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Abstract

Java programs are deployed in a bytecode format that is executed by a Java Vir-

tual Machine (JVM). JVM performance is determined by several major components:

execution engine, garbage collector, and threading system. In this thesis, we study

a new garbage collection scheme and speculative optimizations in just-in-time (JIT)

compilers for improving Java performance.

We present a novel approach for reducing garbage collection frequencies. Without

an escape analysis, the system uses write barriers to capture escaping objects and

allocation sites. Instead of allocating non-escaping objects on stacks, the system

allocates them in regions that are treated as extensions of stack frames. By freeing

regions with associated stack frames, the system can reduce the frequency of garbage

collections. We present the overall idea and provide details of a specific design and

implementation.

A JVM allows dynamic class loading. A JIT compiler can speculatively optimize

code base on loaded classes only. However, the virtual machine must revert specu-

latively optimized code if newly loaded classes invalidates optimization assumptions.

In this thesis, we review existing techniques supporting speculative optimizations,

including runtime guards, code patching, and on-stack replacement. We present an

improvement and implementation of an on-stack replacement mechanism.

A call graph is necessary for developing interprocedural program analyses. Call

graph construction in a Java virtual machine needs to overcome difficulties of dynamic

class loading and lazy reference resolution. In this thesis, we show a general approach

to adapt static type analysis to a JIT environment for building call graphs. We also

introduce a new call graph profiling mechanism using code stubs.
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We developed a general type analysis framework for supporting speculative method

inlining in a JIT environment. Several popular type analyses were implemented in the

framework, including two interprocedural ones, XTA and VTA. Using the framework,

we did an extensive limit study of method inlining and reported our findings and

experience in the thesis.

In each chapter we discuss the related work. At the end of the thesis, we point

out future research directions.
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Résumé

French abstract goes here.
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Chapter 1

Introduction

The Java programming language gains popularity in many application domains.

Java’s execution model is different from many static compiled languages such as

Fortran and C/C++. The Just-In-Time (JIT) compilation approach deployed by

Java virtual machines (JVMs) creates a new scenario for language implementation

and compiler optimizations.

In this thesis, we study both challenges and opportunities of program analyses and

compiler optimizations in Java virtual machines. The main contents of this thesis in-

clude a new garbage collection scheme using dynamic techniques and interprocedural

program analyses in the presence of dynamic class loading and lazy method com-

pilation. Dynamic analyses are designed to support speculative optimizations for

best performance results. The problems and solutions can also be applied to virtual

machines for other languages such as C#.

1.1 The Java programming langauge and the Java vir-

tual machine

Since it was born as a programming language for small devices, the Java program-

ming language [AGH00] has become a mainstream programming language in many

domains, such as web and e-business application development, transaction server
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implementation, scientific computation, etc. Java1 is designed as a high-level object-

oriented language with safety features. Type checking is required at both compilation

time and execution time. Null pointer accesses and array bounds overflows must be

captured and reported to applications. Garbage collection is the default memory

management, which frees programmers from freeing objects manually and reduces

the chances of human mistakes. Other desirable features include multi-threading and

large common libraries.

The Java virtual machine (JVM) specification [LY96] is designed to support the

Java programming language, but it does not interact with the source language directly.

As indicated by its name, the Java virtual machine is an abstract machine which

defines an instruction set, bytecodes, and other resources.

It is necessary to introduce the structure of the Java virtual machine before ex-

amining the technical details of its implementation. A Java thread is conceptually

similar to an operating system thread. Execution in a thread is sequential, but mul-

tiple threads can execute in parallel. Each thread has its own program counter and

private stack. The heap is a shared data area among all Java threads. Objects and

arrays are allocated in the heap and reclaimed by garbage collectors.

The implementation of the Java virtual machine specification is architecture-

dependent. It can be a piece of software [Gri98, jikb, sab, kaf] written in other

languages, such as assembly, C, or even Java itself, or implemented as hardware

CPUs [aji, jav]. The software approach is more prominent in practice. A software

virtual machine contains a runtime system that supports threading, garbage collec-

tion, networking, IO support, etc. The bytecode instructions can be interpreted. An

alternative is to compile the bytecode to native code and execute the native code.

Often the latter approach is called Just-In-Time (JIT) compilation. Note that the

JVM specification supports classes from languages other than Java if the classes obey

the specification.

Java applications are compiled to and distributed in a compact, platform-neutral

representation, the class file format. The class file format is the binary format

1We refer to the Java programming language as Java, and the Java virtual machine as JVM in
this thesis.
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accepted by Java virtual machines. Each class file has a constant pool which con-

tains symbolic names of types, methods, and fields accessed by bytecode instructions

of methods in this class. Bytecode instructions are stack-based. We use a simple

example, Helloworld.java, to facilitate the understanding of the class file format.

1: public class Helloworld {

2: public static void main(String[] args) {

3: System.out.println(‘‘Hello world!’’);

4: }

5: }

The Helloworld.java is compiled to a binary class file “Helloworld.class” by

a Java-to-bytecode compiler such as javac, jikes [jika], or soot [soo]. Figure 1.1

are partial contents of the class file, disassembled by the command line “javap -v

Helloworld”. At the bytecode index 5 of the main method is an “invokevirtual

#4” instruction, which corresponds to the invocation of “println” method at line 3 in

the source code. Note that the number “#4” in the bytecode instruction is an index of

the constant pool of Helloworld.class. Further, the #4 entry of the constant pool is

comprised by entries #19 and #20. Recursively tracing down, the #4 entry represents

a method signature “java/io/PrintStream.println(Ljava/lang/String;)V”.

From above example, we see that bytecode instructions access types, methods and

fields by their symbolic names. The virtual machine is responsible for resolving these

names to concrete classes, methods or fields at runtime.

The Java virtual machine supports two kinds of types: primitive types and ref-

erence types. Primitive types include integral types and float types. Reference type

variables are pointers to objects or arrays. A bytecode instruction explicitly distin-

guishes the types of values it operates on. For example, an aload instruction copies

an object reference from a variable to the stack, and an integer value is loaded by

an iload instruction. Although the class file does not contain declaring types of lo-

cal variables, the virtual machine can reconstruct static types for variables using the

type information contained in bytecode instructions. Rich type information in byte-

codes is not only necessary for type checking, but also very useful for efficient garbage

collections and compiler optimizations.
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public class Helloworld extends java.lang.Object

Constant pool:

const #2 = Field #16.#17;

const #3 = String #18;

const #4 = Method #19.#20;

const #16 = class #23;

const #17 = NameAndType #24:#25;

const #18 = Asciz Hello world!;

const #19 = class #26;

const #20 = NameAndType #27:#28;

const #23 = Asciz java/lang/System;

const #24 = Asciz out;

const #25 = Asciz Ljava/io/PrintStream;;

const #26 = Asciz java/io/PrintStream;

const #27 = Asciz println;

const #28 = Asciz (Ljava/lang/String;)V;

public static void main(java.lang.String[]);

Code:

Stack=2, Locals=1, Args_size=1

0: getstatic #2;

3: ldc #3;

5: invokevirtual #4;

8: return

LineNumberTable:

line 3: 0

line 4: 8

Figure 1.1: Partial contents of Helloworld.class
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The execution of a Java application starts at a special method public void

main(String[]) of a class whose name is supplied by the command line. Before

using a class (e.g., creating instances, accessing members, etc.), the virtual machine

must load the class and create an internal representation for it. The process involves

several steps:

Loading. The class loading process finds the binary representation of the class.

The binary can come from various sources, depending on the class loader used.

Then the virtual machine parses the representation according to the class

file format. This process also checks some constraints required by the virtual

machine specification. If the class can be loaded, and it has a direct superclass

or super interface, the symbolic references to them must be resolved. This

resolution triggers the loading of the superclass or super interface if necessary.

Linking. The linking process verifies the representation is well formed. The virtual

machine may use some data-flow analyses to verify that bytecode instructions

satisfy some semantic requirements. Then the virtual machine creates necessary

internal data structures, such as type information and method tables, as the in-

ternal representation of the class. There are several kinds of symbolic references

in the constant pool. In particular, we are interested in type, method, and field

references. Resolving a symbolic reference may cause other classes to be loaded.

The Java virtual machine specification does not require symbolic references to

be resolved at linking time. Instead, many VM implementations choose the lazi-

est strategy for saving resources and improving responsiveness. By the laziest

strategy, symbolic references are not resolved until used. Thus, dynamic class

loading can be triggered by the execution of instructions for object creation,

method invocation, field accesses and type checking.

Initialization. The initialization process executes the static initializer method

“<clinit>” and initializes static fields of the class. It may trigger the ini-

tialization of its superclass and super interfaces.

A class may contain several methods. An abstract method has only a name,

5



parameter and return types. A normal method has an array of bytecode instructions.

The invocation of a normal method requires its bytecode instructions to be parsed

or compiled first. The compilation of bytecode instructions does not need to be done

when loading and resolving the class. Instead, to save the workload and resources, a

virtual machine can delay the process until the first invocation of the method during

the execution. This technique is typically called lazy method compilation.

The Java programming language provides constructs for creating objects in heaps,

but there are no constructs for deallocating objects. Heaps are managed by automatic

memory managers, such as garbage collectors. The Java virtual machine specification

has no specific requirements on choosing which garbage collection algorithm to use.

1.2 Motivation

Two features distinguish Java from other languages: automatic memory management

(garbage collection) and Just-In-Time (JIT) compilation. Program analyses have

been used in nearly every compiler for optimizations. Previous research on program

analysis mainly focused on ahead-of-time compilers. JIT compilation mode presents a

different scenario for program analysis designers. In this thesis, we refer to a program

analysis performed in an ahead-of-time compiler as static, and the one in a JIT

compiler as dynamic.

1.2.1 Automatic memory management

The Java virtual machine implicitly uses garbage collectors as default memory man-

agers. Garbage collection [JL96] has the advantage of freeing memory safely and

often precisely. However, tracing and collecting objects consumes many machine cy-

cles during the program execution, so reducing the frequency of garbage collection

can be beneficial.

Stack-allocation of objects is one promising approach to reduce the work of a

garbage collector [GS00]. If an object does not escape a method, it can be created

on a stack frame instead of in a heap. Objects on the stack can be reclaimed without
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intervention by the garbage collector. However, there are several potential obstacles

to performing object stack-allocation in the Java virtual machine: existing techniques

require static escape information, there are restrictions on objects that can be allo-

cated on stack, and finalize methods have to be handled specially. This motivates us

to design a new object allocator reducing garbage collection overhead without above

restrictions in Java virtual machines.

In our initial design, we use runtime checks to detect escaping objects. Heap

organization must be changed to facilitate new allocation scheme. This approach

allows us to study benchmark behaviors using the new allocator. It also gives us

an indication how to design a runtime escape analysis for eliminating unnecessary

checks.

1.2.2 JIT compilation and optimizations

Over the last 10 years, virtual machine technology has greatly advanced. Most Java

virtual machines running on desktop or server computers have built-in Just-in-time

compilers, which obtain 10 fold or more performance improvement than an inter-

preter. Most intraprocedural data-flow analyses have been implemented in these

JIT compilers [PVC01, AAB+00, SOT+00, CLS00, GKS+04]. Further performance

improvements have been achieved using adaptive and feedback-directed optimiza-

tions [AFG+00, AHR02]. To improve startup performance, a mixed mode of inter-

pretation and JIT compilation is often used to interpret a method first and only

selectively compile hot methods [PVC01,AAB+00].

Methods are commonly used as compilation units. Not only do methods provide

a natural semantic boundary of code blocks, but also the implementation of dynamic

compilation becomes easier in the presence of virtual method calls. State-of-the-art

JIT compilers have implemented most intraprocedural (within a method) analyses

and optimizations as in ahead-of-time (static) compilers. Dynamic interprocedural

(over a collection of methods) analyses, however, have not yet been widely adopted.

Very few coarse type-based interprocedural analyses (IPAs) [IKY+00, PS01] have

gained ground in JIT compilation environments. However, work relating to more
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complicated, reachability-based IPAs, such as dynamic points-to analysis and escape

analysis, is only just starting to emerge [HDH04,QH04,QH05].

Static IPAs assume that the whole program is available at analysis time. However,

this may not be the case in a Java virtual machine. The virtual machine can download

a class file from the network, create it on-the-fly, or retrieve it from other unknown

resources. Even when all programs exist on local disks, the virtual machine typically

loads classes lazily, on demand, to reduce resource usage and improve responsive-

ness [LB98]. When a JIT compiler encounters an unresolved symbolic reference, it

may choose to delay resolution until the instruction is executed at runtime. These

unresolved references has to be dealt with correctly by dynamic IPAs.

Although Java’s dynamic features pose difficulties for program analyses and op-

timizations, there are many opportunities at runtime that can only be enjoyed by

dynamic analyses. For example, a dynamic IPA only needs to analyze loaded classes

and invoked methods. Therefore, the analysis can be more efficient and the results

are more precise comparing to a static analysis which must analyze programs based

on conservative assumptions about which classes might be loaded and which methods

might be invoked. Thus, a dynamic IPA’s analyzed code base can be much smaller

than in a conservative static analysis. Further, dynamic class loading can improve

the precision of type analyses. The set of runtime types can be limited to loaded

classes. Thus, a dynamic analysis has more precise type information than its static

counterpart. In contrast to the conservative (pessimistic) nature of static analysis, a

dynamic one can be optimistic about future execution, if used in conjunction with

runtime invalidation mechanisms [PS01, IKY+00,FQ03,SYN03a].

Dynamic IPAs seem more suitable for long-running applications in adaptive re-

compilation systems. Pechtchanski and Sarkar [PS01] described a general approach of

using dynamic IPAs. A virtual machine gathers information about compiled methods

and loaded classes in the initial state, and performs recompilation and optimizations

only on selected hot methods. When the application reaches a “stable state”, infor-

mation changes should be rare.

In summary, the development of more advanced interprocedural analyses in JIT

environments has not been widely explored and practiced. The differences between
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static and dynamic interprocedural analyses are:

1. a static analysis has the full program available to the analysis whereas a dynamic

one only has seen the executed part;

2. a dynamic analysis has much tighter limitations on space and time resources,

but a static analysis is more flexible in general; and

3. a static analysis has to be conservative, but a dynamic one can be speculatively

optimistic if the system has the ability to invalidate the code or execution states

when optimistic assumptions are violated.

One goal of this thesis is to design advanced dynamic interprocedural analysis at

runtime for improving Java performance in the full context of the Java virtual machine

specification. We also study techniques for supporting speculative optimizations using

interprocedural analysis results.

1.3 Contributions

This thesis made following contributions to the virtual machine research area:

Region-based allocator. Without an effective online escape analysis, the effect

of object stack-allocation is limited in Java virtual machines. Instead, we sug-

gested an adaptive region-based allocator in Chapter 3. Our approach uses

dynamic write barriers to detect escaping objects. By extending a stack frame

with a region, other restrictions of object stack-allocation are removed. We had

implemented an prototype in an early version of Jikes RVM, and we studied

detailed behaviors of the allocator.

Improvement and implementation of an on-stack replacement algorithm.

Speculative optimizations may yield better performance improvement than con-

servative optimizations. To support speculative optimizations, a Java virtual

machine needs invalidation mechanisms as backups for correcting wrong specu-

lations. In Chapter 4, we reviewed several existing invalidation techniques and
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presented an improvement and implementation of a new on-stack-replacement

mechanism [FW00] in Jikes RVM.

Efficient call graph construction in the presence of dynamic class loading

and lazy compilation. Interprocedural analysis needs a call graph of the

program. In Chapter 5, we studied call graph constructions in Java virtual

machines. We demonstrated a general approach for handling dynamic class

loading in a dynamic program analysis. We did a detailed comparison study

of several well-known type analyses for constructing call graphs. Furthermore,

we designed and evaluated a novel mechanism [QH04] for constructing accurate

call graphs with cheap cost. All mechanisms have been implemented in Jikes

RVM and evaluated on a set of standard Java benchmarks.

Dynamic interprocedural type analyses and method inlining. We conducted

a thorough study of speculative method inlining in Chapter 6. First, we pre-

sented a limit study of method inlining using type analyses. We analyzed the

strength and weakness of each analysis. Using runtime call graphs, we devel-

oped two advanced interprocedural type analyses in a JIT environment. We

showed an incremental, event-driven model of dynamic interprocedural analysis

which handles dynamic class loading and lazy reference resolution properly. We

also pointed out strength and weakness of simple class hierarchy analysis and

dynamic interprocedural type analysis.

1.4 Thesis outline

First, in Chapter 2, we briefly introduce Jikes RVM, the test bed of our implemen-

tations and benchmarks used in this thesis. Chapter 3 introduces the design and

evaluation of a region-based allocator. We review runtime techniques supporting

speculative inlining in Chapter 4. Improvement and implementation of an on-stack

replacement algorithm is presented in this chapter as well. We study different dynamic

call graph construction algorithms in Chapter 5, which includes several dynamic type

analyses and a new profiling mechanism. Chapter 6 studies method inlining using
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type analysis. This chapter also presents the design and evaluation of a reachability-

based interprocedural type analysis as an application of dynamic call graphs. Finally

conclusions and future work are given in Chapter 7.
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Chapter 2

Setting

A programming language requires an efficient implementation to prove it is useful.

Java’s inventor, Sun Microsystem, encourages the model of open design and private

implementation of the Java virtual machine specification [LY96]. There is a variety

of Java implementations accessible. We chose an open source virtual machine, Jikes

RVM [jikb], as our test bed for its maturity and active support. The Jikes RVM

implementation includes an efficient runtime system, a simple baseline compiler and

an advanced optimizing compiler, a collection of GC implementations, and rich doc-

umentation.

2.1 Jikes Research Virtual Machine (RVM)

Jikes RVM [AAB+00, jikb] is an open-source (under IBM’s Public Licence [CPL])

research virtual machine for executing Java bytecodes. Jikes RVM implements most

of the Java virtual machine specification, and can run a variety of Java benchmarks.

Jikes RVM itself is mostly written in Java, including compilers, runtime system, and

garbage collectors. RVM classes are in a special package com.ibm.JikesRVM. Jikes

RVM uses a public class library GNU classpath [cla], which is independent of virtual

machines (a virtual machine needs to provide a small number of proxy classes in order

to use the library). The bootstrap code and low-level signal handling functions are

written in C. Jikes RVM currently supports four OS/architectures: AIX/PowerPC,
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Linux/x86, Linux/PowerPC, and Mac OS X. Because of its openness, maturity, and

active support, Jikes RVM is an ideal test bed for experimenting new VM technologies.

2.1.1 Compilers

Jikes RVM provides two compilers, a baseline compiler and an optimizing compiler.

It uses a compile-only approach where bytecode instructions are compiled to native

code before execution. The baseline compiler has some common aspects to a bytecode

interpreter: fast compilation and low performance. It generates machine code quickly

in a single pass, but the code quality is relatively poor. In fact, the baseline compiled

code simulates the stack architecture outlined in the specification [LY96].

The optimizing compiler performs both static data-flow analyses and feed-back

directed optimizations on compiled methods. Optimized code is as efficient as those

produced by industrial JIT compilers such as Sun’s HotSpot server compiler [PVC01]

and IBM’s product JIT compiler [SOT+00].

The bootstrapping process of Jikes RVM includes compiling RVM source code

(in Java) to standard Java class files using the jikes 1 compiler. A bootimage is a

binary executable which contains the baseline compiler, a system class loader, garbage

collectors, and optionally other components. Chosen components build a list of class

files to be initialized and compiled by a bootimage writer tool (written in Java) on

a host Java virtual machine. Objects on the host VM are converted to RVM objects

and methods in the bootimage classes are pre-compiled to machine code by RVM

compilers. RVM classes, objects, and machine code are written into the bootimage.

With some C and assembly code, the bootimage writer builds a binary executable

bootimage of Jikes RVM which can run Java applications as other virtual machines.

When executing an application, the bootimage loads itself entirely into the heap

and executes some initialization code. Then it parses the command line and finds

the main class of the application. A main thread is created for the application and

public static void main(String[]) method of the main class is invoked. The

bootimage also creates several system threads for garbage collectors, recompilation

1Jikes [jika] is a Java-to-bytecode compiler, and Jikes RVM is a Java virtual machine.
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system, adaptive controller, debugger, etc. After the main thread terminates, RVM

unloads resources and shuts down itself.

The Jikes RVM web site [jikb] has considerable information about the design and

implementation of the system. In this part of the thesis, we introduce some technolo-

gies used in the virtual machine, which are highly related to our thesis contents.

Internal representations. It is necessary to understand the object layout and

the internal representation of classes in Jikes RVM. We use the example in

Figure 2.1 to explain the idea. A resolved class A has a TypeInformationBlock

(TIB), which contains superclass and super interface ids, interface method table,

virtual method table, and other miscellaneous information. There is a global

data structure called Java Table Of Contents (JTOC), whose entries are values

of literals, static fields, or machine code addresses of static methods. The start

address of JTOC is kept in a register for fast access. Each class member (field

or method) is assigned a runtime constant offset at class resolution time. The

offsets of static members are used to access contents in JTOC (dashed lines in

Figure 2.1). For example, getstatic A.s f is simply compiled to instructions:

v = *(JTOC + A.s_f’s offset);

The offset of a non-static field, e.g, A.i f, is used to calculate the address of the field

value when given an object pointer of type A. The offset of virtual method ( A.v m )

decides where its machine code address locates in A’s virtual method table.

Lazy compilation. To reduce compilation overhead, Jikes RVM delays the compilation

of a method until its first time invocation. This is done by, at class resolution time,

putting the address of a special code stub, trampoline, in the virtual method table

or JTOC instead of eagerly compiling the method. When the method is invoked,

the special code stub is executed. The code stub blocks the execution and calls

the compiler to compile the method. After the compilation was done, the virtual

machine fills the method’s entry in virtual method table or JTOC with its machine

code address. Then the code stub resumes execution by jumping to the compiled code

directly. Since the method’s entry in virtual method table or JTOC has been replaced

by real machine code address, future invocation on the method directly jumps to the

machine code address.
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class A {
  static int s_f;
  int i_f;  
  static void s_m() {...}

}
  void v_m() {...}

JTOC

other type information

virtual method table

A’s TIB

an object of A

Figure 2.1: Class and object layout in Jikes RVM
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Dynamic linking. As we discussed in Section 1.1, the class file contains symbolic refer-

ences of types, methods and fields used by bytecode instructions. A reference must

be resolved to a concrete entity before executing the instruction. Resolving a refer-

ence may trigger the loading of other classes. A virtual machine can take the laziest

strategy to delay the resolution until the instruction gets executed. Jikes RVM takes

such a lazy approach, called dynamic linking. Efficient implementation of dynamic

linking requires cooperation between compilers and the runtime system.

