
ASPECT IMPACT ANALYSIS

by

Dehua Zhang

School of Computer Science

McGill University, Montréal

August 2008

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2008 by Dehua Zhang

Abstract

One of the major challenges in aspect-oriented programming is that aspects may have

unintended impacts on a base program. Thus, it is important to develop techniques and

tools that can both summarize the impacts and provide information about the causes of the

impacts. This thesis presents impact analyses for AspectJ.

Our approach detects different ways advice and inter-type declarations interact and in-

terfere with the base program and focuses on four kinds of impacts, state impacts which

cause changes of state in the base program, computation impacts which cause changes in

functionality by adding, removing or replacing computations of the base program, shad-

owing impacts which cause changes of field reference in the base program, and lookup

impacts which cause changes of method lookup in the base program.

We provide a classification scheme for these kinds of impacts and then develop a set

of static analyses to estimate these impacts. A key feature of our approach is the use of

points-to analysis to provide more accurate estimates. Further, our analysis results allow us

to trace back to find the causes of the impacts.

We have implemented our techniques in the AspectBench compiler. By implementing

them in an AspectJ compiler, all kinds of pointcuts, advice and inter-type declarations can

be analyzed. We also have integrated these analyses into an AspectJ IDE and provided

a two-way navigation between impacts and program source code. In addition, we have

carried out experiments on example programs and benchmarks to investigate the results of

our analyses.

i

ii

Résumé

L’un des principaux défis de la programmation orientée aspect est que les aspects

peuvent avoir des effets non voulus sur le programme de base. Il est donc important de

développer des techniques et des outils qui peuvent mesurer les impacts et fournir des in-

formations sur ce genre de phénomène. Cette thèse présente des analyses d’impact pour

AspectJ.

Notre approche examines les différentes voies par lesquelles les aspects peuvent inter-

agir avec le programme de base et se concentre sur quatre types d’impacts, les impacts

d’état qui provoquent des changements d’état dans le programme de base, les impacts de

calcul qui provoquent des changements au niveau des fonctions par l’ajout, la suppres-

sion ou le remplacement de calculs le programme de base, les impacts d’ombres qui pro-

voquent des changements de domaine références dans le programme de base et les impacts

de référence qui provoquent des changements au niveau des méthodes référencées.

Nous offrons un systéme de classification pour ces types d’impacts et développons une

série d’analyses statiques pour évaluer ces impacts. Un élément clé de notre approche est

l’utilisation d’analyses de pointeurs afin de fournir des estimations plus précises. En outre,

nos résultats d’analyse nous permettent de remonter plus loin et de trouver les causes de

ces impacts.

Nous avons mis en place nos techniques dans le compilateur AspectBench pour As-

pectJ. En les appliquant dans un compilateur AspectJ, plusieurs sortes de déclarations

peuvent être analysées. Nous avons également intégré ces des analyses dans un environ-

nement de développement AspectJ et avons fourni une navigation bidirectionnelle entre les

impacts et le code source. En outre, nous avons procédé à des expériences sur des pro-

grammes de test pour démontrer les résultats d’analyses typiques.

iii

iv

Acknowledgements

First and foremost I would like to thank my supervisor Dr. Laurie Hendren for guiding

and encouraging me to choose this interesting topic, for sharing her ideas, making sugges-

tions and providing assistance throughout the research and writing of this thesis. This work

would not have been possible without the support and encouragement of her.

I would also like to thank fellow graduate student Eric Bodden as well as the rest of the

Sable Research Group. Additional thanks to Maxime Chevalier-Boisvert for translating the

thesis abstract into French.

This work was mainly funded by the NSERC and FQRNT, and I am thankful to those

committee members for recognizing and supporting computer science research.

Finally I would like to thank my parents and my sister for their support and my wife for

believing in me and putting up with me throughout this very challenging time.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

List of Listings xv

List of Listings xv

List of Algorithms xvii

1 Introduction and Motivation 1

1.1 Motivation . 1

1.2 Contribution . 2

1.2.1 Classification of Impacts . 2

1.2.2 Static Analyses in the AspectBench Compiler 3

1.2.3 IDE Integration . 3

1.2.4 Experiments . 4

1.3 Organization . 4

vii

2 Background 5

2.1 Tools Overview . 5

2.1.1 Soot . 5

2.1.2 abc . 8

2.1.3 Eclipse . 12

2.1.4 AJDT . 12

2.2 The Benchmarks . 13

3 Four Kinds of Impact 15

3.1 Overview . 15

3.2 Examples . 16

3.2.1 Bank . 16

3.2.2 Source Code Repository . 21

3.3 State Impact . 24

3.4 Computation Impact . 25

3.4.1 Exact-proceed . 25

3.4.2 Invariant Advice . 26

3.4.3 Variant Advice . 26

3.5 Shadowing Impact . 28

3.6 Lookup Impact . 30

3.7 Aspect Interference . 32

3.7.1 Java part is the base program . 32

3.7.2 Everything except me . 32

4 State Impact 35

4.1 Definition . 35

4.2 Analysis . 36

4.2.1 Direct State Impact . 36

4.2.2 Indirect State Impact . 38

4.2.3 Distinguish Direct and Indirect State Impact 39

4.3 Experimental Results . 40

viii

4.3.1 Examples . 40

4.3.2 Benchmarks . 42

5 Computation Impact 45

5.1 Definition . 45

5.2 Analysis . 46

5.2.1 Exact-proceed Analysis . 47

5.2.2 Computation Impact . 56

5.3 Experimental Results . 60

5.3.1 Examples . 60

5.3.2 Benchmarks . 61

6 Shadowing Impact 65

6.1 Inter-type Field Declaration . 66

6.1.1 Definition . 66

6.1.2 Analysis . 67

6.2 Inter-type Parents Declaration . 68

6.2.1 Inter-type-extends-declaration . 69

6.2.2 Inter-type-implements-declaration 73

6.3 Experimental Results . 73

6.3.1 Examples . 73

6.3.2 Benchmarks . 74

7 Lookup Impact 77

7.1 Finding the Matched Method . 77

7.1.1 Accessible Methods and Invocation Place 78

7.1.2 Applicable Methods . 79

7.1.3 Most Specific Method . 80

7.2 Inter-type Method Declaration . 81

7.2.1 Definition . 81

7.2.2 Analysis . 82

7.3 Inter-type Constructor Declaration . 85

ix

7.3.1 Definition . 85

7.3.2 Analysis . 85

7.4 Inter-type Parents Declaration . 87

7.4.1 Inter-type-extends-declaration . 87

7.4.2 Inter-type-implements-declaration 90

7.5 Experimental Results . 90

7.5.1 Examples . 90

7.6 Benchmarks . 93

8 Visualization - Eclipse Plug-in 95

8.1 Overview . 95

8.2 Running AIA . 96

8.3 Impact View . 98

8.4 Impact Marker . 104

8.5 Summary . 104

9 Related Work 107

9.1 Analyzing, Categorizing and Classifying Aspects 107

9.2 Improving AOP Language and Enhancing Reasoning 109

10 Conclusions and Future Work 113

10.1 Conclusions . 113

10.2 Future Work . 114

Bibliography 117

x

List of Figures

2.1 abc overall design, adapted from [dM04] 9

2.2 Code generation and static weaving of abc, and the pre-weave hierarchy

recording phase of AIA in static weaving, extended from [ACH+05] 10

2.3 Advice weaving and post-processing of abc [dM04] 11

2.4 AIA in post-processing . 11

3.1 Class hierarchy of account classes . 18

3.2 Class hierarchy of credit card classes after applying CreditCardAspect . 21

3.3 Comparison of class hierarchy of credit card classes with and without GoldCard

.bonus inter-type declaration . 28

3.4 Comparison of class hierarchy of credit card classes with and without ValueCard

extends RewardCard inter-type declaration 30

3.5 Comparison of class hierarchy of credit card classes with and without GoldCard

.payment() inter-type declaration . 31

6.1 Shadowing impact analysis on inter-type field declaration example 69

6.2 An example class hierarchy . 69

6.3 Code generation and static weaving of abc, and the pre-weave hierarchy

recording phase of AIA in static weaving, extended from [ACH+05] 72

6.4 Two inter-type-extends-declarations on the same type example 72

6.5 Inter-type implements declarations example 73

7.1 Invocation place example . 79

7.2 Lookup impact analysis on inter-type method declaration example 82

7.3 Lookup impact analysis on inter-type constructor declaration example . . . 85

xi

7.4 Inter-type-extends-declarations example 89

8.1 Eclipse plug-in snapshot . 96

8.2 Main class selection dialog . 97

8.3 Running progress dialog . 97

8.4 Advice highlighting . 99

8.5 Impact view displaying computation and state impacts 100

8.6 Impact view displaying shadowing and lookup impacts 102

8.7 Impact view linking with the editor . 103

xii

List of Tables

2.1 Basic benchmark metrics . 14

3.1 Classification of computation impacts . 27

4.1 Basic statistics about benchmarks . 43

5.1 Basic statistics about benchmarks . 62

6.1 Basic statistics about benchmarks . 75

7.1 Analysis result of inter-type method declaration example 84

7.2 Basic statistics about benchmarks . 94

xiii

xiv

List of Listings

2.1 stepPoly in Java form [VRHS+99] . 6

2.2 stepPoly in Jimple form [VRHS+99] 7

2.3 stepPoly in disassembled bytecode form 8

3.1 AbstractAccount.java . 17

3.2 CheckingAccount.java . 17

3.3 StudentCheckingAccount.java . 17

3.4 AccountAspect.aj . 18

3.5 AbstractCreditCard.java . 19

3.6 RewardCard.java . 19

3.7 ValueCard.java . 19

3.8 GoldCard.java . 20

3.9 CreditCardAspect.aj . 20

3.10 Bank.java . 22

3.11 Output of bank example . 22

3.12 SourceCodeRepository.java . 23

3.13 SourceCodeRepositoryAspect.aj . 24

4.1 Report of analyzing advice in the bank example 41

4.2 Report of analyzing the glass and table example 42

5.1 UnchangedParamsAnalysis example 50

5.2 UnchangedReturnAnalysis example 53

5.3 UnchangedReturnAnalysis example demonstrating side-effect 54

5.4 Report of analyzing advice in the bank example 61

5.5 Report of analyzing the source code repository example 61

xv

6.1 Report of analyzing inter-type declarations in the bank example 74

7.1 Report of analyzing inter-type declarations in bank example 91

7.2 Report of analyzing the source code repository example 93

xvi

List of Algorithms

4.1 State impact analysis . 36

4.2 Analyze(body, adstmt) in Algorithm 4.1 . 37

5.1 Computation impact analysis . 47

6.1 Shadowing impact analysis on inter-type field declaration 67

7.1 Lookup impact analysis on inter-type method declaration 83

7.2 Lookup impact analysis on inter-type constructor declaration 86

xvii

xviii

Chapter 1

Introduction and Motivation

1.1 Motivation

Aspect-oriented programming (AOP) introduces aspects as language constructs that address

cross-cutting concerns [SW07]. Aspects can observe, alter or augment the behavior of base

programs. Although this functionality is very powerful, it is also possible that aspects

break encapsulation or impact on the based program in unintended ways. The purpose of

this work is to provide static analyses that can summarize impacts and help programmers

understand impacts and locate the causes of impacts in AspectJ programs.

AspectJ is a popular AOP language which is defined as a convenient extension of Java.

An aspect defined in AspectJ can declare different kinds of advice and inter-type declara-

tions. Advice can modify the base program state by writing to fields or change the pro-

gram’s execution by adding to, substituting, repeating or eliminating computations. Inter-

type declarations can interfere with field reference and method lookup by introducing new

members or modifying the class hierarchy in base program. Complex interactions between

the base program and aspects can make AspectJ programs difficult to understand and main-

tain. The possibility of obliviously and globally changing the behavior of the base program

[Stö03b] may lead to undesired and unexpected impacts. In particular, AspectJ users may

find that aspects interfere or interact with classes, components or data structures in a way

that was not anticipated. Thus, even though many programmers have good uses for aspects,

1

Introduction and Motivation

the uncertainty about the impacts of the aspects on the base code can limit adoption of As-

pectJ. Therefore, techniques and tools that can both analyze impacts of aspects on base

programs and summarize the causes of impacts are desired. In addition, most programmers

are accustomed to developing their software using an Integrated Development Environment

(IDE), thus integrating the analysis results into an IDE and providing a graphical/interac-

tive presentation of analysis results is desired.

1.2 Contribution

To address theses issues, we studied the complicated interactions between aspects and base

programs in AspectJ and proposed a concise classification of impacts based on state and

computation changes caused by advice and inter-type declarations. We also developed a

set of static analysis to analyze these impacts. Finally, we designed and implemented an

Eclipse plug-in to present analysis results graphically and interactively. We refer to our

collection of tools and techniques as AIA—Aspect Impact Analysis.

1.2.1 Classification of Impacts

Since the behavior of a program depends on both the program state and computations ex-

ecuted, and an aspect interferes or interacts with the base program mainly through advice

and inter-type declarations, we classify impacts into four categories.

state impact: Indicates changes of state in the base program caused by advice interacting

with base program.

computation impact: Indicates changes to which computations are performed caused by

advice interacting with base program.

shadowing impact: Indicates changes of field references in the base program caused by

inter-type declarations interfering the base program.

lookup impact: Indicates changes of method lookups in the base program caused by inter-

type declarations interfering the base program.

2

1.2. Contribution

We further classify state impact into direct state impact which indicates field changes

caused by code in the advice body directly, and indirect state impact which indicates field

changes caused by methods called or transitively called by code in the advice body. In

addition, we further classify computation impacts into invariant or variant. We expect

most advice to actually do something, so most advice will have a variant computation

impact. Variant computation impacts come in five flavors, addition, elimination, definite-

substitution and conditional-substitution and mixed based on whether computations were

added, eliminated, definitely substituted, conditionally substituted, or a combination of

different possibilities.

1.2.2 Static Analyses in the AspectBench Compiler

Following the above classification, we implemented a series of static analyses in the back-

end of the AspectBench compiler, abc, to analyze the impacts of aspects on both the state

and computation of a base program so that the hidden impacts of aspects are revealed. We

analyze how fields of base classes are accessed to expose state impacts; we analyze the

effect of advice on computation by categorizing each advice into the appropriate compu-

tation impact category; we analyze how field references are changed in a base program to

expose shadowing impacts; and we analyze how method lookups are changed in a base

program to expose lookup impact. Key features of our approach are that we make use of

the points-to analysis available in abc to give a more precise analysis, and we use analysis

results to provide a more descriptive and informative analyses report, which provides both

information about the impacts and the causes of impacts which can guide the programmer

in understanding these impacts.

1.2.3 IDE Integration

We also integrated the analyses into an IDE. We implemented an Eclipse plug-in to run

these analysis under the most popular AspectJ IDE—AspectJ Development Tools (AJDT),

which is an Eclipse plug-in itself. We visualize analysis results and provide programmers

a two-way navigation between the analysis results and the source code. Code involved in

impacts are marked in the source code editor so that programmers can navigate from the

3

Introduction and Motivation

source code to the analysis results; and the presentation of analysis results is interactive

so that programmers can navigate directly to the parts of the source code involved in the

impacts.

1.2.4 Experiments

We experimented with four example AspectJ programs and eight benchmarks to illustrate

how our classification and analyses can help programmers understand AspectJ programs

and even fix bugs caused by improperly designed advice. We also present screen shots of

analyzing example AspectJ programs in the Eclipse plug-in.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the background tools, in-

cluding Soot, abc, Eclipse and AJDT, upon which this work is based. Chapter 3 introduces

four different kinds of impact and provides some motivating examples. Chapters 4, 5, 6

and 7 discuss state impact, computation impact, shadowing impact, and lookup impact in

detail and present the corresponding static analysis to discover these impacts, respectively;

experimental results of examples and benchmarks for each kind of impact are also given

in each chapter. Chapter 8 introduces the Eclipse plug-in and discusses its usage and im-

plementation in detail. Chapter 9 discusses related work. Finally, in Chapter 10, we give

conclusions and discuss future work.

4

Chapter 2

Background

2.1 Tools Overview

This work is based on four large software projects: abc, Soot, Eclipse and AJDT. All

analyses are built under the Soot framework in the back-end of abc, and the visualization

is built on top of AJDT under the Eclipse platform. In this section, we give an overview of

each and a description of how they are used in this work.

2.1.1 Soot

Soot1 [VRHS+99, VR00] is a Java program analysis and optimization framework devel-

oped by the Sable Research Group at McGill University over the past decade.

Soot supports four intermediate representations (IRs) for representing Java bytecode:

Baf, Jimple, Shimple and Grimp. Although all these IRs can be used to perform analysis

and transformation of Java program, Jimple is the most suitable IR. Jimple is a typed,

stack-less, 3-address representation of bytecode. In Jimple, statements are represented by

sub-types of the Stmt interface. There are only 15 different kinds of Stmt in Jimple.

Compared to hundreds of different kinds of bytecode instructions, Jimple is much easier

to manipulate. Stacks in bytecode are replaced by local variables in Jimple introduced by

1http://www.sable.mcgill.ca/soot

5

Background

Soot. In addition, all local variables are given explicit names and types. These features

make Jimple an ideal IR for facilitating the implementation of analyses and optimizations.

Listing 2.2 shows an example of Jimple code corresponding to the Java program in Listing

2.1. Comparing to bytecode in Listing 2.3, note the compactness of instruction set and

typed local variables, and that stacks are replaced by local variables prefixed with $. Soot

also includes a data-flow analysis framework which is not IR specific. Many analyses in

our project are implemented using this framework on the Jimple IR.

1 public int stepPoly(int x)

2 {

3 if (x < 0) {

4 System.out.println("foo");

5 return -1;

6 } else if (x <=5) {

7 return x * x;

8 } else {

9 return x * 5 + 16;

10 }

11 }

Listing 2.1 stepPoly in Java form [VRHS+99]

To support inter-procedural analysis, Soot constructs a call graph, which contains infor-

mation regarding possible targets of virtual method calls, if running in the whole-program

mode. The simplest call graph is constructed through Class Hierarchy Analysis (CHA), and

both Rapid Type Analysis (RTA) and Variable Type Analysis (VTA) [SHR+00] can provide

more accurate call graphs. In our project, we use call graph information to estimate targets

of method calls, and since call graph constructor needs a specific entry point, the main

class, of a program, AIA also requires this information.

There are two different points-to analyses and call graph construction frameworks in

Soot: SPARK [LH03, Lho02] and Paddle [Lho06]. Points-to analysis is a static pro-

gram analysis intended to estimate the set of locations pointed-to by a reference vari-

able [EGH94]. SPARK is a customizable framework for inter-procedural, flow-insensitive

and context-insensitive points-to analysis, and a points-to analysis is provided as part of

SPARK. While gathering points-to information, SPARK also constructs a call graph on the

fly utilizing the points-to information gathered, and this call graph is more precise than the

6

2.1. Tools Overview

1 public int stepPoly(int)

2 {

3 Test r0;

4 int i0, $i1, $i2, $i3;

5 java.io.PrintStream $r1;

6

7 r0 := @this: StepPoly;

8 i0 := @parameter0: int;

9 if i0 >= 0 goto label0;

10

11 $r1 = <java.lang.System: java.io.PrintStream out>;

12 virtualinvoke $r1.<java.io.PrintStream:void

println(java.lang.String)>("foo");

13 return -1;

14

15 label0:

16 if i0 > 5 goto label1;

17

18 $i1 = i0 * i0;

19 return $i1;

20

21 label1:

22 $i2 = i0 * 5;

23 $i3 = $i2 + 16;

24 return $i3;

25 }

Listing 2.2 stepPoly in Jimple form [VRHS+99]

one generated using CHA. Paddle provides context-sensitive analysis, implemented using

Binary Decision Diagrams (BDD) [BLQ+03]. In our project, points-to analysis results are

used to deduce possible types of reference variables and to determine aliased variables.

Soot also has a side-effect analysis [Raz99] built-in and exposes the SideEffect-

Tester [Lho02] interface. Side-effect analysis is a static program analysis intended to

estimate variables that inspected or altered by a computation, and the side-effect tester tells

if a variable is read/written by a computation. Two different side effect testers are imple-

mented as part of Soot: NaiveSideEffectTester, which is conservative and naive, and

PASideEffectTester, which uses call graph and points-to information. In our project,

the side-effect tester is invoked to test the invariance of variables.

However, the call-graph, points-to and side effect information can only be built or gath-

7

Background

1 public int stepPoly(int);

2 Code:

3 0: iload_1

4 1: ifge 14

5 4: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;

6 7: ldc #3; //String foo

7 9: invokevirtual #4; //Method

java/io/PrintStream.println:(Ljava/lang/String;)V

8 12: iconst_m1

9 13: ireturn

10 14: iload_1

11 15: iconst_5

12 16: if_icmpgt 23

13 19: iload_1

14 20: iload_1

15 21: imul

16 22: ireturn

17 23: iload_1

18 24: iconst_5

19 25: imul

20 26: bipush 16

21 28: iadd

22 29: ireturn

Listing 2.3 stepPoly in disassembled bytecode form

ered if the whole program is analyzed, and AIA needs this information; thus AIA cannot

analyze partial programs.

