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Abstract

MATLAB has gained widespread acceptance among enginedrsaantists. Several
aspects of the language such as dynamic loading and ty@fegupdates, copy semantics
for arrays, and support for higher-order functions contetto its appeal, but at the same
time provide many challenges to the compiler and virtualmae MATLAB is a dynamic
language. Traditional implementations of the languagenisepreters and have been found
to be too slow for large computations. More recently, redeans and software developers
have been developing JIT compilers for MATLAB and other dyialanguages. This the-
sis is about the development of new compiler analyses andftranations for a MATLAB
JIT compiler, McJIT, which is based on the LLVM JIT compileotkit.

The new contributions include a collection of novel anasyg® optimizing copying
of arrays, which are performed when a function is first coetpiWe designed and imple-
mented four analyses to support an efficient implementatfarray copy semantics in a
MATLAB JIT compiler. Experimental results show that copytiogzation is essential for
performance improvement in a compiler for the MATLAB langea

We also developed a variety of new dynamic analyses and cadsformations for
optimizing running code on-the-fly according to the curremiditions of the runtime en-
vironment. LLVM does not currently support on-the-fly codanisformation. So, we first
developed a new on-stack replacement approach for LLVMs Gapability allows the run-
time stack to be modified during the execution of a functibnstenabling a continuation
of the execution at a higher optimization level. We then ugedon-stack replacement
implementation to support selective inlining of functioalls in long-running loops. Our
experimental results show that function calls in long-tiagrioops can result in high run-
time overhead, and that selective dynamic inlining can leslus drastically reduce this



overhead.

The built-in functionfeval is an important MATLAB feature for certain classes of
numerical programs and solvers which benefit from havingtions as parameters. Pro-
grammers may pass a function name or function handle to tkrersand then the solver
usesfeval to indirectly call the function. In this thesis, we show tladthoughfeval
provides an acceptable abstraction mechanism for thess wypapplications, there are
significant performance overheads for function callsfesal , in both MATLAB inter-
preters and JITs. The thesis then proposes, implementsoamgbces two on-the-fly mech-
anisms for specialization d&éval calls. The first approach uses our on-stack replacement
technology. The second approach specializes calls ofiimgwithfeval using a combi-
nation of runtime input argument types and values. Expertaieesults on seven numerical
solvers show that the techniques provide good performanpsovements.

The implementation of all the analyses and code transfaomapresented in this thesis
has been done within the McLab virtual machine, McVM, andvalable to the public as
open source software.



Résum é

MATLAB est devenu reconnu parmi les iagieurs et les scientifiques. Plusieurs as-
pects du langage comme le chargement et le typage dynantegquasea jour gir, la
semantique de copie pour les tableaux, et le support desidmscd’'ordre suprieur con-
tribuenta son attrait, mais induisent de nombreuses diffesutour les compilateurs et les
machines virtuelles. MATLAB est un langage dynamique. loeglémentations classiques
du langage fonctionnent@&icea des intergeteurs et sont@reralement trop lentes pour des
larges calculs. Plucemment, les chercheurs ainsi que les programmeursuatop @
des compilateurs JIT pour MATLAB et d’autres langages dyiqaes. Cette thse traite
le deéveloppement de nouvelles analyses et transformationmsusocompilateur JIT MAT-
LAB, McJIT, qui est bas sur I'outil LLVM.

Ces nouvelles contributions comprennent plusieurs aralyseatrices pour optimiser
la copie de tableaux, qui sont@uges quand une fonction est con@glpour la prengre
fois. Nous avons im@mené quatre analyses pour permettre une anpintation efficace
de la €mantique de copie de tableaux dans un compilateur JIT MALlAes esultats
experimentaux montrent que 'optimisation de la copie est mtssige pour angliorer les
performances dans un compilateur pour le langage MATLAB.

Nous avons aussiévelopfe une vate d'analyses dynamigues novatrices et des trans-
formations de code pour optimiser du codlda voke en fonction de I'environnement
d’exéecution. Actuellement, LLVM ne supporte pas les transfdaioms de code la voke.