When compiling a bytecode instruction accessing a field or method reference (e.g.,

getfield, invokevirtual, etc.), the compilers checks if the reference can be resolved

without loading other classes. A resolved field or method has an offset for accessing

its value or machine code address. Therefore, the compilers can generate efficient

instructions to access a resolved member’s value by its offset.

Each field or method reference is assigned a unique id when it is created, and the

virtual machine maintains a table of offsets for unresolved ones. The table is indexed

by the unique id of each reference, and the contents are initialized to a special value.

When a reference gets resolved, the table entry is set to the resolved entity’s offset.

When compiling a bytecode instruction accessing a reference that cannot be resolved

at compile time, the compilers generate instructions for checking if the table entry

of the reference contains a valid offset value. If not, there is an instruction calling a

resolution method to resolve the reference. Otherwise, the offset is read out from the

table and used to access the member.

Compiler IRs. The baseline compiler does one-pass parsing of bytecodes and generates

machine code quickly. The compiler has a big loop and code generation mimics the

stack architecture defined by the Java virtual machine specification. Although the

baseline compiler is easy to understand and modify, the stack nature of bytecode

makes the conventional data-flow analysis harder. On the other hand, the optimizing

compiler compiles bytecodes to machine code through several intermediate represen-

tations (IRs). It performs many data-flow analyses and optimizations on each IR.

The IRs include high-level IR (HIR), low-level IR (LIR), and machine code level IR

(MIR). Optionally there is a Static Single-Assignment (SSA) [Muc97] form available

at HIR and LIR. Developing data-flow analyses based on HIR or LIR is much easier

than raw bytecodes.
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Compiler optimizations. The optimizing compiler provides a full suite of optimizations

that include standard data-flow optimizations such as constant propagation and fold-

ing, dead code elimination, etc. There are some other Java-specific optimizations

such as null check and bounds check eliminations. Method inlining is an important

optimization for object-oriented programs. The optimizing compiler performs both

static inlining (using type analyses results) and adaptive inlining (using profiling in-

formation). The default type analysis used for static inlining is the class hierarchy

analysis (CHA) [DGC95]. It also implements method and class tests [DA99], code

patching [IKY+00], pre-existence based inlining [DA99].

2.1.2 Experimental approach

The product configuration of Jikes RVM compiles all RVM classes into the bootimage.

The execution uses a mixed compilation mode. Methods are quickly compiled by

the baseline compiler first. Only hot methods are selected for recompilation by the

optimizing compiler. Jikes RVM uses an adaptive analytical model [AFG+00] for

driving recompilation and optimizations. The estimation of costs and benefits is

based on samples collected at thread-switch points. The thread-switching is driven

by OS timers. Therefore, the behaviour of the adaptive system is subject to OS

workload and is nondeterministic. Although the default adaptive analytic model is

flexible and intelligent, the decision can be easily affected by small changes made in

the virtual machine code. For example, in one of our early experiments, the change we

made in the baseline compiler slowed down the application at startup time. Without

retraining the adaptive system, the recompilation decision was changed dramatically.

In order to compare results quantatively, we used a counter-based strategy for

recompilation in our experiments in this thesis. Hot methods are selected for recom-

pilation based on their invocation counters. Thus, nondeterminism introduced by the

virtual machine is mostly eliminated. We verified that the recompilation behaviors

between different runs of the same benchmark are very similar.
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2.2 Benchmarks

In this section, we introduce the benchmark suite we used in our experiments. Spec-

JVM98 [speb] is a client-side benchmark suite for experimenting Java virtual machine

development. It consists of 8 benchmarks introduced in Table 2.12. The suite also

provides a driver class, SpecApplication to execute individual benchmark with a

number of iterations without restarting the virtual machine between runs. This can

be used to simulate a long running application. Usually the first a few runs let the

virtual machine compile most of the executed methods, recompile and optimize a few

hot methods. After a few runs, there are less VM activities. The performance of

later runs can be used to measure the quality of optimized code. Appendix A has a

summary of key metrics of benchmarks 3.

SpecJBB2000 [spea] is a server-side benchmark which emulates a 3-tier system

with emphasis on the middle tier. It models a wholesale company and supports several

warehouses. Several clients send operation requests to the server and each client

operates on a dedicated warehouse. The server creates one thread for each client.

All warehouse data are resident in the heap. SpecJBB2000 is a multi-threading,

long-running Java server benchmark.

In addition to the standard Spec benchmark suites, we used several benchmarks in

different experiments. Soot-c [VRGH+00] is a Java bytecode transformation frame-

work that is quite object-oriented, and which has several phases with potentially

different allocation behaviors. CFS is a correlation-based feature subset selection

evaluator from a popular open-source data mining package Weka [wek]. The pro-

gram has an object-oriented design and does intensive numerical computation. We

use a driver similar to the one from SpecJVM98 to run the CFS several times. The

first run reads the data from a file and following runs operate the data on the heap.

Simulator [cer] is a certificate revocation schemes. A variation of simulator interwo-

ven with AspectJ [aspa] code is also used in some of our experiments.

2The description comes from http://www.spec.org.
3For more metrics, see http://www.sable.mcgill.ca/metrics/
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201 compress Modified Lempel-Ziv method (LZW). It finds common

substrings and replaces them with a variable size code.

202 jess JESS is a Java Expert Shell System. The benchmark

workload solves a set of puzzles.

205 raytrace A raytracer that works on a scene depicting a dinosaur.

209 db Performs multiple database functions on memory resi-

dent database. Reads in a 1 MB file which contains

records with names, addresses and phone numbers of en-

tities and a 19KB file called scr6 which contains a stream

of operations to perform on the records in the file.

213 javac This is the Java compiler from the JDK 1.0.2.

222 mpegaudio This is an application that decompresses audio files that

conform to the ISO MPEG Layer-3 audio specification.

227 mtrt This is a variant of 205 raytrace, where two threads each

renders the scene in the input file time-test model, which

is 340KB in size.

228 jack A Java parser generator that is based on the Purdue

Compiler Construction Tool Set (PCCTS). This is an

early version of what is now called JavaCC.

Table 2.1: Introduction of SpecJVM98 benchmarks
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Chapter 3

Region-Based Allocator

This chapter introduces an adaptive, region-based allocator for Java. The basic

idea is to allocate non-escaping objects in local regions, which are allocated and freed

in conjunction with their associated stack frames. By releasing memory associated

with these stack frames, the burden on the garbage collector is reduced, possibly

resulting in fewer collections.

The novelty of our approach is that it does not require static escape analysis,

programmer annotations, or special type systems. The approach is transparent to

the Java programmer and relatively simple to add to an existing JVM. The system

starts by assuming that all allocated objects are local to their stack region, and then

catches escaping objects via write barriers. When an object is caught escaping, its

associated allocation site is marked as a non-local site, so that subsequent allocations

will be put directly in the global region. Thus, as execution proceeds, only those

allocation sites that are likely to produce non-escaping objects are allocated to their

local stack region.

We present the overall idea, and then provide details of a specific design and

implementation in Jikes RVM. Our experimental study evaluates the idea using the

SpecJVM98 benchmarks, plus one other large benchmark. We show that a region-

based allocator is a reasonable choice, that overheads can be kept low, and that the

adaptive system is successful at finding local regions that contain no escaping objects.
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3.1 Overview

The whole system consists of three parts: the allocator manages regions and allocates

space for objects; the JIT compiler inserts instructions for acquiring and releasing a

region in each compiled method; and the collector performs garbage collection when

no more heap space is available.

In a region system, the heap space is divided into pages. The pages can be fixed-

size or variable-size. In our system, we use fixed-size pages for fast computation of

page numbers from addresses. The allocator is also a region manager. It manages

a limited number of tokens. Each token is a small integer number identifying a re-

gion. Two regions, Global and Free, exist throughout the execution of a program.

Other, local regions, exist for shorter durations. They are assigned to and released

by methods dynamically.

A high-level view of our memory organization is given in Figure 3.1. A more

detailed description of the implementation is given in Section 3.2.

INUSE
RegionID
Address
FreeBytes
NextPage

INUSE
DIRTY
FirstPageThread

statck

Page 0 Page 1

GLOBAL FREELISTRegion 2 Region i

Page N

Frame A

Region Descriptor

Page Descriptor

HEAP SPACE

Frame D

Figure 3.1: Memory organization of page-based heaps with regions

A region token points to a list of pages in the heap. The region space is expanded

by inserting free pages at the head of the list. The Global region contains objects

created by non-local allocation sites and pages containing objects that have escaped

out of local regions. The Global region space can only be reclaimed by the collector.

The system uses bit maps to keep track of free pages in the heap. The pages of a

local region can be appended to the Global region or reclaimed by resetting their

entries in the bit map.

21



A method activation obtains a region token by either acquiring an available token

from the region manager or by inheriting its caller’s token. The region identified by

the token acts as an extension of the activation’s stack frame. Before exiting, the

activation releases the region if it was not inherited. It is clear that the lifetime of a

local region is bounded by the lifetime of its host stack frame. There is a many-to-one

mapping between stack frames and regions.

An object can be created in the region of the top stack frame or in the Global

region. For the remainder of the discussion we need to define what we mean by an

object escaping from a region, and a non-local allocation site.

Definition 1 An object escapes its allocation region if and only if it becomes pointed

to by an object in another region.

Definition 2 An allocation site becomes non-local when an object created by that site

escapes.

Given this definition of escape, there are only three Java bytecode instructions,

putstatic, putfield, and aastore, that can lead to an object escaping. Therefore,

it is sufficient to insert write barriers before these instructions to detect the escape of

an object.

There is one additional situation that must be considered. When a method returns

an object, the object may escape its allocation region via stack frames. However, this

kind of escape can be prevented by either: (1) inserting write barriers before all

areturn byte codes, or (2) requiring all methods returning objects to inherit their

caller’s region. In our implementation we have taken the second approach. It should

be noted that objects passed to the callee as parameters are not a problem since the

lifetime of the callee’s stack frame is bounded by the caller’s.

For an assignment such as lhs.f = rhs, the write barrier checks if the rhs is in

the same region as the lhs object. When they are in different regions, the region

containing the rhs object is marked as dirty. Since static fields are much like global

variables, we assume that a putstatic always leads to the rhs object escaping, and the

region associated with this object is marked as dirty.
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It is worth pointing out that a region cannot contain an object reachable from

other regions without being marked as dirty. If there is a path which causes an object

o1 of a region R1 to be reached from objects in other regions, there must be an object,

say oi, in R1 which is on the path and is directly pointed to by another object not

in R1, and the assignment of this pointer must have been captured by write barriers.

Hence, R1 must be marked as dirty when such a path exists.

Each allocation site in a compiled method is uniquely indexed, and each object

has a field in its header for recording the index of its allocation site (see Section

3.3 for a discussion of how this is accomplished without increasing the object header

size). The allocator maintains a bit vector to record the states of the allocation sites.

Besides marking the region dirty, the write barrier also marks an escaping object’s

allocation site as non-local. The allocator allocates objects in local regions only for

local allocation sites. By not allocating objects for non-local sites in the local region,

future activations of the method are very likely to have a local region containing only

non-escaping objects.

The system is quite straightforward and we have implemented it in Jikes RVM [AAB+00]

(see Section 2.1 for the introduction of Jikes RVM). The prototype of the allocator

is implemented with the baseline compiler only. When we present the VM-related

part in Section 3.3, the stack frame layout refers to the conventions of the baseline

compiler.

3.2 Allocator

3.2.1 Heap organization

Various garbage collection techniques have different heap organizations. For example,

mark-and-swap collectors use a single space, copying collectors divide space into two

semi-spaces, and generational collectors divide the heap into several aging areas. In

this chapter, the heap we are discussing refers to the space where new objects are

allocated.

A region memory manager organizes a heap as pages. Without loss of generality,
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the heap in our system is organized as contiguous pages with a fixed size which is a

power of 2. The starting address of the heap is aligned to the page size. Therefore,

computing the page number for an address requires only subtraction and bit shifting.

Some systems do not allocate the large objects from regions, and do not allow an

object to straddle two pages. In order to get a full picture of allocation behaviors,

our system does not use a separate space for large objects and attempts to allocate

objects on contiguous pages whenever it can.

Figure 3.1 gives a high-level overview of the memory organization that we use

for our implementation of regions. A page descriptor encodes page status, region

identification, allocation point, and the index of next page. A region descriptor

contains region status, and the first page index of the region.

This organization provides sufficient information for region-based allocation. When

allocating space in a region, the allocator first checks the free bytes of the first page.

When there is not enough space left there, a free page is taken from the free list and

inserted in the page list as the first page. Allocating space for large objects involves

searching for contiguous free pages. We have measured the overhead for these allo-

cations for our benchmarks, and as shown in Section 3.5, the frequency of expensive

searches is quite low, indicating that this is a reasonable design.

3.2.2 Services

The internal heap organization is transparent to the JVM. The allocator provides a

set of services to the JVM and collector. We describe these functions here.

There are two services for region operations as shown in Figure 3.2. Internally, free

region tokens are managed by a stack. The NEWREGION service pops a region token

from the stack, and pre-allocates one free page for it (pre-allocation is only used

with lazy region allocation, to be explained in Section 3.3). If no token is currently

available, the Global one is returned. The FREEREGION operation has to check the

Dirty field in the region descriptor. Only when the region is clean, can pages be

reclaimed by adding them to the free list. Otherwise, pages are appended to the page

list of the Global region.
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NEWREGION: int

if the rid_stack is empty

return GLOBAL;

else

rid = rid_stack.pop;

pre_allocate_page(rid);

return rid;

FREEREGION (int rid)

if the region is dirty

append pages to the GLOBAL region;

else

add pages to the free list;

rid_stack.push(rid);

Figure 3.2: Services for regions
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As outlined in Figure 3.3, the allocator provides two services for write barriers.

The CHECKWRITE service is called before putfield and aastore byte codes. The addresses

lhs and rhs point to the left hand side and right hand side objects. The operation

filters out null pointers and escaped objects first, then computes page indexes from

object addresses and tests equality. Region IDs are retrieved from page descriptors

and compared if the objects are not in the same page. The rhs object is marked as

escaped if it is not in the region of the lhs object.

The write barrier for putstatic calls MARKESCAPED directly. As we explained in

Section 3.1, the allocator uses a bit vector to record the states of allocation sites.

Both services not only mark the region as dirty, but also set the state of the allocation

site to non-local. In the object header, a bit in the status word is used to mark an

object as escaped.

The main function of the allocator is to allocate space for an object. With regions,

the allocation of space is somewhat complicated. The allocation process ALLOC is

illustrated in figure 3.4. Here, we present only a high-level abstraction of the service.

The allocation method first checks the state of the allocation site. Only local sites

are eligible for allocation from local regions. The internal method getHeapSpace

allocates space in the first page if the free space is larger than the required size. If the

first attempt fails, it looks at pages following the current page. If the request cannot

be satisfied from these pages, it then looks for contiguous pages by scanning the bit

maps. This is the most expensive operation in a region-based allocator.

These services also provide the facilities required by the garbage collector to per-

form collections. We discuss the collection process in Section 3.4.

3.3 Adaptive VM

To utilize regions, a JVM needs the following modifications:

1. each allocation site is assigned a unique index at compilation time;

2. the object header has a field for recording the index of its allocation site;
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CHECKWRITE (ADDRESS lhs, rhs): boolean

if rhs is null

return TRUE; // case 1

if rhs is escaped

return FALSE; // case 2

if rhs and lhs are in the same page

return TRUE; // case 3

if rhs and lhs are in the same region

return TRUE; // case 4

mark rhs as escaped,

return FALSE; // case 5

MARKESCAPED (ADDRESS rhs): boolean

if rhs is null

return TRUE; // case 1

if rhs is escaped

return FALSE; // case 2

mark rhs as escaped,

return FALSE; // case 3

Figure 3.3: Services for barriers
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ALLOC (int rid, int size): ADDRESS

call _getHeapSpace(rid, size);

if failure

initiate a collection;

call _getHeapSpace(rid, size);

if failure

out of memory;

else

return the address;

_getHeapSpace (int rid, int size): ADDRESS

1. allocate space from the first page;

2. if failure, check if enough pages

following the first page are available;

3. if not, search contiguous pages

in the free list;

if both attempts fail

out of memory;

else

add free pages to the region;

return the starting address;

Figure 3.4: Allocating spaces
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3. the stack frame has a slot for the region ID at a fixed offset from the frame

pointer;

4. the method prologue and epilogue have additional instructions to deal with the

region ID slot; and

5. write barriers are inserted before putstatic, putfield, and aastore byte codes.

The allocation method has two more parameters than before: the index of an

allocation site is a runtime constant, and the region ID is fetched from the stack

frame.

When deciding whether or not a method is eligible for a new local region, our

implementation uses following criteria:

• A native call is assigned the Global region id.

• The <clinit> method always uses the Global region since we know that it

initializes static fields.

• The <init> method inherits the caller’s region because it initializes the instance

fields.

• A method returning an object is not eligible for a new region. This rule elimi-

nates the need for a write barrier for the areturn byte code. More importantly,

as pointed out by [GS00], there are many methods just allocating objects for

the caller.

• A one-pass scan of the byte codes counts the allocation sites of each method. If

the number is lower than a threshold, no local region is needed for this method.

We currently use a threshold of 1.

• The first executed method of the booting thread is assigned the Global region

ID.

In our initial development it became clear that making newregion and freeregion

calls on each activation is too expensive for the run time system since many activations
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Figure 3.5: Sharing bits with thin locks

may have empty regions, either because their allocation sites have become non-local

or because no object is allocated. To eliminate these empty regions, we use lazy

region allocation. An eligible method first saves a special region ID, e.g. 0, in the

region ID slot, indicating the stack frame needs a dynamic region, but it has not yet

been allocated. The code for allocation first checks the ID, and then calls newregion

only when necessary. The freeregion method is called only when the region ID is a

valid one. If a method inherits a region from its caller, it must write back its current

region ID to the caller’s stack frame.

Another implementation issue is how to encode the allocation site index in the

object header. A two-word object header is quite a popular design on most JVMs.

One word of the header is used as a status word. Our implementation avoids growing

the object header by storing the allocation site index in space already used by the

thin lock [BKMS98].

In Jikes RVM version 2.0, the thin lock uses 13 bits for recording the ID of the

locking thread, and 6 bits for counting locks. Figure 3.5(a) shows the structure of the

status word. Bit 31 is called the monitor shape bit which is 0 if the lock is thin and

1 if it is fat.
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As indicated in Figures 3.5 (b) and (c), we use bit 1 in the status word to indicate

if the object has escaped or not1. If the object is non-escaping, then we reuse the

thread ID field to store the allocation site (Figure 3.5(b)). This reuse of the thread

ID field necessitates some extra machinery for the case where a lock operation is

performed on a non-escaping object. The thin lock mechanism first attempts to

check the monitor shape bit and the thread ID field in the status word. In ordinary

thin locks, the common case is that the monitor shape bit and the thread ID are

both zero. However, in our scheme, a non-escaping object is using the thread ID

field and it will be non-zero. Thus, when a thin lock fails we must check to see if it

failed because a non-escaping object is reusing the thread ID field. If the object is

non-escaping, we give back the field to the thin lock by clearing the thread ID field,

setting the escaping bit, and then attempting the lock operation again.

By changing a non-escaping object to escaping, we do lose some opportunities for

finding local objects, but we do not affect the behaviour of the thin locks. In Section

3.5.5 we show that this effect is not too large. To ensure correctness of this scheme, an

escaped object must never become non-escaping, and whenever an object is marked

as escaped, the associated region must be marked as dirty.

The system only adds a check on the uncommon path of the thin lock and may

need one check on the common path in very few cases. The mechanism allows us

to encode allocation site numbers up to 213 − 1. For large applications, it would be

possible to use both the thread ID and lock count to store a 19-bit allocation site

index if their positions were reversed (to ensure that small allocation site index still

produces a non-zero thread ID field).

There are some other issues related to Java semantics [LY96]. An exception may

transfer control to the caller without going through the method epilogue. In this case,

the exception mechanism must release the region before unwinding the stack frame.

If an object has a non-trivial finalize method, the JVM has to run the finalizer

before the space is reused. The region-based allocator organizes the list of objects

with non-trivial finalizers by region ID. When the pages of a region are about to be

1Bit 1 is used for write barrier purpose in other types of GC. In our prototype implementation
in a copying collector, this bit is used as the escaping bit.
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reclaimed, the finalize methods of objects in the region get called.

3.4 Collector

The collector must ensure that if an object escapes its original region, that region

is marked as dirty. One way of ensuring this would be to introduce write barriers

during collections. However, this may sacrifice the efficiency of the collector. There is

a trade-off between precision and performance. If all live objects are copied to dirty

regions, no barriers are needed. So, the second option is to copy all live objects to

the Global region of another space. This does not violate the above rule since the

global region never gets released. This strategy has the same efficiency as a normal

copying collector. However, copying all objects to the Global region may cause

some objects created in the next epoch to be treated as escaped, and their associated

allocation sites marked as non-local, unnecessarily.

Our current implementation keeps objects in their original region as much as

possible, and marks all live regions as dirty after the collection. Now objects in the

root set are divided into subsets by their regions, with each live region corresponding

to a subset of the root set. The collector starts with collecting all reachable objects

from the subset belonging to the Global region. In the next step, the collector

collects objects reachable from the subset corresponding to each local region. All

objects copied to the Global region are marked as escaped to allow fast checks in

barriers (the states of the allocation sites are not changed). Although this strategy

makes some stackable objects in current live regions unstackable, it does not require

write barriers and will not make allocation sites non-local unnecessarily. Currently,

we do not have experimental evidence to show which option is better in reality.

3.5 Results

We implemented a page-based heap and a prototype of a region-based allocator in

Jikes RVM v2.0 with the baseline compiler. The region-based allocator is implemented
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in a semi-space copying collector using Cheney’s tracing algorithm [JL96]. The im-

plementation uses a uniprocessor configuration. However, it can be implemented in

existing parallel collectors with little effort.

To understand the program behavior, we did detailed profiling of the allocation

behaviors, and report the experimental results of the following aspects:

• the allocation behavior of the region-based allocator;

• the percentage of space reclaimed by local regions, and the reduction in collec-

tions due to local region allocation;

• the behavior of write barriers;

• the impact on thin locks; and

• the effect of adaptivity.

3.5.1 Benchmarks

We report experimental results on the SpecJVM98 benchmark suite and soot-c.