2.1.2 abc

abc2 [ACH+05], the aspectbench compiler (abc), which is developed by a joint team from

Oxford, McGill and BRICS universities, is an extensible AspectJ compiler and supports

the whole of the AspectJ language. The design goals of abc are simplicity, modularity,

proportionality and analysis capability. To fulfill these goals, abc is built on two established

frameworks: Polyglot, a modular extension of the Java language as the frontend3, and Soot

as the backend. Abc chooses Jimple as its IR in the backend, and this provides abc the

2http://www.aspectbench.org
3In the latest version of abc, JastAddJ is added as a new and the default frontend, but the Polyglot frontend

is still supported.

8

2.1. Tools Overview

capability to implement sophisticated analysis. The frontend and backend are connected

via the Java abstract syntax tree (AST) and the AspectInfo data structure. An overview

of abc is given in Figure 2.1.

P o l y g l o t - b a s e d

o r

J a s t A d d J - b a s e d

f r o n t - e n d

S o o t - b a s e d

b a c k - e n d

J a v a A S T

. c l a s s . java .a j

p a r s i n g , t y p e - c h e c k i n g

c o d e g e n e r a t i o n + s t a t i c w e a v i n g

A s p e c t J A S T

J i m p l e I R

a d v i c e w e a v i n g + p o s t - p r o c e s s i n g

A s p e c t

I n f o

s e p a r a t o r

b y t e c o d e

Figure 2.1 abc overall design, adapted from [dM04]

In the frontend, abc generates a pure Java AST and separates aspect information into

AspectInfo. But, the Java AST may not compilable since class members injected or

hierarchy modified by static crosscutting have not been reflected in it yet. Fortunately, Soot

builds the Jimple IR in two stages, as shown in Figure 2.2, which describes in detail the

box labeled “code generation + static weaving” in Figure 2.1. In the first stage, Soot builds

merely the skeleton of the program without generating body of method, and this stage is

shown as the box labeled “Soot skeleton generation”. In the second stage, Soot generates

method bodies from the bytecode or the Java AST, and this stage is shown as the box

labeled “Soot Jimple body generation”. Therefore, abc can perform the static crosscutting

weaving between these two stages, shown as the box labeled “Skeleton weaving”. To

9

Background

evaluate the impacts caused by static crosscutting, AIA collects the “Pre-weave hierarchy”

information between “Soot skeleton generation” and “Soot Jimple body generation” by

querying “Jimple skeleton”.

W o v e n

s k e l e t o n

S o o t s k e l e t o n g e n e r a t i o n

S o o t j i m p l e b o d y g e n e r a t i o n

J i m p l e

s k e l e t o n

S k e l e t o n w e a v i n g

A s p e c t

I n f o

J a v a A S T

H i e r a r c h y s t o r i n g

P r e - w e a v e

h i e r a r c h y

. c l a s s

Figure 2.2 Code generation and static weaving of abc, and the pre-weave hierarchy recording

phase of AIA in static weaving, extended from [ACH+05]

After “Advice weaving”, abc allows customized “Analyses and optimization” on “Wo-

ven Jimple”, see Figure 2.3, which describes in detail the box labeled “advice weaving

+ post-processing” in Figure 2.1. The advice weaver in abc is structured as a “Shadow

finder”, followed by a “Matcher”, followed by a “Weaver”, which results in “Woven Jim-

ple”. The post-processing that comes after the “Woven Jimple” consists of “Analysers”

and “Optimizers”. All analyses in AIA are implemented in the post-processing phase as an

analyser — “Impact analyser”. Analyses regarding impacts caused by static crosscutting

also query the “Pre-weave hierarchy” information recorded in the static weaving phase.

Figure 2.4 shows this in detail. The analysis phase comes after the woven Jimple has been

created, and this is where “Impact analyser” fits in. This is an ideal location for “Impact

analyser” because at this point all static and advice weaving have been done, and all advice

bodies have been translated into normal Java methods (represented in Jimple). In addition,

we also have both all of the information about the original aspects stored in AspectInfo

10

2.1. Tools Overview

and “Pre-weave hierarchy” information recorded in the static weaving phase. As indicated

by Figure 2.4, “Impact analyser” is one of analysers applied at this stage of abc. Some

other abc analysers are used to optimize the weaving, and in those cases the code may be

rewoven. However, “Impact analyser” only needs to run on the first pass of the weaver; it

executes the analyses and then produces the “Impact report”.

In addition to the reason mentioned in the end of Section 2.1.1, as most of the work

in AIA is done after weaving, our project does not work on programs with compile-time

errors.

J i m p l e

I R

A s p e c t

I n f o

S h a d o w f i n d e r S h a d o w s M a t c h e r
W e a v i n g

i n s t r u c t i o n s
O p t i m i s e r

W e a v e r
A n a l y s e r s

r e s u l t s

W o v e n

J i m p l e
A n a l y s e r s

B y t e c o d e

g e n e r a t o r

Figure 2.3 Advice weaving and post-processing of abc [dM04]

A n a l y s e r - 1 A n a l y s e r - x

A n a l y s i s

resu l t - 1

A n a l y s i s

resu l t - x

I m p a c t

A n a l y s e r

I m p a c t

R e p o r t

W o v e n

J i m p l e

P r e - w e a v e

h i e r a r c h y

A s p e c t

I n f o

Figure 2.4 AIA in post-processing

11

Background

2.1.3 Eclipse

Eclipse4 [Inc03] is an open-source, extensible integrated development environment (IDE).

The basis for Eclipse is the Rich Client Platform (RCP), including OSGi, Core, the Standard

Widget Toolkit (SWT), JFace and the Eclipse Workbench.

SWT provides the foundation for the entire Eclipse user interface (UI) and implements

Eclipse’s widgets. Unlike the Java standard Abstract Window Toolkit (AWT) or Swing,

SWT uses native widgets whenever possible, thus producing applications that adhere very

closely to the look and feel of different operating systems. Eclipse’s user interface also

leverages an intermediate GUI layer called JFace, which simplifies the construction of

applications based on SWT. Plug-ins are employed in Eclipse in order to provide their

functionality on top of RCP. This plug-in mechanism is a lightweight software componentry

framework where one can easily add new functionality by developing a plug-in. The plug-

in architecture supports writing any desired extension to the environment. We integrate our

work into Eclipse as a plug-in, our visualization extends menu, view, console and marker

upon SWT and JFace.

2.1.4 AJDT

The AspectJ Development Tools (AJDT)5 provides Eclipse-platform-based tool support

for AspectJ. The goal of AJDT is to deliver a user experience that is consistent with the

Java Development Tools (JDT) when working with AspectJ projects and resources. AJDT

extends the editor of JDT and adds new builder and views to JDT to support AspectJ. Our

Eclipse plug-in just takes the advantage of AJDT as an IDE for AspectJ program, AIA

made no direct modification or extension to AJDT.

4http://www.eclipse.org
5http://www.eclipse.org/ajdt

12

2.2. The Benchmarks

2.2 The Benchmarks

There are eight benchmarks in total. Six of them are selected from the Sable AspectJ

benchmarks6 and the Eclipse AspectJ examples7. The other two are acquired from Internet

as they demonstrate interesting use of AspectJ. The benchmarks represent a wide array of

applications of AspectJ, and most of them have been used by other researchers as bench-

marks. Below is a list of each benchmark with a brief description of its key features.

aopbank8: is a simple AspectJ program demonstrating the basic use of AspectJ. It con-

tains three aspects deal with auditing, fee charging and securing of the simple bank

implementation.

bean: examines an aspect that makes Point objects into Java beans with bound properties.

Point is a simple class representing points with rectangular coordinates. An aspect

is declared to make Point a serializable class and a bean, and make its get and set

methods support the bound property protocol.

DCM: is a checker for Java programs. It checks the Law of Demeter. DCM includes a

class form checker and an object form checker, and gives AspectJ code for each of

them.

exptree69: is an AOP version of expression tree program. This program makes aggressive

use of ”inter-type” declarations to modify the OOP structure of a program.

observer: illustrates how the Subject/Observer design pattern can be coded with aspects.

ProdLine: implements a simple yet illustrative product-line of graph algorithms and dem-

onstrates how AOP techniques could fit in the product line context.

Tetris: is an AOP version of the Tetris game. Various aspects are declared for GUI, logic

and development.

6http://www.sable.mcgill.ca/benchmarks/
7http://www.eclipse.org/aspectj/doc/released/progguide/examples.html
8http://www.cs.hofstra.edu/ cscccl/csc123/aop/aopbank.java
9http://www.cs.hofstra.edu/ cscccl/csc123/aop/exptree6.java

13

Background

tracing: prints trace messages into a stream before and after constructors and methods are

executed. It demonstrates the use of aspect inheritance. It firstly defines one abstract

aspect containing an abstract pointcut for injecting the tracing functionality into any

application classes and then implements a tracing with a concrete pointcut inside a

concrete aspect. The aspects are pure observers, and this means they do not interfere

the rest of the program.

Table 2.1 shows basic metrics about these benchmarks. The column SLOC shows the

source lines of code (SLOC) of these benchmarks. Since we could not find a SLOC counter

that can count the logical SLOC of AspectJ programs, we count the physical SLOC using

LocMetrics10. The following four columns lists the number of classes, the number of as-

pects, the number of advice declarations, and the number of inter-type declarations (ITDs)

respectively. These numbers are counted manually since we could not find a tool that can

count these automatically.

benchmark SLOC classes aspects advice ITDs

aopbank 177 3 3 5 1

bean 276 2 1 2 7

DCM 3435 30 4 8 2

exptree6 327 7 5 4 27

observer 268 6 2 1 11

ProdLine 1345 9 11 15 79

Tetris 1484 9 8 21 0

tracing 430 4 2 4 0

Table 2.1 Basic benchmark metrics

10http://www.locmetrics.com/

14

Chapter 3

Four Kinds of Impact

3.1 Overview

An aspect interacts with the base program mainly through advice and inter-type declara-

tions (also known as static crosscutting), so in AIA, we identify impacts caused by both.

In addition, we believe the behavior of a program is determined by both the state of the

program and the computation done by the program. In the domain of object-oriented pro-

gramming, the state of an object-oriented program is expressed as fields of classes; the

computation is expressed as methods. Therefore, we identify impacts caused by advice

and inter-type declarations acting on both the state and computation of the base program.

Thus, we have four kinds of impact:

State Impact: the impact caused by advice on fields by changing values of fields.

Computation Impact: the impact caused by advice on methods by augmenting, eliminat-

ing or substituting the computation done by methods.

Shadowing Impact: the impact caused by inter-type declarations on fields causing field

references to change and thus causing field shadowing1.

1The problem of field shadowing has been noticed by OOP programmers and one such online discussion

was written by Bras in [Bra03]

15

Four Kinds of Impact

Lookup Impact: the impact caused by inter-type declarations on methods causing method

lookup changes.

We define base program following the principle of “everything except me”. For exam-

ple, if we discuss the impact caused by an advice, the base program refers to the whole

program except this advice; if we discuss the impact caused by an inter-type method dec-

laration, the base program refers to the whole program except this inter-type method dec-

laration. Therefore, based on this rule, AIA takes the interference of aspects into account

naturally.

In Section 3.2, we first provide two example applications which we refer to throughout

the thesis. We then describe these four kinds of impact in detail in the following sections.

In the last section, we discuss aspect interference in detail.

3.2 Examples

Before starting our classification discussion, we first present two example AspectJ pro-

grams: bank and source code repository. We will refer these two examples when explaining

our definition of impacts, presenting our analyses and talking about our experience.

3.2.1 Bank

In the bank example, we are simulating a system developed in an aspect-oriented way. The

system is not perfectly well designed, but this just reflects the real world. Moreover, for

presentation purposes, we omit certain details when implementing the system. Basically,

in this example, we assume two lines of products are provided by this bank: accounts and

credit cards, which are implemented in two different packages.

The package bank.account holds account products. In this package, there is an ab-

stract AbstractAccount class (Listing 3.1) defining basic functions on accounts such as

debiting, crediting, transferring funds and charging fees. The CheckingAccount class

(Listing 3.2) simply extends the AbstractAccount class. The StudentChecking-

Account class (Listing 3.3) extends CheckingAccount and provides fifty percent of fee

discount.

16

3.2. Examples

4 public abstract class AbstractAccount {

5

6 protected Date lastVisit;

7 protected int balance;

8 public final int FEE = 2;

9

10 public AbstractAccount(int money) {this.balance = money;}

11

12 public void withdraw(int am) {balance = balance - am;}

13

14 public void deposit(int am) {balance = balance + am;}

15

16 public void fee() {balance = balance - FEE;}

17

18 public void transfer(AbstractAccount other, int am) {

19 other.deposit(am);

20 this.withdraw(am);

21 }

22

23 public int getBalance() {return balance;}

24 }

Listing 3.1 AbstractAccount.java

3 public class CheckingAccount extends AbstractAccount {

4 public CheckingAccount(int money) {super(money);}

5 }

Listing 3.2 CheckingAccount.java

3 public class StudentCheckingAccount extends CheckingAccount {

4 public StudentCheckingAccount(int money) {super(money);}

5 public void fee() {balance = balance - (int)Math.round(FEE/2);}

6 }

Listing 3.3 StudentCheckingAccount.java

17

Four Kinds of Impact

4 public aspect AccountAspect {

5

6 before(AbstractAccount account) :

7 (execution(public void AbstractAccount+.withdraw(int))

8 || execution(public void AbstractAccount+.deposit(int)))

9 && target(account) {

10 account.lastVisit = new Date();

11 }

12

13 after (AbstractAccount account) :

14 execution (public void AbstractAccount+.withdraw(int))

15 && target(account) {

16 account.fee();

17 }

18

19 void around() :

20 execution (public void AbstractAccount+

21 .transfer(AbstractAccount, int)) {

22 System.out.println("Transfer starts at "+new Date());

23 proceed();

24 System.out.println("Transfer completes at "+new Date());

25 }

26 }

Listing 3.4 AccountAspect.aj

Abs t r a c t A c c oun t

Ch e c k i n gA c c o u n t

S t u d e n t C h e c k i n gA c c o u n t

Figure 3.1 Class hierarchy of account classes

18

3.2. Examples

4 public abstract class AbstractCreditCard {

5

6 protected int balance;

7 public String bonus = "unemployment insurance";

8

9 public void payment(AbstractAccount account) {

10 int payMoney = balance;

11 account.withdraw(payMoney);

12 balance = 0;

13 System.out.println("Pay " + payMoney);

14 }

15

16 public void debit(int am) {this.balance += am;}

17 }

Listing 3.5 AbstractCreditCard.java

4 public class RewardCard extends AbstractCreditCard {

5

6 public String bonus = "1% cash back";

7

8 public void payment(AbstractAccount account) {

9 int payMoney = (int)Math.round(balance*0.99);

10 int rewardMoney = balance - payMoney;

11 account.withdraw(payMoney);

12 balance = 0;

13 System.out.println("Pay " + payMoney + ", reward " + rewardMoney);

14 }

15 }

Listing 3.6 RewardCard.java

In the aspect called AccountAspect (Listing 3.4), three advice declarations are given.

The before advice records the current time as the last visit time. The after advice

charges a fee after each debit. The around advice measures the time taken to make a

transfer. Figure 3.1 shows the hierarchy of accounts.

3 public class ValueCard extends AbstractCreditCard {

4 //...

5 }

Listing 3.7 ValueCard.java

19

Four Kinds of Impact

3 public class GoldCard extends ValueCard {

4 //...

5 }

Listing 3.8 GoldCard.java

4 public aspect CreditCardAspect {

5 public String GoldCard.bonus = "car rental insurance";

6

7 declare parents: ValueCard extends RewardCard;

8

9 public void GoldCard.payment(StudentCheckingAccount account) {

10 System.out.println("Can not pay with student checking account");

11 }

12 }

Listing 3.9 CreditCardAspect.aj

Another package bank.creditcard holds credit card products. In this package, there

is an abstract AbstractCreditCard class (Listing 3.5) defining basic functions on credit

cards such as debiting and payment; in addition, we assume that a credit card having the

“unemployment insurance” bonus by default. The ValueCard class (Listing 3.7) sim-

ply extends the AbstractCreditCard class. The GoldCard class (Listing 3.8) extends

the ValueCard class. We omit details regarding the characters of these two cards. The

RewardCard class (Listing 3.6) extends AbstractCreditCard and provides “one per-

cent cash back” reward.

In the aspect called CreditCardAspect (Listing 3.9), three inter-type declarations

are given to simulate an upgrade to the system. The inter-type field declaration injects

the bonus field to GoldCard to provide a “car rental insurance” bonus. The inter-type

parents declaration makes ValueCard extend RewardCard to provide a cash back bonus

to a value credit card. The inter-type method declaration injects the payment(Student-

CheckingAccount)method to GoldCard to prevent a gold credit card holder from pay-

ing with a student checking account. Figure 3.2 shows the hierarchy of credit cards after

applying CreditCardAspect.

The Bank class (Listing 3.10) only contains a main method, in which two Student-

CheckingAccount objects are instantiated and three different transactions are performed.

20

3.2. Examples

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ b o n u s : S t r i n g = " c a r r e n t a l i n s u r a n c e "

+ p a y m e n t (S t u d e n t C h e c k i n g A c c o u n t) : v o i d

Figure 3.2 Class hierarchy of credit card classes after applying CreditCardAspect

After that, a GoldCard is instantiated, and the bonus of this credit card is queried, but

queried in three different ways. Then, another GoldCard and StudentCheckingAccount

are instantiated; two debits and two payments are performed, and the two payments are

from the same student checking account, but in the second payment the account is cast to

its run-time type — StudentCheckingAccount.

The output of running this program is listed in Listing 3.11. Notice that in lines 5-7,

the bonus of the same gold credit card is different when querying through different types,

and also the payment output in lines 8-9 is different although from the same account to the

same credit card. We will explain the reasons later when we discuss shadowing impact and

lookup impact in Sections 3.5 and 3.6 respectively.

3.2.2 Source Code Repository

The source code repository example is intended to demonstrate a legacy object-oriented

system patched by aspects. In the original program, in class SourceCodeRepository

(Listing 3.12), it requires a check of username and password every time before a retrieve

or store operation (We omit the implementation of getting user input and fetching user

21

Four Kinds of Impact

8 public class Bank {

9

10 public static void main(String [] args)

11 {

12 AbstractAccount acct1 = new StudentCheckingAccount(5000);

13 AbstractAccount acct2 = new StudentCheckingAccount(2000);

14

15 acct1.deposit(300);

16 acct1.withdraw(200);

17 acct2.transfer(acct1, 200);

18 System.out.println("Account 1 balance: " + acct1.getBalance());

19 System.out.println("Account 2 balance: " + acct2.getBalance());

20

21 GoldCard goldCard1 = new GoldCard();

22 System.out.println("Gold Credit Card bonus: " + goldCard1.bonus);

23 System.out.println("Gold Credit Card bonus: " +

((ValueCard)goldCard1).bonus);

24 System.out.println("Gold Credit Card bonus: " +

((AbstractCreditCard)goldCard1).bonus);

25

26 GoldCard goldCard2 = new GoldCard();

27 AbstractAccount stuAcct1 = new StudentCheckingAccount(1000);

28 goldCard2.debit(100);

29 goldCard2.payment(stuAcct1);

30 goldCard2.debit(100);

31 goldCard2.payment((StudentCheckingAccount)acct2);

32 }

33 }

Listing 3.10 Bank.java

1 Transfer starts at Thu May 08 16:26:13 EDT 2008

2 Transfer completes at Thu May 08 16:26:13 EDT 2008

3 Account 1 balance: 5299

4 Account 2 balance: 1799

5 Gold Credit Card bonus: car rental insurance

6 Gold Credit Card bonus: 1% cash back

7 Gold Credit Card bonus: unemployment insurance

8 Pay 99, reward 1

9 Can not pay with student checking account

Listing 3.11 Output of bank example

22

3.2. Examples

3 public class SourceCodeRepository {

4

5 private String sourcecode;

6

7 public SourceCodeRepository() {}

8

9 private boolean login() {

10 String userIn = "mcgill", passIn = "sable"; //user input

11 String userDb = "mcgill", passDb = "sable"; //database

12 if (userIn.equals(userDb) && passIn.equals(passDb)) return true;

13 else return false;

14 }

15

16 public String getSrc() {

17 if (login()) return sourcecode;

18 else return null;

19 }

20

21 public void putSrc(String src) {

22 if (login()) { this.sourcecode = src; }

23 }

24

25 public static void main(String [] args) {

26 SourceCodeRepository repo = new SourceCodeRepository();

27 repo.putSrc("foo");

28 System.out.println(repo.getSrc());

29 repo.putSrc("junk foo");

30 System.out.println(repo.getSrc());

31 }

32 }

Listing 3.12 SourceCodeRepository.java

name and password from database instead assign these variables directly). However, let

us assume that the repository becomes open-source, and no authentication is needed for

accessing code, but a filter is needed to filter out junk programs. Therefore, in the as-

pect SourceCodeRepositoryAspect (Listing 3.13), two advice declarations are de-

fined. The first around advice captures the login method and always returns true to

bypass the login step, and the second around advice captures the putSrc method and

rejects the source code if the filter (in this case just implemented as a length check) returns

false.

