexedGet : get( * (..));
exec : mainexecution();

end

actions
...
aset : before arrayset : (newVal,obj,name)

...
end

awget : before arrayWholeGet : (obj,name)
...

end

aiget : before arrayIndexedGet : (args,name)
...

end

displayResults : after exec
%display the results after the execution

end
end

Figure 3.3 Outline of sparsity aspect

merely have to write actions in which we increase counters associated with every vari-

able. Since the context information includes the name of a matched variable as a string,

we can put all the variables in a MATLAB structure to map between names and values. A

structure in MATLAB , unlike in static programming languages, allows the addition of fields

during runtime. As new variables are encountered during runtime, they are added into the

structure that tracks them, so we don’t have to specify the variable names in advance. Thus,

the aspect needs no modification to profile different programs.

Having special syntax allowing us to specify whether an array is accessed by indexing it or

whether it is accessed without indexing allows us to differentiate between these accesses,

and record them more easily.

32



3.2. Tracking array sparsity

Along with the aspect itself we coded our actual program, which utilizes a RungeKutta4

ODE solver [RLB05] to solve the heat equation in 1D given some initial conditions and

time interval. The benchmark uses matrices to discretize the heat function in space. The

needed derivative is computed using matrix multiplicationwith a differentiation matrix

which is very sparse and never changes. Most of the computation of the program relies on

this multiplication. If this matrix is made sparse, it decreases the overall computation time

for this benchmark by 95% (tested in Matlab R2008a, on a linux PC with an AMD Athlon

64 X2 with 2GHz and 4GB of ram).

The output of the benchmark inFigure 3.4 clearly shows that the variable D is of large size,

never indexed, seldomly written or changing in shape or sparsity, but often used without

indexes. We thus show a very simple benchmark using aspects and the special array patterns

to profile a certain feature of a program, leading to a useful result. Without aspects and these

patterns, one would need to inline profiling code manually.

>> program
tracking sparsities of all variables in the following progr am...
computation finished

’var’ ’size’ ’sparsity’ ’arraySet’ ’spty. inc.’ ’get’ ’ind . get’
’a’ ’1.0 0.0’ ’1.00 0.03’ [ 2] [ 0] [2002] [ 0]
’steps’ ’0.5 0.5’ ’1.00 0.00’ [ 1] [ 0] [ 1] [ 0]
’tN’ ’0.5 0.5’ ’1.00 0.00’ [ 1] [ 0] [ 1] [ 0]
’N’ ’1.0 0.1’ ’1.00 0.00’ [ 3] [ 0] [ 507] [ 0]
’h’ ’1.0 0.0’ ’1.00 0.00’ [ 2] [ 0] [3504] [ 0]
’X’ ’149.5 149.5’ ’1.00 0.00’ [ 1] [ 0] [ 1] [ 0]
’U0’ ’199.3 140.9’ ’0.37 0.45’ [ 2] [ 0] [ 1] [ 0]
’D’ ’89311.7 2823.6’ ’0.01 0.03’ [ 3] [ 0] [2000] [ 0]
’f’ ’0.0 0.0’ ’1.00 0.00’ [ 1] [ 0] [ 0] [ 0]
’tspan’ ’1.3 0.9’ ’0.67 0.24’ [ 1] [ 0] [ 0] [ 2]
’alpha’ ’149.5 149.5’ ’0.55 0.45’ [ 1] [ 0] [ 1] [ 0]
’o’ ’0.0 0.0’ ’1.00 0.00’ [ 1] [ 0] [ 0] [ 0]
’b’ ’0.7 0.5’ ’1.00 0.00’ [ 1] [ 0] [ 2] [ 0]
’W’ ’149699.3 3863.3’ ’0.47 0.29’ [ 504] [ 501] [ 1] [ 2500]
’t’ ’250.4 250.5’ ’1.00 0.00’ [ 2001] [ 0] [ 0] [ 2000]
’j’ ’1.0 0.0’ ’1.00 0.00’ [ 501] [ 0] [6001] [ 0]
’u’ ’149.5 149.5’ ’0.98 0.09’ [ 2000] [ 0] [2000] [ 0]
’y’ ’0.0 0.0’ ’1.00 0.00’ [ 2000] [ 0] [ 0] [ 0]
’k1’ ’298.8 7.7’ ’0.97 0.13’ [ 500] [ 0] [1000] [ 0]
’k2’ ’298.8 7.7’ ’0.97 0.13’ [ 500] [ 0] [1000] [ 0]
’k3’ ’298.8 7.7’ ’0.97 0.13’ [ 500] [ 0] [1000] [ 0]
’k4’ ’298.7 9.5’ ’0.97 0.13’ [ 500] [ 0] [ 500] [ 0]

Figure 3.4 Output of the sparsity benchmark
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3.3 Measuring floating point operations

In numerical computing it is common to count computational complexity in terms of float-

ing point operations, because they make up most of the operations. Knowing exactly how

many floating point operations each part of a program performs can be more useful than

knowing how much time the computations takes, because the number of flops may be more

consistent, and is not subject to compiler optimizations.

The flop aspect, shown inFigure 3.5, thus attempts to identify where in the program floating

point operations occur and counts them. For every occurrence of an operation on matrices

(like times, mtimes, plus etc.), it uses an estimate on the number of floating point operations

and records for every call site, the number of calls during the run of the program, and the

total number of flops contained in all the calls.

This is done recursively, i.e., the output will list the total flops of a call of a function,

but then it will also list the total flops for every call insidethat function. This is done by

keeping a stack that for every call records the number of operations performed so far. When

encountering a new call, which is captured via a before action on all calls, zero is pushed

onto the stack. When encountering a floating point operation,which is captured by using

around advice for every tracked operation, the number of operations are added to the top

of the stack. Finally, after every call, the number of operations encountered is added to the

total operations of the call-site, and the operations are popped from the stack and is added

to the next level.

Note that currently we have not defined patterns to match operations *, -, .*, etc., thus for

this experiment such expressions have to be converted into their equivalent function form,

i.e., using mtimes, minus, times, etc.

Note the order of the before and after actions. Because we wantthe “beforeTrack” and

“afterTrack” to happen before and after the “any” actions, so that we can record information

on the top level call that is being tracked, we have to list theactions in the order shown in

Figure 3.5.

We used this aspect to weave into the computation of the singular value decomposition [Wat02]
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3.3. Measuring floating point operations

aspect flops
...
patterns

tracking: call(SVD);

pminus : call(minus ( * , * ));
pmtimes : call(mtimes ( * , * ));
ptimes : call(times ( * , * ));
pplus : call(plus ( * , * ));
psqrt : call(sqrt ( * ));
prdivide: call(rdivide( * , * ));
pabs : call(abs ( * ));

any : call( * );
end % patterns

actions
beforeTrack : before tracking : (name)

% before tracked call set up vars
end

bany : before any
% before any call, take care of flops on stack(if recording)
% push new ’stackframe’ info

end

... % put info on stack for every tracked operation

aany : after any : (name,line,loc);
% after any call, store info in variables and on ’stackframe’

end

afterTrack : after tracking
% after tracked call print out results

end
end % actions

end % flops

Figure 3.5 Outline of flops aspect
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of a random matrix. The utilized algorithm is spread over many files and operates on many

2x2 sub-matrices as well as the whole matrix, and it is not clear which operations dominate.

As the output inFigure 3.6 shows, the aspect is able to uncover where most of the com-

putation happens, and presents it in a similar way a profiler shows computation time (i.e.,

encapsulated information). In the listing, lines with 0 flops were removed for brevity.

While it would be possible in MATLAB to override the behavior of plus, minus etc (i.e., the

atomic functions for which the aspect tracks the flops) to track the number of operations, it

would be pretty much impossible to get that information in the way it is listed, i.e., with a

report for every call site, and with encapsulated information, without emulating the before

and after actions in some way.

3.4 Adding units to computations

The units aspect adds functionality by allowing matrices tohave International System (SI)

units associated with them, while not requiring any specialtreatment of these variables.

The outline of the aspect is given inFigure 3.7. It turns all variables that are encountered

at calls into structures containing both a unit and the original value. All basic operations

are overridden as well. In order to create a matrix with an associated unit, one merely has

to multiply the matrix with the name of the unit.

The aspect intercepts all calls to functions that denote units (e.g. ’s’, ’Kg’, ’inches’, etc.),

overrides them and returns a structure containing a value ofone and the given unit. If

the requested unit is not a basic SI unit (i.e., ’inches’, ’kilotons’) or if the value requested

is a physical constant (i.e., ’AU’, ’G’, ’dozen’) the value will be a factor relative to the

corresponding SI unit. The point to note is that these functions that are getting called in a

program don’t exist anywhere on the MATLAB path. This is allowed in MATLAB , because

if a name cannot be resolved an error is only thrown when the name is executed. But

since we use an around action to intercept these calls, and replace them with the actual

functionality they represent, they never get called by MATLAB . In effect, we use around

actions to replace these ”functions” with their real implementation.
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3.4. Adding units to computations

>> runsvd
encountered call to SVD, recording flops...
finished tracking function call, here are the results:

’call site’ ’# of calls’ ’total flops’
’fro_150_times’ [ 1] [ 100]
’fro_150_sqrt’ [ 1] [ 1]
’SVD_13_fro’ [ 1] [ 101]
’SVD_14_abs’ [ 7] [ 630]
’tinySVD_77_minus’ [ 270] [ 270]
’tinySVD_77_plus’ [ 270] [ 270]
’tinySVD_77_rdivide’ [ 270] [ 270]
’tinySVD_78_sqrt’ [ 270] [ 270]
’tinySVD_78_rdivide’ [ 270] [ 270]
’tinySVD_79_times’ [ 270] [ 270]
’tinySVD_81_mtimes’ [ 270] [ 3240]
’tinySymmetricSVD_109_minus’ [ 270] [ 270]
’tinySymmetricSVD_109_times’ [ 270] [ 270]
’tinySymmetricSVD_109_rdivide’[ 270] [ 270]
’tinySymmetricSVD_110_sign’ [ 270] [ 0]
’tinySymmetricSVD_110_abs’ [ 270] [ 270]
’tinySymmetricSVD_110_times’ [ 270] [ 270]
’tinySymmetricSVD_110_plus’ [ 540] [ 540]
’tinySymmetricSVD_110_sqrt’ [ 270] [ 270]
’tinySymmetricSVD_110_rdivide’[ 270] [ 270]
’tinySymmetricSVD_112_times’ [ 270] [ 270]
’tinySymmetricSVD_112_plus’ [ 270] [ 270]
’tinySymmetricSVD_112_sqrt’ [ 270] [ 270]
’tinySymmetricSVD_112_rdivide’[ 270] [ 270]
’tinySymmetricSVD_113_times’ [ 270] [ 270]
’tinySymmetricSVD_116_mtimes’ [ 540] [ 6480]
’fixSVD_137_mtimes’ [ 270] [ 3240]
’fixSVD_138_mtimes’ [ 270] [ 3240]
’fixSVD_141_mtimes’ [ 11] [ 132]
’fixSVD_142_mtimes’ [ 22] [ 264]
’fixSVD_143_mtimes’ [ 11] [ 132]
’tinySymmetricSVD_121_fixSVD’ [ 270] [ 7008]
’tinySVD_82_tinySymmetricSVD’ [ 270] [ 17268]
’tinySVD_83_mtimes’ [ 270] [ 3240]
’jacobi_42_tinySVD’ [ 270] [ 25368]
’SVD_17_jacobi’ [ 270] [ 25368]
’SVD_18_mtimes’ [ 540] [ 1026000]
’SVD_19_mtimes’ [ 270] [ 513000]
’SVD_20_mtimes’ [ 270] [ 513000]
’SVD_34_times’ [ 1] [ 100]
’Script_6_SVD’ [ 1] [ 2078199]

Figure 3.6 Output of the flops benchmark
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aspect unit
...
patterns

disp : call(disp);
plus : call(plus( * , * ));
minus : call(minus( * , * ));
mtimes : call(mtimes( * , * ));
mrdivide : call(mrdivide( * , * ));
power : call(power( * , * ));
round : call(round( * ));
colon : call(colon( * ,..));

allCalls : call( * ());

loopheader : loophead( * );
end
...
actions

... % overwrite all operations and annotate

loop : around loopheader : (newVal)
range = this.annotate(newVal);
acell = {};
for i = (range.val)

acell{length(acell)+1} = i;
end
varargout{1} =
struct(this.annotated,true, ’val’ ,acell, ’unit’ ,range.unit);

end
end % actions

end % unit

Figure 3.7 Outline of units aspect

All operations (again only the functions, not the operators) are overridden to both perform

the denoted operation on the .val field and the .unit field. Units are stored as vectors,

denoting the power of every SI unit. There are 7 SI units, and they are ordered as metre,

kg, second, Ampere, Kelvin, candela and mol. Thus, [1 0 -2 0 0 00] would denotem/s2.