We first provide some measurements to give some idea of the allocations performed

by each benchmark. Table 3.1 shows the profiles of allocation sites. The column

labeled Compiled gives the total number of allocation sites in compiled methods. It

includes the allocation sites in the JVM, libraries and benchmark code. The column

labeled Used lists the number and percentage of allocation sites which created at least

one object. On average 26% of the allocation sites create at least one object. The

columns labeled Non-local and Local show the fraction of used allocation sites which

are categorized as non-local and local. An allocation site is categorized as local if it

is never marked as non-local by the adaptive algorithm. The last column, labeled

Max RID, gives the maximum number of regions used by the benchmark at the same

time. This gives us some idea of the number of region tokens required. Note that a

program (like 213 javac) with deep recursion may use a large number of regions.

In all of our experiments the total heap size is set to 50M, from which the JVM uses

about 1.5M as the boot area. The JVM itself shares the same heap with applications.
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Benchmark Compiled Used Non-local Local Max RID

201 compress 2108 346(16%) 115(33%) 231(67%) 11

202 jess 2407 577(23%) 276(47%) 301(53%) 9

209 db 2117 358(16%) 124(34%) 234(66%) 11

213 javac 2871 895(31%) 437(48%) 458(52%) 56

222 mpegaudio 3266 1502(45%) 157(10%) 1345(90%) 12

227 mtrt 2228 497(22%) 196(39%) 301(61%) 19

228 jack 2396 614(25%) 204(33%) 410(67%) 16

soot-c 3030 1158(34%) 551(52%) 507(48%) 14

Table 3.1: Allocation sites

We do not distinguish the objects created by the system or the benchmarks. The

heap is divided into two semi-spaces. A 25M heap is quite small for most of our

benchmarks, which forces the garbage collector to work.

3.5.2 Choice of page size

The choice of page size may affect utilization of heap space. A larger page size will

allow more allocations to be satisfied in the first page. On the other hand, smaller

page size will reduce the amount of froth (unused pieces of the heap due to the allo-

cation of chunks/pages of memory2). Table 3.2 shows the the effect of different page

sizes on the number of garbage collections needed and the froth rates. The column

labeled Base collections gives the number of collections needed for the base semi-

space copying garbage collector, without the regions. The three columns labeled clc

give the collections required for the region-based allocator, assuming page sizes of 256

bytes, 1K bytes and 4K bytes.3 Similarly, the columns labeled froth give the wasted

space for the three different page sizes (computed by unused bytes/allocated bytes).

Note that a page size of 4K leads to a large froth rate for several benchmarks, most

2This term was introduced by Steensgaard [Ste00].
3We disabled System.gc() calls for both collectors.
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notably 213 javac (130%), 228 jack (27.5%) and soot-c (23.5%). The very high

froth rate for 213 javac also seems to increase the number of garbage collections,

which is more than double that of the base collector.

Benchmark Base # 256 Bytes 1K Bytes 4K Bytes

collections clc froth clc froth clc froth

201 compress 7 7 0.03% 7 0.11% 7 0.47%

202 jess 12 11 0.13% 11 0.53% 11 2.19%

209 db 4 4 0.05% 4 0.23% 4 1.05%

213 javac 12 12 4.96% 15 29.41% 25 130.42%

222 mpegaudio 0 0 0.62% 0 2.10% 0 9.05%

227 mtrt 7 1 0.03% 1 0.09% 1 0.38%

228 jack 9 7 1.29% 8 5.97% 9 27.52%

soot-c 15 13 1.09% 13 4.89% 15 23.49%

Table 3.2: Effect of page size on # of collections and froth

From the perspective of number of collections and froth, the smaller pages seem

better. However, this is not the complete story. One must also consider the overhead

for allocations. The cheapest form of allocation is when the newly allocated object

fits in the current page, the second cheapest is when the allocation can be allocated on

the next page, and the most expensive is when one must search the free list for enough

contiguous pages to meet the allocation request. These overheads are summarized

in Table 3.3. Considering the three page size configurations: 256-byte, 1K, and 4K,

the allocations are categorized into three types, which reflect three possibilities in

getHeapSpace in Figure 3.3.

1. firstpage the space is available in region’s first page;

2. nextpages the region is expanded with immediately contiguous pages; and

3. searching search for contiguous pages in the free list.
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A large size (4K) allows most of allocations to be satisfied with cheap costs.

But, as we demonstrated in Table 3.2, the froth rate may run out of control. From

Table 3.3 we see that there is not a large difference in the behavior of allocations

when comparing page sizes of 1K and 4K. However, even though a smaller page size

(256 bytes) reduces froth rates, the allocation distribution changes dramatically, with

many more allocations requiring expensive operations. From these results we conclude

that the trade-off between page size and froth rate is worth considering when using a

page-based heap. For our remaining experiments we chose a page size of 1K, which

gives us both reasonable froth rate and reasonable allocation overhead.

3.5.3 Region-reclaimed space

The next important measurement is to find out the percentage of space that is re-

claimed from local regions. That is, how much space can be reclaimed when using

the region-based approach. Recall that the region can be reclaimed when a stack ac-

tivation is popped only when the dirty bit has not been set (i.e. the region is clean).

If any object in the region has escaped, then the dirty bit will be set, and this region

must be added to the Global region which will be collected by the garbage collector.

The table given in Figure 3.6(a) gives the bytes reclaimed from clean regions and

the percentage they represent of total allocated bytes, when the page size is 1K.

Different page sizes give very similar numbers. The percentage of region-reclaimed

bytes varies between benchmarks. In the best case, 227 mtrt has 80 percent of total

allocated memory reclaimed by regions, with the number of collections reduced from

7 to 1. In the worst case, 209 db has less than 1% region-reclaimed space, with no

impact on the number of collections.

Another way to look at the behavior of the regions is to examine the number of

bytes allocated from local regions over the duration of the execution. Figure 3.6(b)

shows the fraction of bytes allocated that are allocated from local regions. The x-axis

is an abstraction of time, with each unit corresponding to 1M bytes of allocations. The

y-axis shows the fraction of those 1M bytes that were allocated from a local region. For

example, the graph labeled 227 mtrt indicates that after an initial startup, about

36



Benchmark page firstpage nextpages searching

size

201 compress 256 82.73% 16.23% 1.04%

1K 94.96% 4.74% 0.30%

4K 98.43% 1.44% 0.13%

202 jess 256 86.75% 12.89% 0.36%

1K 96.71% 3.27% 0.02%

4K 99.16% 0.83% 0.01%

209 db 256 92.24% 7.69% 0.07%

1K 98.04% 1.92% 0.03%

4K 99.49% 0.48% 0.03%

213 javac 256 89.56% 8.58% 1.85%

1K 97.43% 2.00% 0.57%

4K 99.41% 0.50% 0.09%

222 mpegaudio 256 84.97% 12.09% 2.94%

1K 95.54% 3.52% 0.94%

4K 98.59% 0.98% 0.43%

227 mtrt 256 96.04% 2.58% 1.39%

1K 99.51% 0.38% 0.11%

4K 99.88% 0.10% 0.02%

228 jack 256 91.64% 6.46% 1.91%

1K 97.79% 1.59% 0.63%

4K 99.48% 0.33% 0.19%

soot-c 256 88.28% 9.85% 1.88%

1K 96.85% 2.66% 0.49%

4K 99.21% 0.68% 0.11%

Table 3.3: Allocation behaviors
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Benchmark base total region-reclaimed clc froth

collections allocated

201 compress 7 116M 15.39M(13.27%) 7 0.11%

202 jess 12 267M 17.36M( 6.50%) 11 0.53%

209 db 4 77M 0.57M( 0.74%) 4 0.23%

213 javac 12 212M 18.65M( 8.80%) 15 29.41%

222 mpegaudio 0 7M 1.96M(28.00%) 0 2.10%

227 mtrt 7 143M 115.15M(80.52%) 1 0.09%

228 jack 9 223M 51.00M(22.87%) 8 5.97%

soot-c 15 219M 40.72M(18.59%) 13 4.89%

(a) Region-reclaimed space
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90% of all allocated bytes are allocated from local regions. In contrast, the graph

labeled 202 jess shows that this benchmark quickly declines to less than 10% of all

allocations from local regions. The graph labeled soot-c shows a widely fluctuating

rate as the program progresses. This is likely because soot-c is quite a complex

benchmark with many different phases. It is interesting to note that if all the bytes

allocated to local regions are also region-released, then the area under the curves of

Figure 3.6(b) should be equal to the region-reclaimed number shown in Figure 3.6(a).

This appears to be the case, as confirmed by our measurements given in Section 3.5.6,

showing that almost all local regions are clean when released.

3.5.4 Write barrier behaviors

Another important aspect of the collector we measured is the behavior of write bar-

riers, as summarized in Table 3.4. Overall, a write barrier has bounded constant

time as shown by the pseudo-code in Figure 3.3. However, it is still a burden to

the system. To get better idea of how to optimize the barriers, we categorize the

CHECKWRITE(CW) for putfield and aastore into five types.

1. the right hand side is a null pointer;

2. the right hand side object is already marked as escaped;

3. both objects are in the same page;

4. both objects are in the same region; and

5. the LHS and RHS objects are not in the same region.

The first case checks if the right hand side reference is a null pointer, and the

second case checks the escaping bit, which requires a load and a compare instruction.

As shown in Table 3.4, the majority of checks are filtered out by these two cases,

which indicates it is beneficial to separate these two cases as a common path and

inline them. The remaining three cases can be processed by a method call. Similarly

the write barriers for putstatic are also categorized into three types, with the first two

cases benefiting from inlining.
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Benchmark null quick samepage sameregion escaped1

201 compress CW2 15.07% 83.64% 1.05% 0.17% 0.07%

MS3 0.00% 91.45% 8.55%

202 jess CW 0.22% 99.75% 0.02% 0.00% 0.00%

MS 1.88% 85.63% 12.50%

209 db CW 0.12% 99.88% 0.00% 0.00% 0.00%

MS 0.00% 90.48% 9.52%

213 javac CW 10.81% 88.84% 0.32% 0.03% 0.00%

MS 2.90% 89.63% 7.47%

222 mpegaudio CW 0.42% 98.12% 0.08% 1.38% 0.00%

MS 3.20% 83.56% 13.24%

227 mtrt CW 13.82% 84.49% 1.66% 0.02% 0.00%

MS 0.00% 86.44% 13.56%

228 jack CW 11.79% 87.58% 0.62% 0.01% 0.00%

MS 0.00% 91.00% 9.00%

soot-c CW 5.20% 91.88% 2.71% 0.21% 0.00%

MS 0.00% 93.48% 6.52%
1In this table, zero only means the rate is lower than 0.005%. 2CW is the short name of

CHECKWRITE for putfield and aastore. 3MS is the short name of MARKESCAPED for

putstatic.

Table 3.4: Write barrier behaviorss
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Currently, we have not incorporated any static analysis for removing write barriers.

Certainly, such analyses will reduce the runtime cost of the system. We will investigate

such algorithms in the future.

3.5.5 Impact on thin locks

We also profiled the impact of sharing bits with thin locks. Table 3.5 shows the rate

of failed locks because of sharing bits. 201 compress and 222 mpegaudio have only

a few thousand locks in a full run, so their results cannot represent the real effect of

sharing bits. On other benchmarks, the rate of spoiled locks is no more than 5%.

Benchmark thin locks spoiled locks

201 compress 1.6K 172(9.58%)

202 jess 4.8M 4881(0.10%)

209 db 45.2M 2915(0.01%)

213 javac 14.7M 341585(2.26%)

222 mpegaudio 5.6K 497(8.15%)

227 mtrt 1.3M 25816(1.92%)

228 jack 9.4M 497016(5.00%)

soot-c 5.6M 73204(1.30%)

Table 3.5: Impact on thin locks

3.5.6 Effectiveness of adapting

The last behavior that we studied was the effect of the adaptive part of our algorithm.

The basic idea of our approach was to mark allocation sites as non-local as soon as they

are found escaping the first time. The justification of this decision was that this would

prevent this allocation site from spoiling clean regions in the future, and we expected

that this would lead to most local regions being clean at release time. Figure 3.7(a)

shows the number of local regions that are clean at release time over the duration of
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the execution of the program. The x-axis is an abstraction of time, with each point

representing the release of 1000 local regions (100 for 202 jess). The y-axis shows

the number of those local regions that are clean at release time. Accompanying the

title of each graph is the number of clean regions and total allocated regions. It is

very clear that after a short startup time, the system quickly adapts so that almost

100% of the local regions are clean at release time. There is occasionally a small dip,

but then the system adjusts and it goes back to almost 100%. So, it does appear that

the system adapts well.

In order to see what would happen without adapting, we removed the part of

the algorithm that marks an allocation site as non-local, so that all4 allocations

are placed in the local regions. Figure 3.7(b) shows the result in this case. First,

note that many more regions are created, and the scale on these graphs are now per

10000 local regions (1000 for 202 jess). However, we can also see some interesting

trends. The benchmark 227 mtrt appears to create mostly non-escaping objects, so

for this benchmark it is not such a bad idea to just put all objects in local regions.

For benchmarks 213 javac and soot-c, we see that removing the adaption leads

to many more regions, and many of those regions are not clean. In these cases the

adaption works to cull those dirty regions. For 202 jess we see a very interesting

behavior, in that in the last two thirds of the execution, a lot of objects appear to be

non-escaping, and the number of clean regions stays quite high. With the adaption,

we get a higher percentage of clean regions, but we don’t find nearly as many. In

this case we suspect that there are some allocation sites which sometimes produce

escaping objects, and sometimes not. A more complicated prediction scheme appears

to be necessary for this kind of benchmark.

We also collected our overall measurements for the two cases, with adaption and

without adaption. These are summarized in Table 3.6. Note that in some cases,

most notably 213 javac, switching off the adaption drastically increases the froth

rate (589% instead of 29%) and number of garbage collections (96 instead of 15).

However, as we might have predicted from the graph in Figure 3.7(b), the performance

4except native calls, <clinit>, and the first executed method of the boot thread, see Section 3.3.
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for 202 jess is much better without adaption. This is a clear sign that we must

look at other forms of adaption that are more robust when the objects created from

a site sometimes escape, and sometimes do not. Overall, it seems that the adaptive

algorithm gives better performance and controls excessive froth.

The third column of Table 3.6 gives the total size of escaping objects which were

captured by write barriers or reachable from escaping objects. Locked objects are also

considered as escaping. The difference between the total allocated size and the size of

escaping objects gives us a rough upper bound of the space that can be reclaimed by

regions. We see that there is a large space to improve the current prediction scheme.

Benchmark total total base region clc froth

allocated escaped clc reclaimed

201 compress 116M 99M 7 WA1 15.39M (13.27%) 7 0.11%

NA2 14.75M (12.72%) 7 3.61%

202 jess 267M 6M 12 WA 17.36M ( 6.50%) 11 0.53%

NA 224.92M (84.24%) 2 9.04%

209 db 77M 24M 4 WA 0.57M ( 0.74%) 4 0.23%

NA 0.53M ( 0.68%) 4 5.77%

213 javac 212M 112M 12 WA 18.65M ( 8.80%) 15 29.41%

NA 24.41M (11.51%) 96 589.09%

222 mpegaudio 7M 2M 0 WA 1.96M (28.00%) 0 2.10%

NA 1.37M (19.57%) 0 128.43%

227 mtrt 143M 17M 7 WA 115.15M (80.52%) 1 0.09%

NA 112.56M (78.71%) 6 62.42%

228 jack 223M 69M 9 WA 51.00M (22.87%) 8 5.97%

NA 94.66M (42.45%) 7 16.26%

soot-c 219M 89M 15 WA 40.72M (18.59%) 13 4.89%

NA 7.82M ( 3.57%) 57 276.54%

1 WA is the short name for With Adaption. 2 NA is the short name for No Adaption.

Table 3.6: Effect of Adaption
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3.5.7 Summary

Our current implementation, using the baseline compiler, was aimed at producing

a prototype that could be used to measure the behavior of the system, as we have

presented in this section. Our numbers show that: 1) page size is important, but

with the appropriate page size, the overhead for froth and the frequency of expensive

searches for free pages is quite low; 2) for many benchmarks a significant percentage of

allocated memory can be placed in local regions which are still clean at release time;

3) appropriate choices for the barrier operations can put the common cases on a low-

cost path; 4) the overhead for sharing space with thin locks seems acceptable; 5) the

adaptive part of the algorithm is important for focusing the system on the allocation

sites that are likely not to escape; and 6) for many, but not all, benchmarks the

adaptive system finds more local regions than a non-adaptive system.

We did try measuring runtime improvement using this prototype, but it turned

out that the overheads in our current implementation are still too high, and this can

lead to an overall slow down. This is due to several factors, including: 1) the cost of

region management, 2) the cost of write barriers, and 3) small helper methods used

by region and barrier implementation.

In our preliminary experiment with the optimizing compiler, we found that the

optimizing compiler allocates far more objects than benchmarks. It is hard to measure

the effects of regions on applications.

3.6 Related work

We have described a region-based allocator using page-based heaps. Although we

use the terminology region here, the technique does not involve any region inference

algorithm [TT97]. The technique provides an alternative way to allocate objects on

stack in a JVM. There is much literature on garbage collection, region-based memory

management and object stack-allocation, thus we focus on those systems most closely

related to our work.
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Tofte’s region inference system [TT97,Tof98] automatically infers regions for ob-

jects. It achieves automatic memory management by compiler analyses. Gay and

Aiken’s C@ [GA98] and RC [GA01] provide language support for regions. C@ does

not require an inference algorithm. It uses reference counting and stack scans to de-

termine the safety of reclaiming a region. The main point of our work was to develop a

system that works for an existing language, Java, and that is transparent to the Java

programmer. Steensgaard [Ste00] proposed thread-specific heaps for multi-threaded

programs. Both systems require the heap to be organized as pages/chunks. We stud-

ied the allocation behaviors of Java programs on page-based heaps. The preliminary

results suggest that Java programs are sensitive to the page size.

Escape analyses [CGS+99, Bla99, WR99, GS00] for Java determine whether the

objects created by an allocation site may escape certain scopes. Mainly the analysis

results can be used in two optimizations. Thread escape analysis results can be

used to remove unnecessary synchronizations, and escape analysis to find method-

bounded allocation sites can be used to create objects on the local stack frames.

However, the cost of the analyses prevents them from being used at run time, and Java

semantics may pose restrictions on stackable objects. Our region-based allocator aims

to reduce the work of garbage collector by allocating objects in temporary regions.

The technique needs no analyses and may be suitable for a run time system like a Java

Virtual Machine. One of our future research directions is to explore online escape

analysis to remove unnecessary barriers for region allocation.

McDowell [McD] reported the number of potentially stackable objects in a set of

Java benchmarks. Like other escape analyses, McDowell also made the assumption

that a compile time algorithm must make a decision for all objects created by an

allocation site, although he was using dynamic profiling information to conclude the

results. Our system does not require this limitation. An allocation site may create

objects in local regions before any of them is found to be escaped. Extensions of our

adaption algorithm may also allow allocation sites to become local again, even after

being marked as non-local.

Hallenberg [Hal99] introduced garbage collection into individual regions in Tofte’s

region inference system for the ML Kit. Although our collector has a similar name
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as his system, the structures are quite different. In his system, the region inference

algorithm creates regions, and inside a region, a copying collector collects live objects.

The backbone of our system is a garbage collector, and the region is a natural way

to extend stack frames. The region organization serves as the basis of adaptive

allocation. Interested readers can find the design of Hallenberg’s system in [Hal99],

chapter 11.

3.7 Conclusions

We have presented an adaptive, region-based allocator for Java Virtual Machines and

studied the allocation behavior of Java programs on page-based heaps. The main idea

is to detect on-the-fly these allocation sites that do not escape their region, and then

manage these allocations in local regions that can be released when the associated

stack frame is popped.

We implemented the system using the Jikes RVM baseline compiler and associated

garbage collector, and we used this prototype to study the behavior of a collection of

Java benchmarks, including the SpecJVM98 benchmarks. This study showed that the

design of the system is crucial, including an appropriate choice of page size, and tech-

niques for minimizing space overhead and region allocation/deallocation overhead.

We also studied the adaptive mechanism of our system, and found that it quickly

found regions from which no object escaped.

Given our encouraging results, there are several directions to continue on this

work. First, we would like to profile and analyze important escaping allocation sites,

and develop necessary techniques to allow more objects be allocated on regions.

Our second major area of investigation is to look at a wider range of adaptive

mechanisms. In this work, we mark an allocation site as non-local as soon as one

object allocated from that site escapes. This scheme is a rather coarse and naive

prediction scheme. When we turn off the adaptation, this corresponds to a predictor

that always predicts that no object will escape. Our experiments show that this

second method works well for those programs where, in fact, a large portion of the
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objects do not escape. We would now like to examine other more complex predictors.

For example, we could use more than 1 bit, and only mark an allocation site as non-

local after some number of objects escape. We could also increase the granularity of

the predictor by associating dirty bits with pages within regions, rather than having

1 bit per region. Another possibility is to reset allocation sites to being local at

intervals, for example at collection time or during phase shifts in the program. This

may help in the case where the same allocation site is sometimes local and sometimes

non-local. As part of this study we also would like to measure the effect of the regions

on memory locality.

Our final area of research is to examine the effect of our system when coupled with

different garbage collectors. As we pointed out in Section 3.4, it should be relatively

straightforward to incorporate our ideas in a variety of collectors.

48



Chapter 4

Runtime Techniques Supporting Speculative

Optimizations

Static program analyses for optimizations must be conservative to preserve the

semantics of original programs. Data-flow facts induced by static analyses must be

held regardless input data or execution environments because once the program is

compiled to binaries, the compiler has no control on the code and execution. In a JIT

environment such as a Java virtual machine, since compilers are part of the execution

engine, it is possible to dynamically change the compiled code.

In a Java virtual machine, classes are loaded dynamically, and methods are com-

piled lazily. When compiling a method, program properties collected by compilers are

held for loaded classes and compiled methods, but might be invalidated when more

classes are loaded later. We call optimizations based only on compile-time properties

speculative. Speculatively optimized code is only safe at compile time and might be

wrong in future execution.

In this chapter, we review existing techniques for supporting speculative optimiza-

tions in Java virtual machines. First, we review runtime guards for method inlining in

Section 4.2. Section 4.3 introduces more complicated code rewriting techniques: code

patching and on-stack replacement. Finally, in Section 4.4, we present our improve-

ment and implementation of an on-stack replacement in Jikes RVM. These techniques

can be used for supporting speculative optimizations using dynamic interprocedural
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analyses results. Section 4.5 discusses related work.

4.1 Speculative inlining

Methods are important semantic abstraction boundaries of object-oriented programs.