23

Four Kinds of Impact

3 public aspect SourceCodeRepositoryAspect {

4

5 boolean around() :

6 execution (boolean SourceCodeRepository.login()) {

7 return true;

8 }

9

10 void around(String src) :

11 execution (void SourceCodeRepository.putSrc(String))

12 && args(src) {

13 if (src.length() < 5) {

14 proceed(src);

15 } else {

16 System.out.println("Out of limit");

17 }

18 }

19 }

Listing 3.13 SourceCodeRepositoryAspect.aj

3.3 State Impact

AspectJ is built on top of Java, which is object-oriented. In both object-oriented program-

ming and aspect-oriented programming, the program state is mainly defined by values of

fields in classes. Therefore, our state impact focuses on how aspects can modify fields

in a base program. Because aspects interact with the program at the granularity of ad-

vice, we define our state impact in the granularity of advice. Thus, based on our principle

“everything except me”, here, base program means the whole program except the aspect

containing the advice being considered, thus, fields in base program means all fields ex-

cept fields defined in the containing aspect of the advice which causes state impact. Since

an advice can change fields of base classes both directly and indirectly, we classify state

impact further into:

Direct state impact: is an impact caused by advice modifying fields of base classes di-

rectly in the form such as base.field = NewValue. In the bank example, account.

lastVisit = new Date();(Listing 3.4, line 10) in the before advice causes a

direct state impact because it writes the field lastVisit in the class Abstract-

Account or its subclass.

24

3.4. Computation Impact

Indirect state impact: is an impact caused by advice invoking a method or calling a chain

of methodswhich modify fields of base classes. In the bank example, account.fee();

(Listing 3.4, line 16) in the after advice causes an indirect state impact. If we

check the method body of AbstractAccount.fee(), we can see that the money

field is modified, but the money field may belong to AbstractAccount or its sub-

class. However, the fee() method is overridden in StudentCheckingAccount,

the call account.fee() may dispatch to this method, but StudentChecking-

Account.fee() also modifies money field. Therefore, we can state for sure that a

state impact is caused by the after advice. Later, in Section 4.3.1, we will see that

points-to analysis can give the precise estimation of the actual method being called

and the actual class that money belongs to.

Therefore, we define state impact as program state change caused by advice modifying

the value of fields of base classes directly or indirectly.

3.4 Computation Impact

Applying advice to a program usually changes the computation performed. An advice

will match a collection of shadows in the base program. Here, following our “everything

except me” principle, base program means the whole program except the advice being

considered. Before and after advice can add computation before or after the shadow;

however, around advice can have impact on whether or not the shadow code executes,

depending on how the body of the advice calls proceed. Thus, in order to handle around

advice, we first introduce the concept of exact-proceed.

3.4.1 Exact-proceed

We define an exact-proceed as a proceed call that fulfills the following three conditions:2

same arguments: the same argument values as found in the join point must be passed by

the proceed call;

2Similar conditions have been defined by Recebli [Rec05] and Rinard. et. al. [RSB04].

25

Four Kinds of Impact

same return value: the value returned by proceed must be returned by the advice with-

out modification; and

no abrupt exception: no exception stops the reachability of proceed.

The idea behind these conditions is that the same arguments and same return value

conditions ensure that the original computation at the join point is executed and the same

value is returned, whereas the no abrupt exception condition ensures that the computation

is always executed as it was in the base program.

We also use the concept of live and dead advice. For a specific program, we say that

an advice is live if it matches at least one shadow and it is dead if it does not match any

shadows.

Given these definitions we now define invariant advice and four flavors of variant ad-

vice.

3.4.2 Invariant Advice

We define an advice to be invariant if it adds no new computation to any shadow, nor

removes any computation from any shadow. For before and after advice either: (a) the

advice is dead, i.e., it does not match any shadow, or (b) the advice body is empty. For

around advice, either: (a) the advice is dead, or (b) the body of the advice is composed of

exactly one exact-proceed. Invariant advice is not very interesting, and if we find invariant

advice it is likely to indicate a bug in the program (for example, some AspectJ compilers

(e.g., abc, ajc) give a warning when an advice does not match anywhere in the program).

3.4.3 Variant Advice

Variant advice is much more interesting and useful than invariant advice. The idea is that

we want to know if the advice adds computation to matching shadows, eliminates code

at shadows, or replaces code at shadows. We classify variant advice accordingly into the

following kinds of computation impact:

Addition: After applying the advice (weaving), the matched shadows in the base program

always execute unchanged, and new computation is added. Logging advice [Lad03]

26

3.4. Computation Impact

before after around

Invariant dead or empty

body

dead or exactly one exact-proceed with no

additional computation

V
a
ri
a
n
t

Addition live and non-

empty body

live and at least one exact-proceed on every

path, plus additional computation

Elimination live and empty body

Definite-

Substitution

live and no proceed on any path

Conditional-

Substitution

live and at least one exact-proceed on one or

more paths but no proceed on other paths

Mixed live and have no computation impact above

Table 3.1 Classification of computation impacts

is a typical example. In the bank example, all three advice definitions have addition

computation impacts.

Elimination: After applying the advice, the matched computation in the base program

is removed, and no new computation is added. Advice hiding method functionality

often cause elimination impacts. In the source code repository example, the boolean

around advice (Listing 3.13, line 5) that short-circuits authentication has elimination

computation impact.

Definite-Substitution: After applying the advice, the matched computation in the base

program does not execute at all, and new computation is added. In this case the advice

replaces a functionality in the base program with a brand-new one. An example is an

advice replacing an old algorithm with optimized algorithm.

Conditional-Substitution: After applying the advice, the matched computation in the

base program may or may not execute depending on some conditions, and new com-

putation is always added. In this case an advice either replaces a functionality in

the base program or adds new computation with the matched shadows executing un-

changed, depending on the condition. An example is an advice that introduces a

condition check to determine if the old algorithm should be replaced by a different

algorithm. In the source code repository example, the void around advice (List-

27

Four Kinds of Impact

ing 3.13, line 10) that filters source code has conditional-substitution computation

impact.

Mixed: In this case, after applying the advice, the effect on the matched computation in the

base program can’t be determined statically. At run-time, it may or may not execute

the matched computation when following different paths, or even when following the

same control flow path. For example, an advice containing a proceed call one of

whose arguments is user input causes mixed computation impact.

In Table 3.1, we present a summary of our categorization expressed in terms of our

definitions of live/dead advice and the definition of exact-proceed. Note that before and

after advice is either invariant or has addition impact, because the original shadow code

is never removed. However, around advice can have different impacts, depending on how

proceed is used in the body of the advice.

3.5 Shadowing Impact

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ p a y m e n t (S t u d e n t C h e c k i n g A c c o u n t) : v o i d

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ b o n u s : S t r i n g = " c a r r e n t a l i n s u r a n c e "

+ p a y m e n t (S t u d e n t C h e c k i n g A c c o u n t) : v o i d
p u b l i c S t r i n g G o l d C a r d . b o u n s = " c a r r e n t a l i n s u r a n c e "

Figure 3.3 Comparison of class hierarchy of credit card classes with and without GoldCard

.bonus inter-type declaration

28

3.5. Shadowing Impact

Inter-type field declarations can inject new fields into classes. These field declarations

will neither change state nor computation of a base program. However, a new declared field

may cause name shadowing if the name of the new field is the same as the name of a field

that is declared in the inter-type target class’ super classes and is inheritable to the target

class, and further causes the reference of the field on a variable with the type of the inter-

type target class changes before and after applying the inter-type declaration. A similar

situation called “variable shadowing” exists in the context of OOP, thus we name this im-

pact as shadowing impact and define it as the change of field reference in the base program

after applying an inter-type declaration, and following our principle, the base program

means the whole program except the inter-type declaration being considered. Essentially,

a shadowing impact is caused by name shadowing, but the obliviousness of AOP increases

the possibility of an occurrence of name shadowing, and we believe understanding the

occurrence of it helps reasoning about an aspect-oriented program and reduces resulting

bugs.

In the bank example, the inter-type field declaration GoldCard.bonus in the aspect

CreditCardAspect (Listing 3.9, line 5) causes shadowing impact because after apply-

ing the field declaration, [GoldCard].bonus3 refers to the new declared bonus field in

GoldCard instead of the bonus field in RewardCard. We state the field in RewardCard

instead of AbstractCreditCard because the base program includes the inter-type par-

ent declaration ValueCard extends RewardCard (line 7 in Listing 3.9). This is clear if

comparing the class hierarchy after weaving the whole CreditCardAspect and the class

hierarchy without weaving the GoldCard.bonus declaration, as shown in Figure 3.3.

In addition to inter-type field declarations, inter-type parent declarations also can cause

a shadowing impact. By introducing a new parent to a class, the class may inherit a new

field which has the same name as the name of a field in the class’ old ancestors, thus

reference to the field changes to the new inherited field. The inter-type parent declaration

in the aspect CreditCardAspect (Listing 3.9, line 7) causes a shadowing impact on

ValueCard. [ValueCard].bonus refers to the bonus field currently inherited from

RewardCard instead of the bonus field in AbstractCreditCard, which originally is

the parent of ValueCard, as shown in Figure 3.4. However, this parent declaration causes

3In this thesis, we denote the access of field f of a variable of type Type as [Type].f.

29

Four Kinds of Impact

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ b o n u s : S t r i n g = " c a r r e n t a l i n s u r a n c e "

+ p a y m e n t (S t u d e n t C h e c k i n g A c c o u n t) : v o i d

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ b o n u s : S t r i n g = " c a r r e n t a l i n s u r a n c e "

+ p a y m e n t (S t u d e n t C h e c k i n g A c c o u n t) : v o i d
d e c l a r e p a r e n t s : V a l u e C a r d e x t e n d s R e w a r d C a r d

Figure 3.4 Comparison of class hierarchy of credit card classes with and without ValueCard

extends RewardCard inter-type declaration

no impact on GoldCard since GoldCard has its own declaration of bonus field, which is

injected by inter-type field declaration at line 5 of Listing 3.9. Remember that here base

programmeans the whole program except the inter-type declaration being considered, thus

the effect of GoldCard.bonus declaration is considered to be part of the base program.

3.6 Lookup Impact

An inter-type declaration can also inject new methods into classes. This kind of method

declaration will neither change the state or computation of the base program. However,

the method lookup may be changed due to a new declared method, thus the program may

change its behavior or even become broken. Therefore, we introduce lookup impact and

define it as the changing of lookup of a method invocation in the base program before

and after applying an inter-type declaration, and the base program refers to the whole

program except the involved inter-type declaration by adhering to our “everything except

me” principle.

An inter-type method declaration can cause lookup impact. In the bank example, the

30

3.6. Lookup Impact

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ b o n u s : S t r i n g = " c a r r e n t a l i n s u r a n c e "

Abs t r a c tC r e d i t C a r d

b a l a n c e : i n t

+ b o n u s : S t r i n g = " u n e m p l o y m e n t i n s u r a n c e "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

+deb i t (i n t) : vo id

R ew a r d C a r d

+ b o n u s : S t r i n g = " 1 % c a s h b a c k "

+ p a y m e n t (A b s t r a c t A c c o u n t) : v o i d

Va l u eC a r d

Go l d C a r d

+ b o n u s : S t r i n g = " c a r r e n t a l i n s u r a n c e "

+ p a y m e n t (S t u d e n t C h e c k i n g A c c o u n t) : v o i d
p u b l i c v o i d G o l d C a r d . p a y m e n t (

 S tuden tCheck ingAccoun t accoun t) { . . . }

Figure 3.5 Comparison of class hierarchy of credit card classes with and without GoldCard

.payment() inter-type declaration

inter-type method declaration GoldCard.payment(...) at line 9-11 in CreditCard-

Aspect (Listing 3.9) causes lookup impact. If we remove these lines, the class hierarchy is

shown in the right side of Figure 3.5, the call to payment(StudentChecking Account)

on a receiver of type GoldCard (denoted as [GoldCard].payment(StudentCheck-

ingAccount)4) will match to RewardCard.payment(AbstractAccount). However,

in the left side of Figure 3.5, we can see after applying the GoldCard.payment() inter-

type method declaration, the same call will match to GoldCard.payment(Student-

CheckingAccount). Therefore, this inter-type method declaration causes the change of

lookup of themethod invocation [GoldCard].payment(StudentCheckingAccount),

thus causes a lookup impact.

An inter-type parent declaration can also cause a lookup impact. In the bank exam-

ple, the inter-type parent declaration ValueCard extends RewardCard at line 7 in

CreditCardAspect (Listing 3.9) causes a lookup impact that affects the lookup of [Val-

ueCard].payment(AbstractAccount) and [GoldCard].payment(AbstractAc-

count). Referring to Figure 3.4, we can see [ValueCard].payment(AbstractAc-

4In this thesis, we denote a method invocationfoo() on a receiver of typeType as [Type].foo().

31

Four Kinds of Impact

count) and [GoldCard].payment(AbstractAccount)matches to AbstractCred-

itCard.payment(AbstractAccount) before applying this inter-type parent declara-

tion, and matches to RewardCard.payment(AbstractAccount) instead, after apply-

ing this inter-type parent declaration.

3.7 Aspect Interference

In Section 3.1, we mentioned that our analysis covers aspect interference naturally as a

result of our definition of base program. In this section, we will discuss other possible

definitions of base program and how aspect interference is taken into account for the above

four kinds of impact under our definition.

3.7.1 Java part is the base program

A reasonable definition of base programmight to consider the base program as the program

before any aspects woven into it. Indeed, we have considered this definition, but we discov-

ered that it is hard to automatically identifying the base program from a complex system,

and it causes trouble when analyzing aspect interference. The program may not compile at

all if we only consider the AspectJ element being analyzed and try to weave this element

only into the Java part of the program. Further, even if the program compiles, the aspect

interference must be discovered iteratively, or it might not be discovered at all if ordering

is important amongst aspects elements applied to the base program. [Kat06]

3.7.2 Everything except me

However, under our “everything except me” principle, aspect interference is covered natu-

rally.

For state impact, we define the base program as the whole program except the aspect

declaring the advice causing state impact. Therefore, if an advice changes the state of other

aspects, it will be captured by AIA.

For computation impact, we define the base program as the whole program except the

advice being considered. Hence, if an advice matches shadows in other aspects, even within

32

3.7. Aspect Interference

other advice bodies in the same aspect, AIA will cover the impact on these situation too.

For shadowing impact and lookup impact, we define the base program as the whole

program except the inter-type declaration being considered. Thus, if other inter-type decla-

rations also work on the target of the inter-type declaration being considered, AIA will

analyze impact caused by the inter-type declaration being considered after other inter-

type declarations are applied. The shadowing impact caused by GoldCard.bonus and

ValueCard extends RewardCard in CreditCardAspect (Listing 3.9) in bank ex-

ample discussed in Section 3.5 is an example.

33

Four Kinds of Impact

34

Chapter 4

State Impact

In Section 3.3, we introduced state impact and defined it as program state change caused

by advice modifying the value of fields of base classes in the base program, which refers

to the whole program except the aspect containing the advice being considered. Moreover,

we classified state impact further into direct state impact and indirect state impact based

on if the field value modification is direct or indirect. In this chapter, we give a precise

definition of state impact and describe the static analysis for approximating state impact.

4.1 Definition

In general, state impact is caused by writing to fields.

A direct state impact is caused by statements located inside the advice body writing to

fields of base classes directly, and the form of the statement is like base.id=rhs. The

consequence of this statement is that the field “id” of the class baseclass, which is the

class corresponding to the run-time type of base, is changed by the advice. In addition,

base.id may be a static reference, in which case baseclass is the class base itself.

After knowing what happened, the report should look like: advice statement changes id of

baseclass.

An indirect state impact is caused by a method call or a chain of method calls in the

advice body where the invoked methods contain statements directly writing to fields in base

classes in the form of base.id=rhs. However, since the method may (very likely) contain

35

State Impact

more than one direct field writing statement, to get an overall view of the modificationmade

by the advice statement, the field modification information is better to be aggregated and

grouped by field. In addition, to get information about how exactly these modifications

happened, these direct modification statements lying in invoked methods should also be

reported, like evidences. Therefore, the report would look like: advice statement changes:

id 1 of baseclass 1,. . . ,baseclass n, . . . , id n of baseclass 1,. . . ,baseclass m; evidences:

method statement x changes id x of baseclass x, . . . , method statement y changes id y of

baseclass y.

4.2 Analysis

Based on the definition of state impacts, our state impact analysis is designed to discover

all field write accesses caused by advice, directly or indirectly. At the conceptual level, the

algorithm is presented in Algorithm 4.1 and Procedure Analyze(body, adstmt) on page 37.

Algorithm 4.1: State impact analysis

foreach advice ad in the application do1

get Jimple body adbody of ad;2

Analyze(adbody, null);3

end4

Our analysis works at the granularity of advice; we first acquire all advice information

from abc after the first pass of weaving. Then, we iterate over each advice to perform the

actual state impact analysis. As explained in Section 2.1.2, after the first pass of weaving,

all advice bodies have been transformed to standard Java methods represented in Jimple

IR. Thus, we can utilize the Soot analysis framework to perform our analysis.

4.2.1 Direct State Impact

To discover direct field modifications, we need to check if the definition of an assign-

ment statement is referring to a field in base classes. Since Jimple is a three-address

IR, we actually only need to check if the left hand side of an assignment statement is

36

4.2. Analysis

Procedure Analyze(body, adstmt) in Algorithm 4.1

initialize cacheSet to empty;1

foreach statement stmt in body do2

/* deal with field direct modification */

if lhs of stmt is FieldRef in the form of base. f ield then3

if base. f ield instanceof StaticFieldRef then4

if adstmt == null then /* in advice body */5

record direct state impact on [f ield] in [base];6

else7

record evidence on [f ield] in [base] of adstmt;8

end9

end10

if base. f ield instanceof InstanceFieldRef then11

get points-to set ptset of base;12

get classes cset in ptset;13

if adstmt == null then /* in advice body */14

record direct state impact on [f ield] in [cset];15

else16

record evidence on [f ield] in [cset] of adstmt;17

end18

end19

end20

/* deal with modifications by invoking method */

if stmt contains method invocation then21

foreach target method by querying call graph do22

if stack !contains method and cacheSet !contains method then23

get Jimple body mbody of method;24

put method into stack;25

put method into cacheSet;26

Analyze(mbody, (adstmt == null? stmt : adstmt);27

pop method from stack;28

end29

end30

if adstmt == null then /* in advice body */31

aggregate evidences of stmt;32

record indirect impact caused by stmt;33

end34

end35

end36

37

State Impact

referring to a field in base class. The field can be either a static field having the form

Class.field or an instance field having the form object.field. In Soot, they are rep-

resented by two interfaces; the former is called StaticFieldRef, and the latter is called

InstanceFieldRef. Therefore, we just need to iterate through all statements and check

if their lhss are a StaticFieldRef or an InstanceFieldRef. Moreover, since we are

trying to find all possible field modifications, no matter whether the modification happens

in a branch path or not, we consider the modification as may-happening and as having

direct state impact.

Beside knowing where the impact happens, we need to know what happens, i.e. we

need to know which field of which class is modified. The field name can be easily acquired

by querying the FieldRef object. For class information, in the case of a StaticField-

Ref, we can easily get its declaring class. However, in the case of an InstanceFieldRef,

the base object of the field may point to objects with different types in the context of static

analysis; thus, we need points-to analysis to determine the set of memory locations that

the base object may point to, and then we can get the set of base classes that the field may

belong to. In the bank example, the points-to analysis will tell us that the actual type of the

account in “account.lastVisit = new Date();”(Listing 3.4, line 10) in the before advice

is StudentCheckingAccount since we instantiated a StudentCheckingAccount in

Bank (Listing 3.10, line 7, 8).

All the information regarding where the impact happens and what is the impact is

recorded and reported.

4.2.2 Indirect State Impact

As stated in our classification, an advice can also cause indirect state impact by calling

methods which modify fields of base classes; thus, our analysis also checks indirect state

impact.

If modifying fields indirectly, a statement inside an advice must call a method. The

method being called may modify fields directly, or call other methods that modify fields,

so we check for state impacts caused by all methods being called transitively. Moreover,

call cycles, due to recursion, in the transitive call graph are resolved by maintaining a call

38

4.2. Analysis

stack and checking if a method is in the stack before entering and analyzing it.