The function ’dis’ is overridden as well to show the matrix with the associated unit.

Because the data structures MATLAB now computes with are changed, all the semantics in

the program change. In particular, for loops using the syntax

for i = x
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3.4. Adding units to computations

t = mrdivide(AU,c);
%t = AU/c;
disp(t);
% bmi given in imperial units
bmi =

mtimes(180,mrdivide(lb,
ower(plus(mtimes(5,feet),mtimes(8,inches)),2)));

% bmi = 180* lb/(5 * feet + 8 * inches)ˆ2
disp(bmi);

Figure 3.8 Example of units aspect

do not work anymore, becausex will no longer be an array, but instead it will be a structure

containing an array in the field “val”. Thus we use the loophead pattern and override the

loop initialization, to turn the array into a struct-array.The struct-array is a MATLAB array

whose every element, when indexed, is a structure. This datatype works with for loops

again, allowing us to emulate the correct semantics.

In Figure 3.7, the action takes the range expression, and iterates over the values. These are

stored in a cell array, which is then passed to the struct function which creates a structure

array. This is a feature of MATLAB - when ’struct’ receives a cell array, it will build a struct-

array. When looping over this new structure, every element will be a structure containing

the elements of value of the previous array.

For example, one could run the code given inFigure 3.8, for which the result after weaving

and running would be:

s: 499.0052

mˆ-2 * Kg: 27.3686

This example demonstrates that AspectMatlab allows us to override the functionality of

matrices, adding support for numerous units, adding a language extension supporting many

of the basic operations while keeping the semantics, all with an aspect that is less than 300

lines long.
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3.5 Interpreting loop iteration space

This aspect extracts thefor loop iteration space and then interprets this space within the

loop body. It can be useful in many applications, for example, for iterative solvers that get

called a lot to see how many iterations are performed, orfor loop dependency analyses

where we need to know the lower bound, upper bound and the increment factor for the

for loops. This benchmark can also be used to track how long loopsrun throughout the

program.

An outline of the aspect is shown inFigure 3.9. This aspect consists of several patterns to

first extract the loop iteration space using theloophead and theloopbody patterns. Within

the loop body, a programmer can inquire about the different attributes of the iteration space

by using the call expression. So the second set of patterns inthis aspect are thecall

patterns, along withwithin patterns to restrict the scope to the loop body.

Action aLoopHead is called right after the evaluation of the loop iteration assignment

statement and it keeps the iteration array. This information is pushed into a stack main-

tained in aspect properties. ActionaLoopBody acts at the beginning of the each iteration

and updates the current iteration counter of the current topentry in the stack. ActionaLoop

is called after the loop, and it is used to pop the entry of the loop from the stack.

The rest of the actions actually replace the calls made to fetch loop iteration space from

within the loop. For example, when a user wants to fetch the current iteration number in a

loop, an imaginary call can be made toiteration function. This aspect will capture such

calls made from within a loop and return the current iteration number for that particular

loop. Other information that can be asked for is lower bound (lBound ), upper bound

(uBound ), and increment factor (increment ). Its important to note here that its not

possible to have an increment factor for all loop iteration spaces. For example, if the

iteration array consists of random numbers in no specific sequence, then there is no concept

of increment and a MATLAB -specificNaNvalue is returned.

Consider the example given inFigure 3.10 which consists of a loop iterating oni and a

nested loop iterating onj . It would generate the output shown inFigure 3.11, for the 19th
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aspect loops
...
patterns

plhead : loophead( * );
plbody : loopbody( * );
ploop : loop( * );

lbound : call(lBound) & within( loops, * );
ubound : call(uBound) & within( loops, * );
increment : call(increment) & within( loops, * );
iteration : call(iteration) & within( loops, * );

end % patterns

actions
aLoopHead : after plhead : (newVal)

% extracts the loop iteration space
% push the entry on the stack

end

aLoopBody : before plbody : (counter)
% extracts the loop iteration
% update the current top on the stack

end

aLoop : after ploop
% pop the top entry from the stack

end

aLBound : around lbound
% returns the lower bound for the loop

end

aUBound : around ubound
% returns the upper bound of the loop

end

aIncrement : around increment
% returns the increment factor of the loop

end

aIteration : around iteration
% returns the current iteration number of the loop

end
end % actions

end % flops

Figure 3.9 Outline of loops aspect
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for i = 1:2:99
disp({ ’Lower Bound i: ’ , lBound});
disp({ ’Upper Bound i: ’ , uBound});

for j = 10:-1:1
disp({ ’Lower Bound j: ’ , lBound});
disp({ ’Upper Bound j: ’ , uBound});
disp({ ’Increment j: ’ , increment});
disp({ ’Current Iteration j: ’ , iteration});

end

disp({ ’Increment i: ’ , increment});
disp({ ’Current Iteration i: ’ , iteration});

end

Figure 3.10 Example of loops aspect

> ...
Lower Bound i: 1
Upper Bound i: 99
...
Lower Bound j: 10
Upper Bound j: 1
Increment j: -1
Current Iteration j: 5
...
Increment i: 2
Current Iteration i: 19
...

Figure 3.11 Output of loops aspect

iteration of outer loop and the 5th iteration of the nested loop, skipping the ouput of the

other iterations.

3.6 Other possibilities

While we only presented a few use cases showcasing the potential of both aspects in the

scientific computing domain as well as our special patterns in particular, there are many

more possibilities.
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3.6. Other possibilities

For example, one could use the loop patterns to track how manyiterations an iterative

solver like iterative GEPP or solver based on the Newton Method. This could be particu-

larly useful if it is used inside some larger computation like a backward Euler integration,

because it would allow one to track how many iterations are done when and where.

Tracking loop counts could also be interesting for loop dependency analyses. One could

use aspects there to collect run time information and feed that back to the compiler and

write specializing code optimizing the encountered runtime properties. This could be done

for many possible optimizations.

Another interesting aspect that overrides all possible values could be one that overrides

all computation with equivalent operations utilizing interval-arithmetic. Variables could be

initialized to small intervals corresponding to the unit precision, which get larger as more

computation is performed. The advantage would be that interval arithmetic gives hard

bounds on the computed values so that there are no surprises due to rounding arithmetic.

One could also use more simplified runtime forward error propagation schemes.

AspectMatlab provides some interesting ways to combine numerical computing with aspect-

oriented programming, resulting in some of the use cases shown. Many other possibilities

are conceivable, which motivate the development of the language in general and the array

and loop patterns in particular.
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Chapter 4

Compiler

The AspectMatlab compiler (amc) has been designed to be easily extensible so that it

is simple for us and other researchers to add further features. To enable this we have

built the compiler using extensible toolkits and have aimedfor a very clean and modular

implementation.

This chapter examines the design of our AspectMatlab compiler in detail. We begin with

a discussion of the overall architecture of the compiler andan overview of its different

phases. This is followed by a detailed discussion of each of the phases of the compiler. We

start with a discussion on how the front-end tools enabled usto create the extension. We

describe a set of transformations on the source code that arerequired in order to perform

accurate matching and weaving. Then we discuss the name resolution analysis which is

used to eliminate most of the dynamic checks introduced by the weaving phase. Finally,

we conclude with a detailed example of a woven aspect and a discussion on the performance

overheads introduced by the aspect woven code.

4.1 Compiler Structure

The overall structure ofamc, the AspectMatlab compiler, is given inFigure 4.1. The

compiler takes as input, a collection of MATLAB (.m) source files, plus a collection of
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AspectMatlab files, and produces a collection of woven MATLAB source files. These output

files can be executed using any MATLAB system.

Separator

Expr. Simplification

Loop Rewriting

Name Resolution

Matcher&Weaver

Post−processing

.m
.m

Woven Base Matlab

AspectInfo

Base Matlab Aspects

.m
.m

Resolved Name
Set

AST (Matlab+Aspects)

AST (Matlab Only)

Simplified AST

Woven AST

Front−end

Matlab Implementation of Aspect Code

Figure 4.1 Overall structure of the amc AspectMatlab compiler

The front-end of AspectMatlab was implemented as an extension to the Natlab front-end

(Natlab is a ”neat” version of MATLAB , developed by the Sable Research Group). The

scanner is built using the MetaLexer tool [Cas09] and was specified as a simple and mod-

ular extension to the Natlab Metalexer specification. The parser and semantic checks

were modular extensions to Natlab’s parser, which is built using the extensible JastAdd

framework[EH07]. The Natlab grammar was extended to incorporate AspectMatlab gram-

mar rules using the JastAddParser. JastAdd provides powerful facilities for AST traversal,

associating attributes with nodes and modifying the AST vianode rewriting.
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4.2. Separator & AspectInfo

4.2 Separator & AspectInfo

As indicated inFigure 4.1, after front-end processing, the AST generated includes both

MATLAB and aspect-specific AST nodes. Following theabc model, the Separator com-

ponent harvests all the aspect-specific key information outof the AST, and transforms the

AST so that it becomes a pure MATLAB AST. This process allows us to process the result-

ing AST using our Matlab compiler analysis framework, and isalso the first key step in

converting the aspect source files to MATLAB source files.

The separation phase records the aspect information into a collection of data structures,

calledAspectInfo. AspectInfo consists of several data structures, which are used to contain

the aspect lists, pattern lists, action lists and the information about their association.

AspectInfo contains the following structures:

• Pattern lists encode simple mappings of the pattern designator given names to the

actual pattern designator expressions. These lists are used to perform expression

simplification (Section 4.3.1) before matching.

• An action defined in the aspect files is translated into a normal M ATLAB function and

related information is stored in an object calledActionInfo. It keeps the action name,

associated pattern designator name, type of the action, a reference to the translated

function corresponding to the action and the host aspect name. Action lists are lists

of all such objects. In order to match and weave, both action lists and their mapping

to corresponding patterns are used (Section 4.5).

• AspectInfo also keeps a simple list of all the aspect files presented to the compiler.

This list of aspects is mainly used in the post-processing phase, which we will discuss

in Section 4.6.
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4.3 Transformations

In order to perform matching and later weaving, some join points require transformation.

There are two notable code transformations: name/parameterized expressions simplifica-

tion and loops rewriting.

4.3.1 Expression Simplification

An expression in MATLAB can be very complex with a lot of computation being performed

within a single expression. This computation can be in the form of function/script calls

or complex operations on arrays. So some kind of refactoringof complex expressions is

required to expose all the matching and weaving points in thecode. To avoid inserting

meaningless and redundant code, we consult the AspectInfo data structures at this stage.