En congquence, nous avons d’aboreMglop@ une nouvelle approche pour faire du rem-
placement sur la pile avec LLVM. Cette fonctionn@liermet la pile d’execution détre
modifiée pendant I'e&cution de la fonction, ce qui permet de continueré&extiona un
niveau suprieur d’optimisation. Nous avons ensuite uélisette imptmentation du rem-
placement sur la pile pour permettre I'en line des appeledetions dans les boucles. Nos
résultats exerimentaux montrent que les appels de fonctions dans leddsauiong temps
d’exécution peuvent induire un @bimportant en termes de performances, et que I'en line



dynamique et&lectif peutétre utili® pour éduire drastiquement ce @b

La fonction "feval” est une fonctionnaétimportante de MATLAB pour certains pro-
grammes de calcul nugnique qui profitent de la possib#éide passer des fonctions comme
parangetres. Les programmeurs peuvent passer le nom d’'une fanatiaun pointeur de
fonctionsa un programme qui utilisera ensuite feval pour appeleraatiément cette fonc-
tion. Dans cette #se, nous montrons que malgle fait que feval soit un étanisme
d’abstraction appciable pour certaines applications, il induit uriitaignificatif, a la
fois pour les interggteurs et pour les compilateurs JIT. Cettest propose, imphmente
et compare deux atanismes la voEe pour la secialisation des appels utilisant feval.
La premere nethode utilise notre gtanisme de remplacement sur la pile. La seconde
méthode spcialise les appels de fonctions utilisant feval en comtititetype et la valeur
des argumenta I'exécution. Les @sultats exprimentaux sur sept programmes éifénts
montrent que ces techniques permettent une bon@di@ation des performances.

L'impl émentation de toute les analyses et transformations depresienées dans cette
thése aete effectie dans la machine virtuelle McLab, appelMcVM, et est disponible au
public en tant que logiciel libre.



Acknowledgements

First, | would like to thank my supervisor, Professor Lautiendren, for her support
and constant encouragement. | benefited greatly from haliggnce and wealth of expe-
rience. Her insightful comments and suggestions helpetta Improve this thesis.

| thank Professor Clark Verbrugge and all the members of my &hDmittee for their
useful comments and suggestions on both the proposal afiddheersion of this thesis. |
also thank Professor Jose Nelson Amaral for his suggegtomaproving the final version
of the thesis.

| thank all the members of the Sable Group, in particularntleenbers of the McLAB
team for their contributions to the McLAB project. | woul#tdi to thank Maxime Chevalier-
Boisvert for developing the first version of McVM.

| am grateful to Matthieu Dubet and Kamal Zellag for theirgh@h translating the
abstract of this thesis into French language.

| wish to thank the School of Computer Science Systems staffftla@ administrative
staff for their support in my role as the system administrédoSable Lab.

Many friends have helped me throughout my programme at MciGilank you all.

| am grateful to FQRNT for their financial support. This theses partly supported by
NSERC as well.

Finally, I would like to thank my family, my beloved wife, Adenke and my children,
Hanifah, Azizah and Ibrahim, for their support, encouragetand understanding without
which this thesis would have been impossible to undertake.



Vi



Contents

Abstract

Résune
Acknowledgements
Contents

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Virtual Machines . . . . . . . . . . . . . .. D 2
1.1.1 JIT Compilation . . .. ... .. ... .. . ... ... .. ..., D 3
1.2 Motivation . . . . . . . . . s D 4