For all indirect field modifications analyzed during traversing methods called transi-

tively, we recorded them as evidences to support our indirect state impact. In the same

manner as with direct state impact, we record both where and what happens for each piece

of evidence. Moreover, to give an overall view of the indirect state impact to programmer,

before generating the report, we aggregate all points-to sets recorded while traversing the

transitive call graph; we grouped them by field by calculating the union of these points-to

sets.

4.2.3 Distinguish Direct and Indirect State Impact

As shown in Algorithm 4.1 and Procedure Analyze(body, adstmt), our analysis detects

direct and indirect state impact in one pass. When we encounter a field modification state-

ment, we need to tell whether it causes direct state impact or is just an evidence of an

indirect state impact. We distinguish this by checking if the statement is inside the body of

advice being considered or not.

Basically, we check this by testing if the recursive procedure Analyze(body, adstmt)

is called on the top level or not. The second formal adstmt of Analyze works as a flag

marking if Analyze is at the top level and also records the original advice statement caus-

ing the chain of indirect state impact. By checking if adstmt(at line 5 and 14 in Procedure

Analyze(body, adstmt)) is null, we can tell whether a field modification statement is caus-

ing direct state impact or just is an evidence of indirect state impact.

If adstmt is null (line 5 and 14), it means Analyze is on the top level, i.e., Analyze is

working on the advice body being considered, i.e., the field modification statement causes

direct state impact; otherwise, the statement is just an evidence of the indirect state impact

caused by adstmt, which is the statement invoking methods at the first time. In addition,

the adstmt is handed on at line 24 in Procedure Analyze(body, adstmt) to keep track of the

originating statement in the advice body being considered.

39

State Impact

4.3 Experimental Results

First, we explore our analyses with two examples: the bank example discussed in Section

3.2.1 and the glass and table example presented by Elçin [Rec05].

4.3.1 Examples

Bank

A segment of our analyses report related to advice in the bank example is shown in Listing

4.1. As expected and discussed in Section 3.3, our report shows that the before advice

defined in AccountAspect.aj (Listing 3.4) at line 6-11 has a direct state impact of writing

field lastVisit in StudentCheckingAccount class, and the points-to analysis gives

a precise estimation of the type of account (line 10). Our analysis also reports that the

lastVisit field is declared in class AbstractAccount.

The report also shows that the after advice at line 13-17 has an indirect state impact

on the money field of StudentCheckingAccount, and this indirect state impact is caused

by the statement in Account.java at line 16 column 20-39, which is the money = money

- FEE statement in Account.fee(). Therefore, our analyses reports not only exactly

what happens, but also how it happens, so programmers can use our analyses report to

understand and analyze state impacts in very straightforward way. With the evidence report,

programmers can trace back to the exact point where fields are written. Later, in the glass

and table example, we will show how our state impact can help reveal bugs.

In addition, the report shows that the around advice at line 19-25 does not cause any

state impact, as we expected.

Glass and Table

This program is presented by Elçin in his master thesis [Rec05]. In this example, a Table

contains a Glass, and Table.move() calls Glass.move(), thus if the table moves, the

glass also moves. Then, an aspect applies to the program. In this aspect, there is an after

advice that matches the execution of Glass.move(), and this advice calls Table.move()

40

4.3. Experimental Results

AccountAspect.aj:6,1-11:2 Advice: before(bank.account.AbstractAccount

account)

state impact:

bank\account\AccountAspect.aj:10,2-32

direct state impact:

field [lastVisit](declared in bank.account.AbstractAccount) in

[bank.account.StudentCheckingAccount]

addition computation impact

AccountAspect.aj:13,1-17:2 Advice: after(bank.account.AbstractAccount

account)

state impact:

bank\account\AccountAspect.aj:16,2-15

indirect state impact:

field [balance] in [bank.account.StudentCheckingAccount]

evidence:

bank\account\StudentCheckingAccount.java:5,20-62 field

[balance](declared in bank.account.AbstractAccount) in

[bank.account.StudentCheckingAccount]

addition computation impact

AccountAspect.aj:19,1-25:2 Advice: void around()

no state impact

addition computation impact

Listing 4.1 Report of analyzing advice in the bank example

to accomplish the purpose of moving tables if the glass moves. If we examine both the as-

pect and the base program, we can discover this advice causes a call cycle, which causes an

infinite loop. Running the woven program will therefore cause a StackOverflowError

error.

Listing 4.2 shows the report of our analyses on glass and table program. We can see

that our report points out the second advice has state impacts both on Glass and Table.

Programmers could utilize this information to conclude this advice does something other

than expected. The advice is designed to move the table when glass moves, but according

to our report, it also changes the position of table, this should not happen; thus, there is

something wrong. Moreover, if the programmer follows our evidence reports and checks

Table.java and Glass.java, he/she will find these statements are defined in Glass.move()

and Table.move(), so this advice actually transitively calls both Glass.move() and

Table.move(). Therefore, the programmer should very easily conclude that there is a

41

State Impact

call-cycle. For this simple example, switching back and forth between different source files

perhaps can be handled, but in larger applications the programmer needs more direction

such as provided by our impact report.

GlassAspect.aj:6,1-10:2 Advice: after(glass.Table t)

no state impact

addition computation impact

GlassAspect.aj:12,1-17:2 Advice: after(glass.Glass g, int dx, int dy)

state impact:

glass\GlassAspect.aj:16,3-21

indirect state impact:

field [y] in [glass.Glass, glass.Table]

field [x] in [glass.Glass, glass.Table]

evidence:

glass\Table.java:18,2-9 field [x](declared in glass.Table) in

[glass.Table]

glass\Glass.java:8,2-9 field [x](declared in glass.Glass) in

[glass.Glass]

glass\Table.java:19,2-9 field [y](declared in glass.Table) in

[glass.Table]

glass\Glass.java:9,2-9 field [y](declared in glass.Glass) in

[glass.Glass]

addition computation impact

Listing 4.2 Report of analyzing the glass and table example

4.3.2 Benchmarks

Table 4.1 shows statistics of analyzing these benchmarks. The second column “C&A”

shows the total number of classes and aspects. The third column shows the total number of

advice declarations. The next two columns shows the number of direct and indirect state

impacts respectively. The last column shows the number of classes and aspects checked

when discovering these state impacts manually by examining the source code of these

benchmarks. Basically, we started from the source code of all aspects and discovered all

advices. For each advice, we read its source code and determined if a statement causes a

state impact. If a statement contains a method call, we discovered the target methods and

examined the source code of target methods. During this process, we recorded the number

42

4.3. Experimental Results

of aspects and classes visited, including the classes that have to be visited to determine

target methods of a method call.

benchmark C&A advice direct indirect C&A manually

aopbank 6 5 1 1 4

bean 3 2 0 2 3

DCM 34 8 0 9 6

exptree6 12 4 0 10 9

observer 8 1 0 1 8

ProdLine 20 15 1 23 19

Tetris 17 21 0 19 14

tracing 6 4 0 0 2

Table 4.1 Basic statistics about benchmarks

From Table 4.1, we can find that for most benchmarks, when discovering these state

impacts manually, at least 70% of classes and aspects need to be checked. When we dis-

covered state impacts in DCM, we found the length of the call chain causing an indirect

state impact was nine. In addition, the size of these benchmarks are not large. Therefore,

we can image the difficulty of discovering and understanding state impacts in a large-scale

application. However, by using our tool, it only takes few minutes to get complete state

impact information.

In addition, for the tracing benchmark, we state that the aspects are pure observers

when introducing it in Section 2.2. From the above table, we can find that no state impact

is caused, as expected.

43

State Impact

44

Chapter 5

Computation Impact

In Section 3.4, we introduced computation impact and defined it as the computation

change of shadows in the base program(the whole program except the advice being consid-

ered) caused by applying advice to the matched shadows in the base program. In addition,

we classify advice into invariant advice and variant advice. Invariant advice causes no

computation impacts, whereas the impact of variant advice are further classified into ad-

dition, elimination, definite-substitution, conditional-substitution and mixed computation

impacts. In this chapter, we give a precise definition of computation impact and describe

the static analysis for approximating computation impact.

5.1 Definition

In order to categorize variant advice, we require static analysis to determine the behavior

of proceed. In Section 3.4, we defined exact-proceed as proceed calls that fulfill the same

arguments, same return value and no abrupt exception conditions; therefore, there should

be three corresponding static analyses to test these conditions as defined below.

same arguments: The same argument values as found in the join point must be passed

by the proceed call in the same order as they are captured in the join point. In

particular, if an argument is a reference type, there is no change to its field.

45

Computation Impact

same return value: The value returned by proceedmust be returned by the advice with-

out modification. In particular, if the return value is a reference type, there is no

change to its field.

no abrupt exception: No checked exceptions stop the reachability of proceed. Only

checked exceptions are considered because every Java statement may throw uncheck-

ed exceptions.

Given the exact-proceed information, different kinds of computation impacts can be

defined as follows:

Elimination: impact is caused by an around advice having an empty body. For an around

advice declaring void return type, the body should contain nothing; for an around

advice declaring non-void return type, the body can contain only a return statement.

Addition: impact is caused by a before or after advice whose advice body is not

empty; or an around advice that has at least one exact-proceed on every path, plus

additional computation.

Definite-substitution: impact is caused by an around advice having a non-empty body

and having no proceed on any path.

Conditional-substitution: impact is caused by an around advice having at least one

exact-proceed on one or more paths but not on all paths and having no proceed

call at all on all other paths.

Mixed: impact is caused by an around advice that does not cause any of the above im-

pacts.

5.2 Analysis

Based on the above definition, our computation impact analysis is designed on the granu-

larity of advice and executed after the first weaving of abc. It classifies advice into addition,

elimination, definite-substitution, conditional-substitution, and mixed based on the kind of

46

5.2. Analysis

advice and exact-proceed analysis result. At the conceptual level, our algorithm is pre-

sented in Algorithm 5.1.

Algorithm 5.1: Computation impact analysis

foreach advice ad in the application do1

if ad is before or after and not empty then addition;2

if ad is around then3

if empty body then elimination;4

else5

if no proceed then definite-substitution;6

else7

exact-proceed analysis;8

if at least one exact-proceed in every path then addition;9

else if either exact-proceed or no proceed in every path then10

conditional-substitution;

else mixed;11

end12

end13

end14

end15

5.2.1 Exact-proceed Analysis

As discussed in Section 3.4, our computation impact classification relies on the information

regarding exact-proceed statements. Thus, to check if a proceed is an exact-proceed, we

implement three intra-procedural analyses to check if those three conditions, i.e., same ar-

guments, same return, and no abrupt exception, are satisfied using the UnchangedParam-

Analysis, UnchangedReturnAnalysis and ExceptionBeforeProceedAnalysis,

respectively. Although they are all intra-procedural analyses, the first two utilize inter-

procedural analysis results, i.e., points-to and side-effect analysis results.

UnchangedParamsAnalysis

This analysis collects all variables/expressions (represented by Value in Soot) that have

the same value as the method’s arguments. The result of this analysis is used to check the

47

Computation Impact

same arguments condition. The specification of the data flow analysis is presented by the

following six rules:

1. For each program point, we approximate a set of pairs, where each pair has the form

(index,v), representing the v has the same value as the indexth argument.

2. At a program point p, if pair (i,x) is in this set then this means that the variable

x denotes exactly what the ith parameter denoted at entry. In particular, if the ith

parameter is a reference type, then (i,x) is in the set at program point p, only if x

refers to the same object as the ith parameter and there has been no write to a field of

the object between the entry and program point p.

3. It is a forward analysis.

4. The confluence operator is intersection:

in(n) =
⋂

p∈pred(n)

out(p)

where: out(p) – means the set at the output of a node in the CFG, which is also

the data set flowing out of the node; in(n) – means the set at the input of a node in

the CFG, which is also the data set flowing into the node. The intersection operation

means at a control-flow merge point only pairs belonging to both paths become part

of the set after the merge.

5. The data flow equation for a node s is

out(s) = (in(s)− kill(s))∩gen(s)

where: out and in have the same meaning with those in rule 4. The following are

the gen and kill rules at a node:

• Gen due to assign statement: if rhs of an assign statements in the form lhs =

rhs is in the set, in the form of (index,rhs), generate (index,lhs) pair

for lhs with the same index.

48

5.2. Analysis

• Kill due to assign statement: a statement of the form lhs = rhs kills any pair

associated with lhs.

• Kill due to reference: for all statements of the form a.f = b, we kill any pair

associated with a.

• Kill due to alias: if a pair i, v is being killed, any pair i, v’ should be killed

if v and v’ point to the same location, i.e., the PointsToSet of v and v’ have

a non-empty intersection.

• Kill due to method call: if the statement contains a method call, it may write to

objects. Thus, for each pair in the set, say (i,o), we check (use Soot’s side-

effect analysis) to see if there in an interference with the method call and any

field of o. If there is an interference, then we kill the pair, because the state of

the object may have been changed, and it may no longer denote the same value

as at the entry point.

6. Starting approximations are as follows:

• out(start) = {(1,arg1), ..., (n,argn)}. It is safe to say each argu-

ment has the same value with itself.

• out(other) = universal set, which says that every Valuemay have the

same value of every argument.

The analysis is implemented under the forward data flow analysis framework in Soot.

After the data-flow analysis reaches the fix point, we can query the data flow set to test

the same arguments property of proceed calls as follows: for a statement p containing

a proceed call — proceed(a1, ..., an), we fetch out the data set flowing into p,

i.e.,in(p), and then check if all pairs (1,a1), ..., (n,an) lie in the set in(p). If the

answer is yes, we conclude that the proceed call holds the same arguments property.

To illustrate this analysis, consider the example around advice in Listing 5.1. As

indicated by the comment at line 2, at the entry point, set of must reaching parameters is

{(1,a),(2,b)}. The assign statement at line 5 generates the pair (1,a2). Assuming

that the proceed call at line 7 does not write fields of a, a2 and b, before line 9, the flow

set remains.

49

Computation Impact

1 void around$0(A a, B b)

2 { // { (1,a), (2,b) }

3 A a2, B b2;

4

5 a2 = a;

6 // { (1,a) (1,a2), (2,b) }

7 proceed(a2,b); // no write to a, a2 and b

8

9 if (cond)

10 b2 = b;

11 // { (1,a), (1,a2), (2,b), (2,b2) }

12 else

13 b2 = new B();

14 // { (1,a), (1,a2), (2,b) }

15 // { (1,a), (1,a2), (2,b) }

16 proceed(a,b2); // no write to a and b2

17

18 foo(a); // foo writes to a field of a

19 // { (2,b) }

20 proceed(a,b);

21 }

Listing 5.1 UnchangedParamsAnalysis example

Lines 9-16 illustrate a conditional and merge. On the true branch the pair (2,b2) is

generated, but not on the false branch. After the merge, the intersection is computed as

indicated in the comment on line 15, which does not include (2,b2). Assuming that the

proceed call at line 16 does not write fields of a, and b2, before line 18, the flow set

remains.

Line 18 illustrates the use of side-effects to kill. If we assume that the call to foo

writes to a field of a, then the side-effect analysis will indicate an interference with the

pairs (1,a) and (1,a2) and these pairs are therefore killed. Since there is no loop, after

line 20, the analysis reaches the fix point.

After that, we can test whether these proceed calls hold the same arguments property,

and the results are below:

• The proceed at line 7 does have the same arguments (both (1,a2) and {(2,b) are

in the set flowing in).

• The proceed at line 16 does not obey the same arguments property because (2,b2)

50

5.2. Analysis

is not in the set flowing in.

• The proceed at Line 20 also does not obey the same arguments property because

(1,a) is not the set flowing in.

UnchangedReturnAnalysis

In an around advice that returns a value, we must ensure that the value computed by a

proceed actually reaches all return statements of the advice. UnchangedReturnAnaly-

sis collects all values returned by an advice, and its result is used to check the same return

condition. The specification of the data flow analysis is presented by the following six

rules:

1. For each program point, we approximate a set of variables/expressions, represented

by Soot’s Value.

2. At a program point p, if x is in the set then this means that x either is returned by

a return statement or has exactly the same value with a Value returned by a return

statement. In particular, if the x is a reference type, then x is in the set at program

point p, only if x refers to the same object as a Value returned by a return statement

ret, and there has been no write to a field of the object between the ret and program

point p or ret returns x.

3. It is a backward analysis.

4. The confluence operator is union:

out(n) =
⋃

s∈succ(n)

in(s)

where: out(n) – means the set at the output of a node in the CFG, which is also the

data set flowing into the node; in(s) – means the set at the input of a node in the

CFG, which is also the data set flowing out of the node.

51

Computation Impact

5. The data flow equation for a node s is

in(s) = out(s)∩gen(s)− kill(s)

where the out and in have the same meaning with those in rule 4. The following

are the gen and kill rules at a node:

• Gen due to return: a return statement in the form of return op generates op.

• Gen due to assign statement: if lhs of an assign statement in the form lhs =

rhs is in the set, generate rhs.

• Kill due to assign statement: a statement of the form lhs = rhs kills lhs.

• Kill due to reference: for all statements of the form a.f = b, we kill a, and

we generate a special value, unknown.

• Kill due to alias: if a value v is being killed, any value v’ should be killed if v

and v’ point to the same location, i.e., the PointsToSet of v and v’ have a

non-empty intersection.

• Kill due to side-effect: if the statement contains a method call, it may write to

objects. Thus, for each value in the set, say o, we check (use Soot’s side-effect

analysis) to see if there in an interference with the method call and any field of

o. If there is an interference, then we kill o, because the state of the object may

have been changed, and it may no longer denote the same value being returned,

and we generate a stub in the set to mark the value being returned is unknown.

6. Starting approximations are as follows:

• in(end) = {}.

• in(other) = {}.

The analysis is implemented under the backward data flow analysis framework in Soot.

After the data-flow analysis reaches the fix point, we can query the data flow set to test

the same return value property of proceed calls as follows: for an assign statement p

52

5.2. Analysis

containing a proceed call — x = proceed(...), we fetch out the data set flowing into

p, i.e.,out(p), and then check if x has the same value of all Values in the set out(p). If

the answer is yes, we conclude that the proceed call holds the same return value property.

1 int around$0()

2 {

3 int i;

4

5 x = proceed();

6 // { proceed() }

7 i = proceed();

8 // { i }

9 if (cond) {

10 // { i }

11 x = i;

12 // { x }

13 return x;

14 } else

15 // { i }

16 return i;

17 }

Listing 5.2 UnchangedReturnAnalysis example

To illustrate this analysis, consider the example around advice in Listing 5.2, and

remember it is a backward analysis. The return statement at line 16 generates i to the

set in the false branch, and the return at line 13 generates x to the set in the true branch.

The assign statement at line 11 generates i and kills x. At the merge point at line 9, we

union the sets from true and false branch, get {i}. At line 7, i is killed, but the expression

proceed() is generated. After line 5, we reach the fix point.

Then, given the proceed at line 7, we can say it obeys the same return value property

because i equals to i. However, given the proceed at 5, we would conclude that it violates

the same return value property because x is not equal to proceed() (at least from the data

flow analysis’ view).

The example around advice in Listing 5.3 illustrates the analysis involving a reference

type. Similarly, the return statement at line 12 generates a to the set in the false branch, and

the return at line 9 generates a to the set in the true branch. However, the call to foo at line

7 changes a, so we kill a from the set and generate the stub unknown. At the merge point

53

Computation Impact

1 A around$0()

2 {

3 A a = proceed();

4 // { unknown, a }

5 if (cond) {

6 // { unknown }

7 foo(a); // foo writes to a field of a

8 // { a }

9 return a;

10 } else

11 // { a }

12 return a;

13 }

Listing 5.3 UnchangedReturnAnalysis example demonstrating side-effect

at line 5, we union the sets from true and false branch, get {unknown, a}. After line 3,

the analysis reaches the fix point. Then, given the proceed at line 3, we can conclude that

it violates the same return value property because unknown does not equal a.

The above example also demonstrates the use of unknown, if we do not generate the

stub when we kill a at line 7, at the merge point, we will get {a}, and then we will conclude

that the proceed at line 3 obeys the same return value property, which is not the fact.

ExceptionBeforeProceedAnalysis

Although an unchecked exception thrown in an advice may terminate the execution of the

advice, we only take checked exceptions into account in our analysis because every Java

statement may throw unchecked exceptions, such as OutofMemoryError, which leads to

too many possible (but unlikely) exceptions.

This analysis checks if there are uncaught checked exceptions thrown before a given

proceed statement, and its result is used to check the no abrupt exception condition. Since

we only care about checked exceptions, and since an around advice cannot throw an ex-

ception itself, it follows that any checked exception thrown in the body of the advice must

be caught by an enclosing try-catch block. Thus, only statements in the same try-catch

block with a proceed statement have the possibility to throw a checked exception that

could cause the proceed statement to be bypassed. Therefore, in this analysis, we first try

54

5.2. Analysis

to find if the proceed statement is contained inside a try-catch block, represented by Trap

in Soot. If the answer is no, we can conclude that the no abrupt exception condition holds.