All the name or parameterized expressions, which can potentially match the specified pat-

terns, are taken out of the parent expression. An expressionin the source code is a potential

match, if there exists a pattern in the pattern list fetched in AspectInfo. An important point

to notice here is that a pattern can be used by an action, either solely or in combination

with other patterns, or none of the actions end up using a particular pattern. So, at this

stage we go through all the patterns and simplify the complexexpressions in order to facil-

itate matching and weaving later. This results in simple weavable statements with precise

locations for before, after or around actions.

For example, given the following line in the base program:

1 z = sum(x) / length(y);

and assuming that there is only one pattern for call tosum, the above line gets translated

into this:

1 AM_CVar_1 = sum(x);
2 z = AM_CVar_1 / length(y);

Now assuming that patterns exist for both calls and variableaccesses, the above line gets

translated into the following:
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1 AM_CVar_1 = x;
2 AM_CVar_2 = sum(AM_CVar_1);
3 AM_CVar_3 = y;
4 AM_CVar_4 = length(AM_CVar_3);
5 z = (AM_CVar_2 / AM_CVar_4);

It should be noted that arguments of the function calls are extracted out for the sake of their

own weaving. So the arguments always get evaluated before the function call. In the case

of abefore action or anafter action, it doesn’t change the semantics of a function call. In

turn, in thearound case, if the function never gets called throughproceed, its arguments

would still be evaluated before passed on to thearound action.

4.3.2 Loop Rewriting

The second kind of transformation occurs on the loops. In MATLAB for loops have a

loop iteration space defined before the loop executes -for loops contain an assignment

statement, which allocates the iteration space to the loop iterator. In order to perform

weaving on that assignment statement itself, it needs to be taken out of the loop body and

be replaced by appropriate code.

For example, consider the following loop:

1 for i=1:step:size(dx,1)
2 % loop body
3 end

This loop would be transformed to the following. Note thatfor loops are transformed

regardless of the existence of any patterns or actions targeting them, for reasons we shall

describe in the following section.

1 AM_CVar_5 = 1:step:size(dx,1);
2 for AM_CVar_6 = 1:length(AM_CVar_5(:,:))
3 i = AM_CVar_5(:,AM_CVar_6);
4 % loop body
5 end

A different challenge is presented bywhile loops. The conditional expression can contain

several instructions inside it. Refactoring the expressionwill be our solution again. But
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since the condition is supposed to be evaluated at the start of each iteration, we have to take

care of all the back edges of the loop finishing at the loop header, which means just before

the syntactic end of loop body and also at all thecontinue statements.

For example, consider the following loop.

1 while x < y
2 % ...
3 continue;
4 % ...
5 % loop body
6 % ...
7 end

In the transformed version below, thewhile loop’s conditional expressions are factored out

and placed before all the edges in the loop header.

1 AM_CVar_7 = x < y;
2 while AM_CVar_7
3 % ...
4 AM_CVar_7 = x < y;
5 continue;
6 % ...
7 % loop body
8 % ...
9 AM_CVar_7 = x < y;

10 end

4.4 Name Resolution Analysis

In MATLAB , a function call or an array access has the same syntax using either just the

name of the entity or passing a number of parameters with it. So foo(1, 2) can either

be an access to an array namedfoo , if the array exists in the current scope, or it could be

a function call with two parameters. This name resolution can be achieved with the help of

runtime checks, but doing so we compromise on the efficiency of generated woven code.

Figure 4.2 shows an aspect which contains two different kinds of patterns targeting the

same entityfoo in the source code, i.e.,get and call. There are twobefore actions

matching on both patterns respectively.
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1 aspect nameRes
2

3 %properties
4

5 %methods
6

7 patterns
8 pGetFoo : get(foo);
9 pCallFoo : call(foo);

10 end
11

12 actions
13 aGetFoo : before pGetFoo
14 % action body
15 end
16

17 aCallFoo : before pCallFoo
18 % action body
19 end
20 end %actions
21

22 end %aspect

Figure 4.2 Aspect with multiple patterns on the same entity

When this aspect is applied to a source code containing the following line:

x = foo(3);

The entityfoo needs to be resolved as a function call or an array access in order to be

accurately matched with the patterns given in the aspect. Sowe need to insert dynamic

checks for each action at the point of weaving, as shown inFigure 4.3.

1 if (exist( ’foo’ , ’var’ ) == 1)
2 AM_GLOBAL.nameRes.nameRes_aGetFoo();
3 end
4 if (exist( ’foo’ , ’var’ ) ˜= 1)
5 AM_GLOBAL.nameRes.nameRes_aCallFoo();
6 end
7 x = foo(3);

Figure 4.3 Weaving without Name Resolution Analysis
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The call to the aspect action depends on the outcome of the dynamic check, i.e., iffoo is a

variable then call toaGetFoo action is made,aCallFoo action is called iffoo happens

to be a function.

But once we have all the names resolved in the source code, the weaving process becomes

very simple. As shown inFigure 4.4, if foo is resolved as an array at the joint point then

only theget pattern is matched and thecall pattern is not considered. Vice versa in the

case offoo being a function.

%if foo is known to be an array at this point
AM_GLOBAL.nameRes.nameRes_aGetFoo();
x = foo(3);

-----------------OR------------------

%if foo is known to be a function at this point
AM_GLOBAL.nameRes.nameRes_aCallFoo();
x = foo(3);

Figure 4.4 Weaving with Name Resolution Analysis

So we essentially need to have a flow analysis, to determine the exact type of a join point at

the time of matching1. The goal of this analysis is to determine if a given name at a given

program point corresponds to a function, variable or assigned variable. To accomplish this

goal, the analysis is implemented as a data flow analysis using the McLab Analysis Frame-

work. This flow analysis builds up a set of information for each statement in the program,

that we call resolved names set. This set contains names labeled with the information about

those names.

The MATLAB semantics for determining if a name is a variable or a function within func-

tion bodies are fairly static. Because of this, the Name Resolution Analysis is capable of

accurately determining all names that are variables. This allows the compiler to eliminate

all runtime checks for this property. By eliminating those checks the compiler also elim-

inates all uses ofeval . The analysis can also be fairly successful in eliminating runtime

checks to determine if a variable is defined in a function. Once again this is due to the more

1This analysis was developed as part of Jesse Doherty’s Masters thesis
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static semantics of functions. The analysis can determine that roughly half of the variable

uses in our example programs given inChapter 3 are guaranteed to be well defined. Script

semantics are more dependent on runtime behaviour. Because of this the Name Resolution

Analysis is less successful at determining how names are resolved in scripts bodies.

4.5 Matching and Weaving

The previous name resolution phase populates the resolved names set, which is then used

as one input to the matcher and weaver, along with pure MATLAB AST andAspectInfo

structure.

An outline of the matching and weaving process is shown inFigure 4.5. In a single pass

through the AST, all the join points are matched against the patterns specified for all the

actions. In case a shadow of a join point matches a pattern designator, the corresponding

action is woven at the appropriate place with respect to the location and type of the shadow.

for each base file
for each join point j

s = j.getShadow();
for each action a

p = a.getPattern();
if(p.match(s))

s.weave(a);

Figure 4.5 Matching and Weaving process outline

4.5.1 Weaving at the function level

AspectMatlab provides anexecution pattern to match at the level of the functions and

the scripts. Since both the functions and the scripts are named entities, matching by name is

straight forward. The matching actions are woven as a call tothe action member function

of the class generated from the aspect definition. All thebefore actions are woven in

order just above the first statement in the body, and all theafter actions go right below
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the last statement, or just before all thereturn statements. In case of thearound of

execution (and other kinds of patterns as well), the semantics of MATLAB force us to

develop a different strategy, which is described in section4.5.4.

4.5.2 Weaving at the loop level

AspectMatlab provides a set of loop patterns for bothfor andwhile loops, namelyloop ,

loopbody andloophead . Unlike other program constructs, loops are not named enti-

ties. So we match the loops based on the variables involved inside the loop header. There

is a single loop iteration variable infor loops, whereas the conditional expression of the

while loop can contain any number of named entities. The question might arise here that

names for loops iterator variables are often very general (for example, i or j), so we might

end up over-matching loops unintentionally. Thewithin pattern comes in very handy in

such situations to restrict the scope of matching to specificconstructs.

Weavingfor loops is also different thanwhile loops with regard to the context information

they provide. We can fetch the loop iteration space (out of which the action function can

infer start, end and stride values of the loop iterator), loop iterator variable and loop counter.

In order to weave anafter action on aloopbody pattern, we have to analyze the loop

body, because it’s not just the syntactical end of the body. We also have to takebreak,

continue andreturn statements into account, as they mark the end of body too.

For theloop join point, all thebefore actions are woven in order just above the loop,

and all theafter actions go right below the loop. In case of theloopbody join point,

all the before actions are woven in order just above the other statements inthe body,

and all theafter actions go right before the end of the loop body, or before anyof the

break, continue andreturn statements. Because loop headers were translated into sepa-

rate statements in an earlier phase, they get matched and woven just like other statements

as described inSection 4.5.3.
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4.5.3 Weaving at the statement level

Since we have simplified the complex statements already in anearlier pass, it only comes

down to assignment statements or even simple expression statements. The left hand side

of an assignment statement is matched forset patterns, and right hand side expression

for get or call patterns. This is where we can use the name resolution set, which helps

us determine if the expression is aget or call join point. Without the name resolution

optimizations we must weave in a dynamic check. All thebefore actions are woven in

order just above the statement, and all theafter actions go right below the statement.

4.5.4 Weaving around actions

In the AspectJ around advice case, the concerned piece of code is extracted out of the

context and replaced with a call to the around advice. The extracted code is placed inside a

new method of the same class, which is then called from aspect’s advice function. Because

the code stays in the same class, there are no scoping issues.However, in the case of

MATLAB ’s non object-oriented version, this weaving strategy is clearly not possible. When

we move a piece of code out of its scope, we have to provide all the necessary context

information required.

The solution we came up with is partially inspired by Kuzins’work on efficient imple-

mentation of around advice for the AspectBench Compiler [Kuz04]. Taking advantage of

the MATLAB ’s nested functions, we create a nested function, namelyproceed, inside the

around action function. This function contains aswitch statement to host the extracted

code from all the around join points of this particular action. The join points are assigned

a simple number id, one id for each around action. Along with this id, a join point has to

pass the context information to execute the extracted code being moved inside a different

scope.

The translated standard MATLAB function for thearound action from the example given in

Figure 2.9 is shown inFigure 4.6. The first thing to notice here is that theproceed function

is created inside thearound function as a sub-function. As explained earlier, this function
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1 function [varargout] = myAspect_actcall(this, AM_caseNum, AM_obj ,
AM_args, name, args)

2 this.incCount();
3 disp([ ’calling ’ , name, ’with parameters(’ , args, ’)’ ]);
4 proceed(AM_caseNum, AM_obj, AM_args);
5

6 function [] = proceed(AM_caseNum, AM_obj, AM_args)
7 switch AM_caseNum
8 case 0
9 varargout{1} = AM_obj(AM_args{1}, AM_args{2});

10 case 1
11 varargout{1} = AM_obj(AM_args{1}, AM_args{2});
12 case 2
13 AM_obj(AM_args{1}, AM_args{2});
14 end %switch
15 end %proceed
16 end

Figure 4.6 Example of an around function

builds switch cases for all the join points matched for this particular action. If applied to

the code given inFigure 2.10, this action matches at lines 5, 6 and 9. Accordingly there

are three switch cases added to theproceed function. AMobj contains the actual object

from the shadow, which can either be a variable or a function name.AMargs represents

the actual arguments used at the shadow.