Compiler writers, however, work hard to remove these boundaries to improve per-

formance. In the Java programming language, a virtual call has the form of <x,

A.m()> where x is a variable pointing to objects of type A or its subtypes, and m()

is the method signature. The real target of each invocation depends on the type of

object pointed to by the variable x at runtime. We call the object pointed to by x

the receiver of the call, and m() is a message sent from the caller. A method call

requires setting up a stack frame, passing parameters and returning the result. A

virtual call requires extra costs of looking up the target method. Method inlining is

an important optimization of object-oriented programs. Inlining reduces the direct

cost of calls and creates new optimization opportunities for the inlined code.

Due to polymorphism, a virtual call may invoke several different methods in the

course of program execution. The target method is determined by the type of the

receiver object and the callee method signature. A virtual call site can be categorized

into polymorphic or monomorphic. A polymorphic call site has more than one target

method during execution, and a monomorphic call site has only one target even

it is virtual. A type analysis, such as class hierarchy analysis (CHA) [DGC95],

can prove some virtual call sites are monomorphic and a compiler can inline these

monomorphic call sites speculatively. However, dynamic class loading grows the class

hierarchy during the program execution, and it may invalidate previous CHA results

for inlining. For example, a virtual call formally recognized as monomorphic by CHA

might become polymorphic in the future. Speculative inlining requires a backup

mechanism to ensure the correctness of optimized code in the presence of dynamic

class loading.

We use an example in Figure 4.1 to illustrate speculative inlining. A class A

declares a virtual method m() and a class B extends A without overriding the method
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m(). Another class C extends A but overrides the method m(). We use the class

name followed by the method name (e.g., A.m() and C.m()) to distinguish methods

in different classes.

A

B C

m

m

if (cond)

foo(new B());

else

foo(new C());

void foo(A a) {

......

a.m();

......

}

Figure 4.1: An inlining example

If class C is not loaded when the method foo gets recompiled, CHA concludes

that the receiver type set of the call site a.m() is only A and B (assuming both were

loaded). The compiler can resolve the call target to be A.m() only. Thus, this is a

monomorphic call at the moment of optimization, and the compiler inlines A.m() into

foo. However, the compiler needs a mechanism to ensure that only objects of type

A or B can reach inlined code of A.m() since the class C can be loaded in the future

execution.

4.2 Class and method tests

4.2.1 Guarded inlining using class and method tests

First we review a simple technique, class tests, for ensuring the correctness of specu-

lative inlining. In Jikes RVM, as shown in Figure 2.1, an object has a pointer to its

class’s type information block (TIB). The compiler generates the code for the virtual
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call a.m() of the form:

a_tib = a->TIB;

if (a_tib == A’s TIB)

inlined A.m()

else

normal virtual call

The inlined code of A.m() is guarded by a class test. If the runtime type of a is A,

the control falls through into inlined code of A.m(). Otherwise, it goes to the more

expensive virtual call implementation.

The drawback of class test is that it only covers the case when an object type is A.

If the object type is B, the control falls to the normal virtual call, although the target

is still A.m(). One remedy is to change the test to a tib == A’s TIB || a tib ==

B’s TIB, but it has two tests for type B and increases code density.

Detlefs and Agesen [DA99] provided a new solution to the dilemma of class test. It

uses method tests to guard inlining of virtual method invocations with the assumption

that the target can be obtained from the class information cheaply. In most Java

virtual machines, obtaining a method address from a virtual method table takes only

one load instruction. Foo’s compiled code using method tests would be as follows:

a_tib = a->TIB;

m_addr = a_tib[m->method_offset];

if (m_addr == A.m’s address)

inlined A.m()

else

normal virtual call

A single method test can cover more classes than a class test with the cost of

one load instruction in the fast path. The two techniques can be selectively used in

practice. For example, if the inlined method is in a final class, the class test can be

used since there is no other receiver types due to language constraints.
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4.2.2 Direct inlining using preexistance analysis

Class and method tests are mechanisms guarding inlined code safely even in the

presence of dynamic class loading. However, both tests require memory accesses (to

load TIBs and method instruction addresses) and conditional branch instructions.

For monomorphic calls, these tests seem redundant except as assurance. Detlefs and

Agesen [DA99] pointed out that, in a Java virtual machine, a compiler can remove

the tests for currently monomorphic calls, and register the compiled code with the as-

sumption that the inlined method is not overridden (the call is monomorphic). Right

after a class loader loads a new class, it checks all methods of superclasses overridden

by methods in the newly loaded class. For compiled methods whose assumptions were

invalidated, their entries in virtual method tables are conveniently reset to lazy com-

pilation code stubs (see Chapter 2.1). The next invocation of an invalidated method

triggers recompilation using the new, correct CHA results. In our example, loading

class C causes resetting foo’s machine code address, and the next invocation of foo

triggers the recompilation of foo without direct inlining of a.m().

However, there is a drawback in this approach. Only the next invocation of an

invalidated method can trigger recompilation and execute on the correct code. If a

thread is executing a compiled method while dynamic class loading invalidates it,

resetting the virtual method table entry cannot correct the execution of the thread.

Consider the code:

foo_1(A a) {

......

if (cond) a = getC();

a.m();

......

If the condition has never been satisfied before and C is not loaded, a.m() is directly

inlined into foo 1 using A.m(). If, later on, the condition is satisfied, execution

of getC() triggers loading of C which invalidates the inlining assumption of A.m().

Resetting the virtual method table entry of foo 1 only corrects future invocations,

but the current execution of foo 1 is apparently wrong.
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Detlefs and Agesen [DA99] pointed out that, if the receiver object of a call is

preexisting before the method, resetting its entry in virtual method table is sufficient

to ensure the safety because these method activations running on threads would not

create objects of newly loading classes. They proposed a simple invariant argument

analysis for proving the preexistance of receivers. The analysis tracks simple data-flow

between reference type variables. If a variable is only assigned values from parameters,

then it is preexisting before the method call. In our example, the parameter a of foo

is preexisting, but a of foo 1 is not.

For monomorphic calls whose receivers could not be proved to be preexisting, thin

guards [AR02] can be used to combine several tests into one test. Although guarded

inlining removes the overhead of building call stacks and passing parameters, the

control flow created by guards limits the effectiveness of further optimizations on

inlined code. The merge of inlined code and backup path essentially removes the

data-flow benefits from inlining. Thin guards are able to create large regions of

inlined code for optimizations. Control-flow splitting [CU91] breaks the merge by

duplicating the path and improves the effectiveness of optimizations.

4.3 Code patching and on-stack replacement

In this section, we discuss more complicated techniques for direct inlining of monomor-

phic virtual calls in the presence of dynamic class loading. One technique, code

patching, rewrites speculatively inlined code if dynamic class loading invalidates the

inlining assumption. Another technique, on-stack replacement, dynamically changes

the activation of an invalidated method to a safe one.

4.3.1 Code patching

Preexistance analysis may not always succeed on removing method and class tests

for inlined monomorphic calls. Ishizaki et. al. presented a code patching tech-

nique [IKY+00] to remove all method and class tests for monomorphic calls in the

presence of dynamic class loading. Code patching uses dynamic CHA to identify
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monomorphic calls based on the class hierarchy at compile time.

Like a method or class test, code patching uses a guard at compile time. However,

the guard is not a test, but a condition that the inlined method is not overridden.

Using the previous example, Figure 4.2(a) shows the pseudo-IRs of inlined call. If

A.m() is not overridden at compile time, the compiler directly inlines it into foo,

and generates a backup path for the call. The conditional test is treated as a nor-

mal conditional branch instruction until code generation phase. When generating

machine code for the test, it is replaced by a label, start of inlined code, as shown

in Figure 4.2(b), and the condition, A.m() is overridden, is registered in a database

together with the machine code address offsets at start of inlined code and backup. If

C is loaded later and C.m() overrides A.m(), the Java virtual machine immediately

patches the first instruction at the label start of inlined code by a direct jump to the

backup path as shown in Figure 4.2(c). The virtual machine can optionally reset foo’s

entry in the virtual method table.

The advantage of code patching is that it removes memory loads and conditional

branch instructions. Also recompilation is not a necessity. The disadvantage is that it

needs to track detailed dependency and synchronize caches explicitly on some archi-

tectures. Preexistance based inlining can still be used together with code patching.

4.3.2 On-stack replacement

In a Java virtual machine, it is convenient to transition to a newly compiled version

of a method by resetting the entry of virtual method table. So the future method

invocations branch to the new version. However, the transition for a method that is

currently executing on some thread’s stack presents a harder engineering challenge.

In the case of direct inlining, if an invalidated method is executing on a thread’s

stack, the method activation must be transferred to a version without direct inlining.

Preexistance based inlining avoids direct inlining of calls that might be invalidated

and lead to wrong execution. Code-patching technique uses a similar idea as guarded

inlining except it removes memory accesses and conditional branch instructions. Now
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if (A.m() is overridden) goto backup;

inlined A.m()

......

backup:

normal virtual call of a.m()

(a) compile-time guard of code patching

start_of_inlined_code:

inlined A.m()

......

backup:

normal virtual call of a.m()

(b) inlined call

start_of_inlined_code:

jump backup

......

backup:

normal virtual call of a.m()

(c) after code patching

Figure 4.2: Code patching example
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we look at a more general and advanced technique, on-stack replacement, for in-

validating speculatively optimized code without the preexistance requirement, while

retaining better data-flow effects of optimized code than guarded inlining.

To perform the transition to a new version of compiled code, the SELF pro-

gramming language implementations [Höl94] pioneered on-stack replacement (OSR)

technology. OSR technology enables fundamental VM enhancements, including de-

bugging optimized code via de-optimization [Urs92], deferred compilation to improve

compiler speed and/or code quality [CU91], online optimization of activations contain-

ing long-running loops, and optimization and code generation based on speculative

program invariants.

Figure 4.3(a) is an example for demonstrating the concept of on-stack replacement.

In this case, the variable a is not preexisting, but A.m() is currently not overridden.

As shown in Figure 4.3(b), the compiler can perform direct inlining by inserting an

osr point in the code before the inlined code and after the assignment of a. An OSR

point is an intermediate instruction that uses all live variables at the point in the

original program. The OSR point also keeps a map from variable names to values or

locations after register allocation. In the example, the osr point instruction records

the stack locations of variables x and a, and also records the constant values of

variables i, j, and k. If the class C is loaded later on, the class loader can change the

instruction at osr point to a call of a special function to perform on-stack replacement.

The transition of optimized (wrong) code to unoptimized (correct) code is shown in

Figure 4.3(c). The left side is the state of foo’s optimized code when the execution

reaches the osr point. The right side is reconstructed stack frame for unoptimized

code at the entry point. The machine program counter is set to the entry point and

the execution will continue on unoptimized code with the new stack frame.

Hölzle et. al. proposed an approach [Urs92] for performing transition for SELF

programs. Their approach introduces interrupt points in code to be invalidated and

entry points in the middle of another version of code. To perform transition from

one version of code to another version, the first step is to recover the source-level

program state. It is straightforward to recover such states from unoptimized code.

For optimized code, the compiler inserts a few interrupt points which are equivalent
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void foo(int x) {

int i = 10, j = 20;

A a = getObject();

int k = i + j;

a.m(k);

......

}

(a) source code

a = call getObject;

osr_point (x, i=10, j=20, k=30, a);

inlined code of A.m(30);

......

(b) direct inline of A.m();

i = 10
j = 20
a = call getObject
k = i + j

a.m(k)
entry_point:

a = call getObject;

inlined code of A.m(30)
osr_point:

this

x

k=30

a

j=20

i=10

x

this

a

(c) transition to unoptimized code at OSR point

Figure 4.3: On-stack replacement example
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to OSR points shown in above example. Each interrupt point has a scope descriptor

which is used to reconstruct the source-level state. The second step is to build a

stack frame for the second version of the code at the entry point where interrupt

point happens. It is also straightforward to build the stack frame and make transition

to unoptimized code. For optimized code, the compiler pre-determines entry points

(which are usually at the back edge of the control flow), where the stack layouts and

machine code addresses are recorded. A transition function does state recovering,

new frame construction, and the program counter adjustment. Indeed, Figure 4.3(c)

is a very close example of SELF’s interrupt point.

Sun’s HotSpot server compiler [PVC01] implements SELF’s approach for de-

optimization (from optimized code to unoptimized code) and promotion of long-

running loops (from unoptimized code to optimized code).

Fink and Wegman [FW00] invented a new transition mechanism for performing

on-stack replacement. The key idea is that, instead of pre-inserting entry points into

the target version of code, one can generate specialized source code (bytecode) to set

up the new stack frame(s) and continue execution at the desired program counter.

The mechanism can be best illustrated by the example shown in Figure 4.4.

Figure 4.4(a) is the Java source code of method foo and the bytecode is shown

in Figure 4.4(b). The execution state of a method is represented by a JVM scope

descriptor, as shown in Figure 4.4(c), which is comprised of:

1. the thread running the activation,

2. the program counter as a bytecode index,

3. values of live local variables and stack locations, and

4. a reference to the activation’s stack frame.

Given the JVM scope descriptor of a method, Fink’s approach constructs a special

method, in bytecode, that sets up the new stack frame and continues execution (see

Figure 4.4(d)). The special method is only used once to complete the execution of

replaced method activation, and it preserves the correct semantics of the program.
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void foo(int x) {

int i=10, j=20;

A a = getObject();

int k = i + j;

a.m(k);

......

}

(a) Java source code

running thread: MainThread

frame pointer: 0xSomeAddress

program counter: 21

local variables: L0(this), L1(x), L2(i)=10,

L3(j)=20, L4(a), L5(k)=30

stack expressions: S0=a, S1=30

(c) JVM scope descriptor for an activation of foo

0: bipush 10

2: istore_2

3: bipush 20

5: istore_3

6: aload_0

7: invokevirtual getObject()LA;

10: astore 4

12: iload_2

13: iload_3

14: iadd

15: istore 5

17: aload 4

19: iload 5

21: invokevirtual A.m(I)V

......

(b) bytecode

load (this)

astore 0

ldc (x)

istore 1

ldc 10

istore 2

ldc 20

istore 3

load (a)

astore 4

ldc 30

istore 5

load (a)

ldc 30

goto 21

0: bipush 10

......

21: invokevirtual A.m(I)V

......

(d) specialized version

Figure 4.4: Example of Fink’s OSR approach
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Fink’s approach does not need a transition function to set up target stack frame

and does not require entry points in the target code. However, it needs to con-

struct and compile a specialized method. SELF’s approach requires modifications in

compilers to generate entry points in the code, which may limit the effectiveness of

some optimizations and require large engineering efforts. In contrast, Fink’s approach

only requires small modifications on existing compilers to compile specialized meth-

ods. The specialized method initializes locals and stacks with runtime constants, this

could enable more optimization opportunities. The cost of the Fink’s approach is

that it requires creating one specialized method for one replacement, and increases

the workload of dynamic compilation system.

We have extended Fink and Wegman’s mechanism to support de-inlining, and im-

plemented it in Jikes RVM (in collaboration with one of original authors, S.J.Fink).

Based on this OSR implementation, several optimizations, such as long-running

method promotion and deferred compilation, have been developed and evaluated [FQ03].

4.4 Improvement and implementation of on-stack re-

placement in Jikes RVM

When the optimizing compiler compiles a method, it first determines where to insert

osr points in the IR. The decision solely depends on the application of OSR. An OSR

point indicates the bytecode-level state can be recovered and on-stack replacement

can happen when the program execution reaches the program point.

4.4.1 Transition to de-inlined code

We extended Fink’s approach to support de-inlining. The ordinary approach can

handle the OSR points in the caller’s code. When the compiler inlines a call, an

osr barrier instruction is inserted before the inlined call site. The barrier collects live

variables before the call instruction and is passed to the compilation context of the

inlinee. If an osr point instruction is inserted in the inlined code, it uses not only
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the inlinee’s live variables, but also those in osr barrier instructions from the caller.

This provides enough information to perform de-inlining if the osr point in the inlined

code is reached. After register allocation, the compiler builds a table mapping the

lives to physical positions (register numbers or spilling offsets) with detailed type

information. The table is encoded as an OSR map, some auxiliary information of the

compiled method.

When on-stack replacement happens, the system recovers JVM scope descriptors

for methods in the inlining chain. Each descriptor except the leaf refers to its inli-

nee’s descriptor. Figure 4.5(a) shows an example where method bar was inlined into

method foo, and on-stack replacement happens at the label B of bar. Recovered JVM

scope descriptors for foo and bar are shown in Figure 4.5(c) where foo’s descriptor

has a reference to the inlinee bar’s descriptor. As shown in Figure 4.5(c), the spe-

cialized bytecode for the inliner, foo prime, in addition to set up local variables and

stack expressions, makes a call to the specialized bytecode of the inlinee, bar prime.

Right after the call, the control jumps to the next instruction of the original call. In

bar prime, the prologue sets up locals and stacks.

4.4.2 Implementation

We have fully implemented Fink’s approach and improvement in Jikes RVM with ap-

plications of deferred compilation, long-running loop promotion [FQ03]. Linux/x86,

Linux/PPC, and AIX/PPC are supported. Here we discuss the general implementa-

tion strategy and engineering challenges encountered and our solutions.

When on-stack replacement is used for promoting long-running loops, the compiler

needs to extract the JVM scope descriptor from unoptimized code, which is relatively

easy because the baseline compiler generated code that mimics the JVM stack ma-

chine. If an application requires deoptimization, it needs help from the optimizing

compiler to insert osr points in the code. In the optimizing compiler, an osr point is

implemented as an OsrPoint instruction in Jikes RVM’s IR, which uses live variables

at its insertion point. An OsrBarrier is an instruction to hold live variables before an

inlined call. Live variables are aggregated to OsrPoint instructions in inlinees. After

62



void foo() {

bar();

A:

......

}

void bar() {

......

B:

......

}

(a) Java code. Bar is inlined into foo and

an OSR happens at program point B.

foo_prime :

<specialized foo prologue>

call bar_prime

goto A;

......

bar();

A:

......

bar_prime :

<specialized bar prologue>

goto B;

......

B:

......

(c) special methods for OSR transi-

tion
foo’s descriptor:

running thread

......

frame pointer

reference to bar’s descriptor

bar’s descriptor:

running thread

......

(b) JVM scope descriptors for foo and bar

Figure 4.5: De-inlining example
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parsing inlined code, OsrBarriers are removed. As we discussed before, places to

insert OsrPoint instructions solely depend on the OSR application. For example, in

deferred compilation, OsrPoints replaces branch targets or exception handlers which

are never executed. An OsrPoint is also a GC point for reusing the code to build GC

maps.

Before generating machine code, OsrPoint instructions are expanded to runtime

services. Currently there are two implementations. The first implementation uses the

adaptive compilation system in Jikes RVM. An OsrPoint is implemented as a special

thread switch point. When a thread hits an OsrPoint, it is suspended. A separate

compilation thread inspects the suspended thread, performs on-stack replacement for

it, and re-schedules it afterwards. The second implementation simulates lazy method

compilation: each OsrPoint is replaced by a call of a runtime service; the service

inspects the current thread and performs on-stack replacement. Two approaches

differ in only how to schedule threads requiring on-stack replacement, but share most

of other code. The OSR runtime service can be broken down to several steps:

1. extract execution state from the top stack frame of a suspended thread,

2. generate new code for the suspended activation, and

3. transfer execution in the suspended thread to new compiled code.

Bytecode instructions for setting up new stack frames must be selected according

to the types of values. Type information in OSR maps serves this purpose. One

challenge of OSR transition is how to carry reference type values from old stack

frames to new stack frames.

Values extracted from stack frames are in binary format. If a value is a reference,

it is indeed the address of a live object. It is not feasible to use the row addresses dur-

ing the OSR transition because the process may trigger GC and objects get moved.

Jikes RVM provides primitives to disable and enable GC. If a system method needs

to manipulate row addresses of some objects, it should disable GC first. After ma-

nipulation, it re-enables GC. We call such a region GC-critical. A GC-critical region
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has to be small, and the code in the region should not trigger GC. OSR transition

code does not fit in one GC-critical region.

To solve this problem, we only create a GC-critical region for converting row

addresses to normal Java references when extracting JVM scope descriptors. These

references are saved in a temporary object array, which is subject to normal garbage

collection. In the prologue of specialized method, loading a reference value to stack

or local variable is done by bytecode instructions reading the element of the object

array (indexes are known when storing references into the array).

Based on the implementation, Fink conducted some experiments of deferred com-

pilation and long-running loop promotion. More experimental results can be found in

the paper [FQ03]. On-stack replacement is considered as a powerful, yet expensive,

invalidation mechanism. Therefore, an application has to use it wisely. Ideally, it

should be used in the situation where invalidation is rare. We have not used on-stack

replacement to perform direct inlining.

4.5 Related work and discussion

Guarded inlining uses runtime tests to ensure the correctness of optimized program.

The optimized code preserves the semantics of original program regardless the in-

put data and execution environments. However, code patching, preexistance based

inlining, and on-stack replacement present a new scenario for optimizations, where

optimized code is correct only with respect to the execution environment at opti-

mization time. These techniques ensure that the system has ability to correct the

invalidated code if future execution violates optimization assumptions. However, if

the assumption is most likely to be true in the future, speculation enables more ef-

fective and aggressive optimizations. One common of three techniques is that the

system knows when a speculation is violated and takes safety measurements before

the execution goes wrong.

One application of on-stack replacement is to choose compilation and optimization
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units better than methods in a JIT environment. Whaley’s partial method compi-

lation [Wha01] essentially applies SELF-91’s uncommon branch extension to “rare”

blocks as determined by heuristics or profile data. His work assumes on-stack re-

placement is ready for use. Suganuma et. al [SYN03b] extends Whaley’s approach

further to use regions as compilation units. A region is a collection of code from

several methods excluding rarely executed portions. At region exit point, it requires

on-stack-replacement to transfer the execution to the original methods.

Bruening and Duesterwald [BD00] explored alternative compilation units for Java.

Their results suggest that using hot loops and traces, in combination with methods, as

compilation units can reduce compiled code size while preserving acceptable coverage

of optimized code.

The techniques we discussed in this chapter ensure the correctness of speculative

optimizations. The execution of optimized code preserves the semantics of original

program at anytime. A more aggressive approach is to speculatively execute the

program and correct the machine state if the speculation is wrong. RePLay [PL01] is

a proposed hardware framework supporting speculative execution. We are not aware

of software approaches that support speculative execution.
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Chapter 5

Online Call Graph Construction

In this chapter, we study the call graph construction problem in Java virtual ma-

chines. The chapter is organized as follows. First we introduce the problem and

motivation in Section 5.1. Section 5.2 reviews several classical static call graph con-

struction algorithms for object-oriented programs. Then we describe three runtime

type analyses for computing conservative call graphs in Section 5.3. A new call graph

profiling mechanism is introduced in Section 5.4. We evaluated each algorithm by an-

alyzing the cost of the analysis and comparing the quality of constructed call graphs

on a set of standard Java benchmarks. Finally the related work and conclusion is

discussed in Section 5.5.