If the answer is yes, we then conduct a data flow analysis to collect statements throwing

checked exceptions. The analysis result is used to test if the no abrupt exception condition

holds. The specification of the data flow analysis is presented by the following six rules:

1. For each program point, we approximate a set of statements, represented by Soot’s

Stmt.

2. At a program point p, if x is in the set then this means that the intersection set of

the set of Traps surrounding x and the set of Traps surrounding the given proceed

statement is not empty, and x throws checked exceptions.

3. It is a forward analysis.

4. The confluence operator is union:

in(n) =
⋃

s∈succ(n)

out(s)

where: out(s) – means the set at the output of a node in the CFG, which is also the

data set flowing out of the node; in(n) – means the set at the input of a node in the

CFG, which is also the data set flowing into the node.

5. The data flow equation for a node s is

out(s) = in(s)∩gen(s)− kill(s)

where the out and in have the same meaning with those in rule 4. The following

are the gen and kill rules at a node s:

• Gen due to throw statement: if s is a direct throw statement and is surrounded

by the same Trap and throws a checked exception, generate s.

55

Computation Impact

• Gen due to method call: if s contains method invocation m and is surrounded

by the same Trap, and m declares checked exceptions in its signature, generate

s.

• Kill nothing.

6. Starting approximations are as follows:

• in(end) = {}.

• in(other) = {}.

The analysis is implemented under the forward data flow analysis framework in Soot.

After the data-flow analysis reaches the fix point, we can query the data flow set to test the

no abrupt exception property of the proceed calls as follows: for a statement p containing

a proceed call, we fetch out the data set flowing into p, i.e.,in(p), and then check if

in(p) is empty. If the answer is yes, we conclude that the proceed call holds the no

abrupt exception property.

5.2.2 Computation Impact

ProceedAnalysis

With the above three analyses, we implement the ProceedAnalysis to discover how

proceed calls appear in control flow paths of an around advice.

First, we traverse all statements in the advice body looking for proceed calls. If

the advice has void return type, which means the proceed call returns nothing, we ap-

ply UnchangedParamsAnalysis and the ExceptionBeforeProceedAnalysis on

proceed call statements to check if the same arguments and no abrupt exception condi-

tions are satisfied. If the advice has a return type, we also apply the UnchangedReturn-

Value analysis to check if the no abrupt exception is satisfied. Then, we collect all exact-

proceed calls into a set exactProceedSet, and all proceeds that are not exact-proceed

into a set proceedSet. If neither set is empty, we run a data-flow analysis to check how

these proceed calls are distributed on different control flow paths. The specification of the

data flow analysis is presented by the following six rules:

56

5.2. Analysis

1. For each program point, we approximate a set of flags. There are three different kinds

of flags, represented by NonePath—which means there is a path having no proceed

call at all, NEPath—which means there is a path having non-exact-proceed call but

the path has no exact-proceed call, and ExactPath — which means there is a path

having an exact-proceed call.

2. At a program point p, if flag x is in the set then this means that from start point to p,

there exists a path described by x; if flag y is not in the set, this means that from start

point to p, there does not exist a path described by y.

3. It is a forward analysis.

4. The confluence operator is union:

in(n) =
⋃

s∈succ(n)

out(s)

where: out(s) – means the set at the output of a node in the CFG, which is also the

data set flowing out of the node; in(n) – means the set at the input of a node in the

CFG, which is also the data set flowing into the node.

5. The data flow equation for a node s is

out(s) = in(s)∩gen(s)− kill(s)

where the out and in have the same meaning with those in rule 4. The following

are the gen and kill rules at a node s:

• Gen NonePath: if s contains no proceed call and in(s) does not contain

NEPath or ExactPath.

• Gen NEPath: if s contains non-exact-proceed call and in(s) does not contain

ExactPath.

• Gen ExactPath: if s contains exact-proceed call.

• Kill NonePath: if generating NEPath or ExactPath.

57

Computation Impact

• Kill NEPath: if generating ExactPath.

6. Starting approximations are as follows:

• in(end) = {}.

• in(other) = {}.

This analysis is implemented under the forward data flow analysis framework in Soot.

After the data-flow analysis reaches the fix point, we can query the data flow set to test how

proceed calls are distributed on different control flow paths as follows: we fetch out the

data set flowing into end, i.e.,in(end), which has 6 possible values:

{NEPath}: which means for every path, there is at least one non-exact-proceed call but no

exact-proceed call.

{ExactPath}: which means for every path, there is at least one exact-proceed call.

{NonePath, NEPath}: which means for every path, either it contains no proceed call, or

it contains at least one non-exact-proceed call but no exact-proceed call.

{NonePath, ExactPath}: which means for every path, either it contains no proceed call,

or it contains at least one exact-proceed call.

{NEPath, ExactPath}: which means for every path, either it contains at least one non-

exact-proceed call but no exact-proceed call, or it contains at least one exact-proceed

call.

{NonePath, NEPath, ExactPath}: which means some paths contain no proceed call; for

some paths, they contains at least one non-exact-proceed call but no exact-proceed

call; and for some paths, they contains at least one exact-proceed call.

Notice that {NonePath} is not possible since it means there is no proceed call at all on

all paths, and the data flow analysis will not be called in this situation, but to be consistent,

the analysis returns {NonePath} to represent that there is no proceed call.

58

5.2. Analysis

Classify Computation Impact

Based on the results of the above analyses and the kind of the advice, we conclude compu-

tation impact using the following rules (also described in Algorithm 5.1:

Elimination Impact: If an around advice body is empty or only contains a return state-

ment, it has elimination impact since the matched computation in the base program

is totally removed.

Addition Impact: We categorize all non-empty before and after advice as causing ad-

dition impact. In addition, if an around advice has at least one exact-proceed on

every path (ProceedAnalysis returns {ExactPath}) and has additional computa-

tion other than proceed calls, it has addition impact.

Definite-Substitution Impact: If an around advice does not have a proceed call on all

paths(ProceedAnalysis returns {NonePath}) and also defines new computation

in its body, the matched computation is definitely replaced by computation defined

in advice, so the around advice has definite-substitution impact.

Conditional-Substitution Impact: If an around advice has at least one exact-proceed on

one or more paths but not on all paths and has no proceed call at all on all other paths

(ProceedAnalysis returns {NonePath, ExactPath}), the matched computation is

conditionally replaced by computation defined in advice, so the around advice has

conditional-substitution impact.

Mixed Impact: If an around advice does not have the above impact(ProceedAnalysis

returns a set containing flag NEPath), it means on some paths, the matched compu-

tation may or may not be replaced by computation defined in advice at run-time, so

the around advice has mixed impact.

Through our classification, programmers can get a general view of what an advice is

going to do if applying it, or use our conclusion to verify if the advice is implemented as

expected. For example, an advice is designed to totally replace the computation in the base

program, but our analyses shows that the advice has conditional-substitution computation

59

Computation Impact

impact. Noticing the difference between the intention and the analysis result, the program-

mer could become aware of the problem. Then, he/she just needs to focus on checking

if there is an exact-proceed on some paths. Therefore, our analyses can also alleviate the

difficulty of finding bugs in advice.

5.3 Experimental Results

5.3.1 Examples

First, we explore our analyses with the bank and source code repository examples discussed

in Section 3.2.1.

Bank

A segment of our analyses report related to advice in the bank example is shown in Listing

4.1. For presentation purposes, we omit the part related to state impact. As expected,

our analyses report that all three advice have addition computation impact. If we examine

the before (Listing 3.4, line 6-11) and after (line 13-17) advice, they have addition

computation impact because they are before/after advice and have non-empty bodies. If

we examine the around advice (line 19-25), it has addition computation impact because it

contains an exact-proceed (line 23) and extra computation.

Source Code Repository

Listing 5.5 shows the report of analyzing the source code repository example. As expected,

our analyses classify the boolean around advice defined in SourceCodeRepositoryAs-

pect.aj (Listing 3.13) at line 5-8 has elimination computation impact, and the void around

advice at line 10-18 has conditional-substitution computation impact. If we examine the

boolean around advice, it has elimination computation impact because it is an around

advice having a return type other than void, and its body only contains a return statement. If

we examine the void around advice, it has conditional-substitution computation impact

because it has an exact-proceed (line 14) in one path, but no proceed at all on other paths.

60

5.3. Experimental Results

AccountAspect.aj:6,1-11:2 Advice: before(bank.account.AbstractAccount

account)

state impact:

...

addition computation impact

AccountAspect.aj:13,1-17:2 Advice: after(bank.account.AbstractAccount

account)

state impact:

...

addition computation impact

AccountAspect.aj:19,1-25:2 Advice: void around()

no state impact

addition computation impact

Listing 5.4 Report of analyzing advice in the bank example

SourceCodeRepositoryAspect.aj:5,1-8:2 Advice: boolean around()

no state impact

elimination computation impact

SourceCodeRepositoryAspect.aj:10,1-18:2 Advice: void

around(java.lang.String src)

no state impact

conditional-substitution computation impact

Listing 5.5 Report of analyzing the source code repository example

5.3.2 Benchmarks

Table 5.1 shows statistics of analyzing these benchmarks. The second column “C&A”

shows the total number of classes and aspects. The third column shows the total number of

advice declarations. The next five columns shows the number of advice declarations caus-

ing addition (A), elimination (E), definite-substitution (D), conditional-substitution (C) and

mixed (M) computation impact respectively. The last column shows the number of classes

and aspects checked when classifying these computation impacts manually. Similar to what

we did for state impact, we started from the source code of all aspects and discovered all

advice. Since all non-empty before and after advice are classified as having additional

computation impact, we only need to check to see if their body is empty or not. For around

61

Computation Impact

advice, we read its source code and determined its impact based on our classification. If

a statement contains a method call, we had to discover the target methods and examined

what those methods do by reading their source code. During this process, we recorded the

number of aspects and classes visited.

benchmark C&A advice A E D C M C&A manually

aopbank 6 5 2 0 0 3 0 3

bean 3 2 2 0 0 0 0 2

DCM 34 8 7 0 0 0 0 4

exptree6 12 4 3 0 0 1 0 5

observer 8 1 1 0 0 0 0 2

ProdLine 20 15 13 0 1 0 1 11

Tetris 17 21 15 1 1 4 0 8

tracing 6 4 4 0 0 0 0 2

Table 5.1 Basic statistics about benchmarks

From Table 5.1, we can find that for most benchmarks, when classifying these compu-

tation impacts manually, nearly 50% of classes and aspects need to be checked. In addition,

the source lines of code of advice declarations in these benchmarks are small, and the logic

of these advice declarations are not complex. Therefore, we can image the difficulty of

classifying and understanding computation impacts in a large-scale application. However,

by using our tool, it only takes few minutes to get complete computation impact informa-

tion.

We can find all categories of computation impact in these benchmarks. This gives us an

intuition that our classification is reasonable. We also find 78% of advice causes addition

computation impact. This reflects the reality that most of current AOP applications are

in the first phase — “introducing exploration and enforcement aspects” [Duc06]. Aspects

created in this phase usually do not modify the computation in the rest of the program.

In addition, for the tracing benchmark, we state that the aspects are pure observers when

introducing it in Section 2.2. Thus, we would expect only addition impacts. As indicated

in Table 5.1, our analysis gives the expected result.

Another interesting example is the around advice declaration causing definite-substitution

computation impact in the ProdLine benchmark. In the base program, a Graph declares

62

5.3. Experimental Results

an addAnEdge(...) method (in fact, this method is injected by an inter-type method

declaration), which adds an edge to the graph but ignoring the weight information of the

edge. This around advice crosscuts the invocation of the method and replace it with adding

a weighted edge. Therefore, this advice is designed to replace old computations. As ex-

pected, our analysis reports definite-substitution computation impact.

63

Computation Impact

64

Chapter 6

Shadowing Impact

In Section 3.5, we introduced the shadowing impact and defined it as the change of

reference of fields in the base program, which refers to the whole program except the inter-

type declaration being considered, after applying inter-type declarations. Although there

are various kinds of inter-type declarations, such as inter-type field, method, constructor,

parents, warning, error, soft, precedence declaration, in AspectJ, it is obvious that only two

of them can cause a shadowing impact, which are inter-type field declarations and inter-

type parents declarations, and two different analyses are implemented to deal with them

respectively. Our analyses report whether there is shadowing impact on [Class].field1

if there is such a field reference somewhere in the application. Extending this to identify

individual reference sites is very straightforward, and the basic idea is simple: for each

field reference in the application, check if the receiver’s type and the name of field match

to one in our shadowing impact set. In this chapter, we discuss shadowing impact and the

two analyses in detail.

1In this thesis, we denote the access of field f of a variable of type Type as [Type].f.

65

Shadowing Impact

6.1 Inter-type Field Declaration

6.1.1 Definition

An inter-type field declaration has the form of “Type TargetClass.foo”, and it injects

a new field named “foo” of type Type into the class TargetClass.

It may cause a shadowing impact on TargetClass if there is a field also named

“foo” in a super class of TargetClass (e.g.,Super.foo), and that field is inheritable by

TargetClass. The newly declared field TargetClass.foo will shadow Super.foo,

which means a reference [TargetClass].foo refers to different field after applying

Type TargetClass.foo, i.e., it refers to Super.foo before applying the inter-type dec-

laration and to TargetClass.foo after applying the inter-type declaration.

In addition, if Type TargetClass.foocauses a shadowing impact on TargetClass,

it also causes a shadowing impact on subclasses of TargetClass except for the set s of

subclasses that declare their own “foo” field and all subclasses of classes in s. In the

same way, “[subclasses].foo” matches to Super.foo and TargetClass.foo, re-

spectively, before and after applying Type TargetClass.foo.

Therefore, for each field “foo” that is involved in a shadowing impact, three kinds of

information matters:

affected types: are all classes affected by the shadowing impact, i.e., TargetClass itself

and all its subclasses except for the set s of subclasses that declare their own “foo”

field and all subclasses of classes in s.

original type: is the type that declares the field to which [affected types].foo refers

before applying the inter-type declaration, i.e.,Super.

current type is the type that declares the field to which [affected types].foo refers

after applying the inter-type declaration, i.e.,TargetClass.

66

6.1. Inter-type Field Declaration

6.1.2 Analysis

To discover if there is shadowing impact, our analysis checks if a new declared field shad-

ows a field which is inherited by Class from its super classes and has the same name. At

the conceptual level, our algorithm is presented in Algorithm 6.1.

Algorithm 6.1: Shadowing impact analysis on inter-type field declaration

foreach inter-type field declaration target.id in the application do1

/* check whether shadowing impact is caused */

put parent of target into worklist1;2

while worklist1 is not empty and not hasimpact do3

get first element c from worklist1;4

foreach field f declared in c do5

if f .name == “id” then6

hasimpact;7

record c as originalType;8

put target into affectedTypes;9

record target as currentType;10

end11

end12

if c != java.lang.Object then add parent of c into worklist1;13

end14

/* discover all affected types */

if hasimpact then15

put children of target into worklist2;16

while worklist2 is not empty do17

get first element c from worklist2;18

foreach f declared in c do19

if f .name == “id” then rede f ined;20

end21

if !rede f ined then22

put c into affectedTypes;23

add children of c into worklist2;24

end25

end26

end27

end28

67

Shadowing Impact

First, we fetch all inter-type field declarations from abc. Then, for each inter-type

field declaration having the form target.id, we check if it causes a shadowing impact.

Basically, we first traverse the class hierarchy up starting from target(exclusive) to find if

“id” is declared there. If yes, we say that target.id causes shadowing impact, and record

c as original type, target as current type, and also consider target as an affected type.

Then, we traverse the class hierarchy down starting from target(exclusive) to find and

record subclasses affected by this impact, which are all subclasses except those subclasses

who declare “id” and their subclasses. Therefore, during the analysis process, original

type, current type and affected types are analyzed and recorded. As a result, in our report,

we not only report whether there is shadowing impact, but also what the change is.

To illustrate our algorithm, consider the example hierarchy in Figure 6.1. B.id is an

inter-type field declaration. Traversing up in the hierarchy, we found A declares field “id”,

thus B.id causes shadowing impact, and we record A as the original type and B as the

current type, and also put B into the affected types set. Then, we traverse down in the

hierarchy, and we reach C and E, children of B. C does not redefine “id”, so we add it into

affected types set and add D, the child of C, into the worklist2. E redefines “id”, so

we stop traversing this path by not expanding the worklist2. After that, we get D from

worklist2 and add D into the affected types set similarly. Once the worklist is empty,

the analysis ends. As a result, we conclude that there is shadowing impact regarding field

“id”, and record:

affected types: B, C, and D;

original type: A;

current type: B.

6.2 Inter-type Parents Declaration

There are two different kinds of inter-type parents declarations: inter-type-extends-dec-

laration in the form of “TypePattern extends Class” and inter-type-implements-

68

6.2. Inter-type Parents Declaration

A {id}

|

B <= {B.id}

/ \

C E {id}

| |

D F

Figure 6.1 Shadowing impact analysis on inter-type field declaration example

declaration in the form of “TypePattern implements Interface”. The inter-type-

extends-declaration can cause shadowing impacts; however, the inter-type-implements-

declaration would not cause any shadowing impact at all. In the following sections, we

will discuss them and the corresponding analysis in detail.

6.2.1 Inter-type-extends-declaration

Definition

The inter-type-extends-declaration only allows a class c to extend its siblings or its sib-

lings’ sub-classes. This restriction means a class can only be moved down in the hierarchy

through its siblings path, thus only new fields can be inherited by the class, and it can not

lose any fields. For example, in the class hierarchy shown in Figure 6.2, C extends E, C

extends F, and E extends C are allowed, but C extends A and F extends C are

illegal.

A

|

B

/ \

C E

|

F

Figure 6.2 An example class hierarchy

An inter-type-extends-declaration having the form of “TargetClass extends New-

Parent” can cause shadowing impact on a field named “foo” if both of the following two

conditions are satisfied:

69

Shadowing Impact

1. Some old super classes of TargetClass (e.g., OldSuper) — which are super

classes of TargetClass before applying the inter-type-extends-declaration, for ex-

ample classes A and B if we declare C extends F— declare a field named “foo”,

and the field is inheritable by TargetClass.

2. Some new super classes of TargetClass (e.g., NewSuper) — which are super

classes newly extended after applying the inter-type extends declaration, for example

classes E and F if we declare C extends F— declare a field named “foo”, and the

field is inherited by TargetClass.

Thus, the new inherited “foo” shadows the original inherited “foo. Here, OldSuper

is the original type, NewSuper is the current type, and TargetClass is an affected type.

Similar to the inter-type field declaration, the inter-type-extends-declaration also causes

shadowing impact on subclasses of TargetClass except for the set s of subclasses that

declare their own “foo” field and all subclasses of classes in s. These subclasses are

affected types too.

All information regarding current type, original type and affected types are also re-

corded and reported in a similar way as for inter-type field declarations.

Analysis

From the above definition, we can see that there are some commonalities between inter-type

field and extends declarations, and the analysis shares those commonalities. In our analysis,

we first need to know what fields are newly inherited by the class, and then treat each of

them like a new declared field similar to the field declared by inter-type field declaration.

Those fields which are newly inherited actually come from fields that are declared in classes

along the path between the old parent(exclusive) and the new parent(inclusive), so we need

the old parent information. Therefore, our analysis is divided into two parts: the first part

records the old parent before abc processes inter-type declarations, and the second part

analyzes the shadowing impact after inter-type declarations are woven.

70

6.2. Inter-type Parents Declaration

Part 1: record old parent

This part is shown in Figure 6.3 (which is the same as Figure 2.2), the box labeled

“Hierarchy storing”. For each inter-type-extends-declaration, we simply record its parent

at that time. However, our base program refers to the whole program except the inter-

type declaration being considered, so it means when we talk about the old parent of an

inter-typed class, we should take the effect of other inter-type parents declarations into

account. However, would other inter-type parents declarations interfere with the one being

considered? The answer is no. If more than one inter-type-extends-declarations are defined

in an application, either a) all new parents lie in the same path in the hierarchy tree; or b)

new parents spread into different paths in the hierarchy tree. In situation a, only the one that

declares the new parent deepest down into the hierarchy is applied, thus no interference so

caused; in situation b, the AspectJ compiler will complain of a compile-error. Situation a

is shown in Figure 6.4, both “C extends E” and “C extends F” are defined, but since

F is deeper than E in the hierarchy, only “C extends F” is applied. In fact, abc gives a

warning regarding such a situation. Therefore, we can simply record the parent before abc

processes any inter-type declarations (e.g.,B) as the old parent.

Part 2: analysis after weaving

In an inter-type-extends-declaration, the target could be a type pattern, which may

match to more than one class. Thus, we first fetch all target classes from abc, and for

each target class, perform the following two steps.