AspectMatlab supports the concept of multiplearound actions. As shown isSection 2.3.3,

multiplearound actions are woven around the join point in the exact order in which actions

are defined in source code. So in case of multiplearound actions, the actual join point is

executed in the very last action, and all other actions just go around each other in order.

Figure 4.7 shows an aspect which contains twoaround actions on the same pattern, which

matches all calls made to functionfoo .

Consider this aspect is applied to a source code containing the following line:

x = foo(3);

Figure 4.8 shows the translated MATLAB functions for thearound actions. Theproceed

in multiAround actAround1 only contains a call tomultiAround actAround2 ,
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1 aspect multiAround
2

3 %properties
4

5 %methods
6

7 patterns
8 pCallFoo : call(foo);
9 end

10

11 actions
12 actAround1 : around pCallFoo
13 disp( ’before around action 1’ );
14 proceed();
15 disp( ’after around action 1’ );
16 end
17

18 actAround2 : around pCallFoo
19 disp( ’before around action 2’ );
20 proceed();
21 disp( ’after around action 2’ );
22 end
23 end %actions
24

25 end %aspect

Figure 4.7 Aspect for multiple around actions

which actually executes the actual join point through itsproceed. All context info is passed

from the join point shadow in case ofaround actions.

If the call to functionfoo just prints out the number passed to it, then the output of the

multiplearound actions would be:

> before around action 1
before around action 2
foo 3
after around action 2
after around action 1
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1 function [varargout] = multiAround_actAround1(this, AM_caseNum, AM_obj,
AM_args, [context info])

2 disp( ’before around action 1’ );
3 proceed(AM_caseNum, AM_obj, AM_args);
4 disp( ’after around action 1’ );
5

6 function [] = proceed(AM_caseNum, AM_obj, AM_args)
7 switch AM_caseNum
8 case 0
9 varargout{1} = this.multiAround_actAround2(AM_caseNum , AM_obj,

AM_args, name, args);
10 % Other cases
11 end %switch
12 end %proceed
13 end
14

15 function [varargout] = multiAround_actAround2(this, AM_caseNum, AM_obj,
AM_args, [context info])

16 disp( ’before around action 2’ );
17 proceed(AM_caseNum, AM_obj, AM_args);
18 disp( ’after around action 2’ );
19

20 function [] = proceed(AM_caseNum, AM_obj, AM_args)
21 switch AM_caseNum
22 case 0
23 varargout{1} = AM_obj(AM_args{1}, AM_args{2});
24 % Other cases
25 end %switch
26 end %proceed
27 end

Figure 4.8 Translated multiple around functions

4.6 Post-processing

At the end of the weaving, a post-processing phase takes place. As explained earlier, the

aspect files are translated into classes. So the aspect actions are woven as a call to a cor-

responding class methods. These class objects should be instantiated at the program entry

point. As compared to AspectJ where Java provides a designated entry point throughmain ,

MATLAB does not has the same feature. Using the MATLAB interpreter, a user can choose

any entry point for the woven program files, including function lists, scripts and classes.
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So unless a user designates a function or a script to be the starting point of execution at the

time of weaving2, we need to embed the startup checking code at the start of allfunctions

and scripts. As it can be seen inFigure 4.10: lines 2-8, these checks determine the very

first function or script to be executed and then instantiate all the aspect objects. These

objects need to be live and accessible throughout the execution environment over several

program files, so we save them in a global structure, calledAMGLOBAL. In all the woven

functions and scripts, declaration of this global variableis woven as their first statement.

At the program exit point, the contents of the global variable are cleared to start afresh next

time, Figure 4.10: lines 33-36. Finally,amcgenerates standard MATLAB code which can

be executed by any MATLAB system.

4.7 Woven Example

After this detailed description of all phases, we come back to the example given inSection

2.4, where we used a simple aspect to count the function calls. The aspect itself is translated

into a standard MATLAB class file, as shown inFigure 4.9. The class extends the MATLAB

built-in handle class, which enforces this subclass to be a reference class.Reference classes

in MATLAB use a handle to reference to multiple objects of the class, ascompared to the

value classes where a new object is always created in case of the copy operation.

It can be noticed that the generated class preserves the properties and methods blocks from

the aspect. The patterns block gets eliminated, and the all the actions are translated into

standard MATLAB class methods.

The woven code for the example given inSection 2.4 is shown inFigure 4.10. Expression

simplification is very noticeable, as we transform complex statements into easy-to-weave

statements. With the help of our name resolution analysis, we are able to distinguish be-

tween function calls and array accesses. All the calls matching thecall pattern are woven

accordingly. Notice the extra bit of code added by the post-processing phase, at the start

and the end of the function.
2java -jar amc.jar -main myFunc1.m myFunc2.m myAspect.m
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1 classdef myAspect < handle
2 properties
3 count = 0;
4 end
5 methods
6 function [out] = getCount(this)
7 out = this.count;
8 end
9 function [] = incCount(this)

10 this.count = (this.count + 1);
11 end
12 end
13 methods
14 function [varargout] = myAspect_actcall(this, AM_caseNum, AM_obj ,

AM_args, name, args)
15 this.incCount();
16 disp([ ’calling ’ , name, ’with parameters(’ , args, ’)’ ]);
17 proceed(AM_caseNum, AM_obj, AM_args);
18 function [] = proceed(AM_caseNum, AM_obj, AM_args)
19 switch AM_caseNum
20 case 0
21 varargout{1} = AM_obj(AM_args{1}, AM_args{2});
22 case 1
23 varargout{1} = AM_obj(AM_args{1}, AM_args{2});
24 case 2
25 AM_obj(AM_args{1}, AM_args{2});
26 end
27 end
28 end
29 function [] = myAspect_actexecution(this)
30 count = this.getCount();
31 disp([ ’total calls: ’ , num2str(count)]);
32 end
33 end
34 end

Figure 4.9 MATLAB class generated from the aspect
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1 function [m, s, d] = histo(n)
2 global AM_GLOBAL;
3 if (isempty(AM_GLOBAL))
4 AM_EntryPoint_0 = 1;
5 AM_GLOBAL.myAspect = myAspect;
6 else
7 AM_EntryPoint_0 = 0;
8 end
9 AM_CVar_0 = n;

10 AM_CVar_1 = AM_GLOBAL.myAspect.myAspect_actcall( 0, @ra ndn,
{AM_CVar_0, 1}, ’randn’ , {AM_CVar_0, 1});

11 % Generate vectors of random inputs
12 % x1 = Normal distribution N(mean=100,sd=5)
13 % x2 = Uniform distribution U(a=5,b=15)
14 x1 = ((AM_CVar_1 * 5) + 100);
15 AM_CVar_2 = n;
16 AM_CVar_3 = AM_GLOBAL.myAspect.myAspect_actcall(1, @ra nd, {AM_CVar_2,

1}, ’rand’ , {AM_CVar_2, 1});
17 x2 = (5 + (AM_CVar_3 * (15 - 5)));
18 AM_CVar_4 = x2;
19 AM_CVar_5 = x1;
20 y = ((AM_CVar_4 .ˆ 2) ./ AM_CVar_5);
21 AM_CVar_6 = y;
22 AM_GLOBAL.myAspect.myAspect_actcall(2, @hist, {AM_CVa r_6, 50},

’hist’ , {AM_CVar_6, 50});
23 AM_CVar_7 = y;
24 AM_CVar_8 = mean(AM_CVar_7);
25 % Calculate summary statistic
26 m = AM_CVar_8;
27 AM_CVar_9 = y;
28 AM_CVar_10 = std(AM_CVar_9);
29 s = AM_CVar_10;
30 AM_CVar_11 = y;
31 AM_CVar_12 = median(AM_CVar_11);
32 d = AM_CVar_12;
33 if AM_EntryPoint_0
34 AM_GLOBAL.myAspect.myAspect_actexecution();
35 AM_GLOBAL = [];
36 end
37 end

Figure 4.10 Woven MATLAB function

61



Compiler

4.8 Performance Overhead

In this section, we briefly discuss the performance overheadintroduced by the woven code.

We performed a comparative execution of the benchmarks discussed inChapter 3. We

tested in Matlab R2008a, on a linux PC with an AMD Athlon 64 X2 with 2GHz and 4GB

of RAM.

The results are shown in Table4.1. All the times are given in seconds. It is worth men-

tioning that the first two benchmarks operate mostly on the matrices, whereas the other two

benchmarks operate mostly on scalars. With the introduction of the aspects, we timed the

resultant woven code in two ways: without the action code andthen with the action code.

Timing the woven code without the action body gives us the idea of the slowdown factor

introduced purely by the aspect action calls.

We seem to get a slowdown with factor 1.23 to 2.72 in four benchmarks. The number

is very high with counting the floating point operations bechamrk, 47.69, because this

particular aspect was used to weave into an algorithm for thecomputation of the singular

value decomposition of a random matrix. The woven algorithm, spread over multiple files,

triggers an action call for each operation, hence resultingin higher slowdown.

So the aspect overhead is largely due to a couple of factors; (1) these benchmarks cross-cut

on all the arrays being set or being read, or all the function calls being made, which means

frequent calls to the aspect actions, and (2) the large matrices are being inquired by the

action code as part of the context information, and the fact that MATLAB creates the copies

of all the arrays being assigned or modified inside a function, when passed as an argument,

resulting in the performance slowdown.

We believe that the performance overhead due to the aspects can be remarkably reduced

with the help of code in-lining, as it is proven by AspectJ. The implementation of a copy

elimination analysis can also play a vital role, if we can pass the large arrays just by refer-

ence instead of making copies.
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Benchmark Run time
Woven run time Woven run time

Slowdown factor
(without action code) (with action code)

Grow 3.463019s 9.414565s 18.035407s 2.72
Sparsity 3.761089s 5.733333s 40.175475s 1.52
Flops 0.057600s 2.746667s 19.364130s 47.69
Units 0.040411s 0.071931s 23.769422s 1.78
Loops 0.025776s 0.031704s 0.626242s 1.23

Table 4.1 Performance overhead
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Chapter 5

Related Work

AspectMatlab is targeted at dynamic scientific programs, and thus deals with a different set

of challenges as compared to other aspect-oriented language extensions. In this chapter, we

review a number of such works, and contrast them with the approach taken in AspectMat-

lab.

We begin with the most popular aspect-oriented system called AspectJ, an extension to

Java. Basic concepts and constructs of AspectMatlab are mostly inspired by AspectJ,

though customized for MATLAB semantics. We discuss AspectJ and a set of extensions

to AspectJ that were directly related to our work inSection 5.1.

Our research is also inspired by another aspect-oriented language, called AspectCobol. We

discuss the similarities of AspectCobol to our work inSection 5.2. We conclude with a

brief reference to another effort made to introduce aspectsto MATLAB .

5.1 AspectJ

AspectJ [KHH+01] was one of the main languages that popularized aspect-oriented pro-

gramming. AspectJ provides array pointcuts functionality, such that a type name pattern

or subtype pattern can be followed by one or more sets of square brackets to make ar-
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ray type patterns. SoObject[] is an array type pattern, as iscom.xerox.. * [][]

andObject+[] . However, the pointcuts of AspectJ do not support array objects in full.

When an element of an array object is set or referenced, the corresponding index values and

the assigned value are not exposed to the advice. The availability of such information can

be very helpful in multiple ways, such as the ability to bounds-check the array, optimization

of array usage and profiling related to arrays. The original AspectJ does not support any

loop pointcuts.

Researchers have experimented with array and loop pointcut extensions to AspectJ using

abc, an extensible AspectJ compiler [ACH+05].