1.2.1 Characteristics of MATLAB Programs . . . . . . .. ... ....

1.3 Challenges. . . . . . . . . . e

1.3.2 Challenge 2: Function CallsinLoops . . . . ... ... .....

.
I
1.3.1 Challenge 1: Copy Semantics . . . . . . ... ... ....... D
]
[5

1.3.3 Challenge 3: Dynamic Function Evaluatidevél)

Vii



Solution Overview . . . . . . . . e D 9

1.4
1.4.1 CopyOptimization . . . . . . . .. ... D 10
1.4.2 On-Stack-Replacement (OSR) Support . . . . . ... ... .. B 1
1.4.3 Selective Dynamic Inlining of Function Calls in Loops . . . . . m
1.4.4 feval CallSpecialization . .. ... ... ... ......... D 11
1.5 Research Contributions . . . . . .. ... ... ... ... ... ... . B 1
1.5.1 Copy OptimizationinMcVM . . . . ... ... ... ...... DlZ
1.5.2 Modular On-Stack ReplacementinLLVM . . . . . ... ... .. D 1
1.5.3 Selective Dynamiclnlining. . . . .. ... ... ... ...... B
1.5.4 Dynamic Function Dispatch via the MATLABval . .. .. .. @
1.6 The Organizationofthe Thesis . . . . . . .. .. ... ... ... ... B
Background: MATLAB, McVM and LLVM Compiler Framework lﬂ
2.1 MATLAB . . . . e D15
2.2 The McLab Virtual Machine . . . .. ... ... ... ... ....... E 1
2.2.1 Type Inference and Specialization . . . . ... ... .. ...
2.2.2 RunningaFunction. . . .. ... ... .. ... ... ... ... D 21
2.2.3 McJIT-Interpreter Interaction . . . . ... ... ........ B
2.3 The LLVM Compiler Framework . . . . . .. ... .. ... ... .... D 23
2.3.1 The Three-Phase Designof LLVM . . . . . .. .. .. ... .. D 23
2.3.2 Static Single Assignment (SSA)Form . . . . .. ... ... .. @
233 LLVMIR:Examples . . . . .. .. ... .. .. ... .. .. .. D28
2.3.4 LLVM Transformation and OptimizationPass . . . . . . .. .. Ed)
2.3.5 LLVMJIT ExecutionEngine . . . . . . ... ... ... ..... D 32
2.4 SUMMAIY . . . e e e e e e D 33
Copy Optimization in MATLAB @
3.1 Background . . . . . ... D 37
3.2 QuickCheck . .. .. ... . .. .. D 38
3.3 NecessaryCopy Analysis . . . . . .. .. .. . .. e B 4
3.31 Domain . . . ... D 40



3.4

3.5
3.6
3.7

3.8 Summary

3.3.2 Problem Definition . . . ... .. .. ..
3.3.3 FlowFunction .. ............
3.3.4 Initialization . . ... ..........
3.35 SimpleExample . .. ... ... ... ... . o
3.3.6 if-elseStatement . . .. ... ... ...
337 Loops .. ... . ... ...
Copy Placement Analysis . . . . . ... ....
3.4.1 Abstraction . . ... ...........
3.4.2 Statement Sequence . .. .. .....
3.4.3 if-elseStatements . ... ........
344 LOoOpS . . . . . . e

Using the Analyses
Name Resolution

ExperimentalResults . . . . ... ... .. ..

3.7.1 Dynamic Counts of Array Updates and Copies . . . . . .. ..

3.7.2
3.7.3

The Overhead of Dynamic Checks . .

Impactofour Analyses . . . .. .. ... .. ... .. ..... D 60

A Modular Approach to On-Stack Replacement in LLVM

4.1 OSR Classification
4.2 The OSR API

4.3

4.2.1 Adding the OSR Point Inserter . . . . .
4.2.2 Adding the OSR Transformation Pass
4.2.3 Initialization and Finalization . . . . . .
Implementation
4.3.1 Implementation Challenges . ... ..
432 OSRPoint .. ... ... ..
433 TheOSRPass .............
43.3.1 SavinglLiveValues ... ................
4.3.4 Restoration of State and Recompilation

iX



4.3.41 RestorationofState . ... ..............

4.3.4.2 Recompilation . . ... .. ... ... ... ...

4.3.5 Inlining Support . . . .. ...
4.4 SUMMANY . . . . o e e e e e e e e e e

Selective Dynamic Inlining in McVM

5.1 The McJIT dynamicinliner . . . . . . ... ... .. ... .......

5.2 Symbol Environment Simplification . . . . ... ... ... ... ...

5.3 ExperimentalResults . . . . . .. ... ... ... L.
5.3.1 Costof Code Instrumentatonand OSR . . . . .. ... ...
5.3.2 Effectiveness of Selective Inlining WithOSR . . . . . ... ..