The first step is to find all fields newly inherited by the target class, i.e., the class being

declared parents, e.g., class C in the example in Figure 6.4. We first fetch out the old parent

stored before weaving. Then, we traverse the hierarchy up starting from the new parent till

the old parent to find the path connecting the old and new parent. In Figure 6.4, the path

is F–E. After that, we traverse the hierarchy down through the path, E–F, and we record

all fields declared in classes along the path and inheritable by the target class. In case that

a class down in the path declares a field having the same name with a field declared in a

class above it, and both fields are inheritable by the target class, only the field declared in

71

Shadowing Impact

W o v e n

s k e l e t o n

S o o t s k e l e t o n g e n e r a t i o n

S o o t j i m p l e b o d y g e n e r a t i o n

J i m p l e

s k e l e t o n

S k e l e t o n w e a v i n g

A s p e c t

I n f o

J a v a A S T

H i e r a r c h y s t o r i n g

P r e - w e a v e

h i e r a r c h y

. c l a s s

Figure 6.3 Code generation and static weaving of abc, and the pre-weave hierarchy recording

phase of AIA in static weaving, extended from [ACH+05]

A

A |

| B

B C extends E |

/ \ => E

C E C extends F |

| F

F |

C

Figure 6.4 Two inter-type-extends-declarations on the same type example

the class further down in the path is recorded. For example, if both E and F declare a field

“sn”, only the “sn” in F is recorded.

In the second step, for each field recorded in the first step, we treat it as if it is a

newly declared field by inter-type field declaration and following the similar algorithm as

Algorithm 6.1, except that when traversing the hierarchy up, we skip classes between the

old parent and the new parent (e.g., E and F) and start from the old super class (e.g., B).

72

6.3. Experimental Results

6.2.2 Inter-type-implements-declaration

In fact, inter-type-implements-declaration does not cause any shadowing impact at all. If

the new super interface declaring a field having the same name with a field inherited by

or declared in the target class, i.e., the class being declared new super interface, there are

only two possible outcomes: a) compile error, the compiler complains “ambiguous field”;

or b) there is no compile-time error, if the field is not reference anywhere in the application,

but since it is not referenced at all, there will never be shadowing impact. As illustrated in

Figure 6.5, if there is [E].f somewhere in the application, compiler will complain about an

ambiguous field on [E].f. Therefore, there is no possibility for an inter-type-implements-

declaration causing shadowing impact.

A {f} A {f}

| |

B I {f} E implements I B I {f}

/ \ => / \ /

C E C E

| |

F F

Figure 6.5 Inter-type implements declarations example

6.3 Experimental Results

6.3.1 Examples

First, we explore our analyses with the bank example discussed in Section 3.2.1.

Bank

A segment of our analyses report related to inter-type declarations in the bank example is

shown in Listing 6.1. For presentation purposes, we omit the part related to lookup impact.

As expected and discussed in Section 3.5, our analyses report that both the inter-type field

declaration GoldCard.bonus (Listing 3.9, line 5) and the inter-type parents declaration

ValueCard extends RewardCard (line 7) cause shadowing impacts.

73

Shadowing Impact

CreditCardAspect.aj:5,8-29 ITD: GoldCard.bonus

shadowing impact:

[bank.creditcard.GoldCard].bonus

originally matched to bank.creditcard.RewardCard, currently

matches to bank.creditcard.GoldCard

CreditCardAspect.aj:9,8-61 ITD:

GoldCard.payment(bank.account.StudentCheckingAccount)

lookup impact:

...

CreditCardAspect.aj:7,1-47 ITD: ValueCard extends RewardCard

shadowing impact:

[bank.creditcard.ValueCard].bonus

originally matched to bank.creditcard.AbstractCreditCard,

currently matches to bank.creditcard.RewardCard

lookup impact:

...

Listing 6.1 Report of analyzing inter-type declarations in the bank example

The report shows the inter-type field declaration GoldCard.bonus causes a change

of binding for the field reference [GoldCard].bonus. In addition, the analyses report that

[GoldCard].card refers to RewardCard.bonus before applying the inter-type field decla-

ration and refers to GoldCard.bonus instead after applying the inter-type field declara-

tion.

The report also shows that the inter-type parents declaration ValueCard extends

RewardCard causes a binding change for the field reference [ValueCard].bonus. Simi-

larly, the analyses report that [ValueCard].bonus refers to AbstractCreditCard.bonus

before applying the inter-type parents declaration and refers to RewardCard.bonus in-

stead after applying inter-type parents declaration.

6.3.2 Benchmarks

Table 6.1 shows statistics of analyzing these benchmarks. The second column “C&A”

shows the total number of classes and aspects. The third column shows the total num-

ber of inter-type declarations. The next column shows the number of shadowing impacts.

The last column shows the number of classes and aspects checked when discovering these

74

6.3. Experimental Results

shadowing impact manually. Basically, we started from the source code of all aspects and

discovered all inter-type declarations. For each inter-type declaration, we tried to apply it

to the base program manually by drawing the partial UML graph2, and then examined the

hierarchy of the UML graph to determine if there is shadowing impact caused. During this

process, we recorded the number of aspects and classes visited, including the classes that

have to be visited to determine the hierarchy.

benchmark C&A inter-type declarations shadowing C&A manually

aopbank 6 1 0 3

bean 3 7 0 2

DCM 34 2 0 4

exptree6 12 27 0 5

observer 8 11 0 2

ProdLine 20 79 0 20

Tetris 17 0 0 8

tracing 6 0 0 2

Table 6.1 Basic statistics about benchmarks

In fact, we can’t find any shadowing impact in these benchmarks. We think the reason

is that shadowing impact usually involves non-private fields, and as the encapsulation dis-

courages non-private fields, thus the chance of shadowing impact happening is lower than

other kinds of impact. Moreover, shadowing impact usually leads to bugs, and these bench-

marks are well tested, and this reduces the chance of finding shadowing impact further.

Nevertheless, to determine manually that there is no shadowing impact, we would still

need to check nearly 50% percent of classes and aspects. For ProdLine, we have to check

all classes and aspects since inter-type declarations are heavily used in it. Thus, we can

image the difficulty of discovering and understanding shadowing impacts in a large-scale

application. However, by using our tool, it only takes few minutes to get complete shadow-

ing impact information.

In addition, for the tracing benchmark, we state that the aspects are pure observers when

introducing it in Section 2.2. From the above table, we can see that as expected there is no

2Since only fields are concerned, we did not draw methods, so we call it partial UML graph.

75

Shadowing Impact

shadowing impact caused.

76

Chapter 7

Lookup Impact

In Section 3.6, we introduced the concept of lookup impact and defined it as an im-

pact caused by changing the lookup of a method invocation in the base program (which

refers to the whole program except the inter-type declaration being considered) after ap-

plying an inter-type declaration. Although there are various kinds of inter-type declara-

tions, such as inter-type field, method, constructor, parents, warning, error, soft, prece-

dence declaration, in AspectJ, it is obvious that only three of them can cause a lookup

impact, which are inter-type method declaration, inter-type constructor declaration and

inter-type parents declaration; three different analyses are implemented to deal with them

respectively. Similar to shadowing impact analyses, we report whether there is a lookup

impact on [Class].method(...)1 if there is such a method invocation somewhere in

the application. Extending this to identify individual call-site is not difficult and has already

been implemented by one of our graduate students taking “Optimizing Compilers (Winter

2008)” course as a course project. In this chapter, we discuss lookup impact and the three

analyses in detail.

7.1 Finding the Matched Method

Since we define lookup impact as causing a change of lookup of a method invocation, the

lookup impact analysis involves finding the most-specific method for a method invocation.

1In this thesis, we denote a method invocationfoo() on a receiver of typeType as [Type].foo().

77

Lookup Impact

In this section we briefly discuss the most-specific matching strategy. In addition, the

matched method of a method invocation of the same method on receivers of the same type

may be different depending on where the invocation appears, thus we also introduce the

invocation place concept in this section.

7.1.1 Accessible Methods and Invocation Place

Whether a method declaration is accessible at a method invocation depends on the access

modifier (public, none, protected, or private) in the method declaration and on where the

method invocation appears. Therefore, the place of invocation should be considered in

our analysis. Guided by the Java Language Specification [GJSB05] (JLS) 6.6 — Access

Control, we define four different kinds of invocation places:

class: means the invocation appears within the class of the receiver, .

package: means the invocation appears within the package of the receiver’s class but not

within the receiver’s class.

protected: means the invocation appears within a class that is a super class of the receiver’s

class that either declares or inherits the invoked protected method, but not within the

receiver’s package.

other: means the invocation appears somewhere other than the above three places.

Consider the class hierarchy in Figure 7.1, for the invocation [D].foo(LinkedHash-

Set):

Within class means within p3.D.

Within package means within p3.E.

Within protected means within p4.C or p2.B.

Within other means within p1.A or p4.F.

78

7.1. Finding the Matched Method

p1.A {public foo(Object)} p3.E p4.F

{public foo(int)}

|

p2.B {protected foo(Set)}

|

p4.C

|

p3.D {private foo(LinkedHashSet)

foo(HashSet)}

Figure 7.1 Invocation place example

For a method invocation [Type].foo(...) appearing in an invocation place, we

identify accessible methods of the invocation as all methods that are declared or inherited

by Type and are permitted to access in the invocation place according to JLS 6.6 — Ac-

cess Control. Basically, they are visible methods based on the invocation place among all

methods that are declared or inherited by Type.

For the invocation [D].foo(LinkedHashet) on the class hierarchy in Figure 7.1,

accessible methods are described as follows:

Within class, accessible methods are p1.A.foo(Object),p1.A.foo(int),p2.B.foo

(Set), p3.D.foo(HashSet) and p3.D.foo(LinkedHashSet).

Within package, accessible methods are p1.A.foo(Object),p1.A.foo(int) and p3.

D.foo(HashSet).

Within protected, accessible methods are p1.A.foo(Object), p1.A.foo(int) and

p2.B.foo(Set).

Within other, accessible methods are p1.A.foo(Object) and p1.A.foo(int).

7.1.2 Applicable Methods

Amongst all accessible methods, only those that satisfy the conditions as described in JLS

15.12.2.1— Identify Potentially ApplicableMethods— are applicable methods. Basically,

they are methods that have the identical name and method invocation convertible formals

79

Lookup Impact

with the invoked method. For the above example, p1.A.foo(int) is not applicable, since

int and LinkedHashSet is not method invocation convertible, thus:

Within class, applicable methods are p1.A.foo(Object),p2.B.foo(Set),p3.D.foo

(HashSet) and p3.D.foo(LinkedHashSet).

Within package, applicable methods are p1.A.foo(Object) and p3.D.foo(Hash-

Set).

Within protected, applicable methods are p1.A.foo(Object) and p2.B.foo(Set).

Within other, applicable methods are p1.A.foo(Object).

7.1.3 Most Specific Method

If more than one method are both accessible and applicable to a method invocation, Java

uses the most specific matching strategy to choose the matched method, and this is dis-

cussed in detail in JLS 15.12.2.5 — Choosing the Most Specific Method. “The informal

intuition is that one method is more specific than another if any invocation handled by the

first method could be passed on to the other one without a compile-time type error.” How-

ever, it is possible that no method is the most specific. For example, for an invocation

[Type].foo(HashSet, HashSet), assume two methods are applicable: foo(Set,

HashSet) and foo(HashSet, Set); however, neither one is more specific than the

other, so there is no most specific method.

For the invocation [D].foo(LinkedHashet)on the class hierarchy in Figure 7.1, the

most specific method is described as follows:

Within class, the most specific methods is p3.D.foo(LinkedHashSet).

Within package, the most specific methods is p3.D.foo(HashSet).

Within protected, the most specific methods is p2.B.foo(Set).

Within other, the most specific methods is p1.A.foo(Object).

80

7.2. Inter-type Method Declaration

7.2 Inter-type Method Declaration

7.2.1 Definition

An inter-type method declaration has the form of “RetType TargetClass.foo(for-

mals){...}”, and it injects a new method “RetType foo(formals)” into the class

TargetClass.

It may cause a lookup impact on [TargetClass].foo(formals) if this invoca-

tion matches to a method C.foo(...) before applying the inter-type method declara-

tion since [TargetClass].foo(formals) will match to the newly declared method

TargetClass.foo(...). However, the method originally matched may be different for

different invocation places, thus the analysis should consider each invocation place respec-

tively.

In addition, nomatter if RetType TargetClass.foo(formals){...} causes look-

up impact on TargetClass, it may cause lookup impact on subclasses of TargetClass

except for the set s of subclasses that declare their own foo(formals) and all subclasses

of classes in s. However, due to the most specific match, each subclass should be consid-

ered individually to determine the method that [subclass].foo(formals) originally

matches to. Similarly, each invocation place should be considered respectively.

Therefore, to report a lookup impact, we should report all affected types, which are

defined as follows:

affected types: are all classes affected by a lookup impact, i.e.,, TargetClass itself and

all its subclasses except for the set s of subclasses that declare their own foo(for-

mals) and all subclasses of classes in s.

For each affected type, for each possible invocation place, we should report the original

method and current method, which are defined as follows:

original method: is the most-specific method that [affected type].foo(formals)

originally matches to before applying the inter-type declaration.

81

Lookup Impact

current method: is the most-specific method that [affected type].foo(formals)

currently matches to after applying the inter-type declaration.

7.2.2 Analysis

Guided by Java Language Specification (JLS), our analysis is presented in Algorithm 7.1.

An inter-type method declaration can declare that interfaces have methods with bodies,

but in abc (also in ajc), these methods are actually woven into the interface’s direct im-

plementors; thus, this kind of declaration is equivalent to a number of inter-type method

declarations declared on each of these implementors. Therefore, at line 3 in our algorithm

(Algorithm 7.1), we put all direct implementors into the worklist and then analyze them

as if they are inter-type method declaration on classes.

For each class in the worklist, for each kind of invocation place, we first try to find the

most specific method to determine if lookup impact is caused at line 10-19. If the most

specific method exists, we can conclude that lookup impact is caused and record the most-

specific method as the original method, and obviously the newly injected method is the

current method, and we also record the class being analyzed c as an affected type for this

kind of invocation place.

No matter if a lookup impact is caused on class c or not, the inter-type method declara-

tion may cause lookup impact on its subclasses due to the most specific matching strategy

unless the subclass overrides the newly declared method. Therefore, we add all c’s direct

subclasses that do not override the newly declared method into the worklist so that they can

be analyzed. By using the worklist design pattern, all subclasses of c will be analyzed in

the following loops.

To illustrate our algorithm, consider the example hierarchy in Figure 7.2. public

B.foo(HashSet) {...} is an inter-type method declaration. First, we analyze B.

A {public foo(Object)}

|

B {private foo(Set)} <= {public B.foo(HashSet){...}}

/ \

C E {public foo(HashSet)}

Figure 7.2 Lookup impact analysis on inter-type method declaration example

82

7.2. Inter-type Method Declaration

Algorithm 7.1: Lookup impact analysis on inter-type method declaration

foreach inter-type method declaration class.id(f ormals) in the application do1

if class is interface then2

put direct implementors of class into worklist;3

else4

put class into worklist;5

end6

while worklist is not empty do7

get first class c from worklist;8

foreach invocation place p do9

hasLookup = false;10

put all methods inherited by c into mset;11

put member methods of c into mset except id.(f ormals);12

remove not accessible methods based on p from mset;13

remove not applicable methods from mset;14

if size of mset == 1 then hasLookup = true;15

else16

sort mset ordered by more specific property;17

if mset.get(1) is more specific than mset.get(2) then18

hasLookup = true;19

end20

end21

if hasLookup then22

record c as a f f ectedType;23

record the first method in mset as originalMethod;24

record class.id(f ormals) as currentMethod;25

end26

end27

foreach direct subclass child of c do28

if child do not declare id.(f ormals) then29

add child into worklist;30

end31

end32

end33

end34

83

Lookup Impact

For the class invocation place, the accessible methods are A.foo(Object) and B.foo

(Set), and the applicable methods are the same. After sorting by the more specific prop-

erty, they are ordered as B.foo(Set) and A.foo(Object). The first element B.foo(Set)

is more specific than the second element A.foo(Object); thus, B.foo(Set) is the most

specific method, and a lookup impact is caused. Therefore, for invocation place class, B is

affected; B.foo(Set) and B.foo(HashSet) are the original method and current method

respectively.

For the package invocation place, the accessible methods are A.foo(Object), and the

applicable methods are the same. Since there is only one applicable method, it is the most

specific method, and a lookup impact is caused. Therefore, for invocation place package, B

is affected; A.foo(Object) and B.foo(HashSet) are the original method and current

method respectively.

For the protected and other invocation place, if we follow the algorithm, we get the

same result as for package invocation place.

Then, we analyze class C. For all kinds of invocation place, we get C is affected, and

the original method and current method are A.foo(Object) and B.foo(HashSet) re-

spectively.

The algorithm will skip E since it declares its own foo(HashSet).

Table 7.1 summarizes the information recorded.

affected type invocation place original method current method

B class B.foo(Set) B.foo(HashSet)

B package A.foo(Set) B.foo(HashSet)

B protected A.foo(Set) B.foo(HashSet)

B other A.foo(Set) B.foo(HashSet)

C class A.foo(Set) B.foo(HashSet)

C package A.foo(Set) B.foo(HashSet)

C protected A.foo(Set) B.foo(HashSet)

C other A.foo(Set) B.foo(HashSet)

Table 7.1 Analysis result of inter-type method declaration example

84

7.3. Inter-type Constructor Declaration

7.3 Inter-type Constructor Declaration

7.3.1 Definition

An inter-type constructor declaration has the form of “TargetClass.new(formals)

{...}”, and it injects a new constructor “TargetClass(formals)” into the class Tar-

getClass.

It may cause a lookup impact on new TargetClass(formals) if this instantiation

matches to a constructor TargetClass(...) before applying the inter-type construc-

tor declaration since new TargetClass(formals) will match to the newly declared

constructor TargetClass(formals) after applying the inter-type constructor declara-

tion. However, the constructor originally matched may be different for different invocation

places, thus the analysis should consider each invocation place respectively.

Unlike methods, constructors are not inheritable; thus, inter-type constructor declara-

tion can’t cause lookup impact on subclasses of TargetClass.

Similar to inter-type method declaration, to report the lookup impact, we should report

all affected types. Similarly, for each affected type, for each possible invocation place, we

should report the original constructor and current constructor.

7.3.2 Analysis

Without the issue of inheritance, the algorithm is simpler than the one for inter-type method

declaration and is described in Algorithm 7.2.

We neither consider constructors of c’s super classes when gathering accessible con-

structors nor analyze subclasses of c.

To illustrate our algorithm, consider the example hierarchy in Figure 7.3. public

A.new(HashSet) {...} is an inter-type constructor declaration.

A {public A(Object)} <= {public A.new(HashSet){...}}

{private A(Set)}

Figure 7.3 Lookup impact analysis on inter-type constructor declaration example

For class invocation place, the accessible constructors are A(Object) and A(Set),

85

Lookup Impact

Algorithm 7.2: Lookup impact analysis on inter-type constructor declaration

foreach inter-type constructor declaration c.new(f ormals) in the application1

do

foreach invocation place p do2

hasLookup = false;3

put constructors of c into mset except c(f ormals);4

remove not accessible constructors based on p from mset;5

remove not applicable constructors from mset;6

if size of mset == 1 then hasLookup = true;7

else8

sort mset ordered by more specific property;9

if mset.get(1) is more specific than mset.get(2) then10

hasLookup = true;11

end12

end13

if hasLookup then14

record c as a f f ectedType;15

record the first constructor in mset as originalCon;16

record c(f ormals) as currentCon;17

end18

end19

end20

and the applicable constructors are the same. After sorting by the more specific property,

they are ordered as A(Set) and A(Object). The first element A(Set) is more specific

than the second element A(Object); thus, A(Set) is the most specific constructor, and

lookup impact is caused. Therefore, for invocation place class, A is affected; A(Set) and

A(HashSet) are original constructor and current constructor respectively.

For package invocation place, the accessible constructors are A(Object), and the ap-

plicable constructors are the same. Since there is only one applicable constructor, it is the

most specific constructor, and lookup impact is caused. Therefore, for invocation place

package, A is affected; A(Object) and A(HashSet) are original constructor and current

constructor respectively.

For all invocation place, if we follow the algorithm, we get the same result as for pack-

86

7.4. Inter-type Parents Declaration

age invocation place.

7.4 Inter-type Parents Declaration

There are two different kinds of inter-type parents declarations: inter-type-extends-dec-

laration in the form of “TypePattern extends Class” and inter-type-implements-

declaration in the form of “TypePattern implements Interface”. The inter-type-

extends-declaration can cause lookup impacts; however, the inter-type-implements-decla-

ration would not cause any lookup impact at all. In the following sections, we discuss them

and the corresponding analysis in detail.

7.4.1 Inter-type-extends-declaration

Definition

As discussed in Section 6.2.1, the inter-type-extends-declaration only allows a class c to

extend its siblings or its siblings’ sub-classes. This restriction means a class can only be

moved down in the hierarchy through its siblings path, thus only new methods can be

inherited by the class, and it can not lose any methods.