5.1.1 Extension: Array specific pointcuts

Harbulot extended the set pointcut to capture arrayset.1 In his proposal, the pointcut des-

ignatorargs() exposes both the array index value and the object being assigned to an

array element, and the pointcut designatortarget() exposes the array object being as-

signed. However, this extension bases its implementation on treating an array element set

as a call to aset(int index, Object newValue) method, and thus works only

for one-dimensional arrays.

5.1.2 Extension: Multi-dimensional array specific pointcuts

As compared to Harbulot’s extension, ArrayPT [CC07] works for multi-dimensional ar-

rays. The core of the implementation is a finite-state machine based pointcut matcher that

can handle arrays of multiple dimensions in a uniform way. They took the standard field

set pointcut as the basis and developed this extension on thetop of it. All array field set join

points are treated as having a variable number of arguments:the sequence of index values

and the value the field is being set to. At a join point, these values can be obtained using

an args() pointcut designator and then passed to the advice for further processing. It

enables the programmer to perform selective matching on anynumber of specified indices.

1Post to theabc-users mailing list, November 2004.
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aspect Monitor {
before( int ix1, int ix2, int newVal):

arrayset( * Watch. * ) &&
args(ix1, ix2, newVal) { //advice

if (newVal > B.bounds[ix1, ix2]) {
ArraySetSignature sig =

(ArraySetSignature)thisJointPoint.getSignature();
String field = sig.getFieldType() + sig.getName();
throws new RuntimeException( "Bad change" + field)

}
}

}

Figure 5.1 Example of AspectJ multi-dimensional array pointcuts (from [CC07])

For example, the aspect given inFigure 5.1 uses the arrayset() and args() pointcut desig-

nators to monitor the assignments to any array fields of classWatch. Notice the use of the

pointcut designatorargs(ix1, ix2, newVal) to get the array index values and the

assigned value of the array field assignments. Hereargs(ix1, ix2, newVal) also

serves as the selective matching, because it makes the aspect match only on the assignments

on the arrays with two indices.

AspectMatlab enhances this idea of selective matching and incorporates it within the defini-

tion of a pattern designator. It eliminates the need of a separate pattern for capturing arrays

and then using another pattern to specialize the matching. AspectMatlab also can more

easily detect array set and get join points as it matches at the source code level, whereas the

AspectJ approaches all must match and weave at the Java bytecode level.

5.1.3 Extension: Loop specific pointcuts

Another extension to the abc compiler, LoopsAJ [HG06], provides AspectJ with a loop

pointcut. Loop selection is a major issue here, because unlike other pointcuts for variables

and functions, loops don’t have a named identification associated with them. In Aspect-

Matlab, loop patterns are equipped with a facility to match the loops based on the variables

being used in loop headers. Certain context exposure is provided to make the advice more

effective.
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void around( int min , int max , int step ):
loop() && args (min, max, step, ..) {

int numThreads = 4;
Thread[] threads = new Thread[numThreads];
for ( int i = 0; i < numThreads; i++) {
final int t_min = min+i;
final int t_max = max;
final int t_step = numThreads * step;
Runnable r = new Runnable() {
public void run() {

proceed(t_min, t_max, t_step );
}

};
threads[i] = new Thread(r);

}
for ( int i = 1; i < numThreads; i++) {

threads[i].start();
}
threads[0].run();
try {
for( int i = 1; i < numThreads; i++) {

threads[i].join();
}

} catch (InterruptedException e) { }
}

Figure 5.2 Example of AspectJ loop pointcut (from [HG06])

The example given inFigure 5.2 shows an application of theloop() pointcut, namely par-

allelization of loops. The example advice executes in parallel (using cyclic loop scheduling)

all the loops which are recognized as iterating over a range of integers.

This model of a loop join point presents only an outside view of the loop; the points before

and after the loop are not within the loop itself. For some applications it might be desir-

able to advise the loop body. Also, the loop iterators are good candidates to be advised.

AspectMatlab provides a range of poincuts for loops: loop, loopbody and loophead.
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5.2 AspectCobol

AspectCobol [LDS05] is inspired from AspectJ in many ways, but it incorporates original

techniques for join point identification and context capture. AspectCobol’s design strongly

suggests that join point reflection on the join point shadow should be viewed as part of

the pointcut as opposed to using reflection in the advice code. AspectCobol allows one to

extract such details from the join point. The extraction is described as part of the pointcut

designator, while the results are bound to variables for subsequent use in the advice code.

Hence data is extracted from the shadow of the join point, i.e., the static program context

that belongs to the join point.

For example, inFigure 5.3 we show an aspect that determines an error condition at the

time of accessing a file’s record, even though Cobol’s runtimesystem does not report any

error whatsoever. i.e., any read access to a file’s record is to be guarded by a test for

the FILESTATUS field to be equal to ZERO (meaning no unhandlederror occurred previ-

ously). Notice the several bindings of the context information to local variables just before

the advice.

While agreeing with the basic approach of AspectCobol, AspectMatlab makes the extrac-

tion of context available only at the advice definition level. It enhances the clarity and

structure of the whole aspect and also it makes more sense to inquire only the required con-

text information from the static shadow of the join point, right where it is being utilized.

5.3 AOP in MATLAB

There has been some effort made to introduce aspect-oriented features in MATLAB . Joao

M. P. Cardoso, et al. [JMPCM06] suggest various useful AOP features, especially those to

specify different numeric data types. They have also pointed out the importance of AOP

for MATLAB and their work suggests some further use cases. However, ourapproach in-

cludes both general-purpose aspects and specific patterns for scientific applications, as well

as a complete and extensible language specification and open-source compiler, including
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IDENTIFICATION DIVISION.
ASPECT-ID. ASPECTS/UNSAFEREAD.

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY "BOOKS/PANIC.DD" .

PROCEDURE DIVISION.
DECLARATIVES.
USE BEFORE ANY STATEMENT
AND BIND VAR-ITEM TO SENDER
AND VAR-ITEM IS FILE-DATA
AND BIND VAR-FILE TO FILE OF VAR-ITEM
AND BIND VAR-STATUS TO FILE-STATUS OF VAR-FILE
AND BIND VAR-NAMETO NAMEOF VAR-FILE
AND BIND VAR-LOC TO LOCATION
AND EXISTS PROCEDURE PANIC-STOP
AND EXISTS DATA PANIC-FIELD.

MY-UNSAFEREAD-ADVICE.
IF VAR-STATUS NOT = ZERO
INITIALIZE PANIC-FIELD
MOVE VAR-NAMETO PANIC-RESOURCE
MOVE "UNSAFE READ" TO PANIC-CATEGORY
MOVE VAR-LOC TO PANIC-LOCATION
MOVE VAR-STATUS TO PANIC-CODE
GO TO PANIC-STOP.

END DECLARATIVES.

Figure 5.3 Example of AspectCobol (from [LDS05])

analyses for the dynamic properties of MATLAB .

5.4 Summary

In this chapter, we presented a number of aspect-oriented systems and few extensions to

them. While giving an overview of our inspirations from the existing systems, we also

discussed the contrast with the approach taken in AspectMatlab.

Although AspectMatlab carries on the basic idea of the pointcuts and the advice from

AspectJ, it also introduces a more generic and powerful set of patterns (pointcuts) and the

simplified actions (advices). AspectMatlab enables a scientific programmer to cross-cut
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the basic program constructs like functions/scripts, arrays and loops.

AspectMatlab provides the facility of selective matching certain join points based on both

its actual location in the source code (by usingwithin pattern to restrict the scope), and

also depending upon the syntax of the join point (by specifying number of arguments used).

Following the AspectCobol design, all necessary context information is only extracted at

the actual action level and simply bound to an action’s localvariables. As compared to the

approach taken in AspectJ, where a programmer has to use multiple other pointcuts to fetch

the context details, AspectMatlab’s approach enhances theclarity.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this section we discuss the contributions made by this thesis. We start with an overview

of the driving principles in the designing of the new aspect-oriented scientific language,

AspectMatlab. Then we discuss the AspectMatlab compiler (amc) and its different phases.

We conclude with a brief description of the scientific use cases.

The Design of AspectMatlab is inspired by some motivating factors, such as the introduc-

tion of the cross-cutting features for those language constructs, which were not included

in the original definitions of the other aspect-oriented languages. Such language constructs

include special patterns for arrays, multi-dimensional arrays and loops. Having the ability

to cross-cut these language constructs is of utmost importance for a scientific programming

language. On top of that, AspectMatlab provides the other patterns (pointcuts) related to

the calling and execution of the functions and scripts. The set of patterns is completed with

a special scope-restricting pattern used to limit the matching process within a specified

program construct.

Another motivating factor behind the design of AspectMatlab was to introduce a simpler,

yet extensive, design for the actions (advives). AspectMatlab eliminates the need for pat-
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terns to extract the context information from the static shadow of the join point, rather the

required context information is defined at the action-definition level and later bound to the

action’s local variable. AspectMatlab enables a user to inquire about an extensive set of

information from the shadow of the join point in the source code. The default ordering

rules for actions are simpler and less restrictive than for other aspect-oriented languages.

So the accessibility factor for existing and new MATLAB programmers was kept in mind,

while designing AspectMatlab.

We have also designed and implemented the AspectMatlab compiler (amc) compiler for

the new language. Theamc compiler is designed to be easily extensible, so that other re-

searchers can easily experiment with other new features useful for scientists. The compiler

is a source-to-source compiler, producing ordinary MATLAB as its output. This means that

any MATLAB system can be used to execute the woven code. The compiler is freely avail-

able online at our website1. Example programs and the generated code for them are also

available.

Theamccompiler consists of several phases after the front-end in order to make the match-

ing and weaving process accurate. The expression simplification phase converts a complex

MATLAB expression into a number of easy to weave statements, only ifthe sub-expressions

might match to the patterns specified in the aspect. All the loop statements in the source

code are transformed, again for the sake of creating easy to weave statements.

AspectMatlab presents some challenges for producing correct and efficient woven code.

We have described our approach to weaving, including our approach toaround advice,

and the use of a static flow analyses that enabled us to reduce the number of dynamic checks

required in the woven code.

We have provided some example use cases that we think indicate the potential for an aspect-

oriented system for a scientific programming language. In these examples, the aspects can

perform profiling on program features, or they can attributeexisting functionality. For

example, an aspect can track the growing size of the arrays and report the source code line

number of the operations which increase the size. Another aspect can track the sparsity of

1www.sable.mcgill.ca/mclab/aspectmatlab
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the arrays and can be helpful in making the programs efficient. An aspect can profile the

number of floating point operations during the execution of the program. With regard to

attributing aspects, an aspect can associate SI units to thevariables. Another aspect can

interpret the loop iteration space within the loop.

6.2 Future Work

In this section we look into possible improvements to AspectMatlab which would address

some of the more important functionality and performance issues with our current imple-

mentation. AspectMatlab has the scope to be further evaluated and the performance and

functionality can be enhanced.

As far as the extension to the language itself is concerned, different kinds of patterns can be

added on top of the existing system. These patterns can target different language constructs,

for example, range expressions, try/catch, etc. Several types of operations can be cross-cut

as well, for example, array copy operations, arithmetic operations, etc.

Currently in AspectMatlab, actions only obey the precedencerules with respect to the order

in which the parent aspect file was presented to theamccompiler. The precedence of one

specific aspect with respect to the other aspects could be specified as a future extension.

Performance improvement is also part of our future work. Currently, all the aspects are

transformed into MATLAB classes, and all the actions calls are actually made to the methods

in the class objects. It proves to be an overhead when severalcalls are made. As compared

to Java, there is no code in-lining provided by MATLAB . We believe that the performance

of the woven code can be improved using an efficient code in-lining, as it is the case with

AspectJ. Improving the performance is vital, since most of the patterns target a lot of static

shadows, for example, all the array assignments, or all array accesses, or all the function

calls, etc., resulting in frequent aspect class method calls and a performance slowdown.