5.1 Motivation

Interprocedural analyses (IPAs) derive more precise program information than in-

traprocedural ones. Static IPAs provide a conservative approximation of runtime

information to clients for optimizations. A foundation of IPA is the call graph of the

analyzed program.

A call graph is a directed graph that represents call relations between methods

(or functions in the C programming language). There exists a directed edge from a

method A to a method B if A calls B. The precision of a call graph can be measured

by two metrics: flow-sensitivity and context-sensitivity. A flow-sensitive call graph
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differentiates edges from different call sites in the same caller to a callee. For example,

the method A may have two call sites s1 and s2 both calling the method B, a flow-

insensitive call graph has one edge from A to B, but a flow-sensitive graph has two

distinct edges from A.s1 to B and A.s2 to B. Flow-sensitive call graphs are useful for

flow-sensitive analyses, and flow-insensitive call graphs are usually more compact.

The second measurement of call graphs is the context-sensitivity. Figure 5.1(a)

is a simple example for showing call graphs with different context-sensitivity. Fig-

ure 5.1(b) shows the call graph without contexts (we call it 0-degree context-sensitive).

This is not very useful because an analysis has to assume that a method can be

called by all methods. A most commonly used call graph is the one with 1-degree

context-sensitivity, as shown in Figure 5.1(c), where each method is represented as

one node in the graph and edges are call relations between methods. Usually we call

it context-insensitive comparing to ones with higher degrees shown in Figure 5.1(d).

In Figure 5.1(d), a callee has one representative node for each calling context. In this

study, we focus on constructing context-insensitive call graphs since it is most widely

used by interprocedural analyses.

A main feature of object-oriented (OO) programming languages is the support of

polymorphism. A polymorphic call is a call site which may invoke different method

during program execution. Polymorphism has big engineering benefits for program

design, code reuse and easy maintainance, and it is typically used for developing large

frameworks, the Java utility library is such an example. In the Java programming lan-

guage, polymorphism is implemented as virtual method calls, which target is looked

up by the type of receiver object and callee signature at runtime. Although virtual

calls increase the flexibility of program design, they incur large runtime overhead

comparing to static calls whose targets can be statically binded at compile time.

From compiler writers, virtual calls also pose difficulties on program analyses and

optimizations.

Since a program analysis analyzes the code before its execution, it is not possible to

know the exact runtime types of a receiver at a virtual call site. However, language

constraints and program contexts can let the analysis compute a super set of the

receiver’s runtime types. The central problem of static call graph construction for
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foo() { bar() {

gee(); gee();

} }

gee() {...}

(a) a simple example

foo bar

gee

(b) call graph without context

(0-degree)

foo bar

gee

(c) context-insensitive call

graph (1-degree)

foo bar

gee gee

(d) context-sensitive call graph

(2-degree)

Figure 5.1: Call graphs with different context-sensitivity
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object-oriented programs is often converted to efficient computation of accurate type

sets of receiver variables at virtual call sites.

In addition to virtual calls, call graph construction for Java is further complicated

by the presence of dynamic class loading. Static call graph constructors assume that

all code that may be executed at runtime is available for analyzing. In a Java virtual

machine, however, classes are loaded dynamically to reduce resource usage. It is also

beneficial to delay the resolution of symbolic references as late as possible until the

referred entity is required. A call graph constructor or program analysis should avoid

triggering the resolution of these unresolved references. Therefore, a dynamic call

graph has to be incremental (dealing with dynamic class loading), efficient, and type

safe.

In next several sections, we show a general approach for handling Java’s dynamic

features seamlessly in a JIT environment. Our approach also has little overhead on

the execution of applications. First, we review classical static call graph construction

algorithms for object-oriented programs. Then we show how to adapt and extend

several static type analyses to runtime for computing dynamic call graphs. We intro-

duce a new mechanism that uses a profiling code stub to capture invoked call edges.

The call graph constructed by our profiling mechanism is dramatically smaller than

those computed by type analyses. All algorithms are designed to be efficient and can

be used in practice. A very desirable feature of our approach is that call graphs can

be built incrementally while execution proceeds. An interprocedural analysis based

on dynamic call graphs can support speculative optimizations.

5.2 Static call graph construction for OO programs

A static call graph is constructed by using a type analysis to compute runtime type

sets of reference variables. The type set is then used, together with a callee signature,

to resolve the set of targets of a virtual call. A static type analysis requires all classes

are available and a complete class hierarchy can be constructed at analysis time.
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5.2.1 Class hierarchy analysis and rapid type analysis

In a strongly typed language such as Java, each variable has a declaring type. At

runtime, the variable can only point to objects of its declaring type and subtypes.

Class hierarchy analysis (CHA) [DGC95] exploits this language constraint. CHA

makes a conservative assumption that all subtypes of a receiver’s declaring type are

possible types at runtime (the most conservative assumption is that all types are

possible, and this yields no useful information for program analyses).

Given a complete class hierarchy and a type T, we define a set, hierarchy types(T),

be the type T and its subtypes in the hierarchy. Given a call site s whose receiver’s

declaring type is C, the class hierarchy analysis assumes hierarchy types(C) is the

runtime type set of the receiver (in other words, all types not in hierarchy types(C)

cannot be receiver types of s). For Java programs, we can limit hierarchy types to

only normal classes (vs. interface) since interfaces cannot be instantiated. Abstract

classes are regarded as normal too. If C is an interface, hierarchy types(C) includes

normal classes that implement C directly or indirectly. The cost of static CHA is

merely the cost of constructing class hierarchy, which can be done very easily and

quickly by any modern compiler.

Rapid type analysis (RTA) [BS96] uses program contexts to refine type sets com-

puted by CHA. Given a program P, only types with allocation sites in P’s program

text can be instantiated at runtime. Therefore, the type set of a receiver can be

pruned by removing classes in hierarchy types(C) that do not have allocation sites in

the program P.

To gather types with allocation sites, RTA needs to parse the program text linearly.

The time and space required by RTA is minimal. RTA is considered to be a fast and

effective improvement of CHA.

5.2.2 Reachability-based interprocedural type analysis

Further constraints can be derived from program texts by analyzing and tracking

data flows. Reachability-based algorithms [Ste96,And94,TP00, SHR+00] build flow

graphs for the program at different granularity levels. Variables have representative
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nodes in the flow graph, and assignments are formulated as flow edges between nodes.

Interprocedural data-flow is built on a call graph computed by CHA or RTA.

If an allocation site can reach a variable in the flow graph, the allocated type is

considered to be in the runtime type set of the variable. A variable’s declaring type

can be used to filter out reachable types that are not in its subtypes, either during or

after the propagation.

Algorithms often trade the time and space with precision. Context-insensitive

algorithms can be modelled as unification-based [Ste96] or subset-based [And94]

propagation as points-to analysis. The complexity varies from O(Nα(N, N)) for

unification-based analysis to O(N3) for subset-based analysis. Context-sensitive al-

gorithms [EGH94,WL95] might yield more precise results but are difficult to scale to

large programs.

The results of a static type analysis can be used to prune the basic call graph

or guide the inlining of virtual calls. In this thesis, we developed online versions of

two reachability-based type analyses, XTA [TP00] and VTA [SHR+00]. Since these

type analyses are performed in a JIT compiler, the results are only used for method

inlining in our study.

5.3 Runtime call graph construction using type anal-

yses

Now we discuss how to adapt static CHA and RTA to dynamic ones for incrementally

constructing call graphs in a JIT compiler. We present a general approach for handling

dynamic class loading and lazy resolution of symbolic references. We also describe a

new dynamic type analysis, ITA, which uses unique runtime allocation information

to further improve the results of CHA and RTA.
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5.3.1 Dynamic CHA and RTA for call graph construction

Dynamic CHA. At runtime, a Java virtual machine maintains a hierarchy of loaded

classes. As program’s execution proceeds, new classes may be loaded and added to

the hierarchy. Thus, the hierarchy tree grows dynamically. The compiler can compute

a dynamic hierarchy types set of C by walking through the snapshot of the hierarchy

at an execution point. In contrast to the static hierarchy types(C), the dynamic one

can expand as the class hierarchy grows.

In a Java virtual machine, a class has to be initialized before its first instance

gets created (see Section 1.1 for more details on class loading process). Given a

program P, we define the set of initialized classes as initialized types(P). Since class

initialization is triggered by the virtual machine, the set initialized types(P) is built

and dynamically expanded by the runtime system. Given a variable o with a declaring

type T, the dynamic CHA computes the type set of o by

type sets(o) = hierarchy types(T ) ∩ initialized types(P )

Dynamic RTA. In Java virtual machines, a method is parsed by interpreters or

JIT compilers before its execution. Dynamic RTA can collect all allocation sites of

parsed methods encountered so far.

Given a program P, we define the set of types used by allocation expressions in

parsed methods of P as rapid types(P)1. The type set of o is defined as the intersection

of hierarchy types(T) and rapid types(P):

type sets(o) = hierarchy types(T ) ∩ rapid types(P )

The rapid types(P) contains only initialized classes (initialized implies resolved), there-

fore, it is strictly smaller than initialized types(P).

To unify implementations of dynamic CHA and RTA, we define a meta type

set eligible types(P) which is initialized types(P) when using CHA or rapid types(P)

when using RTA. Because the bytecode does not carry the static declaring type of

1Classes that create objects via newInstance method are treated as members of rapid types(P)
immediately.
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a variable from the source language, we use the declaring type of the callee method

for computing call targets. Java’s static type system implies this is a safe solution.

When analyzing a call site, S, with a resolved method reference of C.m, The analysis

computes possible targets using the following algorithm:

for each class sC in hierarchy_types(C)

if sC is not in eligible_types(P)

continue;

while sC != null

if sC declares m

generate a call edge from S to sC.m

break;

else

sC = sC’s super class

One caveat of dynamic RTA is that when the JIT compiler compiles an allocation

site with a type reference mref, the reference may not be resolved yet. An unresolved

symbolic reference is only the name of a class. Now we discuss handling of dynamic

class loading and unresolved type references.

Dealing with dynamic class loading. In a Java virtual machine, dynamic class

loading can happen in two forms: by implicitly accessing a class or a class member, or

by explicitly load a class using Class.forName method. Dynamic class loading causes

the hierarchy tree to grow, and expands hierarchy types sets. When using dynamic

CHA, the initialized types(P) set is dynamically expanded as well. As for dynamic

RTA, new members are added into rapid types(P) when new methods are parsed. All

that means analyzed call sites may have new runtime types, and both analyses must

fix them properly by considering the expansion of type sets.

Our solution to type set expansion is to maintain a map resolved sites : m →

{s, . . .}, where m is a resolved method, and s is a parsed call site whose resolved

callee signature is m. Let T be a new member of the meta type set eligible types(P),

dynamic CHA and RTA fix parsed call sites using the following algorithm:

for each virtual method m declared in T
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for each method m’ overridden by m

for each s of resolved_sites(m’)

generate a call edge from s to m

Handling unresolved references. At compile time, a call site may have an

unresolved method reference which cannot be resolved without loading new classes.

A call graph constructor should not resolve such references because class loading

incurs runtime overhead. Instead, unresolved call sites are put in a separate database

using the method reference as index: unresolved sites : mref → {s, . . .}. The

database monitors method reference resolution events. When a method reference

mref is resolved to a method m, a new entry m → unresolved sites(mref) is added

to the resolved sites database discussed in previous paragraph.

Unresolved type references must be dealt with correctly for dynamic RTA. The

analysis may encounter allocation sites whose allocation types are unresolved. An

unresolved type reference is only a class name. To ensure the correctness, classes

resolved from these references should be added into the rapid types(P) as soon as

they are initialized. Our solution is to track the set of unresolved types from parsed

allocation sites, and monitors type reference resolution events. A newly resolved type

from the set is marked and added into rapid types(P) after its initialization.

Dynamic CHA and RTA do not need runtime checks in application code. All

events triggering the analyses happen at class loading, reference resolution and method

compilation time. The only cost is to maintain dependency databases that incur mem-

ory overhead. In our implementation, we use special integer sets and hash tables for

saving memory.

5.3.2 Instantiation-based type analysis

Dynamic RTA improves the results of CHA by reducing the size of the meta set eligi-

ble types(P) of a program P. Java explicitly requires garbage collection as its dynamic

memory management. Objects are allocated through a memory management inter-

face. This allows the virtual machine know the exact set of classes that have instances

at runtime. Only classes with instances can be the runtime types of a receiver. This
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leads to a new improvement of the class hierarchy analysis, instantiation-based

type analysis (ITA).

During the execution of a program P, we define a set instantiated types(P) as the

set of types that have had instances. It is easy to see that instantiated types(P) is a

subset of rapid types(P)2. Given a variable o with a declaring class C, the type set

computed by ITA is the intersection of hierarchy types(C) and instantiated types(P):

type set(o) = hierarchy types(C) ∩ instantiated types(P )

In Jikes RVM, objects are created in heaps via allocators. An allocator takes a

type and returns an object. Building instantiated types(P) is straightforward. The

allocation sequence checks if the type passed in was in the set. If not, it adds the

type as the new member to the set. When building the bootimage, the bootimage

writer builds the type set by scanning objects in the bootimage. The meta type set,

eligible types(P), is instantiated types(P) for ITA, and algorithms for dealing with

unresolved method references and type set expansion are shared among CHA, RTA

and ITA.

When compilers compile a new bytecode instruction, if the type reference is re-

solved and is in the instantiated types(P) set, then the instruction is compiled to a

runtime service without checks. This can happen in two situations: another alloca-

tion site of the same type was executed before compiling the current site; the current

allocation site is being recompiled in an adaptive system.

Table 5.1 shows the number of scalar allocations that require a check at runtime

in our benchmarks. The second column shows the dynamic counts of total allocations

during benchmark runs. The third column lists the number of allocations requiring

checks, followed by the percentages of total allocation counts. Except 201 compress

and 222 mpegaudio, which are not allocation intensive, other benchmarks only need

checks for a small portion of allocations. Overall, adding a check in the allocation

sequence does not cause measurable effects.

2Classes that create objects via newInstance method are treated as members of rapid types(P)
and instantiated types(P).
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benchmark total checks

201 compress 455,488 450,585 (99%)

202 jess 57,410,199 3,760,777 (7%)

209 db 32,247,049 1,036,771 (3%)

213 javac 54,486,512 20,475,862 (38%)

222 mpegaudio 1,817,243 1,789,324 (98%)

227 mtrt 61,766,963 4,643,998 (8%)

228 jack 51,622,992 10,318,194 (20%)

SpecJBB2000 347,774,820 119,048,760 (34%)

CFS 8,085,943 2,726,610 (34%)

Table 5.1: The number of scalar allocations with checks

5.3.3 Characteristics of dynamic CHA, RTA, and ITA

Dynamic ITA and RTA improves CHA by reducing the size of the meta set eligi-

ble types(P). Table 5.2 shows the size of the meta type set at the end of benchmark

runs. Columns 2 to 4 show the total numbers of classes in eligible types(P) used by

CHA, RTA and ITA. The rest of columns break the number further down to two

categories: classes belonging to Jikes RVM and classes in applications and libraries3.

The numbers of classes from Jikes RVM are very close for different benchmarks, the

numbers of application and library classes vary a lot. The size difference between

initialized types(P) and rapid types(P) is pretty small in all categories. It indicates

that the dynamic RTA is less effective on improving CHA. However, among initialized

classes, only less than half of them have created instances at runtime. This can be

explained that many kinds of bytecode instructions can trigger class loading and ini-

tialization. For example, static field accesses and static method invocations can cause

class loading and initialization, and if a class is initialized, its superclasses must be

initialized too. The much smaller instantiated types(P) indicates ITA could improve

the results of CHA more than dynamic RTA.

3We use the package name to distinguish the source of classes, some library classes are used by
both the RVM and the applications.
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all RVM app&lib

benchmark (P) CHA RTA ITA CHA RTA ITA CHA RTA ITA

201 compress 1160 1042 541 854 767 409 306 275 132

202 jess 1290 1169 672 854 767 414 436 402 258

205 raytrace 1173 1053 557 854 767 413 319 286 144

209 db 1154 1035 542 854 767 416 300 268 127

213 javac 1286 1163 658 854 767 419 443 396 239

222 mpegaudio 1190 1063 567 854 767 414 336 296 153

227 mtrt 1173 1053 557 854 767 413 319 286 144

228 jack 1194 1073 575 854 767 413 340 306 162

SpecJBB2000 1264 1130 643 854 767 415 410 363 228

CFS 1185 1060 571 854 767 415 331 293 156

Table 5.2: Statistics of initialized types(P), rapid types(P) and instantiated types(P)

5.3.4 Evaluation

In this section we evaluate dynamic CHA, RTA and ITA for constructing call graphs.

Jikes RVM is written in Java and it has many more classes than any benchmark

we have. If an analysis includes RVM classes, the results would be overwhelmed by

the information from these classes. The production configuration of Jikes RVM is a

FastAdaptive setup (it can choose different garbage collectors). FastAdaptive config-

uration pre-compiles all RVM classes (the runtime system, compilers, garbage collec-

tors, and some core Java libraries) into the bootimage (native code and resources).

Although this configuration takes longer time to build the bootimage and may have

larger memory footprint, the execution is much faster than a thin configuration that

has to compile the optimizing compiler itself at runtime. In our evaluation of call

graph construction, we use the FastAdaptive configuration.

To construct call graphs for bootimage classes, dynamic CHA, RTA and ITA re-

quire the bootimage compiler to collect call sites of methods compiled into the bootim-

age. All call sites are treated as unresolved and registered in unresolved sites(P).
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ALL non-virtual virtual interface

CHA 146,740 35,292 51,706 59,742

RTA 145,427 99.1% 35,292 50,660 98.0% 59,475 99.6%

ITA 69,893 47.6% 35,292 25,898 50.0% 8,703 14.6%

Table 5.3: Call graph size of bootimage classes only

Besides the registered call sites, dynamic CHA does not require special care because

the class hierarchy is built in the bootimage. Dynamic RTA requires the compiler to

mark types of allocation sites as in rapid types(P). When copying objects from host

Java virtual machine to the RVM bootimage, ITA puts object types into instanti-

ated types(P). All classes in the bootimage are initialized.

When executing an application, Jikes RVM first loads the bootimage into the

heap and initializing other necessary resources. Before starting the main application

thread, the RVM calls the type analysis which goes through registered call sites from

the bootimage and builds call edges for resolved ones just as they are newly compiled.

Table 5.3 shows the number of call edges built by dynamic CHA, RTA, and ITA,

for bootimage classes only. All call graphs are flow-sensitive unless otherwise stated.

The second column shows the total number of call edges in the graph, and columns

3 to 5 breaks them further down to three categories according to the type of each

call sites. Non-virtual calls includes call edges from invokestatic and invokespecial.

Since these non-virtual calls are treated in the same way by analyses, the number

of call edges are the same as well. We are interested in the last two columns: call

edges from invokevirtual (column 4) and invokeinterface (column 5). Comparing to

the call graph built by CHA, dynamic RTA has nearly no improvement of call graphs

constructed by CHA. Dynamic ITA removes about 58% edges from invokevirtual and

86% from invokeinterface. However, this improvement is not meaningful since the

bootimage is statically compiled. It only serves the purpose to be compared with

Table 5.4.

Table 5.4 compares the call graph sizes in the same way as Table 5.3 except that

the call graph contains application and library classes of 213 java benchmark. When
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ALL non-virtual virtual interface

CHA 167,519 37,297 65,779 64,443

RTA 166,053 99.1% 37,297 64,580 98.1% 64,176 99.6%

ITA 131,206 78.3% 37,297 57,440 87.3% 36,469 56.6%

Table 5.4: ( 213 javac) call graph size when including bootimage classes

application and library classes participate the analysis, dynamic ITA removes 13% of

call edges from invokevirtual and 44% from invokeinterface. Recall that dynamic ITA

only has negligible runtime overhead, it is a good replacement of CHA for building a

call graph including the bootimage.

Now we look at call graph sizes for application and library classes only. Ta-

ble 5.5 compares edges numbers by dynamic CHA, RTA, and ITA of all benchmarks.

Columns have the same meaning as Table 5.3 and 5.4. Invokevirtual bytecode con-

tributes more edges than other kinds of calls. Using CHA constructed call graph

as the base, dynamic RTA removes only 2 to 3% edges from invokevirtual, and ITA

reduces the number of edges up to 10%. Dynamic ITA is less effective on application

classes than on bootimage classes.

From Table 5.3 and 5.5, we can see the dynamic CHA leaves a small room for

improvement by other type analyses. This is a very different characteristic of static

CHA and dynamic CHA.

It is worth to point out that the number of call edges of 213 javac in Table 5.4 is

much larger than the sum of edge numbers from Table 5.3 and 5.5. The bootimage

contains RVM classes that have been initialized. Methods other than static class

initializers (< clinit >) are compiled but not executed. Many RVM classes only

have instances when running applications. Thus, the initialized types(RVM) from

the bootimage does not contain many RVM classes which are used by compilers and

garbage collectors at runtime.

Because RVM classes and application classes share the same class hierarchy and

the same meta type set, mixing them together generates false call edges from RVM

call sites to application methods and from application call sites to RVM methods too.
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benchmark ALL non-virtual virtual interface

201 compress CHA 1862 1057 774 31

RTA 1843 1057 755 97.5% 31

ITA 1802 2057 730 94.3% 15

202 jess CHA 4325 1762 2070 493

RTA 4286 1762 2033 98.2% 491

ITA 4171 1762 1955 94.4% 454

205 raytrace CHA 3023 1241 1751 31

RTA 3003 1241 1731 98.9% 31

ITA 2951 1241 1695 96.8% 15

209 db CHA 2177 1107 941 129

RTA 2157 1107 921 97.9% 129

ITA 2059 1107 895 95.1% 57

213 javac CHA 14936 2038 12390 508

RTA 14783 2038 12227 98.7% 508

ITA 13796 2038 11502 92.8% 256

222 mpegaudio CHA 2520 1236 1239 45

RTA 2470 1236 1189 96.0% 45

ITA 2412 1236 1147 92.6% 29

227 mtrt CHA 3024 1242 1751 31

RTA 3004 1242 1731 98.9% 31

ITA 2952 1242 1695 96.8% 15

228 jack CHA 4658 1940 2278 440

RTA 4618 1940 2238 98.2% 440

ITA 4352 1940 2204 96.8% 208

SpecJBB2000 CHA 7186 2002 4775 389

RTA 7128 2002 4717 98.8% 389

ITA 6923 2002 4623 96.8% 278

CFS CHA 3385 689 2545 151

RTA 3331 689 2491 97.9% 151

ITA 3074 689 2285 90.0% 100

Table 5.5: Call graph size comparison of dynamic CHA, RTA, and ITA (application

and libraries)
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In order to get effective optimizations on application code in Jikes RVM, we need a

sound approach to distinguish RVM classes from application classes instead of just

using package names. Unfortunately, this is currently an open question in research

community using Jikes RVM.