54 Summary . . ... e e e e e

Dynamic Function Evaluation with f eval
6.1 Motivationand Problem . . . ... .. ... ... o oo
6.2 Summary . . . . ... e

OSR-Based eval Specialization

7.1 feval InMcCVM . . . . . ...
7.1.1 OSRBackground . . ... . ... ... ... ... .......

7.2 OSR-Baseteval Transformation . .. .. ...............
7.2.1 feval Optimization Goals and Strategy . . . . .. ... ...
7.2.2 Dispatcher Call Site Annotation . . . . .. .. .........
7.2.3 OSRInstrumentation . . . . ... ... .. ... . .......
7.2.4 OSR Triggering and Runtime Transformation . . . . . . . ....
7.25 RuntmeGuards . . ... ... . ... ... ..
7.2.6 Resuming Execution after an OSR is Triggered . . . . . . ..

7.3 ExperimentalResults . . . ... ... ... ... .. .. . .

T4 SUMMANY . . . . o e

JIT Value-Based Specialization
8.1 JIT Code Specialization . . . . . . . .. .. ... . ... ... .....



8.1.1 Functions of the Dispatcher . . . .. .. ... ... ......
8.1.2 General Dispatcher . . . . ... ... .. ... ... ... ..
8.2 ExperimentalResults . . . ... ... ... ... ... L.
8.2.1 JIT value-based-specialization approach . . . . . . ... ...

8.2.2 A comparison of the OSR-based and JIT value-based-

specializationapproaches . . . . . . .. ... .. ... ... ..
8.3 Summary . .. ...

9 Related Work
9.1 CopyOptimization . . .. ... .. ... ..
9.2 On-Stack Replacement . . . .. ... .. ... . ... ........
9.3 Selective Dynamiclnlining . . . . . .. . ... ... ... ..
9.4 OSR-Baseteval Specialization . . . ... ... ... .. .......
9.5 JIT Value-Based Specialization . . . . .. ... ... ... ... ...

10 Conclusions and Future Work
10.1 Future Work . . . . . . . . e

A Relevant McVM compilation flags

B Copy optimization aspect

Xi

D143

14

| a7
14

151
|:|153

168



Xii



11
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
3.1
4.1
4.2
4.3
4.4
4.5
5.1
5.2

5.3
5.4

Listings

A while loopwitharfeval call. . ... .. ... ... .......... D9
A matrix multiplication MATLAB function. . . . . .. .. ... ..... E(’B
A matrix multiplicationdriver. . . . . . ... ... oo E‘l’

A matrix multiplication driver using MATLAB “*” operata . . . . . . .. r
A MATLAB function with anif-elsestatement. . . . . . ... .. .. .. D26
A simple MATLAB function. . . . . . .. ... .. ... .. ....... BZ
LLVM IR foraddDoubles . . . . . . . .. .. ... ... DS
A naive implementation ofest (Listing[2.4) in LLVMIR. . . . ... ... s
A more optimized implementation t#st(Listing[2.4) in LLVM IR. . . . . E&)
An example ofafunctionpass. . . . .. ... ... ... ........ E
Creating a JIT executionengine. . . . . . . . . . . . ...« iuns E:L

A MATLAB function (tridisolve). . . . . . . . . .. ... ... ... ... BZ
Acodetransformer. . . . . ... L J] 7
Sample code for insertingan OSR point. . . . . . ... .. .. .. .. . B
The OSR Passinterface. . . . .. ... ... ... ... ........ B 7
Initialization and Finalization in the JITimainfunction. . . . . . . . . .. BZ
OSRinstrumentation. . . . . . . . . . .. ... . ... E
Theinnerlooposim anl. . . . .. ... ... ... ... ......... [bl
LLVM code forsim anl entry basic block. (We show only the most rele-
vantinstructions.) . . . . . . . . . .. D 92
Functiormu inv. . . . . . . . . . . . . D92
McJIT generated LLVM codefonu inv. . . . . ... .. ... ...... BB