Another factor which plays an important role in the performance overhead is the MAT-

LAB ’s semantics for array copying. The context information from the static shadow of the

join point is passed on to the actions, and the actual objectsinvolved as a copy. A copy
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elimination analysis can further enhance the performance of the aspect woven code.

It is our expectation that scientists will have new and different uses for aspect-oriented

programming. In addition to the example use cases we provided, we hope that others will

continue to use the language and find new uses and new languageextensions.
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AspectMatlab Grammar

In Chapter 2, the grammar rules for all the concepts and constructs in AspectMatlab lan-

guage are outlined in pieces. Here we provide a complete definition of the AspectMatlab

language definition. If you have a coloured version of this document, you will see that all

references to productions in the McLab implementaion of thebase MATLAB grammar, are

given in red.

〈program〉 ::⇒〈script〉 | 〈function list〉 | 〈class〉 | 〈aspect〉

〈aspect〉 ::⇒’aspect ’ IDENTIFIER 〈stmt separator〉 〈help comment〉

〈aspectbody〉* ’ end ’

〈aspectbody〉 ::⇒

〈propertiesblock〉 〈stmt separator〉

| 〈patternsblock〉 〈stmt separator〉

| 〈methodsblock〉 〈stmt separator〉

| 〈actionsblock〉 〈stmt separator〉

〈patternsblock〉 ::⇒’patterns ’ 〈stmt separator〉 〈patternsbody〉* ’ end ’

〈patternsbody〉 ::⇒IDENTIFIER ’:’ 〈patterndesignators〉 〈stmt separator〉

〈patterndesignators〉 ::⇒

〈patterndesignatorsand〉

| 〈patterndesignators〉 ’ |’ 〈patterndesignatorsand〉

77



AspectMatlab Grammar

〈patterndesignatorsand〉 ::⇒

〈patterndesignatorsunary〉

| 〈patterndesignatorsand〉 ’&’ 〈patterndesignatorsunary〉

〈patterndesignatorsunary〉 ::⇒

〈patterndesignator〉

| ’∼’ 〈patterndesignator〉

〈patterndesignator〉 ::⇒

’(’ 〈patterndesignators〉 ’)’

| ’set ’ ’ (’ 〈patternselect〉 ’)’

| ’get ’ ’ (’ 〈patternselect〉 ’)’

| ’call ’ ’ (’ 〈patternselect〉 ’)’

| ’execution ’ ’ (’ 〈patternselect〉 ’)’

| ’mainexecution ’ ’ (’ ’ )’

| ’ loop ’ ’ (’ 〈patternselect〉 ’)’

| ’ loopbody ’ ’ (’ 〈patternselect〉 ’)’

| ’ loophead ’ ’ (’ 〈patternselect〉 ’)’

| ’within ’ ’ (’ 〈constructtype〉 ’,’ 〈patternselect〉 ’)’

| IDENTIFIER

〈patternselect〉 ::⇒

〈patterntarget〉

| 〈patterntarget〉 ’(’ 〈list dotdot〉 ’)’

〈patterntarget〉 ::⇒

〈patterntargetunit〉

| 〈patterntarget〉 〈patterntargetunit〉

〈patterntargetunit〉 ::⇒’*’ | IDENTIFIER

〈list dotdot〉 ::⇒ε | ’..’

| 〈list star〉

| 〈list star〉 ’,’ ’..’

〈list star〉 ::⇒’*’ | 〈list star〉 ’,’ ’*’

〈constructtype〉 ::⇒’*’ | ’ function ’ | ’script ’ | ’ loops ’

| ’class ’ | ’aspect ’
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〈actionsblock〉 ::⇒’actions ’ 〈stmt separator〉 〈actionsbody〉* ’ end ’

〈actionsbody〉 ::⇒

IDENTIFIER ’:’ 〈action type〉 IDENTIFIER 〈stmt separator〉

〈help comment〉 〈stmt or function〉 ’end ’

| IDENTIFIER ’:’ 〈action type〉 IDENTIFIER ’:’ 〈input params〉

〈stmt separator〉 〈help comment〉 〈stmt or function〉 ’end ’

〈action type〉 ::⇒’before ’ | ’after ’ | ’around ’
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User Manual

A beta-release of the AspectMatlab Compiler (amc) is freely available to download from

www.sable.mcgill.ca/mclab/aspectmatlab .

Once you have a copy of amc.jar, you can execute the jar directly with a list of standard

MATLAB files along with AspectMatlab aspect files.

For example, one might run

java -jar amc.jar myFunc.m myAspect.m

The woven code generated byamccan be found inweaved directory in the current work-

ing directory, which can be executed by any MATLAB system.

B.1 Flags

amcsupports the following list of flags:

• A non-aspect MATLAB file can be specified as a starting point of execution with the

help of a-main flag. For example,myFunc1.m is nominated as the entry point.

java -jar amc.jar -main myFunc1.m myFunc2.m myAspect.m
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• If standard MATLAB code needs to be translated into Natlab compatible code, use

-m flag. In the example below, all files following-m flag will be translated first.

java -jar amc.jar -m myFunc.m myAspect.m

• An output directory other than the default one can be specified using a-out flag.

For example:

java -jar amc.jar -out output myFunc.m myAspect.m

• The version number of theamccan be checked using a-version flag. For exam-

ple:

java -jar amc.jar -version myFunc.m myAspect.m

• The usage of theamccan be checked using a-h or a a-help flag. For example:

java -jar amc.jar -h

java -jar amc.jar -help
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Directory Structure

The AspectMatlab project source has the following directory structure:

• metaLexer - AspectMatlab scanner definition files, which are actually an extension

to the base Natlab scanner. This directory is an input to the MetaLexer tool.

– aspect.mlc : MetaLexer component for an Aspect

– aspect action.mlc : MetaLexer component for an Action

– aspect pattern.mlc : MetaLexer component for a Pattern

– aspects base.mlc : MetaLexer component which extends the Natlab base

component

– aspects matlab.mll : MetaLexer language file for the AspectMatlab

– aspects start.mlc : MetaLexer component for the aspect starting state

• parser - AspectMatlab parser definition files, which are actually anextension to

the base Natlab parser. This directory is an input to the JastAddParser tool.

– aspects.parser : AspectMatlab grammar definition

– header.parser : Header file to specify package name and imports
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• jastadd - AspectMatlab abstract syntax tree (AST) and a collection of attribute

files. These attribute files encode the several integral components of the Aspect-

Matlab compiler at the AST node level. They contain the functionality for weeding

the source code, expression simplification, loop transformation, context information,

matching and weaving, and finally pretty printing the woven code. This directory is

an input to the JastAdd tool.

– aspects.ast : AspectMatlab abstract syntax tree

– AspectsCorrespondingFunctions.jrag : JastAdd attribute for ex-

pression simplification phase

– AspectsInheritedEquations.jrag : JastAdd attribute to specify equa-

tions for the attributes inherited from Natlab

– AspectWeave.jrag : JastAdd attribute for weaving phase

– AssignStmtWeavability.jadd : JastAdd attribute to determine the weave-

abilty of an assignment statement (used to distinguish the statements inserted

by the compiler)

– ContextInfo.jadd : JastAdd attribute to keep the line number for each

statement node

– FetchTargetExpr.jrag : JastAdd attribute to determine the target vari-

able within an expression

– FileName.jadd : JastAdd attribute to keep the file names

– GlobalStructure.jrag : JastAdd attribute for the post-processing phase

– LoopTransformation.jadd : JastAdd attribute for loop transformation

phase

– PrettyPrint.jrag : JastAdd attribute to print out the standard MATLAB

code

– ProceedTransformation.jrag : JastAdd attribute to translate theproceed

calls within anaround action
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– ShadowMatch.jrag : JastAdd attribute for matching phase

– WeaveLoopStmts.jrag : JastAdd attribute for inserting the action calls

inside a loop’s body at certain points with respect tobreak , continue , and

return statements

– Weeding.jadd : JastAdd attribute for weeding phase

• aspectMatlab - AspectMatlab source Java files, which includes the programen-

try point and the complete AspectMatlab system.

– ActionInfo.java : Class definition for theActionInfo structure used

in AspectInfo

– AspectEngine.java : Class definition for the complete AspectMatlab func-

tionality

– Main.java : AspectMatlab entry point
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Scientific Aspects

D.1 Tracking operations that grow arrays

aspect grow

% this aspect catches every set and records data that should b e

% useful in determining which operations increase or decrea se the

% array size. to that effect the size of every variable during the

% run of the program is checked. In the end, the line number of t he

% operation at which the size of each array was maximum, is pri nted

% out along with the size.

properties

variables = struct(); % creates the mapping ’variable’ -> index

changeShape = {}; % how often the dimensions of the array changed

(has to exist previously)

decreaseSize = {}; % how often the size decreased (i.e. a previously

nonzero element was set)

increaseSize = {}; % how often the size increased

arraySize = {}; % size of the array

maxSize = {}; % maximum size of the array

lineNum = {}; % at line number

arraySet = {}; % the number of ’set’ operations
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nextId = 1; % next available index

end

methods

function b = sameShape(this,a,b)

% returns true if a and b have the same shape

if (ndims(a) ˜= ndims(b))

b = false;

elseif (size(a) == size(b))

b = true;

else

b = false;

end

end

function id = getVarId(this,var,line)

% get id of variable by string-name, update ’variables’ if

necessary

if (˜isfield(this.variables,var))

this.variables = setfield(this.variables,var,this.nex tId);

id = this.nextId;

this.nextId = this.nextId+1;

% initialze entry <id> for all the cell arays

this.arraySet {id} = 0; % the number of ’set’ operations

this.changeShape{id} = 0; % how often the dimensions of the

array changed (has to exist previously)

this.decreaseSize{id} = 0; % how often the size decreased (i.e.

a previously nonzero element was set)

this.increaseSize{id} = 0; % how often the size increased

this.arraySize{id} = 0;

this.maxSize{id} = 0;

this.lineNum{id} = line;

else

id = getfield(this.variables,var);

end

end

end
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patterns

arraySet : set( * );

exec : execution(program);

end

actions

message : before exec

disp( ’tracking the operations that grow arrays in the following

program...’ );

end

displayResults : after exec

% will display the results

vars = fieldnames(this.variables);

result = { ’var’ , ’arraySet’ , ’shape

changes’ , ’decrease’ , ’increase’ , ’max size’ , ’line#’ };

pm = [ ’ ’ , char(0177)];

for i=1:length(vars) %iterate over variables

result{i+1,1} = vars{i};

result{i+1,2} = this.arraySet{i};

result{i+1,3} = this.changeShape{i};

result{i+1,4} = this.decreaseSize{i};

result{i+1,5} = this.increaseSize{i};

result{i+1,6} = this.maxSize{i};

result{i+1,7} = this.lineNum{i};

end

disp(result);

end

set : before arraySet : (newVal,obj,name,line,args)

t = obj;

t(args{1:numel(args)}) = newVal;

newVal = t;

% we will exit if the newval is not a matrix

if (˜isnumeric(newVal))
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return;

end;

% get id of variable by string-name, update ’variables’ if

necessary

id = this.getVarId(name,line);

% get var infor

newSize = numel(newVal);

oldSize = this.arraySize{id};

this.arraySize{id} = newSize;

% update the number of ’set’ operations

this.arraySet{id} = this.arraySet{id}+1;

% set shape/sparsity changes

if (˜this.sameShape(newVal,obj))

% how often the dimensions of the array changed (has to exist

previously)

this.changeShape{id} = this.changeShape{id}+1;

end

if (newSize < oldSize)