5.4 Accurate call graph construction using profiling

code stubs

Dynamic type analysis, such as CHA, RTA, and ITA, can be used to build conservative

call graphs at runtime. However, it is desirable to have a more precise call graph for

most interprocedural analyses. Also we would like to find the answer of the question:

how precise are these call graphs built by type analyses?

Instead of using type analysis to compute a conservative call graph, we propose

a dynamic approach for profiling and constructing context-insensitive call graphs at

runtime. The mechanism initializes virtual method tables using a profiling code stub.

When a method call happens, the code stub is executed. The code stub generates a

call edge event, then triggers method compilation if the method is not compiled yet,

and finally patches the virtual method table using the method code address.

The proposed mechanism has some very desirable features as a runtime call graph

constructor:

Accuracy. Only executed call edges are in the call graph.

Efficiency. It captures the first invocation event of each call edge, and only the first

execution has some profiling overhead. The repeated calls only need to execute

at most one more instruction. We also show several optimizations to reduce the

overhead further.

Just-in-time: A call edge is captured before the control flow is transferred to the

callee. Clients, such as call graph builders, can register callback routines called

by the profiling code stub when new call edges are discovered. Callbacks can
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perform necessary actions before the callee is invoked. This enables speculative

optimizations with invalidation.

Flexibility: The profiling mechanism can be used in conjunction with type analyses.

For different kinds of call sites, we can choose profiling or type analysis for

trading off efficiency and accuracy.

The remainder of this section is structured as follows. First, in Section 5.4.1 we

give the necessary background, describing the implementation of virtual method ta-

bles in Jikes RVM. In Section 5.4.2 we describe the basic mechanism we propose for

building call graphs at runtime, and in Section 5.4.3 we show how this basic mecha-

nism can be optimized to reduce overheads. Finally, in Section 5.4.4, we measure the

cost of call graph profiling and compare profiled call graphs to ones constructed by

using dynamic CHA.

5.4.1 Background: virtual method table

Before jumping into details of the profiling mechanism, it is necessary to understand

how virtual method calls are implemented in Jikes RVM. We first revisit the virtual

method dispatch table in Jikes RVM [AAB+00], which is a standard implementation

in modern Java virtual machines. Figure 5.2 depicts the object layout in Jikes RVM.

Each object has a pointer, in its header, to the Type Information Block (TIB) of its

type (class). A TIB is an array of objects that encodes the type information of a class.

At a fixed offset from the TIB header is the Virtual Method Table (VMT) which is

embedded in the TIB array. A resolved method has an entry in the VMT of its declar-

ing class, and the entry offset to the TIB header is a constant, say method offset,

assigned during class resolution. A VMT entry records the instruction address of the

method that owns it. Figure 5.3 shows that, if a class, say A, inherits a method from

its superclass, java.lang.Object, the entry at the method offset in the subclass’

TIB has the inherited method’s instruction address. If a method in the subclass, say

D, overrides a method from the superclass, the two methods still have the same offset,

but the entries in two TIBs point to different method instructions.
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other type information

virtual method table

method instruction address
A’s TIB

an object of A

fields

header

Figure 5.2: TIB in Jikes RVM

java.lang.Object

A

E

VMT  

D

method instruction address

overriding method instruction address

Figure 5.3: VMT in Jikes RVM
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Given an object pointer at runtime, an invokevirtual bytecode is implemented by

three basic operations:

TIB = * (ptr + TIB_OFFSET);

INSTR = TIB[method_offset];

JMP INSTR

The first instruction obtains the TIB address from the object header. The address of

the real target is loaded at the method offset offset in the TIB. Finally the execution

is transferred to the target address.

Lazy method compilation works by first initializing TIB entries with the address

of a lazy compilation code stub. When a method is invoked for the first time, the

code stub gets executed. The code stub triggers the compilation of the target method

and patches the address of the compiled method into the TIB entry (where the code

stub resided before).

5.4.2 Call graph construction by profiling

Lazy method compilation code stub captures the first invocation of a method without

distinguishing callers. It can be viewed as constructing a call graph with 0-degree

context-sensitivity (e.g., Figure 5.1(b)) where a method can be called by all compiled

methods. The space overhead of lazy method compilation is that each method requires

a TIB entry. If there are n methods, it requires n TIB slots.

Given n methods, there are n2 possible call edges in an 1-degree context-sensitive

call graph (e.g., Figure 5.1(c)). In order to capture call edges, we extended the TIB

structure to store information per caller. Figure 5.4 shows the extended TIB structure.

The TIB entry of a method is replaced by an array of instruction addresses. We call

the array a Caller-Target Block (CTB). The indexes of CTB slots (caller index) are

dynamically assigned to callers4 of the method by the JIT compilers. The up-bound

of memory overhead for CTBs could be n2. But dynamic assignment of CTB indexes

reduces the memory requirement to a very low level. Note that now an invokevirtual

bytecode takes one extra load to get the target address.

4or call sites if the call graph is flow-sensitive.
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TIB = * (ptr + TIB_OFFSET);

CTB = TIB[method_offset]; /* load method’s CTB array from TIB */

INSTR = CTB[caller_index]; /* load method’s code address */

JMP INSTR

java.lang.Object

A

D

E

method instruction address

CTB array

indexed by caller_index
indexed by method_offset

Figure 5.4: Extended VMT for profiling call graph

The lazy method compilation code stub is extended to a profiling code stub which,

in addition to triggering the lazy compilation of the callee, also generates a new call

edge event from the caller to the callee. Initially all of the CTB entries have the

address of the profiling code stub. When the code stub at a CTB entry gets executed,

it notifies clients monitoring new call edge events, and compiles the callee method if

necessary. Finally the code stub patches the callee’s instruction address into the CTB

entry. Clearly the profiling code stub at each entry of the CTB array will execute

at most once, and the rest of the invocations from the same caller will execute the

callee’s machine instruction directly.

There remain four problems to address. First, one needs a convenient way of

indexing into the CTBs which works even in the presence of unresolved method

references and virtual calls. Second, the implementation of interface calls should
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be aware of the CTB array. Third, non-virtual calls (static methods and object

initializers) can be handled specially. Fourth, we must handle the case where an

optimizing compiler inlines one method into another. Our solution to these four

problems is given below.

Allocating slots in the CTB

To index callers of a callee, our modified JIT compiler maintains a map from a callee

method signature to an array of callers:

callercounter : callee → callers[]

When the compiler compiles a virtual call to a callee in the caller, it checks whether

callercounter(callee) contains the caller. If caller is not in the map, it is put in

callee’s caller array. The index of caller in the array is returned as the CTB index of

the call site.

A.m() B.m()

for X.x()

A’s TIB

for Z.z()

B’s TIB

for Y.y()

Figure 5.5: Example of allocating CTB indexes

In Java bytecode, an invokevirtual instruction contains only a symbolic reference

to the name and descriptor of the method as well as a symbolic reference to the

class where the method can be found. Resolving the method reference to a callee

method signature requires the class to be loaded first. To deal with unresolved method

references and virtual calls, our approach uses the callee’s method name and descriptor

87



as the index in the map instead of the resolved method:

callercounter : (name, desc) → callers[]

For example, both methods X.x() and Y.y() have virtual calls of a symbolic ref-

erence A.m(), and another method Z.z() has a virtual call of B.m(). Because the

references A.m() and B.m() may resolve to the same method at runtime, we take a

conservative assumption that all three methods are possible callers of any method

with the signature: (m, ()) → [X.x(), Y.y(), Z.z()]5, and allocates slots in the TIB

for all of them. At runtime, only two CTB entries of A.m() may be filled, and only

one entry of B.m() may get filled. Figure 5.5 shows what the CTBs look like for

method A.m() and B.m(). With this solution no accuracy is lost, but some space

may be wasted due to unfilled CTB entries. Although some space is sacrificed, our

approach simplifies the task of handling symbolic references and virtual calls. In

real applications we observed that only a few common method signatures, such as

equals(java.lang.Object), and hashCode(), have large caller sets where space is

unused.

Approximating interface calls

Interface calls are considered to be more expensive than virtual calls in Java programs

because a normal class can only have a single direct super class, but could implement

multiple interfaces. Jikes RVM has an efficient implementation of interface calls using

a interface method table with conflict resolution stubs [ACF+01].

We tried two approaches to handle interface calls in the presence of CTB arrays.

Our first approach profiles interface calls by allocating a caller index for a call site

in the JIT compiler and generating an instruction before the call to save the index

value in a known memory location. After a conflict resolution stub has found its

target method, it loads the index value from the known memory location. The CTB

array of the target method is loaded from the TIB array of receiver object’s declaring

class. The target address is read out from the CTB at the index, and finally the

5A full method descriptor should include the name of the method, parameter types, and the
return type. In this example, we use the name and parameter types only for simplicity.
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benchmark ITA (s) PROF (s)

201 compress 6.363 6.273 -1.1%

202 jess 4.277 4.420 3.3%

205 raytrace 2.650 2.745 3.6%

209 db 12.635 12.722 0.6%

213 javac 8.037 8.220 2.3%

222 mpegaudio 5.422 5.629 3.8%

227 mtrt 2.827 2.945 4.2%

228 jack 4.831 4.930 2.0%

Table 5.6: Overhead of profiling interface calls (best of 10 runs)

resolution stub jumps to the target address. This approach uses two more instructions

to store and load the caller index than invokevirtual calls6. After introducing one of

our optimizations in Section 5.4.3, inlining CTB elements into TIBs, the conflict

resolution stub requires more instructions to check the range of the index value to

determine if the indexed CTB element is inlined in the TIB or not. As shown in

Table 5.6, the overhead of profiling interface call (with inlined CTB size of 4) ranges

from -1.1% to 4.2% for SpecJVM98 benchmarks. Data were collected on a 1.5M

Pentium M laptop with 512M memory, and benchmarks were run 10 times using

SpecApplication driver with input size 100. We report the best run.

Our second approach was to simply use dynamic type analysis to compute call

edges for invokeinterface call sites at compile time, without introducing profiling

instructions.

Table 5.7 shows the number of call edges from invokeinterface calls using ITA

type analysis and profiling. Although profiling (3rd column) reduces a large number

of call edges, the absolute number of call edges from invokeinterface is only a small

portion of total call edges. We chose to use the second approach for the remaining

experiments in this thesis.

6Certainly, if there is a spare register for use, we can save the index in the register and read it
out in the resolution stub, but registers are scarce resources in common architectures.
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benchmark ITA PROF

201 compress 15 7

202 jess 454 144

205 raytrace 15 7

209 db 57 19

213 javac 256 59

222 mpegaudio 29 21

227 mtrt 15 7

228 jack 208 92

SpecJBB2000 278 37

CFS 100 18

Table 5.7: Call edges from invokeinterface by ITA and profiling

Handling static methods and object initializers

Because there are many object initializers that share a common name <init> and

descriptor, their CTB arrays may grow too large if we allocate CTB slots using the

name and descriptor as index. Since calls of object initializers and static methods

are non-virtual, the allocation of CTB slots for each method is independent of other

methods even with the same name and descriptor. For example, static methods A.m()

and B.m() both can use the same CTB index for different callers. Therefore, there is

no superfluous space in CTB arrays of object initializers and static methods. The only

problem is to handle unresolved method references correctly. For these unresolved

static or object initializer method references, a dependency on the reference from

the caller is registered in a database. When the method reference gets resolved, the

dependency is converted to a call edge conservatively. Table 5.8 shows the numbers

of call edges constructed by ITA and profiling mechanism from static methods and

object initializers, on our set of benchmarks. Using the 213 javac benchmark as

example, ITA adds 87 more edges than profiling, but it is only about 1.5% more of

total edges.
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benchmark static init

ITA PROF ITA PROF

201 compress 179 157 201 147

202 jess 368 332 632 560

205 raytrace 215 192 320 272

209 db 189 164 224 170

213 javac 389 356 908 855

222 mpegaudio 194 173 325 269

227 mtrt 216 194 320 272

228 jack 302 277 542 479

SpecJBB2000 788 726 1001 807

CFS 197 133 403 301

Table 5.8: Call edges for non-virtual calls by ITA and profiling

Dealing with Inlining

Optimizing compilers perform aggressive inlining on a few hot methods. We capture

these events as follows. When a callee is inlined into a caller by an optimizing JIT

compiler, the call edge from the caller to callee is added to the call graph uncondi-

tionally. This is a conservative solution without runtime overhead. Since an inlined

call site is likely executed before its caller becomes hot, the number of added super-

fluous edges is modest. Table 5.9 validates our assumption. Column 2 shows the

numbers of call edges when method inlining is disabled, and column 3 lists the edge

numbers when inlining is enabled. The edge number increment ranges from 1.6 to

6.9% for most of our benchmarks except 213 javac and CFS. The last column shows

the number of call edges created due to inlining events.

5.4.3 Optimizations

Our runtime call graph construction mechanism may incur two kinds of overhead in

Jikes RVM. First, adding one instruction per call can potentially consume many CPU
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benchmark full inlining inlined

201 compress 1423 1446 1.6% 334 23%

202 jess 3208 3430 6.9% 502 15%

205 raytrace 2534 2585 2.0% 443 17%

209 db 1588 1660 4.5% 363 22%

213 javac 6012 6915 15.0% 1280 19%

222 mpegaudio 1894 1940 2.4% 352 18%

227 mtrt 2536 2587 2.0% 443 17%

228 jack 3403 3524 3.6% 407 12%

SpecJBB2000 5214 5476 5.0% 528 10%

CFS 1611 1776 10.2% 467 26%

Table 5.9: Call edges due to inlined methods

cycles because Jikes RVM itself is compiled by the same compiler used for compiling

applications, and it also inserts many system calls into applications for runtime checks,

locks, object allocations, etc. Second, a CTB array is a normal Java array with a

three-word header; thus CTB arrays can increase memory usage and create extra

work for garbage collectors.

#callers Java Libraries 213 javac app

0 2384 78.60% 325 27.71%

1 95 81.61% 167 41.94%

2-3 119 85.38% 120 52.17%

4-7 221 89.24% 185 67.95%

8- 339 376

TOTAL 3159 1173

Table 5.10: Distribution of CTB sizes ( 213 javac)

Table 5.10 shows the distribution of the CTB sizes for 213 javac benchmark

from SpecJVM98 suite [speb] profiled in a FastAdaptive bootimage. The bootimage
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contains mostly RVM classes and a few Java utility classes. We only profiled methods

from Java libraries and the benchmark. A small number of methods from bootimage

classes may have CTB arrays allocated at runtime because there is no clear cut

mechanism for distinguishing between Jikes RVM code and application code. The

first column shows the range of the number of callers. The second and third columns

list the distributions of methods belonging to Java libraries and application code.

To demonstrate that most methods have few callers, we calculated the cumulative

percentages of methods that have no caller, ≤ 1, ≤ 3 and ≤ 7 callers in the first to

fourth rows. We found that 89% of methods from (loaded classes in) Java libraries

and 68% of methods from application code have no more than 7 callers. In these

cases, it is not wise to create short CTB arrays because each array header takes 3

words. The last data row labelled “TOTAL” gives the total number of methods of all

classes and the number of methods in each of two sub-categories.

java.lang.Object

A

D

E

Figure 5.6: Inlining 1 element of CTB

To avoid the overhead of array headers for CTBs, and to eliminate the extra

instruction to load the CTB array from a TIB in the code for invokevirtual instruc-

tions, a local optimization is to inline the first few elements of the CTB into the TIB.

Since caller indexes are assigned at compile time, a compiler knows which part of the

CTB will be accessed in the generated code. To accommodate the inlined part of

the CTB, a class’ TIB entry is expanded to allow a method to have several entries.
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Figure 5.6 shows the layout of TIBs with one inlined CTB element. When generating

instructions for a virtual call, the value of the caller’s CTB index, caller index, is

examined: if the index falls into the inlined part of the CTB, then invocation is done

by three instructions:

TIB = * (ptr + TIB_OFFSET);

INSTR = TIB[method_offset + caller_index];

JMP INSTR

Whenever a CTB index is greater than or equal to the inlined CTB size, IN-

LINED CTB SIZE, then four instructions must be used for the call:

TIB = * (ptr + TIB_OFFSET);

CTB = TIB[method_offset + CTB_ARRAY_OFFSET];

INSTR = CTB[caller_index - INLINED_CTB_SIZE];

JMP INSTR

Note that in addition to saving the extra instruction for inlined CTB entries, the

space overhead of the CTB header is eliminated in the common cases where all CTB

entries are inlined.

Another source of optimization is to avoid the overhead of handling system code,

such as runtime checks and locks, inserted by compilers, because this code is frequently

called and ignoring them does not affect the semantics of applications. To achieve

this, the first CTB entry is reserved for the purpose of system inserted calls. Instead

of being initialized with the address of a call graph profiling stub, the first entry has

the address of a lazy method compilation code stub or method instructions. When

the compiler generates code for a system call, it always assigns the zero caller index

to the caller. To avoid the extra load instruction, the first entry of a CTB array is

always inlined into the TIB.

5.4.4 Evaluation

We have implemented our proposed call graph construction mechanism in Jikes

RVM [jikb] v2.3.0. Our benchmark set was introduced in Section 2.2. We use a
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variation of the FastAdaptiveCopyMS bootimage for evaluating our mechanism. In

our experiment, classes whose names start with com.ibm.JikesRVM are not presented

in the dynamic call graphs because (1) the number of RVM classes is much larger

than the number of classes of applications and libraries, and (2) the classes in the

boot image were statically compiled and optimized, type analysis such as ITA can be

used to compute the call graph. Static IPAs such as extant analysis [Vug00] may be

applied on the bootimage classes. We report the experimental results for application

classes and Java library classes.

In our initial experiments we found that the default adaptive configuration gave

significantly different behaviour when we introduced dynamic call graph construction

because the compilation rates and speedup rates of compilers were affected by our

call graph profiling mechanism. It was possible to retrain the adaptive system to

work well with our call graph construction enabled, but it was difficult to distinguish

performance differences due to changes in the adaptive behaviour from differences due

to overhead from our call graph constructor. In order to provide comparable runs in

our experiments, we used a counter-based recompilation strategy and disabled back-

ground recompilation. We also disabled adaptive inlining. This configuration is more

deterministic between runs as compared to the default adaptive configuration. This

behavior is confirmed by our observation that, between different runs, the number of

methods compiled by each compiler is very stable. The experiment was conducted

on a PC with a 1.5G Hz Pentium 4 CPU and 500M memory. The heap size of RVM

was set to 400M. Note that Jikes RVM and applications share the same heap space

at runtime.

The first column of Table 5.11 gives four configurations of different inlined CTB

sizes and the default FastAdaptiveCopyMS configuration without the dynamic call

graph builder. The bootimage size was increased about 10%, as shown in column 2,

when including all compiled code for call graph construction. Inlining CTB elements

increases the size of TIBs. However, changes are relatively small (the difference

between inlined CTB sizes 1 and 2 is about 150 kilobytes), as shown in the second

column.

The third column shows the memory overhead, in bytes, of allocated CTB arrays
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for methods of classes in Java libraries and benchmarks when running the 213 javac

benchmark with an input size 100. The time for creating, expanding and updating

CTB array is negligible.

Inlined bootimage size CTB space

CTB sizes (bytes) (bytes)

default 24,382,332 N/A N/A

1 26,809,420 9.95% 833,952

2 26,959,148 10.57% 814,104

4 27,218,672 11.63% 786,000

8 27,730,004 13.73% 746,944

Table 5.11: Bootimage sizes and allocated CTB sizes of 213 javac

A Jikes RVM-specific problem is that the RVM system and applications share the

same heap space. Expanding TIBs and creating CTBs consumes heap space, leaving

less space for the applications, and also adding more work for the garbage collectors.

We examine the impact of CTB arrays on the GC. Since CTB arrays are likely to

live for a long time, garbage collection can be directly affected. Using the 213 javac

benchmark as example with the same experimental setting mentioned before, GC time

was profiled and plotted in Figure 5.7 for the default system and configurations with

different inlined CTB sizes. The x-axis is the garbage collection number during the

benchmark run, and the y-axis is the time spent on each collection. We found that,

with these CTB arrays, the GC is slightly slower than the default system, but not

significantly. When inlining more CTB elements, the GC time is slightly increased.

This might be because the increased size of TIBs exceeds the savings on CTB array

headers when the inlining size gets larger. We expect a VM with a specific system

heap would solve this problem.

The problem mentioned above also poses a challenge for measuring the overhead

of call graph profiling. Furthermore, the call graph profiler and data structures are

written in Java, which implies execution overhead and memory consumption, affecting

benchmark execution times. To only measure just the overhead of executing profiling
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code stubs, we used a compiler option to replace the allocated caller index by the zero

index. When this option is enabled, calls do not execute the extra load instruction

and profiling code stub, but still allocate CTB arrays for methods. For CFS and

SpecJVM98 benchmarks, we found that usually the first run has some performance

degradation when executing profiling code stubs (up to 9% except for 201 compress7),

but the degradation is not significant upon reaching a stable state ( between -2 to

3% ). The performance of SpecJBB2000 is largely unaffected. Compared to not

allocating CTB arrays at all (TIBs, however, are still expanded), the performance

change is also very small.

benchmark 2 4 8

201 compress 97.26% 99.99% 99.99%

202 jess 0.93% 27.39% 41.10%

209 db 97.39% 97.74% 99.99%

213 javac 21.62% 64.25% 83.53%

222 mpegaudio 40.81% 63.00% 78.38%

227 mtrt 26.08% 73.82% 99.46%

228 jack 48.51% 77.82% 86.01%

Table 5.12: Eliminated CTB loads by different inlining CTB sizes

Table 5.12 shows the percentages of eliminated CTB load instructions by differ-

ent CTB inlining sizes. The experiment ignores call edges from and to RVM classes,

and does not profile static, <init>, and interface methods. Each SpecJVM98 bench-

mark runs 10 times with input size 100 using the SpecApplication driver. The

percentage of eliminated loads varies on different benchmarks. For example, loads

of 201 compress and 209 db are mostly eliminated with an inlining size of 2, but

202 jess only has 41% eliminated even with an inlining size of 8. Other benchmarks

have high elimination rates at inlining size 8. Eliminated loads did not cause signif-

icant performance changes. In our set of benchmarks, it seems that inlining more

7The first run of 201 compress does not promote enough methods to higher optimization levels.
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Figure 5.8: Growth of call graph at runtime ( 213 javac)

CTB array elements does not result in further performance improvements.