Xiii



6.1 Newton’s method to find a root of the scalar equation f(X), =adapted

from [Rec00&, RecO0b]. Functidr3nis shown in Listing 6.2. . . . . .. 5
6.2 Functiorix3nfrom [Rec008,Rec00b]. . . . . . .. ... .. .. .... l.__._[105
7.1 LLVM code generatedfordeval call. . .. .. ... ......... |.__:L.‘l4
7.2 whileloop extracted from (Listing6l1). . ... ... ... ....... Ell
8.1 TheodeRK4benchmark (from[[Rec00a,Rec00b]). . ... ... .. .. D 140

Xiv



2.1

2.2

2.3
2.4

2.5

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

List of Figures

Overview of the McLAB project (shaded boxes are contitms of this

thesis). . . . . . . e D 19
The main components of McVM (adapted from [CB09]). The sldazbm-
ponents are parts of the research work presented in thisthes. . . . . . Eb
Running a functionin McVM. . . . . . . .. ... ... .. D 22

Three-phase Design of LLVM (adapted frorhe Architecture of Open
SourceBW11]). To implement the MATLAB language in LLVM, a MAT-

LAB front-end must be implemented. . . . . . ... ... .. ...... D 2
A CFG for functiontest is shown in (a); an equivalent CFG for the function
in SSAformisshownin(b). . ... .. .. ... ... ... ....... D 26

A simplified overview of McJIT (shaded boxes correspanthe analyses
presented inthischapter). . . . . . . .. .. ... ... L.
The total bytes of array data copied by the benchmarkeruting three

OPtiONS. . . . . . e D 60
OSRclassification. . . . . .. .. .. ... .. ... .. .. ... B 6
Retrofitting an existing JIT with OSR support. . . . . . . . .. .. ... Eé

A CFGofaloopwithno OSR points. . . . ... .. ... ........ D 75
The CFG of the loop in Figufe 4.3 after inserting an OSRtpoin. . . . . E&S
The transformed CFG of the loop in Figlrel4.4 after runtiegOSR Pass. [’77
State managementcycle. . . . . . . ... o .

A CFG of aloop of a running function before inserting thediks for state
FECOVEIY. . . o o o i e e e e e e e e D 81



4.8

5.1

7.1
7.2
7.3

7.4

8.1

The CFG of the loop represented by Figuré 4.7 after imggttie state

recoveryblocks. . . . . . . ... L 82
A loop nest showing the placement of OSR points using tbgest or
outer-moststrategy. . . . . . . ... e D 89
A CFG for the MATLABwhileloop in Figurd Z.R2. . ... ... .. ... HlQ
The CFG ofaloopwithan OSR point. . . . . . . ... ... ... ... @ 1

Actions of the code transformer. Basic bld@BBin (a) is split into two.

The result of the splitting process is shown in (b). In (BB is split

into NBBand CONTBB A new unlinked basic block namedBB is also
generatedCBB contains a call to the new compiled functiof)(. . . . . . E]l
Actions of the code Transformer. Two new basic blockehmeen inserted

into the CFG:CBB contains a call to the compiled functiofi)( andMBB
merges the results from the call @BB and the original call to the dis-
patcherinNBB. . . . . . . . . . . ... . HZl