% how often the size decreased

this.decreaseSize{id} = this.decreaseSize{id}+1;

end;

if (newSize > oldSize)

% how often the size increased

this.increaseSize{id} = this.increaseSize{id}+1;

this.lineNum{id} = line;

this.maxSize{id} = newSize;

end

end

end

end
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D.2 Tracking array sparsity

aspect sparsity

% this aspect catches every set and records data that should b e

% useful in determining which variables can safely be declar ed

% as sparse. to that effect the sparsity of every variable dur ing

% the run of the program is checked, as well as how often the siz e

% of the array and the sparsity changes. the standard deviati on on

% the sparsity is checked as well. also tracks sizes of variab les

% (and stdev). these values are tracked for all variables ove r the

% run of the whole program, for all sets and gets

properties

variables = struct(); % creates the mapping ’variable’ -> index

sizeSum = {}; % the sum of size of variables

sizeSumSquared = {}; % the sum size of variables squared - to

calculate stdev

sparsitySum = {}; % the sum of sparsity

sparsitySumSquared = {}; % the sum of the sparsity squared - to

calculate stdev

changeShape = {}; % how often the dimensions of the array changed

(has to exist previously)

decreaseSparsity = {}; % how often the sparsity decreased (i.e. a

previously nonzero element was set)

increaseSparsity = {}; % how often the sparsity increased

arraySet = {}; % the number of ’set’ operations

arrayGet = {}; % how often the whole array is retrieved

arrayIndexedGet = {}; % how often the array is indexed into

nextId = 1; % next available index

end

methods

function b = sameShape(this,a,b)

% returns true if a and b have the same shape

if (ndims(a) ˜= ndims(b))

b = false;
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elseif (size(a) == size(b))

b = true;

else

b = false;

end

end

function s = stdev(this,sum,sumSquared,N)

mean = sum/N;

s = sqrt(sumSquared/N - meanˆ2);

if (sumSquared/N < meanˆ2) % make numerical errors not report

imaginary results

s = 0;

end;

end

function id = getVarId(this,var)

% get id of variable by string-name, update ’variables’ if

necessary

if (˜isfield(this.variables,var))

this.variables = setfield(this.variables,var,this.nex tId);

id = this.nextId;

this.nextId = this.nextId+1;

% initialze entry <id> for all the cell arays

this.sizeSum{id} = 0; % the sum of size of variables

this.sizeSumSquared{id} = 0; % the sum size of variables

squared - to calculate stdev

this.sparsitySum{id} = 0; % the sum of sparsity

this.sparsitySumSquared{id} = 0; % the sum of the sparsity

squared - to calculate stdev

this.arraySet {id} = 0; % the number of ’set’ operations

this.changeShape{id} = 0; % how often the dimensions of the

array changed (has to exist previously)

this.decreaseSparsity{id} = 0; % how often the sparsity

decreased (i.e. a previously nonzero element was set)

this.increaseSparsity{id} = 0; % how often the sparsity

increased
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this.arrayGet{id} = 0; % how often the whole array is retrieved

this.arrayIndexedGet{id} = 0; % how often the array is indexed

into

else

id = getfield(this.variables,var);

end

end

% returns sparsity

function s = getSparsity(this,val)

if (numel(val) == 0)

s = 1;

else

s = nnz(val)/numel(val);

end

end

% given some matrix and a var id, updates the size, sparsity fi elds

function s = touch(this,id,value)

sp = this.getSparsity(value);

newSize = numel(value);

this.sizeSum{id} = this.sizeSum{id}+newSize; % add new size

this.sizeSumSquared{id} = this.sizeSumSquared{id}+new Sizeˆ2; % add

new size squared

this.sparsitySum{id} = this.sparsitySum{id}+sp; % add to the sum

of sparsity

this.sparsitySumSquared{id} = this.sparsitySumSquared {id}+spˆ2; %

add sum squared

end

end

patterns

arraySet : set( * );

arrayWholeGet : get( * ());

arrayIndexedGet : get( * (..));

exec : execution(program);

end
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actions

message : before exec

disp( ’tracking sparsities of all variables in the following

program...’ );

end

displayResults : after exec

% will display the results

vars = fieldnames(this.variables);

result = { ’var’ , ’size’ , ’sparsity’ , ’arraySet’ , ’shape

changes’ , ’decrease sparsity’ , ’increase sparsity’ , ’get’ , ’indexed

get’ };

pm = [ ’ ’ , char(0177)];

for i=1:length(vars) %iterate over variables

result{i+1,1} = vars{i};

touch =

this.arraySet{i}+this.arrayGet{i}+this.arrayIndexed Get{i}; %

total number of acesses

result{i+1,2} =

strcat(num2str(this.sizeSum{i}/touch, ’\%.1f’ ),pm,num2str(this.stdev(

this.sizeSum{i},this.sizeSumSquared{i},touch), ’\%.1f’ ));

result{i+1,3} =

strcat(num2str(this.sparsitySum{i}/touch, ’\%1.2f’ ),pm,num2str(this.stdev(

this.sparsitySum{i},this.sparsitySumSquared{i},touc h), ’\%1.2f’ ));

result{i+1,4} = this.arraySet{i};

result{i+1,5} = this.changeShape{i};

result{i+1,6} = this.decreaseSparsity{i};

result{i+1,7} = this.increaseSparsity{i};

result{i+1,8} = this.arrayGet{i};

result{i+1,9} = this.arrayIndexedGet{i};

end

disp(result);

end

set : before arraySet : (newVal,obj,name,args)

t = obj;
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t(args{1:numel(args)}) = newVal;

newVal = t;

% we will exit if the newval is not a matrix

if (˜isnumeric(newVal))

return;

end;

% get id of variable by string-name, update ’variables’ if

necessary

id = this.getVarId(name);

% get var infor

newSize = numel(newVal);

sparsity = this.getSparsity(newVal);

oldSparsity = this.getSparsity(obj);

% update the number of ’set’ operations

this.arraySet{id} = this.arraySet{id}+1;

% update tracking info

this.touch(id,newVal);

% set shape/sparsity changes

if (˜this.sameShape(newVal,obj))

% how often the dimensions of the array changed (has to exist

previously)

this.changeShape{id} = this.changeShape{id}+1;

end

if (sparsity < oldSparsity)

% how often the sparsity decreased

this.decreaseSparsity{id} = this.decreaseSparsity{id} +1;

end;

if (sparsity > oldSparsity)

% how often the sparsity increased

this.increaseSparsity{id} = this.increaseSparsity{id} +1;

end
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end

get : before arrayWholeGet : (obj,name)

% we will exit if the value is not a matrix

if (˜isnumeric(obj))

return;

end;

id = this.getVarId(name); % get id of variable by string-name,

update ’variables’ if necessary

this.touch(id,obj);

this.arrayGet{id} = this.arrayGet{id}+1;

end

indexedGet : before arrayIndexedGet : (obj,name)

% we will exit if the value is not a matrix

if (˜isnumeric(obj))

return;

end;

id = this.getVarId(name); % get id of variable by string-name,

update ’variables’ if necessary

this.touch(id,obj);

this.arrayIndexedGet{id} = this.arrayIndexedGet{id}+1 ;

end

end

end

D.3 Measuring floating point operations

aspect flops

% catches

% mul, plus, minus, mtimes, time, plus, sqrt, rdivide, abs

%

% and records the number of flops

% - in total

% - for every call
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% - the number of calls

% per call site, and records the data recursively

%

% uses a stack

% before any call, creates a new ’stack frame’ with number of f lops

of operation

% after any call, destroys stack frame, puts the flops of that

stackframe

% on the new top, and updates call site info

%

% for builtin functions we use an around that adds the flops to the

top

% of the stack, with a proceed

%

% this aspect gives detailed flops infor for every call of ’SV D’

% but that behaviour can be overriden by simply changing the

’tracking’ pointcut

properties

callSite = struct(); % callsite -> id

call = []; % number of calls per call site

flop = []; % flops per call site

nextId = 1;

s = [1, 0]; % put sth in stack=> calls can modify the ’top’ without

error

record = false;

end

methods

% stack methods - stack(1) is the number of elements, which it self

follow

function s=stack(this)

s=[0];

end

function stack=push(this,stack,element)

stack(stack(1)+2) = element;

stack(1) = stack(1)+1;
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end

function [stack,element]=pop(this,stack)

if (stack(1) == 0)

error( ’trying to pop from empty stack’ );

end

element = stack(stack(1)+1);

stack(1) = stack(1)-1;

end

% given a scope (function) name (location), line number and

operation, returns the

% associated index in calls and flops

function id = getId(this,name,line,op)

location = strcat(name, ’_’ ,num2str(line), ’_’ ,op);

if (˜isfield(this.callSite,location))

this.callSite=setfield(this.callSite,location,this. nextId);

this.flop(this.nextId) = 0;

this. call(this.nextId) = 0;

id = this.nextId;

this.nextId = this.nextId + 1;

else

id = getfield(this.callSite,location);

end

end

end

patterns

tracking: call(SVD);

pminus : call(minus ( * , * ));

pmtimes : call(mtimes ( * , * ));

ptimes : call(times ( * , * ));

pplus : call(plus ( * , * ));

psqrt : call(sqrt ( * ));

prdivide: call(rdivide( * , * ));

pabs : call(abs ( * ));
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any : call( * );

end

actions

% before tracked call set up vars

beforeTrack : before tracking : (name)

fprintf( ’encountered call to %s, recording flops...\n’ ,name);

this.callSite = struct(); % callsite -> id

this. call = []; % number of calls per call site

this.flop = []; % flops per call site

this.nextId = 1;

this.s = this.stack();

this.record = true;

end

% before any call - take care of loops on stack (if recording)

% this gets called after the beforeTrack advice, so that the t racked

call can

% report information

bany : before any

if (˜this.record)

return; % return if we are not recording

end

this.s = this.push(this.s,0);

end

% after call - store info and put flops on previous ’stack fram e’

% ’aany’ should get called first, because a call to the tracki ng

function

% should still list said call with the corresponding flops

information

aany : after any : (name,line,loc);

if (˜this.record)

return; % return if we are not recording

end

[this.s,f] = this.pop(this.s); % get flops and return stack

id = this.getId(loc,line,name);
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this. call(id) = this. call(id) + 1;

this.flop(id) = this.flop(id) + f;

% if the stack isn’t empty, put all those flops on the previous

frame

if (this.s(1) ˜= 0)

[this.s, fold] = this.pop(this.s);

this.s = this.push(this.s,f + fold);

end

end

% after tracked call print out results

afterTrack : after tracking

% print info

fprintf( ’finished tracking function call, here are the

results:\n’ );

fields = fieldnames((this.callSite));

result = { ’call site’ , ’# of calls’ , ’total flops’ };

format( ’long’ );

for i = 1:numel(fields);

field = fields{i};

id = getfield(this.callSite, field);

result{i+1,1} = field;

result{i+1,2} = this. call(id);

result{i+1,3} = this.flop(id);

end

disp(result);

% put something in the stack so that calls can modify the ’top’

without error

this.s = this.push(this.stack(),0);

this.record = false;

end

%the operations

% we assume matrix multiplication of A:mxn, B:nxk takes (2n- 1) * k* m

operations

amtimes : around pmtimes : (args)

proceed(); % first perform call
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f = (2 * size(args{1},2) - 1) * size(args{1},1) * size(args{2},2);

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);

end

% binary element-wise operations

aminus : around pminus : (args)

proceed(); % first perform call

f = max(numel(args{1}),numel(args{2}));

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);

end

atimes : around ptimes : (args)

proceed(); % first perform call

f = max(numel(args{1}),numel(args{2}));

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);

end

aplus : around pplus : (args)

proceed(); % first perform call

f = max(numel(args{1}),numel(args{2}));

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);

end

ardivide : around prdivide : (args)

proceed(); % first perform call

f = max(numel(args{1}),numel(args{2}));

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);

end

% unary element wise operations

asqrt : around psqrt : (args)

proceed(); % first perform call

f = (numel(args{1}));

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);
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end

aabs : around pabs : (args)

proceed(); % first perform call

f = (numel(args{1}));

[this.s,fold] = this.pop(this.s);

this.s = this.push(this.s,f+fold);

end

end

end

D.4 Adding units to computations

aspect unit

% allows adding units

% units are SI and SI derived units

% the unit is denoted by a vector

% ====[metre, kg, second, Ampere, Kelvin, candela, mol]=== ===

% all acesses to functions denoted by units are overriden

% all operations are overriden

% indexing gets overriden

% uses structs using the aspect_annoted flag

properties

noUnit = [0, 0, 0, 0, 0, 0, 0];

annotated = ’aspect_annotated’ ;

one = struct( ’aspect_annotated’ ,true, ’val’ ,1, ’unit’ ,[0, 0, 0, 0, 0,

0, 0]);

units = struct(... % defines all SI and SI derived unit names and

value (may be used for printing as well)

’m’ , [1, 0, 0, 0, 0, 0, 0],...