Table 5.13 compares the sizes of profiled call graphs to these constructed by dy-

namic CHA. Each benchmark has two rows, the first row is the call graph size by CHA

and the second row is the size by profiling. The third column (labelled as “ALL”)

gives the total number of call edges (application and library only). The number of

call edges by CHA is same as Table 5.5. The row of “PROF” also has calculated

percentages of call edges comparing to the row of “CHA”. From the last column,

we can see that profiled call graphs have 24% to 63% fewer virtual edges than CHA

ones. The number of call edges from other call sites are similar because we used type

analyses to compute them. Overall, profiling mechanism is able to reduce the total

number of edges by 15% to 54% as shown in the third column. The reduction for the

number of methods is not as significant as for the number of call edges.
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benchmark ALL virtual

201 compress CHA 1862 774

PROF 1446 78% 381 49%

202 jess CHA 4325 2070

PROF 3432 79% 1273 61%

205 raytrace CHA 3023 1751

PROF 2585 86% 1338 76%

209 db CHA 2177 941

PROF 1660 76% 506 54%

213 javac CHA 14936 12390

PROF 6917 46% 4645 37%

222 mpegaudio CHA 2520 1239

PROF 1940 77% 687 55%

227 mtrt CHA 3024 1751

PROF 2587 86% 1339 76%

228 jack CHA 4658 2278

PROF 3538 76% 1441 63%

SpecJBB2000 CHA 7186 4775

PROF 5517 77% 3251 68%

CFS CHA 3385 2545

PROF 1776 52% 1018 40%

Table 5.13: Call graph comparison of CHA and profiling (application and library)
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Call graph sizes shown before were collected at the end of benchmark runs. Con-

sider applications of call graphs, it is more likely to be used at runtime by interpro-

cedural analyses. Figure 5.8 shows the call graph size changes of 213 javac when

the benchmark runs. The x-axis is the virtual time using the number of methods

recompiled by the optimizing compiler. The y-axis is the number of call edges. The

y-values at the end of x-axis is what reported in Table 5.13. From the figure, we can

see that the sizes of call graphs constructed by different approaches have a similar

ratio during the benchmark execution as the end of run. This confirms the consistent

improvement of each call graph construction method.

A call graph client can use profiling mechanism with flexibility. For example, a

client analysis could re-profile cold call edges to improve data-flow analysis results.

After a client receives a call edge event, it performs propagation, then it can remove

the call edge and require the VM to re-profile the same edge. If this call edge only

executed once, future propagations will not pass data-flow information through the

edge. This may improve the results of client analysis in the cost of more profiling

overhead. However, type analyses cannot accomplish this task because call edge

construction depends on class resolution, compilation or allocation events.

5.5 Related work

Static call graph construction for object-oriented programs focuses on approximating

a set of types that a receiver of a polymorphic call site may have at runtime. Both

CHA [DGC95] and RTA [BS96] are fast type analyses for method inlining and call

graph construction. In a Java virtual machine, when type analyses are limited to

initialized classes, we found that dynamic CHA leaves little room for improvement.

Dynamic RTA is less effective than static one. The instantiation-based type analysis

(ITA) is able to improve CHA call graphs by a small margin. However, three type

analyses are not close to the limit as shown in Figure 5.13.

Reachability-based algorithms [Ste96,And94,SHR+00,TP00] propagate types from

allocation sites to receivers of polymorphic call sites along a program’s control flow.
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Assignments, method calls, field and array accesses may pass types from one variable

to another. The analyses can either use a call graph built by CHA or RTA, then

refine it, or build the call graph on the fly [RMR01].

Trampoline is a technique for generating a piece of self-modifying code on-the-fly.

Java virtual machines heavily used this technique for implementing lazy compilation

and class loading. Our call graph profiling stub is a self-modifying trampoline which

pays the cost at the first-time execution.

In this section we have exhaustively studied call graph construction problem in

Java virtual machines. We showed a general approach to deal with dynamic class

loading and unresolved references in dynamic type analyses. A unique ITA is proposed

for approximating call graphs of the bootimage. We have also proposed a profiling-

based call graph construction mechanism, which builds most precise call graphs at

runtime. Algorithms were implemented in Jikes RVM and evaluated using a set of

Java benchmarks. An important characteristic of the dynamic call graph is that it

supports speculative optimizations with invalidation backups.
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Chapter 6

Online Interprocedural Type Analysis and

Method Inlining

Using dynamic call graphs constructed by mechanisms in Chapter 5, we devel-

opped two reachability-based interprocedural type analysis, XTA and VTA, in Jikes

RVM. The type analysis results are used for speculative method inlining.

This chapter also seeks to determine if more powerful dynamic type analyses could

further improve inlining opportunities in a JIT compiler. To achieve this goal we de-

veloped a general dynamic type analysis framework which we have used for designing

and implementing dynamic versions of several well-known static type analyses, in-

cluding CHA, RTA, XTA and VTA.

Surprisingly, the simple dynamic CHA is nearly as good as an ideal type analysis

for inlining virtual method calls. There is little room for further improvement. On

the other hand, only a reachability-based interprocedural type analysis (VTA) is able

to capture the majority of monomorphic interface calls.

We also found that memory overhead is the biggest issue with dynamic whole-

program analyses. We used a generational garbage collector to reduce the impact

of VTA data structures and measured performance improvement. We also present

demand-driven approaches to reduce the memory overhead of dyanmic IPAs.
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6.1 Introduction

Object-oriented programming languages encourage programmers to write small meth-

ods and compact classes so that the code is easy to read, modify, and maintain.

Java programs exemplify this design idea: many tiny methods have only one line of

code to access a field, return a hash value, or invoke another method. Design pat-

terns [GHJV95] use class inheritance and virtual calls extensively to obtain great engi-

neering benefits. Code instrumentation tools, such as AspectJ compilers [aspb,aspa],

insert many small methods into instrumented programs. The downside of using small

methods is that a program has to make frequent method calls. Object-oriented pro-

grams heavily rely on compilers to reduce calling overhead.

Efficient implementation of polymorphic calls has been studied extensively in the

context of C++ [Dri01]. The Java programming language only allows single inheri-

tance on normal classes, but allows multiple inheritance on interfaces. Virtual calls in

Java can be categorized into two kinds: virtual calls on normal class types and inter-

face calls on interfaces. Virtual calls can be implemented very efficiently by modern

JIT compilers. Various techniques reduce the overhead of interface calls as well.

Even though the direct overhead of virtual calls is low, further performance im-

provement is often obtained from method inlining and optimizations on inlined code.

Inlining creates larger code blocks for program analyses and improves the accuracy of

intraprocedural analyses which must often handle method calls conservatively. Thus,

method inlining is a very important part of a Java optimizer because it further reduces

method call overhead and also increases other opportunities for optimizations.

A key step of method inlining is to decide which method(s) can be inlined at a

call site. This can be achieved by using information conveyed via language constructs

such as final and private declarations (which provide restrictions on which methods

could be called), or the information can be gathered using a type analysis which

determines which runtime types may be associated with a receiver, and hence which

methods may be called. Another alternative is to profile targets of call sites. Inlining

based on language constructs and type analyses results is conservative at analysis

time and it supports direct inlining that maximizes optimization opportunities. In
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this chapter, we study method inlining using type analysis results.

Static type analyses for Java programs [DGC95, BS96, SHR+00, TP00] are not

directly applicable to JIT compilers because of dynamic features of Java virtual ma-

chines. The type set of a variable might have new members as new classes are loaded

and thus optimizations based on old results could be invalidated. Various techniques

have been devised to use dynamic class hierarchy analysis for directly inlining in the

presence of dynamic class loading and JIT compilation.

In this chapter we evaluate the effectiveness of several dynamic type analyses

for method inlining in a Java virtual machine (Jikes RVM [AAB+00]). We built a

common type analysis framework for expressing dynamic type analyses and used the

results of these analyses for speculative inlining with invalidations. We then used

this framework to perform a study of how many method calls can be inlined for the

different varieties of type analyses.

We were also interested in finding the upper bound on how many calls that can

be inlined, to determine if more accurate type analyses are required. To gather this

information we used an efficient call graph profiling mechanism [QH04] to log call

targets of each virtual call site. The logged information is used as an ideal type

analysis for re-executing the benchmark. We compare the inlining results of other

type analyses to the ideal one. In order to measure the maximum inlining potential

of a type analysis, we also relaxed the size limit on inlining targets.

Our results were quite surprising. The simple CHA is nearly as good as the ideal

type analysis for inlining virtual method calls and leaves little room for improvement.

On the other hand, CHA is less effective for inlining interface calls. Further, we found

that the majority of interface invocations are from a small number of hot call sites

which are used in a very simple pattern.

In order to capture the monomorphic interface calls we developed dynamic VTA,

which is a whole-program analysis. We analyzed the effectiveness and costs of this

whole-program approach. We found that the main difficulty of such a dynamic whole-

program analysis is that it requires large heap space for maintaining analysis data

which must co-exist with application data in the heap. From our experience, we

believe a demand-driven approach would make a dynamic interprocedural analysis
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practical in Java virtual machines and we suggest such an approach.

Our objective is to understand how well a dynamic type analysis can perform with

respect to method inlining in a JIT compiler, and what opportunities there are for

improvement. In this study, we made following contributions:

• A limit study of method inlining using dynamic type analyses on a set of stan-

dard Java benchmarks;

• Development and experience of an interprocedural reachability-based type anal-

ysis in a JIT environment;

• Interesting observations of speculative inlining and a proposal of demand-driven

interprocedural type analyses.

Readers who are interested in the background of method inlining should read the

Chapter 4. In this chapter, we describe the design of a common type analysis frame-

work for speculative inlining in Section 6.2, The limit study results are also presented

in this section. The whole-program VTA type analysis is described in Section 6.3 with

experimental results. Related work is discussed in Section 6.4. Finally, in Section 6.5,

we conclude with some observations and plans for future work.

6.2 A type analysis framework for method inlining

A static analysis is performed at compile-time and must make conservative assump-

tions that include all possible runtime executions. A static type analysis answers a

basic question: what is the set of all possible runtime types of variable v at program

point P . A dynamic type analysis is performed in a JIT environment, and therefore

it is time-sensitive. It answers a query similar to a static one, except the answer is

not for all executions, but for execution prior the time of answering the query. The

results may change over program’s execution. In order to use type analysis results

for optimizations in a JIT environment, there are a few requirements we set for the

analysis:
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dynamic: it has to handle Java’s dynamic features seamlessly, such as dynamic class

loading, reference resolution, and JIT compilation;

conservative: analysis results must be correct at analysis time with respect to the

executed part of the program;

just-in-time: the analysis should be able to notify clients when previous analysis

results are about to change during execution.

A dynamic type analysis fits into a Java virtual machine without changing the lazy

strategy of handling class loading and compilation. The conservativeness ensures

optimizations based on analysis results are correct at the analysis time (it might

be invalidated in the future). If the analysis can update its results just-in-time, it

can be used for speculative optimizations with some invalidation mechanisms. Our

objective is to design a type analysis framework supporting speculative inlining in a

JIT compiler.

6.2.1 Framework structure

We designed a type analysis interface shown in Figure 6.1. In a Java method, a call

site is uniquely identified by the method and a bytecode index. Given the method and

bytecode index, the getNodeId method returns a node ID for further queries. The

node ID allocation decides the granularity of different type analyses. For example,

CHA and RTA use a single ID for all call sites, XTA allocates a node ID for all call

sites in the same method, and VTA assigns different IDs to different call sites. The

lookupTargets method returns an array of targets resolved by using reaching types

of the node with a given callee method signature. The detailed lookup procedure is

the same as virtual method lookup, defined by the JVM specification [LY96]. An

inline oracle makes inline decisions according to the lookup results.

If the type analysis finds a monomorphic call site (with only one target), then the

oracle decides to perform speculative inlining (using preexistence or code patching).

It must register a dependency via the checkAndRegisterDependency method. A

dependency says that, given a node and a callee method signature, a compiled method
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(cm) is valid only when the lookup results have one target that is the same as the

parameter target.

After registering the dependency successfully, any change in the type set of the

node causes verification of dependencies on this node. The verifyDependency method

is called by the type analysis when the node has a new reaching type. For each de-

pendency of the node, the verification procedure performs method lookup using the

new reaching type and the callee method signature. If the lookup result is different

from the target method of the dependency, the compiled method must be invalidated

immediately.

public interface TypeAnalysis {

public int getNodeId(VM_Method caller, int bcindex);

public VM_Method[] lookupTargets(int nodeid, VM_Method callee);

public boolean checkAndRegisterDependency(int nodeid,

VM_Method callee,

VM_CompiledMethod cm,

VM_Method target);

protected void verifyDependency(int nodeid, VM_Class newKls);

}

Figure 6.1: TypeAnalaysis interface

A TypeAnalysis implementation has to monitor system events such as class load-

ing, method compilation, etc. We have implemented several type analyses as depicted

in Figure 6.21. CHA and RTA only differentiate classes that participate in the reach-

ing type sets. We made a new variation of CHA, called ITA, to only allow classes

with instances to participate in reaching types. XTA and VTA share many com-

ponents. A special class, IdealTypeAnalysis, uses profiled results for the purpose

of our limit study. All implementations satisfy the requirements defined at the be-

ginning of this section. A client, StaticInlineOracle, uses the analysis results for

1JikesRVM has an implementation of dynamic CHA, we re-implemented it in our framework with
little efforts.
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speculative inlining.

StaticInlineOracle

DependencyDatabase

XTA VTA

CHA RTA ITA

InlineOracle

<<interface>>

<<interface>>

TypeAnalysis

AbstractTypeAnalysis

OneSetTypeAnalysis

IdealTypeAnalysis

Figure 6.2: Type analysis framework diagram

6.2.2 A limit study of method inlining using dynamic type analy-

ses

An ideal type analysis

To measure how precise a type analysis could be, we need an ideal type analysis for

comparison. If a benchmark runs deterministically, we can profile targets in the first

run, and then use the profiled targets as faked analysis results for the second run.

We use an inexpensive call graph profiling mechanism [QH04] to gather call targets.

An IdealTypeAnalysis parses the profiled targets for call sites, and the lookupTargets

method returns profiled target(s) for a call site. The IdealTypeAnalysis uses CHA for

call sites from the RVM boot image.
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Experimental approach

An inline oracle has to balance the benefits and costs of inlining. Excessive inlining

may blow up code size and slow down the execution. Therefore, a JIT compiler

usually sets a size limit on inlined targets using some heuristics. Hazelwood and

Grove [HG03] described the size heuristic used in Jikes RVM. For the purpose of our

study, we would like to measure the maximum potential of a type analysis for method

inlining without a size limit. However, inlining all call sites is not feasible. Instead,

we only inline the most frequently executed call sites, without a size limit.

We implemented the framework and type analyses in JikesRVM v2.3.0. We used

the FastAdaptiveCopyMS configuration for initial experiments since it is stable and

can run all of our benchmarks. The configuration uses a copying mark-sweep collector.

Benchmarks

Our benchmark set includes the SpecJVM98 suite [speb], SpecJBB2000 [spea], a CFS

subset evaluator from a data mining package Weka [wek], a simulator of certificate

revocation schemes [cer], and a variation of the simulator interwoven with AspectJ

code for detecting calls that return null on error conditions.

Table 6.1 summarizes dynamic characteristics of benchmark executions. We ig-

nored call sites in the RVM code and Java libraries compiled into the boot image.

Virtual and interface calls are measured separately. Columns labeled total report the

total counts of invocations in each category. Columns labeled #hottest are numbers

of hottest call sites, ranked in the top 100, whose invocations are more than 1% of

total in Columns 2 and 5. Columns labeled coverage are percentages of invocations

contributed by these hottest call sites.

It is interesting to point out that, for most of the benchmarks, the majority

of invocations are from a small number of hot call sites. Less than 25 call sites

exceed the 1% threshold. Only about half of the benchmarks have more than 1M

interface invocations. These benchmarks have fewer than 10 hot interface call sites

that contribute to more than 92% of invocations.
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benchmark invokevirtual invokeinterface

total #hottest coverage total #hottest coverage

201 compress 2,191M 7 89% 0 N/A N/A

202 jess 964M 25 71% 0 N/A N/A

205 raytrace 2,837M 16 29% 0 N/A N/A

209 db 762M 8 99% 149M 5 99%

213 javac 688M 10 20% 34M 5 92%

222 mpegaudio 846M 25 80% 2M 11 98%

228 jack 264M 22 74% 46M 11 93%

SpecJBB2000 8,162M 9 34% 146M 7 99%

CFS 639M 15 92% 0 N/A N/A

simulator(orig) 44M 5 71% 0 N/A N/A

simulator(aspects) 162M 13 72% 0 N/A N/A

Table 6.1: Coverage of the hottest call sites

The 213 javac benchmark includes a large amount of auto-generated code. In-

vocation counts are spread over many call sites. SpecJBB2000 has a large code base

as well, and it runs much longer than other benchmarks. Hot call sites selected by

our 1% threshold contribute only about 34% of total invocations.

A list of hottest call sites are provided to the inline oracle. The size limit is

removed for call sites in the list. Thus, the inline oracle can exploit the potential of

a type analysis as much as possible.

As we discussed in Chapter 4, a virtual call site can be inlined using different

techniques:

• direct: direct inlining if the callee method is private or final;

• preex: direct inlining with invalidation checks if the receiver can be proved to

be preexistent prior method calls;

• cp: guarded inlining with code patching;
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• mt or ct: guarded inlining with method or class tests.

If a call site is currently monomorphic according to the analysis results, guards

are chosen as a command line option. It can be code patching or method/class tests.

For our experiment we used code patching since it has less runtime overhead.

Monomorphic interface calls can be directly inlined if the receiver is preexistent, or

inlined with guards. We found that, in our benchmark set, receivers of nearly all hot

interface calls cannot be proved to be preexistent by an invariant argument analysis.

In our results, we omit the preex category for interface calls. We also performed

another experiment where the inline oracle inlined polymorphic call sites (guarded

by method or class tests) that had 1 or 2 targets resolved using type analysis results.

However, this did not lead to significantly more inlined calls (only 213 javac has a

2% increase). Thus, we do not inline polymorphic calls in our experiment reported

here.

Limit study results

Table 6.2 compares the results of dynamic CHA and IdealTypeAnalysis. Each bench-

mark has two rows: ideal and cha, showing dynamic counts of inlined calls using

different type analyses. Virtual and interface calls are presented separately. Column

total is the count of invocations in each category. In the virtual category, dynamic

CHA did nearly as perfect a job as the ideal type analysis in most benchmarks, ex-

cept 213 javac and simulator(aspects). On these benchmarks, the majority of

dynamic invocations are contributed by monomorphic call sites. The sum of direct,

preex and cp is close to the coverage in Table 6.1. 213 javac leaves a small gap

between cha and ideal. In the interface category, column 8 shows that a large portion

of interface invocations are from monomorphic call sites as well. Dynamic CHA is in-

effective on inlining interface calls. Furthermore, the other two simple type analyses,

RTA and ITA, did not improve the results of inlining interface calls because common

interfaces are implemented by different classes that are likely to be instantiated.
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virtual interface

total direct preex cp total cp mt

201 compress ideal 2,191M 99% 0 0 0 0 0

cha 2,191M 99% 0 0 0 0 0

202 jess ideal 994M 58% 6% 21% 7M 0 0

cha 994M 58% 6% 21% 7M 0 0

205 raytrace ideal 2,837M 0 50% 41% 0 0 0

cha 2,837M 0 50% 41% 0 0 0

209 db ideal 762M 31% 0 67% 150M 99% 0

cha 762M 31% 0 67% 150M 0 0

213 javac ideal 701M 28% 7% 15% 35M 95% 0

cha 701M 27% 7% 10% 35M 0 0

222 mpegaudio ideal 846M 73% 3% 0 2M 57% 0

cha 846M 73% 3% 0 2M 57% 0

228 jack ideal 258M 13% 16% 39% 46M 86% 0

cha 258M 12% 15% 39% 46M 25% 8%

SpecJBB2000 ideal 8,250M 32% 29% 11% 148M 99% 0

cha 8,119M 32% 29% 12% 146M 0 0

CFS ideal 639M 38% 6% 52% 0 0 0

cha 639M 38% 6% 52% 0 0 0

simulator ideal 44M 99% 0 0 0 0 0

(original) cha 44M 99% 0 0 0 0 0

simulator ideal 162M 11% 19% 53% 0 0 0

(aspects) cha 162M 11% 0 53% 0 0 0

Table 6.2: Limit study of method inlining using type analyses
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Discussion

Simulator(aspects) is an interesting benchmark. Injecting AspectJ advice code

increases the number of invocations and changes inlining behaviors dramatically. In

the original benchmark, nearly all virtual calls are monomorphic and can be directly

inlined. With aspects, dynamic CHA misses all monomorphic calls in the preex cat-

egory. After looking at the benchmark closely, we found this is due to the generic

implementation of pointcuts.

The pointcut implementation boxes primitive values in objects and passes them

to AspectJ libraries. The value is then unboxed after the library call. The original

code for unboxing looks like

int intValue(Object v) {

if (v instanceof Number)

return ((Number)v).intValue();

......

}

The single call site of ((Number)v).intValue() contributes 19% preex invocations.

Dynamic CHA failed to inline this call site because the Number class has several

subclasses, Integer, Double, and Long, and the call site is identified as polymorphic.

This particular problem can be solved in two ways: 1) use a context-sensitive

reachability-based type analysis, or 2) change the implementation of unboxing to

facilitate the type analysis. We changed the method to use a tighter type, Integer,

in the type cast expression, then the call site becomes directly inlineable.

Since the number of hot interface call sites is small, we investigated them one by

one. It turns out these hot interface calls are used in a similar pattern:

// <TYPE> is java.util.Vector, java.util.Hashtable, etc.

Enumeration e = <TYPE>.elements();

......

while (e.hasMoreElements())

index[i++] = (Entry)e.nextElement();

Enumeration is an interface in java.util package. The while loop makes two or more

interface calls for enumerating elements of underlying data structures. Dynamic CHA
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assumes all implementations of the interface are in the runtime type set of e, although

each <TYPE> class returns a specific implementation. Without interprocedural infor-

mation or inlining the <TYPE>.elements() method, a type analysis cannot produce

precise type information of e. Therefore, these interface call sites cannot be inlined

by using dynamic CHA.