An inter-type-extends-declaration having the form of “TargetClass extends New-

Parent” can cause a lookup impact on a method call [Type].foo(formals) in an in-

vocation place if both of the following two conditions are satisfied:

1. The method invocation matches to a method foo(...) declared by a old super class

of TargetClass(e.g., OldSuper).

2. The method invocation matches to a method foo(...) declared by a new super

class of TargetClass(e.g., NewSuper).

Thus, Type is an affected type in this invocation place. The newly inherited method

NewSuper.foo(...) is the current method, and the method OldSuper.foo(...) is

the original method.

87

Lookup Impact

Similar to the inter-type method declaration, the inter-type-extends-declaration also

causes a lookup impact on subclasses of TargetClass except for the set s of subclasses

that declare their own “foo(formals)” and all subclasses of classes in s. These sub-

classes are affected types too. Due to the most specific strategy, similarly, all subclasses

should be analyzed individually.

For each affected type, for each kind of invocation place, the information regarding

original method and current method are also recorded and reported in a similar way as for

inter-type method declarations.

Analysis

From the above definition, we can see that there are some commonalities between inter-type

method and extends declarations and also between lookup and shadowing impact caused

by inter-type-extends-declaration, and the analysis shares these commonalities. Similar to

shadowing impact analysis, in this analysis, we first need to know what methods are newly

inherited by the class, and treat each of them like a new declared method similar to the

method declared by inter-type method declaration. Since constructors are not inherited,

we can ignore them when dealing with inter-type-extends-declaration. Similar to shadow-

ing impact analysis, those methods which are newly inherited actually come from methods

that are declared in classes along the path between the old parent(exclusive) and the new

parent(inclusive), so we need the old parent information. Therefore, this analysis is also

divided into two parts: the first part records the old parent before abc processes inter-type

declarations, and the second part analyzes the shadowing impact after inter-type declara-

tions are woven.

Part 1: record old parent

This part is shown in Figure 6.3, the box labeled “Hierarchy storing”. As described in

Section 6.2.1, for each inter-type-extends-declaration, we simply record its parent at that

time.

88

7.4. Inter-type Parents Declaration

Part 2: analysis after weaving

In an inter-type-extends-declaration, the target could be a type pattern, which may

match to more than one class. Thus, we first fetch all target classes from abc, and for

each target class, perform the following two steps.

The first step is to find all methods newly inherited by the target class, i.e., the class

being declared parents, e.g., class C in the example in Figure 7.4. We first fetch out the

old parent stored before weaving. Then, we traverse the hierarchy up starting from the new

parent till the old parent to find the path connecting the old and new parent. In Figure 7.4,

the path is F–E. After that, we traverse the hierarchy down through the path, E–F, and we

record all methods declared in classes along the path and inheritable by the target class. In

case that a class down in the path overrides a method declared in a class above it, and both

methods are inheritable by the target class, only the overriding method declared in the class

down in the path is recorded. For example, if both E and F declare a method sn(), only

the sn() in F is recorded.

A

A |

| B

B |

/ \ => E

C E C extends F |

| F

F |

C

Figure 7.4 Inter-type-extends-declarations example

In the second step, for each method recorded in the first step, we treat it as if it is a newly

declared method by inter-type method declaration and following the similar algorithm as

Algorithm 7.1, except that when traversing the hierarchy up, we skip classes between the

old parent and the new parent (e.g., E and F) and start from the old super class (e.g., B).

89

Lookup Impact

7.4.2 Inter-type-implements-declaration

In fact, the inter-type-implements-declaration does not cause any lookup impact at all.

Since an interface can’t declare a methodwith a body, for an inter-type-implements-declaration

TargetClass implements I, methods declared in I either a) are already defined by

TargetClass, or b) are injected by inter-type method declaration to TargetClass or I.

For situation a), obviously, the inter-type-implements-declarationwill not cause any lookup

impact. For situation b), the inter-type method declarations may cause lookup impact, but

we cover this with the analysis to deal with inter-type method declaration. Therefore, for

the inter-type-implements-declaration itself, it can’t cause any lookup impact.

7.5 Experimental Results

7.5.1 Examples

First, we explore our analyses with two examples: the bank example discussed in Sec-

tion 3.2.1 and the broken dispatch example adapted from the program presented by Allen

[All01].

Bank

A segment of our analyses report related to inter-type declarations in the bank example is

shown in Listing 7.1. For presentation purposes, we omit the part related to lookup impact.

As expected and discussed in Section 3.6, our analysis reports that both the inter-type

method declaration GoldCard.payment(...) (Listing 3.9, line 9) and the inter-type

parents declaration ValueCard extends RewardCard (line 7) cause lookup impact.

The report shows the inter-type method declaration GoldCard.bonus causes method

lookup change of the method call [GoldCard].payment(. . .). In addition, the analyses report

what the change is for different places where the method call may appear. For example, if

the method call appears within the bank.creditcard package, [GoldCard].payment(. . .)

matches to RewardCard.payment(...) before applying the inter-type method declara-

tion and refers to GoldCard.payment(...) instead after applying the inter-type method

90

7.5. Experimental Results

CreditCardAspect.aj:9,8-61 ITD: GoldCard.payment(bank.account.StudentCheckingAccount)

lookup impact:

[bank.creditcard.GoldCard].payment(bank.account.StudentCheckingAccount)

within declaring class, originally matched to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount), currently

matches to bank.creditcard.GoldCard.payment(bank.account.StudentCheckingAccount)

within declaring package, originally matched to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount), currently

matches to bank.creditcard.GoldCard.payment(bank.account.StudentCheckingAccount)

within class or subclasses declaring protected member, originally matched to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount), currently

matches to bank.creditcard.GoldCard.payment(bank.account.StudentCheckingAccount)

within other place, originally matched to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount), currently

matches to bank.creditcard.GoldCard.payment(bank.account.StudentCheckingAccount)

CreditCardAspect.aj:7,1-47 ITD: ValueCard extends RewardCard

shadowing impact:

...

lookup impact:

[bank.creditcard.GoldCard].payment(bank.account.AbstractAccount)

within declaring class, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

within declaring package, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

within class or subclasses declaring protected member, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

within other place, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

[bank.creditcard.ValueCard].payment(bank.account.AbstractAccount)

within declaring class, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

within declaring package, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

within class or subclasses declaring protected member, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

within other place, originally matched to

bank.creditcard.AbstractCreditCard.payment(bank.account.AbstractAccount),

currently matches to

bank.creditcard.RewardCard.payment(bank.account.AbstractAccount)

Listing 7.1 Report of analyzing inter-type declarations in bank example

91

Lookup Impact

declaration.

The report also shows that the inter-type parents declaration ValueCard extends

RewardCard causes method lookup changes for both [GoldCard].payment(. . .) and [Val-

ueCard].payment(. . .). Similarly, the analyses report what the change is for different places

where the method call may appear.

Broken Dispatch

This example is originally presented by Allen [All01] and is a Java program. In this ex-

ample, a LinkedList that is assumed to only contain String is implemented. First, a

List interface is designed and specifies basic functions provided. Then, a Cons class

implements List interface, and declares two fields: Object first, which contains the

data of the current item; and List rest, which is a List contains the rest of the list.

Cons provides two constructors: one constructor takes one Object type of argument and

initializes first as the argument and rest as an empty list; another constructor takes two

arguments and initialize the two fields as the two arguments. Finally, the LinkedList is

implemented using the Cons data structure. The program works well and can pass all tests.

Later, a new Cons constructor is added, which takes a String representation of list as ar-

gument, splits the string into tokens and treats each token as a data item. After adding this

new constructor, some tests suddenly break. The reason is that the LinkedList(String)

constructor calls the Cons(String) constructor, and the call matches to Cons(String)

now, which tries to split the string and adds tokens into the list; but before adding the new

constructor it matches to Cons(Object), which treats the string as a whole. We adapted

this program into an AspectJ program by changing the new constructor introduction into an

inter-type constructor declaration and expect that our analysis reports that the constructor

lookup changes after applying the new constructor.

Listing 7.2 shows the report of analyzing the broken dispatch example. As expected,

our analyses report that the inter-type constructor declaration causes lookup impact, and

report [Cons](String), which originally matches to Cons(Object), now matches to Cons

(String). Here, our analyses only reports two places — the declaring class and the

declaring package — because the Cons class is package visible, so the constructor can not

92

7.6. Benchmarks

be accessed outside the package; thus no lookup impact would be caused in protected and

other invocation places.

ConsAspect.aj:3,1-15:2 ITD: Cons(java.lang.String)

lookup impact:

[Cons](java.lang.String)

within declaring class, originally matched to

Cons(java.lang.Object), currently matches to

Cons(java.lang.String)

within declaring package, originally matched to

Cons(java.lang.Object), currently matches to

Cons(java.lang.String)

Listing 7.2 Report of analyzing the source code repository example

7.6 Benchmarks

Table 7.2 shows statistics of analyzing these benchmarks. The second column “C&A”

shows the total number of classes and aspects. The third column shows the total number

of inter-type declarations. The next column shows the number of lookup impacts. The last

column shows the number of classes and aspects checked when discovering these lookup

impacts manually. Similar to what we did for shadowing impact, we drew the partial UML

graph2, and then examined the hierarchy of the UML graph to determine if there is lookup

impact caused. During this process, we recorded the number of aspects and classes visited.

From Table 7.2, we can find that for most benchmarks, when discovering these lookup

impacts manually, at least 70% of classes and aspects need to be checked. For ProdLine,

we have to check all classes and aspects since inter-type declarations are heavily used in

it. Therefore, we can image the difficulty of classifying and understanding computation

impacts in a large-scale application. However, by using our tool, it only takes few minutes

to get complete lookup impact information.

When discovering these lookup impacts manually, we found that these lookup impacts

are caused by overridden method. We believe the reason is that lookup impacts not caused

2The difference is here only methods members are concerned

93

Lookup Impact

benchmark C&A inter-type declarations lookup C&A manually

aopbank 6 1 0 3

bean 3 7 0 2

DCM 34 2 27 28

exptree6 12 27 4 11

observer 8 11 0 6

ProdLine 20 79 16 20

Tetris 17 0 0 8

tracing 6 0 0 2

Table 7.2 Basic statistics about benchmarks

by overridden methods usually leads to bugs, and as we mentioned when discussing bench-

marks result about shadowing impact, these benchmarks are well tested; therefore, we

could not find lookup impacts not caused by overridden method.

In addition, for the tracing benchmark, we state that the aspects are pure observers

when introducing it in Section 2.2. From the above table, we can find that there is no

lookup impact caused. Combining the result of state, computation and shadowing impact

presented in Section 4.3.2, 5.3.2, 6.3.2 respectively, our tools verifies that aspects in tracing

are pure observers since they change nothing in the rest of the program except adding

computations.

94

Chapter 8

Visualization - Eclipse Plug-in

After all different kinds of impacts are analyzed and discovered, in addition to a text re-

port regarding the analysis results, we integrated the analysis in an Integrated Development

Environment(IDE) so that a programmer does not need to switch from the development

environment to command line back and forth. Moreover, the GUI interface can give a

better presentation of the analysis results than the text report. Since “integrating with exist-

ing UIs was more important than creating new ones” [KCCC06] and Eclipse is a existing

multi-purpose development framework which includes tools for AspectJ development in an

extensible graphical environment, we integratedAIA into Eclipse by developing an Eclipse

plug-in.

8.1 Overview

Under the Eclipse platform, AJDT is the most popular IDE for AspectJ; thus our plug-in

utilizes AJDT as the AspectJ IDE1. Figure 8.1 shows a snapshot of AIA Eclipse plug-in,

which extends menu to run AIA (the part marked as 1), creates a new view to display the

analysis result (the part marked as 2), and generates new markers in editor to mark where

impacts are caused (the part marked as 3).

1Another important reason is that abc does not have an Eclipse plug-in.

95

Visualization - Eclipse Plug-in

Figure 8.1 Eclipse plug-in snapshot

8.2 Running AIA

First we extends the pop-up menu to let the programmer run AIA2.

When the user right clicks on a project, if the project is an AspectJ project, a new

menu group called “abc Tools” will be displayed, and there is a menu called “Run Impact

2Since we use points-to analysis, which requires a certain amount of memory, we suggest to run Eclipse

with “-vmargs -Xmx512m” argument to increase the heap size allocated to JVM.

96

8.2. Running AIA

Analysis” in this group (as shown in the part marked 1 in Figure 8.1); clicking this menu

runs AIA. Since AIA uses points-to analysis, it needs the main class (the class containing

the main() method) information. If there is more than one main class, a main class selection

dialog will be displayed and list all main classes, as shown in Figure 8.2. The user can select

a main class based on his/her need. By default, AIA is running in the foreground, as shown

in Figure 8.3, but clicking the “Run in Background” button can run it in the background.

Figure 8.2 Main class selection dialog

Figure 8.3 Running progress dialog

We implement the menu by extending the org.eclipse.ui.popupMenus extension

point. We set the projectNature filter as org.eclipse.ajdt.ui.ajnature, thus

this menu is displayed only when the selected item is an AspectJ project.

97

Visualization - Eclipse Plug-in

After the user clicks this menu, we first get the selected project and then fetch out all

source files included in this project by querying AJDT. After that, main classes are searched

from all source files using MainMethodSearchEngine of the Java Development Tool

(JDT). If more than one main class is found, a standard MainTypeDialogwill be created

and displayed so that the user can specify the main class.

Then, we call abc with AIA extension enabled in a separate thread. After the analysis

is done, we open the view or notify the view to refresh its content if it is already opened.

8.3 Impact View

Analysis results are displayed in a view called “Impact”, as shown in the part marked 2 in

Figure 8.1. Information in the view is displayed as a tree structure.

The top level displays the name of the project being analyzed. Double clicking the

project name expands/collapses the tree.

Below the project name, we list packages. Double clicking a package expands/col-

lapses the sub-tree of this package. Only those packages that contain advice or inter-type

declarations causing impacts are displayed.

The next level lists Aspects in each package. Double clicking an Aspect opens an editor

displaying the source code of this aspect. Only those aspects containing advice or inter-type

declarations causing impact are displayed.

All advice and inter-type declarations that cause impacts are listed in third level. Dou-

ble clicking an advice or inter-type declaration opens an editor highlighting the code cor-

responding to the advice or inter-type declaration, as shown in Figure 8.4.

Impacts caused are listed as children of advice or inter-type declarations.

For an advice, it may cause state impacts and computation impacts. For a computation

impact, we display its name. For a state impact, the position of the code in the advice

causes the impact is listed. Double clicking the position opens the editor containing the

advice and highlighting the code causing the state impact. For a direct state impact, we

display the field changed by this impact, and we display both the run-time type being

changed and the class declaring the field (the run-time type may inherit this field from its

super class). Double clicking the run-time type opens an editor containing its source file;

98

8.3. Impact View

Figure 8.4 Advice highlighting

double clicking the declaring class opens an editor containing the class’ source file and

highlighting the field’s declaration. For an indirect state impact, we list all actual positions

(i.e., position of evidences) causing field changes; double clicking a position opens an

editor highlighting the code corresponding to the position. For each evidence position, we

display the changed field information similar to the field involved in direct state impact,

and double clicking works in the same way.

Figure 8.5 shows how the computation impact, direct and indirect state impact are pre-

sented, and shows the evidence highlighting (for presentation purpose, we add line numbers

to the left of the view). The project being analyzed is the bank example presented in Section

3.2.1.

99

Visualization - Eclipse Plug-in

Figure 8.5 Impact view displaying computation and state impacts

First, we can see how the tree structure is organized. The first level (line 1) shows

the project name. The second level shows packages, e.g., the bank.account (line 2) and

bank.creditcard (line 21) package. The third level shows aspects causing impacts, e.g.,

the AccountAspect (line 3) and CreditCardAspect (line 22). The next level shows

advice, e.g., the before(AbstractAccount) advice at line 4, the after(Abstract-

Account) advice at line 12 and the void around() advice at line 20.

The level below advice lists state impacts and computation impacts. An example of

computation impact can be found at line 5-6, which shows the before(AbstractAccount)

100

8.3. Impact View

advice causes “addition computation impact” (line 6). An example of direct state im-

pact can be found at line 7-11. The advice before(AbstractAccount) causes state

impact (line 7), and the position of the code causes the state impact is shown at line 8,

which causes a “Direct State Impact” (line 9). The state impact changes the lastVisit

field in class StudentCheckingAccount (line 10), and the field is declared in class

AbstractAccount (line 11). An example of indirect state impact can be found at line

14-19. In addition to that the position of advice’s code causing indirect state impact is

shown at line 15, the position of the code actually causes the indirect state impact (i.e.,

evidence) is listed at line 17. The top part in Figure 8.5 shows the editor containing the

source file listed at line 17 and highlighting the source code of the evidence after the user

double clicks the evidence.

For an inter-type declaration, it may cause shadowing impacts and lookup impacts. For

shadowing impact, we list all [affected type].field, and for each of them, we list the origi-

nal type and current type. Double clicking [affected type].field opens an editor containing

the affected type, and double clicking the original type and current type opens an editor

highlighting the declaration of the field in the original or current type. For lookup impact,

we list all [affected type].method, and for each of them, for different invocation place, we

list the original method and the current method. Double clicking an [affected type].method

opens an editor containing the affected type; double clicking an invocation place expand-

s/collapse the sub-tree; double clicking the original method and current method opens an

editor highlighting the method declaration.

Figure 8.6 shows how the shadowing and lookup impacts are presented (for presen-

tation purpose, we add line numbers to the left of the view). Same as advice, inter-type

declarations are listed below the level of aspects, e.g.,, declare parents at line 3,

GoldCard.bonus at line 6 and GoldCard.payment(...) at line 11. The level be-

low inter-type declarations lists shadowing and lookup impacts. An example of shadowing

impact can be found at line 7-10. Line 8 shows that a field reference of bonus field of

affected type GoldCard is affected; the original type is RewardCard (line 9), and the cur-

rent type is GoldCard (line 10). An example of lookup impact can be found at line 12-25.

Line 13 shows that a method call of payment(...) on the receiver of type GoldCard is

affected. Then, in the next level, different invocation places are listed, e.g., class at line 14,

101

Visualization - Eclipse Plug-in

package at line 17, protected at line 20 and other at line 23. Below each invocation place,

the first and second line show the original and current method respectively. For example,

line 15 shows the original method is RewardCard.payment(...) in the declaring class,

and line 16 shows the current method is GoldCard.payment(...) in the declaring class.

Figure 8.6 Impact view displaying shadowing and lookup impacts

On the top of the view, there are six buttons. The first three are standard Eclipse tree

view navigation button. The fourth (showing a “+” sign) and fifth (showing a “-” sign)

button are the button to expand and collapse the whole tree respectively. The last button is

the button to enable/disable the “link with editor” function. The “link with editor” function

allows the content of the view changing according to the cursor position in the editor. As

shown in Figure 8.7, the “link with editor” function is enabled. After clicking the line 10 of

AccountAspect.aj, the view shows only the impact information relating to this line, i.e., the

102

8.3. Impact View

computation impact caused by the advice and the state impact caused by this line of code.

Figure 8.7 Impact view linking with the editor

By double clicking an item in the view, a user can navigate from impact to the cause

of the impact, and by enabling “link with editor ” function, a user can navigate from a

cause of impact to impacts caused. Therefore, the user gets a two-way navigation of the

information, and the ability of the user reasoning the impact is greatly improved.

The view is implemented by extending the org.eclipse.ui.views extension point.

Inside the view, we create a JFace TreeViewer. After the analyses are done, we create a

tree model and feed this model to the ImpactViewContentProvider (created by imple-

menting JFace IStructuredContentProvider and ITreeContentProvider) of the

TreeViewer. We first design the AbstractTreeNodewhich defines the basic functional-

ity of a tree node, such as providing the name and image to the ImpactViewLabelProvider

(extending JFace LabelProvider), navigating to parent/childern. We then design differ-

103

Visualization - Eclipse Plug-in

ent kinds of concrete TreeNode to represent different items in the view, and each concrete

TreeNode defines its own label and action when double clicking. Moreover, we create the

ImpactViewSorter (extending JFace ViewerSorter) to determine the display order of

tree nodes in the same level.

When implementing the “link with editor” function, we first get the current position

of the cursor in the active editor, and then traverse the tree model to select items related

to the cursor position by comparing the position information contained in the TreeNode

to the cursor position. After that, we feed the selected nodes to the ImpactViewFilter

(extending JFace ViewFilter), which refreshes the content of the view.

8.4 Impact Marker

In addition to display impact in the view, we add markers to editor, as shown in the part

marked 3 in Figure 8.1. Code involving in impact is marked by makers both on the vertical

ruler (on the left side of the editor) and the overview ruler (on the right side of the editor).

Figure 8.7 shows markers on AccountAspect.aj. These markers also ease the use of “link

with editor” function as they works like hotspots to remind the user the position of code

involving in impact. In case that the position is not an entire line, we underline the actual

code involving in impact, for example, the “AccountAspect” at line 4 in Figure 8.7.