’Kg’ , [0, 1, 0, 0, 0, 0, 0],...

’s’ , [0, 0, 1, 0, 0, 0, 0],...

’A’ , [0, 0, 0, 1, 0, 0, 0],...

’K’ , [0, 0, 0, 0, 1, 0, 0],...

’cd’ , [0, 0, 0, 0, 0, 1, 0],...
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’mol’ ,[0, 0, 0, 0, 0, 0, 1],...

’J’ , [2, 1,-2, 0, 0, 0, 0],...

’N’ , [1, 1,-2, 0, 0, 0, 0]);

constants = struct(... % defines constants or units whose factor

(compared to SI units) are not 1

’km’ , {[1, 0, 0, 0, 0, 0, 0],1000},...

’year’ , {[0, 0, 1, 0, 0, 0, 0],31556926},...

’lb’ , {[0, 1, 0, 0, 0, 0, 0],0.45359237},...

’inches’ , {[1, 0, 0, 0, 0, 0, 0],0.0254},...

’feet’ , {[1, 0, 0, 0, 0, 0, 0],0.3048},...

’G’ , {[3,-1,-2, 0, 0, 0, 0], 6.6730e-11},...

’dozen’ , {[0, 0, 0, 0, 0, 0, 0],12},...

’AU’ , {[1, 0, 0, 0, 0, 0, 0],149598000 * 1000},...

’c’ , {[1, 0,-1, 0, 0, 0, 0],299792458},...

’KJ’ , {[2, 1,-2, 0, 0, 0, 0],1000},...

’g’ , {[0, 1, 0, 0, 0, 0, 0],0.001},...

’L’ , {[3, 0, 0, 0, 0, 0, 0],0.001},...

’kilotons’ ,{[0, 1, 0, 0, 0, 0, 0],1000 * 1000},...

’m_earth’ , {[0, 1, 0, 0, 0, 0, 0],5.9742e24},...

’r_earth’ , {[1, 0, 0, 0, 0, 0, 0],6378100});

end

methods

function s = annotate(this,x)

% takes in a value and returns value that is unit-annotated fo r sure

% if it is annotated already, the same unit is returned

if (isstruct(x) && isfield(x,this.annotated))

s = x;

else

s = struct(this.annotated,true, ’val’ ,x, ’unit’ ,this.noUnit);

end

end

function [a,b,c] = prepareOp(this,args)

% prepares input args a,b and output arg c for binary operatio n --

this

% is just common code put in a separate function
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if (length(args) ˜= 2)

error(strcat( ’binary operation needs exactly 2 arguments’ ));

end

a = this.annotate(args{1});

b = this.annotate(args{2});

c = this.one;

end

% displays a unit on screen

function display(this,v)

if ((isstruct(v)) && isfield(v, this.annotated))

fprintf( ’%s:’ ,this.unitString(v.unit)); disp(v.val);

else

disp(v);

end

end

function s = unitString(this,v)

% returns the unit string of a given unit vector

% this is done greedily/recursively by picking the unit that most

reduces the 1-norm

% of the unit vector.

s = ’’ ;

if (v == this.noUnit)

return;

end

names = fieldnames(this.units);

print = zeros(length(names), 1);

% this loop picks the unit that most reduces the 1-norm of v,

% and adds it to ’print’ until v is 0

while (˜same(v,0 * v))

newPNorm = (print * 0);

newMNorm = (print * 0);

for i = (1 : length(names))

u = getfield(this.units, names{i}); % get vector for unit i
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newPNorm(i) = norm((v - u), 1); % see how much that unit

reduces the unit vector v

newMNorm(i) = norm((v + u), 1); % same but with inverted unit

end

[minPNorm, minPi] = min(newPNorm);

[minMNorm, minMi] = min(newMNorm);

if (minPNorm < minMNorm) % put the found unit into print vector

print(minPi) = (print(minPi) + 1); % positive unit (unitˆ1)

u = -getfield(this.units, names{minPi});

else

print(minMi) = (print(minMi) - 1); % negativ unit (unitˆ-1)

u = (getfield(this.units, names{minMi}));

end

v = (v + u);

end

% put whatever is in the print vector into a string

for i = (1 : length(print))

if (print(i) ˜= 0)

s = strcat(s, strcat( ’ * ’ , names{i}));

if (print(i) ˜= 1)

s = strcat(s, strcat( ’ˆ’ , num2str(print(i))));

end

end

end

s = s(2:length(s)); % we know there must be one unit - replace

leading ’ * ’

end

end

patterns

disp : call(disp);

plus : call(plus( * , * ));

minus : call(minus( * , * ));

mtimes : call(mtimes( * , * ));

mrdivide : call(mrdivide( * , * ));

power : call(power( * , * ));
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round : call(round( * ));

colon : call(colon( * ,..));

allCalls : call( * ());

loopheader : loophead( * );

end

actions

% captures all loop invocations for i = range, and overwrites the

% expression to be a struct-array instead of a structure with an

array inside

loop : around loopheader : (newVal)

range = this.annotate(newVal);

% loop through range.val, and record whatever the for loop

captures in a cell array

acell = {};

for i = (range.val)

acell{length(acell)+1} = i;

end

varargout{1} =

struct(this.annotated,true, ’val’ ,acell, ’unit’ ,range.unit);

end

acalls : around allCalls : (name)

% captures all calls and checks whether they are a nuit - if so,

return the unit

% this advice is first so that it gets matched last

if (isfield(this.units,name))

varargout{1} =

struct(this.annotated,true, ’val’ ,1, ’unit’ ,getfield(this.units,name));

else

if (isfield(this.constants,name))

pair = getfield(this.constants,name);

varargout{1} = struct(this.annotated, true, ’val’ , getfield(

this.constants,{2},name), ’unit’ ,

getfield(this.constants,{1},name));

else

proceed();
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end

end

end

adisp : around disp : (args)

% overrdes printing so that we add units

if (length(args) ˜= 1)

error( ’Error using disp -- need exactly one argument)’ );

end

v = args{1};

if (isstruct(v) && isfield(v,this.annotated))

this.display(v);

else

disp(v);

end

end

aplus : around plus : (args)

% +

[a,b,c] = this.prepareOp(args);

c.val = a.val+b.val;

if (a.unit ˜= b.unit)

error( ’the units of the arguments for operation + must match’ );

end

c.unit = a.unit;

varargout{1} = c;

end

aminus : around minus : (args)

% -

[a,b,c] = this.prepareOp(args);

c.val = a.val-b.val;

if (a.unit ˜= b.unit)

error( ’the units of the arguments for operation - must match’ );

end

c.unit = a.unit;

varargout{1} = c;
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end

amtimes : around mtimes : (args)

% *

[a,b,c] = this.prepareOp(args);

c.val = a.val * b.val;

c.unit = a.unit+b.unit;

varargout{1} = c;

end

amrdivide : around mrdivide : (args)

% /

[a,b,c] = this.prepareOp(args);

c.val = a.val/b.val;

c.unit = a.unit-b.unit;

varargout{1} = c;

end

power : around power : (args)

% .ˆ

[a,b,c] = this.prepareOp(args);

c.val = a.val.ˆb.val;

if (b.unit ˜= this.noUnit)

error( ’cannot use power with a non empty unit’ );

end

if (isscalar(b.val))

c.val = a.val.ˆb.val;

c.unit = a.unit * b.val;

else

if (a.unit ˜= this.noUnit)

error( ’cannot use power operation resulting mixed unit matrix’ );

end

c.unit = this.noUnit;

end

varargout{1} = c;

end
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round : around round : (args)

% round

if (length(args) ˜= 1)

proceed();

end

a = this.annotate(args{1});

a.val = round(a.val);

varargout{1} = a;

end

colon : around colon : (args)

% : :

if (length(args) ˜= 2 && length(args) ˜= 3)

proceed();

end

a = this.annotate(args{1});

b = this.annotate(args{2});

c = this.one;

o = this.one;

o.unit = a.unit;

if (b.unit ˜= a.unit)

error( ’error in colon: the units need to be the same’ );

end

if (length(args) == 3)

c = this.annotate(args{3});

if (c.unit ˜= a.unit)

error( ’error in colon: the units need to be the same’ );

end

o.val = a.val:b.val:c.val;

else

o.val = a.val:b.val;

end

varargout{1} = o;

end

end

end
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D.5 Interpreting loop iteration space

aspect loops

properties

stack = {};

top = 1;

end

methods

function push(this, s)

if(numel(s) > 0)

this.stack{this.top}.lbound = s(1);

this.stack{this.top}.ubound = s(numel(s));

this.stack{this.top}.increment = this.increment(s);

else

this.stack{this.top}.lbound = NaN;

this.stack{this.top}.ubound = NaN;

this.stack{this.top}.increment = NaN;

end

this.stack{this.top}.iteration = 0;

this.top = this.top + 1;

end

function pop(this)

this.top = this.top - 1;

end

function lb = getLBound(this)

lb = this.stack{this.top-1}.lbound;

end

function ub = getUBound(this)

ub = this.stack{this.top-1}.ubound;

end

function inc = getIncrement(this)
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inc = this.stack{this.top-1}.increment;

end

function iteration = getIteration(this)

iteration = this.stack{this.top-1}.iteration;

end

function update(this, iteration)

this.stack{this.top-1}.iteration = iteration;

end

function inc = increment(this, s)

size = numel(s);

first = s(1);

last = s(size);

step = (last-first)/(size-1);

if(s(1):step:s(size) == s)

inc = step;

else

inc = NaN;

end

end

end

patterns

ploophead : loophead( * );

ploopbody : loopbody( * );

ploop : loop( * );

lbound : call(lBound) & within( loops, * );

ubound : call(uBound) & within( loops, * );

increment : call(increment) & within( loops, * );

iteration : call(iteration) & within( loops, * );

end

actions
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aLoopHead : after ploophead : (newVal)

this.push(newVal);

end

aLoopBody : before ploopbody : (counter)

this.update(counter);

end

aLoop : after ploop

this.pop();

end

aLBound : around lbound

% captures all loop invocations for lBound

varargout{1} = this.getLBound();

end

aUBound : around ubound

% captures all loop invocations for uBound

varargout{1} = this.getUBound();

end

aIncrement : around increment

% captures all loop invocations for increment

varargout{1} = this.getIncrement();

end

aIteration : around iteration

% captures all loop invocations for iteration

varargout{1} = this.getIteration();

end

end

end
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