From this limit study, we conclude that:

• most virtual calls in standard Java benchmarks are monomorphic;

• dynamic CHA is nearly perfect for inlining virtual calls;

• dynamic CHA is ineffective on inlining interface calls;

• to assist compiler optimizations, a programmer should use precise types when

it does not sacrifice other engineering benefits;

• a large percentage of interface calls are monomorphic and used in a simple

pattern, but it requires an interprocedural analysis to discover the precise type

of the receiver.

6.3 Dynamic reachability-based type analysis

In Section 6.2, we presented a type analysis framework for supporting speculative

inlining. We also presented the results of our limit study of method inlining which

showed that dynamic CHA is not strong enough for inlining interface calls. In this sec-

tion, we present an interprocedural, reachability-based, type analysis that is suitable

for inlining interface calls.

There are two different approaches to performing a dynamic interprocedural anal-

ysis in a Java virtual machine. A whole-program analysis analyzes all classes and

methods that can participate the program execution. A demand-driven analysis only

analyzes the part of code related to a request. We start with the whole-program

approach.
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We designed and implemented a dynamic version XTA in our previous work [QH04]

as an example of how to deal with dynamic class loading and reference resolution.

However, due to lack of intraprocedural data-flow information, XTA results are very

coarse. Although the computed type sets are smaller than ones from CHA, it still

could not recognize important monomorphic interface call sites. From the method

inlining study, we found XTA results were no better than dynamic CHA.

Design

VTA [SHR+00] uses intraprocedural data flow information to propagate type sets.

Given a Java program (all application and library classes), static VTA constructs a

directed type flow graph G = (V, E, τ) where:

• V is a set of nodes, representing local variables, method formals and returns,

static and instance fields, and array elements;

• E is a set of directed edges between nodes, an edge a → b represents an assign-

ment of a’s value to b;

• τ : V → T is a map from a node to a set of types (classes).

Static VTA has two phases. On phase 1, a constrain collector performs one-pass

scan of the program and constructs a VTA graph. Phase 2 propagates types τ(V ) to

all reachable nodes in the graph.

Dynamic VTA can also take advantage of rich runtime type information. A dy-

namic VTA node has a declaring type inferenced by JikesRVM’s optimizaing compiler.

When propagating types through a node v, only when v’s declaring type is resolved

and its subtypes can become part of τ(v).

We use the same approach outlined in [QH04] to adopt the static VTA to a

JIT compiler. In the whole-program approach, the constraint collector monitors

method compilation events at runtime. Before a method is compiled, the constraint

collector parses the bytecode and creates VTA edges. The collector uses the front-

end of the optimizing compiler in Jikes RVM, which converts bytecode to a three
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address intermediate representation, HIR. Several optimizations are performed during

translation. An HIR operand has a declaring type.

Dynamic VTA analysis is driven by events from JIT compilers and class loaders.

Figure 6.3 shows the flow of events. In the dotted box are the three modules of

dynamic VTA analysis: VTA graphs, the analysis (include constraint collector), and

dependency databases. The JIT compilers notify the analysis by channel 1 that a

method is about to be compiled. The analysis scans the bytecode of the method body

and, for each new instruction with a resolved type, the analysis adds the type into the

reachable type set of the method via channel 3; otherwise it registers a dependency

on the unresolved type reference for the method via channel 4. Similarly for field

accesses, if the field reference can be resolved without triggering class loading, the

analysis adds a directed edge into the graph via channel 3; otherwise, it registers a

dependency on unresolved field reference for the method. A call graph constructor 5

could add new edges to the graph by channel 2. Whenever a type reference or field

reference gets resolved, the dependency databases are notified (by channel 5), and

registered dependencies on resolved references are resolved to new reachable types or

new edges of the graph.

dependency
databases

3

6

compilers

profiling
callgraph 2

1

4

classloaders
5

analysis

dependencies
inlining

inline
oracle

VTA graphs

Figure 6.3: Model of VTA events

Many system events can change the VTA graph. Whenever the graph is changed

(either the graph has an new edge, or a node has a new reaching type), a propagator

propagates type sets of nodes (related to changes) until no further change occurs.

Whenever the reaching type set of a node has a new member, the analysis verifies
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dependencies on this node registered by inlining oracles (see Section 6.2). The oracle

has a chance to perform invalidation if inlining assumptions are violated.

Propagations

To support speculative optimizations, the analysis must keep the results up-to-date

whenever a client makes queries. An eager approach propagates new types whenever

the VTA graph is changed. The second approach is to cache graph changes when

collecting constraints of a method, and batch propagations at the end of constraint

collection. The third approach, as suggested in [HDH04, PS01], propagates types

only when a client makes queries on nodes. However, the analysis needs to keep a

list of nodes which type sets are used for speculative optimizations. Whenever the

VTA graph changes, the analysis has to perform demand-driven propagation on listed

nodes to verify assumptions are not invalidated. In our study, we found both eager

and batch propagations are efficient, with respect to the total execution time of each

benchmark. Javac takes up to 1.7 seconds and other benchmarks take less than 1

second.

Implementation

The main data structure of VTA is a type flow graph. Previous work [LH03] showed

that the ordinary set and map implementations from JDK are not scalable. We used a

similar implementation of integer sets as in [LH03]. In addition, we have implemented

a special hash table using primitive integers as keys.

Effectiveness of dynamic VTA

Not surprisingly, VTA is able to handle the simple pattern of interface calls in our

benchmarks set. Table 6.3 compares dynamic counts of inlined interface calls. We

omitted benchmarks with few interface calls. Dynamic VTA is able to catch all

monomorphic interface calls and allows them to be inlined by using code patching.
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benchmark Ideal(cp) VTA(cp)

209 db 99% 99%

213 javac 95% 95%

228 jack 86% 86%

SpecJBB2000 99% 99%

Table 6.3: Comparison of VTA and IdealTypeAnalysis for inlining interface calls

Memory overhead of whole-program VTA

Although dynamic VTA allows the JIT compiler to utilize maximum inlining opportu-

nities, the cost of whole-program VTA is also high. Table 6.4 is a rough approximation

of memory footprint of VTA graphs for four benchmarks. A VTA graph has three

big pieces: a node set, an edge set, and type sets. Columns 2 to 4 display numbers of

sets and memory footprints. The last column is the total memory footprint of three

pieces.

benchmark nodes (size) edges (size) typesets total

209 db 4,326 (0.13M) 5,419 (0.53M) 0.31M 0.97M

213 javac 11,933 (0.37M) 32,992 (2.54M) 1.28M 4.19M

228 jack 7,261 (0.22M) 10,403 (1.00M) 0.64M 1.86M

SpecJBB2000 11,119 (0.34M) 14,831 (1.54M) 0.80M 2.68M

Table 6.4: VTA graph sizes

Figure 6.4(a) compares sizes of live data for IdealTypeAnalysis, CHA, and VTA,

using 213 javac as the example. Heap occupation has been increased by one-third

(about 10M) for VTA graphs. Also VTA data are lived through application execution.

Figure 6.4(b) depicts time spent on each GC using a copying collector. It is clear

that the whole-program interprocedural analysis has a very high memory overhead.
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Figure 6.4: GC behaviors affected by VTA ( 213 javac)
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Performance comparison

Table 6.5 shows our preliminary performance measurement using a copying mark-

sweep collector. Data were collected on a laptop with a Pentium M 1.5G processor

and 1G memory, running Linux kernel 2.6.10. We took the best run of 10 runs of

SpecJVM98 benchmarks. SpecJBB2000 is measured by its throughput score (higher

is better). VTA has some speedups on 209 db and 228 jack. 213 javac and

SpecJBB2000 slowed down due to heavier GC workload introduced by VTA graphs,

benchmark CHA VTA speedups

209 db 10.704s 10.448s 2.5%

213 javac 4.006s 4.048s -1.0%

228 jack 2.638s 2.635s 0.1%

SpecJBB2000 12093 9693 -24.8%

Table 6.5: Performance comparison using a copying mark-sweep collector

Recently we switched to a generational mark-sweep collector, which promotes

most of VTA graph objects to old generations. The impact of GC has been reduced.

Table 6.6 compares the best run of 10 runs of two benchmarks. Unfortunately, both

209 db and SpecJBB2000 trigger bugs in the generational mark-sweep collector in

the version of JikesRVM that we are using for our implementation.2

benchmark CHA VTA speedups

213 javac 3.924s 3.900s 0.6%

228 jack 2.514s 2.460s 2.1%

Table 6.6: Performance comparison using a generational mark-sweep collector

2It is possible that this issue will be resolved when we upgrade our implementation to the latest
version of JikesRVM.
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6.4 Related work

We discussed some related work of method inlining in Chapter 4. The section discusses

additional related work on the topic.

Ishizaki et al. [IKY+00] conducted an extensive study of dynamic devirtualization

techniques for Java programs. In their experiments, size limits were put on inlined

targets, and techniques using dynamic CHA were shown to inline about 46% of virtual

calls (execution counts). Our study answers the question of what is the limit of

method inlining using different type analyses. By lifting the size limit on hottest

call sites, we were able to understand the maximum inlining potential using a type

analysis. Our limit study shows that CHA is nearly as perfect as an ideal type

analysis.

Pechtchanski and Sarkar [PS01] presented a framework for dynamic optimistic

interprocedural analysis (DOIT) in a JIT environment. For each method, the DOIT

analysis builds a value graph similar to a VTA graph. However, due to lack of a

complete dynamic call graph, DOIT does not track type flow between method calls

(parameters and returns). Instead, it uses conservative subtypes of declaring types of

method parameters and returns. DOIT is good at obtaining precise type information

for fields whose values are assigned in one method and used by another method. Our

work focused on limit study of method inlining using type analyses, including online

interprocedural analyses based on dynamic call graphs. Our results independently

confirms that dynamic CHA is effective for inlining virtual calls in Java programs.

Profiled-directed inlining is effective to identify profitable inlining targets at poly-

morphic call sites. However, profile-directed inlining requires runtime tests to guard

the inlining target. Our focus is on exploiting unguarded inlining opportunities ex-

posed by type analyses.

6.5 Discussion

In this chapter we have presented a study on the limits of speculative inlining. Some-

what to our surprise we found that using dynamic CHA for speculative inlining is
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almost as good as using an “ideal” analysis, for inlining virtual method calls. How-

ever, for even simple uses of interface calls, none of dynamic CHA, RTA, XTA or

ITA gives enough information for determining that interface calls are monomorphic.

Rather, to detect these opportunities, one requires a stronger type analysis and we

presented a dynamic version of VTA for this purpose.

Our experiments with our dynamic VTA do show that it provides detailed enough

type information to identify inlining opportunities for interface calls in our bench-

mark set. However, we also note that the memory overhead of our whole program

approach to dynamic VTA is quite large, and we suggest an alternative demand-driven

approach.

In addition to these main contributions of this chapter, we also made several other

general observations about speculative method inlining.

Observation 1

The conventional wisdom is that inlining increases optimization opportunities. How-

ever, in the presence of speculative optimizations, inlining may reduce optimization

opportunities as well. Figure 6.5 shows such an example. In Figure 6.5(a), the method

Foo.m() is declared as virtual, but not overridden. Thus the call site in the child

method is a candidate of direct inlining based on the receiver’s preexistence prior

method call (Figure 6.5(b)). However, if a compiler inlines child() into parent(),

and the receiver of foo.m() is not preexistent prior the parent(), the call site can

only be inlined with a guard as in Figure 6.5(c). Since the frequency of calling

foo.m() is much more than calling child(), the performance of parent() might not

be maximized. This pattern did happen in the 213 javac benchmark.

The above contradiction could be resolved by using on-stack replacement tech-

nology [FQ03,Urs92] or thin guards [AR02]. Indeed, method invalidation performs

on-stack replacement at method entries. A compiler can insert a general on-stack

replacement point after the statement Foo f = getfiled with a condition that Foo.m is

currently final. The compiler can directly inline the body of Foo.m into the loop.
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parent() {

Foo f = getfield

this.child(f);

}

child(Foo foo) {

while(cond)

foo.m()

}

(a) source

parent() {

Foo f = getfield

this.child(f);

}

child(Foo foo) {

while (cond)

inlined Foo.m(foo)

}

(b) inline ‘Foo.m’ only

parent(){

Foo f = getfield

while(cond)

if (Foo.m is currently final)

inlined Foo.m(f)

else

Foo.m(f)

}

(c) inline ‘child’, then ‘Foo.m’

Figure 6.5: An example where inlining can reduce optimization opportunities

Observation 2

Our second observation is that inlining decisions may be affected by library imple-

mentations. A Java virtual machine is bundled with a specific implementation of Java

class library. For example, the GNU classpath [cla] is an open-source implementation

of Java libraries and used by many open source Java virtual machines, including Jikes

RVM. The implementation of Hashtable.elements() in the GNU classpath (version

0.07) returns objects of a single type Hashtable$Enumerator. The implementation

in Sun’s JDK 1.4.2 04, however, may return objects of Hashtable$EmptyEnumerator

and Hashtable$Enumerator. Several hot interface call sites in our benchmark set

would not be directly inlined if using Sun’s JDK.

Demand-driven propagation

VTA graphs of large benchmarks (e.g., 213 javac and SpecJBB2000) have large num-

ber of nodes. However, there are only a few hundreds nodes whose type sets are used

for inlining. Both batch and eager propagations save type sets for all nodes. The

demand-driven propagation [PS01] is attractive since it does not require the analysis

to save type sets for intermediate nodes. The analysis can do a depth-first search on

the VTA graph to find all reachable types of a node. However, in order to support
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speculative inlining, the analysis has to perform depth-first search on all receiver nodes

of speculatively inlined sites, whenever the VTA graph changes. We are planning to

implement this approach and measure the performance.

Outline of a demand-driven analysis

The whole-program interprocedural analysis analyzes all compiled methods. Al-

though the analysis itself is reasonably fast, the VTA graph representation takes

a lot of memory space. Because Jikes RVM shares the same heap with applications,

more live data triggers more frequent garbage collections and increases GC time in

each collection. Section 6.2 shows that only a few call sites are hot in each benchmark.

If the analysis only analyzes code related to these hot call sites, the time and space

overhead could be reduced.

Demand-driven analysis [VR01,HT01] itself is an interesting research topic. It has

been explored in the context of static points-to analysis. It is attractive to perform

incremental, demand-driven IPA at runtime in a JIT environment.

We are developing a demand-driven VTA type analysis. We outline the require-

ment and design of the demand-driven analysis to support speculative inlining of

interface calls. Given a receiver variable e, the compiler would decide if it is interest-

ing to perform the type analysis on e. A simple heuristic is that e’s declaring type is

a common interface, such as Enumeration and Iterator, and there are interface invo-

cations in loops made on the variable. Once the compiler decides to analyze e, the

demand-driven analysis would look at the source of e. If there is a single definition

of e in the method, it continues looking at where the value of e comes from. There

are several possible cases, we describe each case and solution:

• e is passed in as a parameter. In this case, the analysis gives up since it is too

expensive to analyze all callers of the method;

• e gets its value from a field or an array element. It requires a whole-program

analysis in order to know all writes to the field or array element. Field analy-

sis [GRS00] could be used if it is available, otherwise, the analysis gives up in

this case;

125



• e’s value is returned from a method call. This is the case the analysis tries to

analyze further, and it performs the following steps:

– is there only one target of the call site? if so, then

– can the type analysis get a precise type of return objects in the target

method?

If the analysis successfully finds the precise type of e, it then registers a depen-

dency that assumes the analyzed method is the only target of the call site.

The above approach could successfully inline the common interface call patterns

we found in our benchmarks. However, it is fairly restricted to these patterns. We

believe the right approach should look at more patterns used in the real applications

and analyze important ones case by case.

Future work

Based on this study we have concluded that a type analysis for invokeinterfaces is an

important area of research, and we are currently working on a demand-driven analysis

and compact graph representation to reduce the costs of dynamic VTA. We are also

looking at more applications of dynamic interprocedural analysis in JIT compilers.

A new research topic is to investigate the effectiveness of compiler optimizations on

different design patterns.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the thesis in Section 7.1. In Section 7.2, we discuss

several potential research directions from the thesis work.

7.1 Conclusions

In this thesis we have explored runtime instrumentation and dynamic program anal-

ysis in a Java virtual machine. The objective is to investigate the opportunities and

challenges of program analysis and optimizations in a runtime system for languages

such as Java and C#.

In Chapter 3, we presented a novel dynamic memory allocation scheme in garbage

collectors. The new scheme uses write barriers to gain the benefits of stack allocation,

but avoiding the requirement of an escape analysis that is not largely available in JIT

environments. In our allocator, an allocation site was dynamically attributed as

escaping and non-escaping based on its execution history. In an escaping analysis,

such a property is derived from programs and langauge constraints, and is often

over-conservative.

We presented the overall idea, and provided details of a prototype design. In our

implementation, we carefully measured the benchmark behaviors and optimized the

instrumentation. Our quantative meansurement gave encouraging results. In the best

case of 227 mtrt, the number of collections was reduced from 7 to 1.
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A JIT environment allows speculative optimizations based on runtime invalidation

techniques. In Chapter 4, we reviewed existing state-of-the-art work in this field. It

covers simple runtime checks to complicated on-stack-replacement. We also presented

an improvement and implementation of a new on-stack replacement mechanism in a

real Java virtual machine. All these techniques are necessary to utilize more advanced

program analyses for speculative optimizations.

A necessary step of interprocedural analyses is to construct call graphs efficiently.

In Chapter 5, we did a thorough study of dynamic call graph construction problem in

Java virtual machines. We showed a general approach of handling dynamic class load-

ing and unresolved references in a dynamic program analysis. A call graph profiler,

using trampoline, builds most precise call graphs with small runtime overhead. Type

analysis and profiler can be coupled to make trade-off between efficiency and preci-

sion. We implemented and evaluated algorithms in Jikes RVM on a set of standard

benchmarks.

It is relatively easy to adapt a static intraprocedural analysis to a JIT compiler

since methods are compilation units in both envoriments. Interprocedural analyses,

however, are largely unexplored in JIT compilers.

In Chapter 6, we presented the design and implementation of several dynamic

interprocedural type analyses. We used method inlining as an experiment to study

how to use analysis results for speculative optimizations. We found that a dynamic

analysis only needs to focus on a narrow region of code, and it has quite different

effects comparing to its static counterpart.

We examined necessary techniques to create maximum inlining opportunities. A

dynamic interprocedural type analysis has been developed in Jikes RVM. We studied

the costs and gains of a whole program analysis approach, and pointed out issues

of the approach. In this study, we also made some interesting observations about

dynamic program analysis and speculative inlining.
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7.2 Future work

In this section, we pointed out some future research directions following the thesis

work.

7.2.1 Dynamic interprocedural analyses and speculative optimiza-

tions

Dynamic interprocedural analysis is still not a well-understood research field. The

whole program approach used in static analysis is unlikely to succeed because the cost

of maintain intermediate data structures is too high in a Java virtual machine. The

90/10 rule applies on Java programs as well. A successful dynamic analysis should

spend limited resource on the small percentage of hot code regions. On-demand

approach might succeed in a JIT environment.

We point out some possible dynamic interprocedural analyses, but not exhaustive:

interprocedural type analysis results can be used to inline interface call sites, and

eliminate unnecessary type checks; escape analysis enables new garbage collection

schemes, such as regions, connectivity-based GC, etc.; value range analysis allows

bounds check elimination.

Advanced interprocedural analysis would create new optimization opportunities.

We need to explore new kinds of speculative optimizations in a JIT environment.

The current OSR prototype is a heavyweight implementation. It requires fine-grained

tuning to alleviate the cost of backup mechanism.

7.2.2 Online escape analysis

Ruf [Ruf00] proposed a static escape analysis for synchronization removal in the

Marmot compiler [FKR+98]. A similar analysis [Ste00] could be used for creating

thread-local heaps. Not like other escape analyses [CGS+99, Bla99, WR99], Ruf’s

analysis does not assume that an object is escaping because it is reachable from a

static field. Only objects that may be accessed by multiple threads are considered
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escaping. Ruf’s analysis relies on a conservative call graph and annotates methods

that may be accessed by multiple threads.

We could develop an online escape analysis similar to the one suggested in [Ste00]

using our dynamic call graph constructors. There are several ways to improve the

efficiency and precision of the dynamic analysis:

1. track thread creation and annotate call graph with live threads;

2. since the runtime system knows exact lifetime of a thread, an object accessed

by threads with non-overlapping lifetime can still be considered as thread-local;

Using the hybrid of dynamic analysis and instrumentation, it is possible to develop

an efficient and effective online escape analysis. However, applications of analysis

results may require new invalidation techniques to ensure correct execution when old

results were invalidated.

7.2.3 Improve the efficiency of on-stack-replacement

Our implementation of on-stack-replacement (Section 4.4) requires an OsrPoint in-

struction that uses all variables in the source program. It may limit the precision of

intraprocedural analyses, such as constant propagation, common subexpression elim-

ination, etc. One future research direction is to study how to reduce side-effects of

on-stack-replacement on regular program optimizations.
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Appendix A

Dynamic metrics of benchmarks

Table A.1 lists six important metrics of benchmarks used in this thesis. The data

come from the webpage of Sable research group at McGill University1. We use short

names for benchmarks due to the limit of page width. Each row compares one metric

of all benchmarks. We also use different metric names from the original source:

loaded.classes is the number of loaded application classes (a.k.a size.appLoadedClasses.value);

size.load is the number of bytecode instructions of loaded application classes (a.k.a

size.appLoad.value);

size.exec is the number of bytecode instructions that are executed at least once (a.k.a

size.appRun.value);

poly.sites is the number of different virtual call sites executed in application code

(a.k.a polymorphism.appCallSites.value);

poly.polyrate is the percentage of call sites that have multiple targets (a.k.a polymor-

phism.appTargetPolyDensity.value);

mem.alcrate is the allocation rate as the number of bytes allocated per killo bytecode

executed (a.k.a memory.byteAppAllocationDensity.value);

1http://www.sable.mcgill.ca/metrics
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metric comp jess db javac mpeg mtrt jack soot

loaded.classes 22 158 14 175 62 35 66 522

size.load 6,555 22,370 6,436 44,664 38,484 11,193 23,424 45,278

size.exec 5,084 11,634 4,546 26,267 34,975 9,460 18,721 23,850

poly.sites 54 737 128 2617 326 939 1124 2877

poly.polyrate 0.019 0.011 0 0.103 0.037 0.005 0.010 0.049

mem.alcrate 11.096 294.895 24.824 131.824 0.431 91.766 313.793 167.476

Table A.1: Selected dynamic metrics of benchmarks
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