We extend the org.eclipse.core.resources.markers extension point to create

our own marker type, and our marker type extends org.eclipse.core.resources.

textmarker. To define the appearance, i.e., icon, color and style, of our marker type, we

extends the org.eclipse.ui.editors.annotationTypes and org.eclipse.ui.

editors.markerAnnotationSpecification extension points. Markers are created

after the tree model is generated. We traverse the tree model and create corresponding

markers by querying position information contained by tree nodes.

8.5 Summary

With the extended menu, we allow AIA to be run in GUI in addition to command line.

With the interactive view, we not only give a graphical presentation of impacts but also

104

8.5. Summary

allow programmers to interact with impacts. With the markers, we allow programmers to

be aware of impacts even when browsing source code. With the “link with editor” function,

we create a linkage between the view and editor, thus allowing programmers to navigate

impacts information in a two-way manner. Therefore, with this Eclipse plug-in, we have

integrated our analysis into the AspectJ IDE, rather than just extending it.

105

Visualization - Eclipse Plug-in

106

Chapter 9

Related Work

The issue of helping the programmer understand the impacts of aspects is not a new

one and there has been some interesting previous work in this area. Some of them tried to

analyze, categorize and classify aspects; some of them tried to improve the AOP language

and enhance reasoning about the AO software.

9.1 Analyzing, Categorizing and Classifying Aspects

Störzer noticed the lookup of method calls might change due to static-crosscutting [SK03].

Changes caused by AspectJ introduction (i.e., inter-type method and constructor declara-

tion) and direct hierarchy modification (i.e., inter-type parents declaration) were defined

based on semantical changes in the hierarchy, and were analyzed using the interference

criterion introduced by Snelting [ST02]. However, only a prototype of the analysis was

implemented due to the limitation of the hierarchy analysis. After that, Störzer stated that

advice may change the control-flow and state of base programs [Stö03a]. Although he

mentioned that aspect analysis (also for the lookup change mentioned in [SK03]) requires

data flow analysis, but he had no infrastructure tools available, thus he later proposed us-

ing trace analysis to fulfill the impact analysis. His approach relies on comparison of two

traces of the program without and with aspect applied for a single test. Then, by identifying

patterns of differences, the impact of an aspect can be observed [SKB03]. However, first,

his approach heavily depends on the quality of the test case; second, the report can only

107

Related Work

vaguely describe the impact at the level of aspect. Since our infrastructure does support

data flow analysis, we were able to actually implement static impact checking.

The work fromMIT by Rinard et. al. [RSB04] is very related, which was also designed

to work on AspectJ and used static analysis. They did not mention the change caused by

static crosscutting, but there are clearly similarities between the two approaches when dis-

covering impact caused by advice declarations as both seek to summarize state impacts

and computation impacts (although these were not the terms used in the MIT paper). From

a conceptual point of view the approaches differ in the manner in which the impacts are

abstracted. For example, in the MIT approach, state impacts are expressed as interfer-

ences between fields accessed by a base program method and fields accessed by an advice,

whereas our approach takes a more advice-centric approach, and we report all fields of the

base program written by an advice. We believe that our approach will lead to more direct

report and is more easily integrated into an IDE (as shown by our Eclipse plug-in). From an

implementation point of view there are also similarities and differences. Both systems are

built on Java bytecode frameworks which support points-to analysis. The MIT prototype

used the bytecode produced by ajc as input, and used the MIT Flex compiler infrastructure

for the static analyses. Their implementation was limited to method call and method execu-

tion join points, perhaps because of the loose coupling between ajc and Flex. Our approach

is implemented directly in the abc compiler and so we have access to all the necessary in-

formation to handle all kinds of join points. Further, our implementation includes analysis

regarding static crosscutting and the visualization of analysis result.

[Kat06] categorizes aspects by identifying temporal properties using temporal logic.

Semantics of an aspect system is expressed using UML statecharts, and the weaving pro-

cess is considered as a transformation from the original state graph to an augmented one.

Based on how the temporal properties are changed, three categories of aspects are defined.

Spectative aspects can’t modify any variables or change the flow of control of the base sys-

tem. Regulative aspects can change the flow of control of the base system by “restricting

operations, delaying some operations, or preventing the continuation of a computation”.

Invasive aspects also modify variables in the base system. For each category of aspects,

an outline of static analysis to syntactically identify if an aspect belongs to that category is

presented. Their base system means a system before any aspects are woven into it, which is

108

9.2. Improving AOP Language and Enhancing Reasoning

not as straightforward as our definition from a programmer’s point of view and does cause

the analysis determining aspects interference to be very complicated. Their categorizes of

aspects can be expressed by a combination of our state impact and computation impact.

Spectative aspects have no state and computation impact; regulative aspect have compu-

tation impact but no state impact; and invasive aspects have both state and computation

impact. Moreover, our classification further categories the effect of changing flow of con-

trol of the base system so that programmer can get more detailed information. In addition,

only an outline of static analysis was presented, and no implementation was provided.

9.2 Improving AOP Language and Enhancing Reason-

ing

Starting at the syntactic/IDE level, the eclipse plug-in AJDT1 [AJD07] provides visualiza-

tions to indicate shadows where advice applies in the base program, thus providing some

cues for the programmer as to places in the base program which might be affected. How-

ever, to discover the actual impacts of aspects on the base program, a programmer has to

manually review the source code and possibly has to frequently switch between base pro-

gram source and aspect source. A key difference in our approach is that we are using static

analysis to find more detailed information for programmers. We leverage the visualiza-

tion tools in AJDT by exposing our more detailed information to programmers through our

Eclipse plug-in.

Dantas introduced the concept of harmless advice [DW06], which works like ordinary

aspect-oriented advice but is designed to obey a weak non-interference property, i.e., it

may change the base program’s termination behavior and use I/O, but it does not influence

the final result of the mainline program. In order to detect and enforce harmlessness, they

defined a novel type and effect system related to information-flow type systems. They

also presented an implementation of the language. However, their work was done at a

very abstract level and is hard to integrate it directly into AspectJ. Our approach is more

focused on developing classifications and associated analyses that have been integrated into

1http://www.eclipse.org/ajdt/

109

Related Work

an AspectJ compiler.

Recebli analyzed different ways aspects can break encapsulation and proposed the pu-

rity aspect language feature to AspectJ [Rec05]. Through this feature, a programmer can

declare an aspect is pure on a specified set of classes by promising that the aspect will not

change the behavior of the set of classes. Moreover, he presented an implementation of

the proposed purity annotation as an abc extension and used static analysis to verify purity.

Our approach is more focused on the non-pure impacts and on ways of categorizing and

approximating those impacts. Our static analysis is also more detailed as we also take into

consideration side effects of method calls when analyzing proceed.

Aldrich presented Open Modules [Ald05], which focused on modular reasoning about

advice and is claimed by the author as “a newmodule system for languages with advice”. In

Open Modules, pointcuts are considered as part of interface exposed by a module. There-

fore, both pointcuts and traditional interfaces may be exposed to client, but the implemen-

tation detail is hidden. External advice can only advise internal event through pointcuts

exposed by a module. The maintainer of a module is responsible for maintaining “the se-

mantics of exposed pointcuts as the module’s implementation evolves”. To show Open

Modules ensures that a module’s semantics is preserved when changing its implementation

so that programmers can reason about advices inside a module, a formal model of advice,

TinyAspect, was presented, Open Modules is added into the model, and the oberservational

equivalence of Open Modules is proved under this formal model. Our approach helps pro-

grammer reasoning about advice by concluding impact caused by applying them to the base

program without extending the aspect oriented language. In addition, our classification and

analysis are still valid in Open Modules since although it ensures the local reasoning about

advice, the impact caused by advice still need to be classified and concluded by static anal-

ysis, and Open Modules may reduce the cost of static analysis by ensuring local reasoning.

Cliftion presented Modular Aspects with Ownership [CLN07], MAO,

which was designed as a variant of AspectJ 5 by introducing new annotations and uti-

lizing generic aspect technique. The purpose of MAO is to simplify reasoning “whether

one module (class, method, aspect, advice) may potentially affect the behavior of another

module”. MAO achieves this by allowing programmers to state restrictions on control and

heap effects of advice by adding annotations. A control effect is caused by perturbating the

110

9.2. Improving AOP Language and Enhancing Reasoning

program’s flow of control. A heap effect is caused by assigning some object fields. MAO

modularly checks the validation of control-limited of an advice using simple desugaring

and conservative criteria. A heap effect is identified utilizing the concern domains, which

“is an ownership type-and-effect system” and requires programmers to identify and anno-

tate objects with a particular owner, i.e., concern domain. Concern domains are declared

explicitly by programmers. The heap effects of method and advice and concern domains ac-

cessed by classes or aspects need to be specified with annotation by programmer, and MAO

validates the access declaration of classes or aspects by checking only annotations. In ad-

dition, a new pointcut designator called writes is introduced, which has the form writes(D)

and “matches all join points that may write to concern domain D”. Heap and control effect

in MAO are similar to our state and computation impacts, but we further distinguish differ-

ent kinds of state and computation impacts. Moreover, effects in MAO are identified and

annotated by programmer manually, and we use static analysis to identify these impacts

automatically. In addition, MAO only takes care of exceptions when programmers declare

control limited advice and leaves other considerations to programmers.

111

Related Work

112

Chapter 10

Conclusions and Future Work

10.1 Conclusions

As AOP, especially AspectJ, is becoming increasing popular, we believe that tools can help

programmers understand the complicated interaction between aspects and base programs.

The design of tools that can compute both useful and accurate information presents many

interesting and challenging problems, and the availability of such tools should help increase

the adoption of AOP.

We presented different ways that advice and inter-type declarations can interfere with

the state and computation of a base program and proposed a concise classification of im-

pacts caused by them crosscutting the base program. We classified these impacts as state

impacts—which are caused by advice affecting the state of base program, and computation

impacts— which are caused by advice affecting the computation of base program, shad-

owing impacts— which are caused by inter-type declarations affecting the field reference

of base program, and lookup impacts — which are caused by inter-type declarations af-

fecting the method lookup of base program. In addition, we further classified state impacts

into direct state impacts and indirect state impacts; and classified computation impacts as

addition, elimination, definite-substitution, conditional-substitution and mixed. Our defini-

tion of a base program follows the principle of “everything except me”, and our tool covers

interference between aspects naturally.

113

Conclusions and Future Work

Based on this classification, we implemented static impact analyses in the abc compiler

to analyze all kinds of advice and inter-type declarations. By using the points-to analysis

and side-effect analysis supported by Soot, our impact analyses system can give precise

estimations of impacts. Our approach also produces an informative analysis report. In the

report, we not only report the impact information, but also report the causes of impacts, so

we can guide the programmer to understand the key impacts of aspects on their program.

We also integrated these analyses into an IDE.We integrated our toolkit into Eclipse and

produced an interactive tree-structure view of the report that both allows programmers to

view the impacts in a more graphical manner and allows programmers to navigate directly

to the parts of the source code involved in the impacts. In addition, we generate markers

into the source code editor so that programmers can be aware of the impacts when browsing

the source code. Moreover, we provide the function to link the impact report view to the

current editing location in the source code editor so that programmers can focus on the

impacts only related to the source code being edited.

10.2 Future Work

There are also several extensions to the analyses that we would like to undertake.

First, it would be interesting to extending the analysis to cover programmer-specified

unchecked exceptions when discovering exact-proceeds — i.e., a programmer could spec-

ify a set of unchecked exceptions, and the ExceptionBeforeProceedAnalysiswould

analyze if these exceptions may thrown before the proceed call — because in practice,

unchecked exceptions are used more frequently than checked exceptions.

We would also like to experiment with different points-to analyses, since the precision

of our impact analyses heavily depends on the points-to result. There are two interesting

context-sensitive analyses available for Soot now, the Paddle framework [Lho06], and the

demand-driven analysis of Sridharan and Bodik [SB06]. It should be simple to integrate

these into our approach, and a study of the effect of points-to precision on the quality of

impact reports would be very interesting.

Finally, an extension that analyzes and reports the shadowing impact on the actual ref-

erence site of field reference would make the toolkits more complete. Adding the actual

114

10.2. Future Work

reference site analysis on top of our analyses is very straightforward, and the basic idea is

simple: for each field reference in the application, check if the receiver’s type and the name

of field match to one in our shadowing impact set; if there is a match, report the original

type and current type discovered by our shadowing impact analysis.

115

Conclusions and Future Work

116

Bibliography

[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Jennifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-

tampalam, and Julian Tibble. abc: an extensible AspectJ compiler. In AOSD

’05: Proceedings of the 4th international conference on Aspect-oriented soft-

ware development, Chicago, Illinois, 2005, pages 87–98. ACM, New York,

NY, USA.

[AJD07] AJDT team. AspectJ Development Tools (AJDT).

http://www.eclipse.org/ajdt, 2007.

[Ald05] Jonathan Aldrich. Open Modules: Modular Reasoning About Advice. In

Andrew P. Black, editor, ECOOP, 2005, volume 3586 of Lecture Notes in

Computer Science, pages 144–168. Springer.

[All01] Eric Allen. Diagnosing Java Code: The Broken Dispatch bug pattern.

http://www.ibm.com/developerworks/java/library/j-diag7.html,May 2001.

[BLQ+03] Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and Navindra

Umanee. Points-to analysis using BDDs. In Proceedings of the ACM SIG-

PLAN 2003 Conference on Programming Language Design and Implemen-

tation, San Diego, California, USA, 2003, pages 103–114. ACM Press.

[Bra03] Ryan Brase. Avoid these Java inheritance gotchas.

http://articles.techrepublic.com.com/5100-22-5031837.html, June 2003.

117

http://doi.acm.org/10.1145/1052898.1052906
http://doi.acm.org/10.1145/781131.781144

Bibliography

[CLN07] Curtis Clifton, Gary T. Leavens, and James Noble. MAO: Ownership and

Effects for More Effective Reasoning About Aspects. In Erik Ernst, editor,

ECOOP, 2007, volume 4609 of Lecture Notes in Computer Science, pages

451–475. Springer.

[dM04] Oege de Moor. abc: an Implementation of AspectJ. Semi-

nar at the Computer Laboratory, Cambridge, United Kingdom,

http://abc.comlab.ox.ac.uk/documents/dec8.pdf, December 2004.

[Duc06] Allison Duck. Implementation of AOP in non-academic projects. In

AOSD’06 - Industry Track Proceedings, March 2006, pages 68–77.

[DW06] Daniel S. Dantas and David Walker. Harmless advice. In POPL ’06: Con-

ference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, Charleston, South Carolina, USA, 2006, pages

383–396. ACM Press, New York, NY, USA.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive in-

terprocedural points-to analysis in the presence of function pointers. In PLDI

’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming

language design and implementation, Orlando, Florida, United States, 1994,

pages 242–256. ACM Press, New York, NY, USA.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification. Prentice Hall PTR, 2005.

[Inc03] Object Technology International Inc. Eclipse Platform Technical Overview.

http://www.eclipse.org/whitepapers/eclipse-overview.pdf, 2003.

[Kat06] Shmuel Katz. Aspect Categories and Classes of Temporal Properties. Trans-

actions on Aspect Oriented Software Development (TAOSD), pages 106–134,

2006. LNCS 3880.

118

http://doi.acm.org/10.1145/1111037.1111071
http://doi.acm.org/10.1145/178243.178264

Bibliography

[KCCC06] Mik Kersten, Matt Chapman, Andy Clement, and Adrian Colyer. Lessons

learned building tool support for AspectJ. In AOSD’06 - Industry Track Pro-

ceedings, March 2006, pages 49–57.

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Program-

ming. Manning Publications Co., Greenwich, CT, USA, 2003.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java Points-to Analysis Using

Spark. In G. Hedin, editor, Compiler Construction, 12th International Con-

ference, April 2003, volume 2622 of LNCS, pages 153–169. Springer, War-

saw, Poland.

[Lho02] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java.

Master’s thesis, McGill University, December 2002.

[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams. PhD

thesis, McGill University, January 2006.

[Raz99] Chrislain Razafimahefa. A study of side-effect analyses for Java. Master’s

thesis, McGill University, December 1999.

[Rec05] Elçin A. Recebli. Pure Aspects. Master’s thesis, Oxford University, Septem-

ber 2005.

[RSB04] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification

system and analysis for aspect-oriented programs. In SIGSOFT ’04/FSE-12:

Proceedings of the 12th ACM SIGSOFT twelfth international symposium on

Foundations of software engineering, Newport Beach, CA, USA, 2004, pages

147–158. ACM Press, New York, NY, USA.

[SB06] Manu Sridharan and Rastislav Bodı́k. Refinement-based context-sensitive

points-to analysis for Java. In PLDI ’06: Proceedings of the 2006 ACM

SIGPLAN conference on Programming language design and implementation,

Ottawa, Ontario, Canada, 2006, pages 387–400. ACM Press, New York, NY,

USA.

119

http://abc.comlab.ox.ac.uk/documents/recebli05.pdf
http://doi.acm.org/10.1145/1029894.1029917
http://doi.acm.org/10.1145/1133981.1134027

Bibliography

[SHR+00] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallée-

Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual

method call resolution for Java. In Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA ’00), 2000, pages

264–280.

[SK03] Maximilian Störzer and Jens Krinke. Interference Analysis for AspectJ. In

Foundations of Aspect-Oriented Languages Workshop, 2003.

[SKB03] Maximilian Störzer, Jens Krinke, and Silvia Breu. Trace Analysis for Aspect

Application. In Analysis of Aspect-Oriented Software (AAOS), 2003.

[ST02] Gregor Snelting and Frank Tip. Semantics-Based Composition of Class Hi-

erarchies. In ECOOP ’02: Proceedings of the 16th European Conference on

Object-Oriented Programming, 2002, pages 562–584. Springer-Verlag, Lon-

don, UK.

[Stö03a] Maximilian Störzer. Analysis of AspectJ Programs. In Proceedings of 3rd

German Workshop on Aspect-Oriented Software Development, 2003.

[Stö03b] Maximilian Störzer. Analytical problems and AspectJ. AOSD workshop,

2003. Talk, also available at http://www.infosun.fim.uni-passau.de/st/staff/

stoerzer/stoerzer2003boston.pdf.

[SW07] Martin Sulzmann and Meng Wang. Aspect-oriented programming with type

classes. In FOAL ’07: Proceedings of the 6th workshop on Foundations

of aspect-oriented languages, Vancouver, British Columbia, Canada, 2007,

pages 65–74. ACM Press, New York, NY, USA.

[VR00] Raja Vallé-Rai. Soot: A Java Bytecode Optimization Framework. Master’s

thesis, McGill University, July 2000.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne

Gagnon, and Phong Co. Soot - a Java Optimization Framework. In Proceed-

ings of CASCON 1999, 1999, pages 125–135.

120

http://www.sable.mcgill.ca/publications
file:citeseer.ist.psu.edu/stoerzer03trace.html
http://www.cs.uni-essen.de/dawis/conferences/gi_aosd_2003/
http://doi.acm.org/10.1145/1233833.1233842
http://www.sable.mcgill.ca/publications

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Listings
	List of Algorithms
	Introduction and Motivation
	Motivation
	Contribution
	Classification of Impacts
	Static Analyses in the AspectBench Compiler
	IDE Integration
	Experiments

	Organization

	Background
	Tools Overview
	Soot
	abc
	Eclipse
	AJDT

	The Benchmarks

	Four Kinds of Impact
	Overview
	Examples
	Bank
	Source Code Repository

	State Impact
	Computation Impact
	Exact-proceed
	Invariant Advice
	Variant Advice

	Shadowing Impact
	Lookup Impact
	Aspect Interference
	Java part is the base program
	Everything except me

	State Impact
	Definition
	Analysis
	Direct State Impact
	Indirect State Impact
	Distinguish Direct and Indirect State Impact

	Experimental Results
	Examples
	Benchmarks

	Computation Impact
	Definition
	Analysis
	Exact-proceed Analysis
	Computation Impact

	Experimental Results
	Examples
	Benchmarks

	Shadowing Impact
	Inter-type Field Declaration
	Definition
	Analysis

	Inter-type Parents Declaration
	Inter-type-extends-declaration
	Inter-type-implements-declaration

	Experimental Results
	Examples
	Benchmarks

	Lookup Impact
	Finding the Matched Method
	Accessible Methods and Invocation Place
	Applicable Methods
	Most Specific Method

	Inter-type Method Declaration
	Definition
	Analysis

	Inter-type Constructor Declaration
	Definition
	Analysis

	Inter-type Parents Declaration
	Inter-type-extends-declaration
	Inter-type-implements-declaration

	Experimental Results
	Examples

	Benchmarks

	Visualization - Eclipse Plug-in
	Overview
	Running AIA
	Impact View
	Impact Marker
	Summary

	Related Work
	Analyzing, Categorizing and Classifying Aspects
	Improving AOP Language and Enhancing Reasoning

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