feval Runtime Code Specialization. . . . .. ... .......... D 132

XVi



11

3.1
3.2
3.3
3.4
3.5
3.6
3.7

5.1
5.2
5.3

6.1
6.2
6.3

7.1
7.2
7.3

8.1

List of Tables

Some characteristics of MATLAB programs . . . . . . . . . . . ... B
Forward Analysis result faxamplel . . . .. ... ... ... ...... DS
Necessary Copy and Copy Placement Analyseeft8 . . . . .. .. .. Eb
Necessary Copy AnalysisResult. . . . . . .. ... ... ........ B
Copy Placement Analysis Result tadisolve. . . . . . .. .. ... ... B4
....................................... | |s7
Overhead of DynamicChecks. . . . . .. .. ... .. ... ...... B 5
Benchmarks against the total execution times inseconds. . . . . . . .
The benchmarks. . . . . . . . . . . . . . . . D 95
OSROverhead. . . . . . . . . . . . . D 97
Dynamic inlining using OSR (lower execution ratio isteet . . . . . . . BB
feval benchmarks. . . . .. . . . . . . . ... DlO?
Interpreterfeval overheads as compared to direct and inlined calls. D 109
JIT:feval overheads as compared to direct and inlined calls. . . . . m 1
Guard truth table (a “*” denotes an impossible result).... . . . . . .. E‘S
Overall results for OSR-based optimitimzation in McVMJl . . . . . . . @7
Types of the runtime guards used by each benchmark. . ........ . @

Comparing Value-based specialization to OSR-based aridwded . . BQ

XVii



xviii



List of Abbreviations

AST abstract syntax tree

CFG control flow graph

IR intermediate representation
JIT just-in-time

JVM Java virtual machine
OSR on-stack replacement
RC reference-counting

SSA static single assignment

VM virtual machine

XiX



XX



Chapter 1
Introduction

Almost anyone using a computing device today has used aarogritten in a dy-
namic language. A large proportion of Internet applicatiane developed with dynamic
languages. JavaScript, Perl, PHP, Python, Ruby, amiLMB®H are some of the widely
used dynamic languages. They shared a common propertyatieeglynamically typed.
Their dynamic nature contributes to their appeal. But it @aotributes to their compila-
tion difficulty. Thus, they are mostly interpreted, and peogs written in any of them often
run slower than those written in a static language such as C.

The MATLAB programming language is a dynamic array-basedulaage that is pop-
ular among engineers and scientists. It was designed fdristaqated matrix and vector
operations, which are common in scientific applicationse WMATLAB programming lan-
guage is an important language with a simple syntax. It isgpesed in different computing
domains. By the year 2004, the number of MATLAB users had ed@gene million. Fur-
ther, much like the way transistor growth in microprocestsign has obeyed the famous
Moore’s law [M0065], the number of users of the MATLAB lang@edoubled about every
two years between 1984 and 2004, and continues to increase.

The dynamic nature of the MATLAB language, together withsitsiple syntax, aids
rapid software development by helping programmers to reabout their programs. The
combination, however, poses serious compilation and pedoce challenges. Dynamic

1. http://www.mathworks.com/products/pfo/.
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language features such as dynamic function loading cabgesampiler to delay most
optimizations until run time. This increases runtime oestth

Traditional implementations of the MATLAB programming uage are based on in-
terpreters|[gnul2, TheD2]. They are generally consideydgettoo slow for long-running
MATLAB programs. Recently, researchers and developers baea developing virtual
machines and just-in-time compilers [AP02, Thé02,CB09, CBHVWdhe MATLAB lan-
guage. There remain, however, important compilation ehgks. Although the dynamic
nature of the MATLAB language provides challenges to ruetioptimizations, it also
presents great opportunities. For example, the runtimawetr of a MATLAB program
can be observed to discover opportunities for optimizagiod an on-the-fly optimizer can
dynamically apply suitable optimizations that benefit friiva identified opportunities.

This thesis is about the development of a collection of neeethniques for on-the-fly
transformations and optimizations in JIT compilers for WATLAB language. We show
how to use runtime information about program behaviour fapsut transformations and
optimizations that can improve the performance of virtuathines and JIT compilers for
the MATLAB programming language.

We begin this chapter of the thesis with an introduction toual machines and JIT
compilers. Later, we briefly review a study that further maties our research work. We
then highlight the challenges and our solutions that addties challenges. Further, we
summarize our main research contributions. We concludeltapter with the organization
of the remaining chapters of the thesis.

1.1 Virtual Machines

The increasing growth of the Internet is driving a growingenest in virtualization
among hardware designers, operating system designeggapiming language design-
ers, and compiler writers. In many systems, virtualizati@s helped to achieve cross-
platform independence, inter-operability (i.e., highdlanguage independence), security,
and cross-platform performance. In the past, the main @b for building virtual ma-
chines was to run different operating systems on sharedvaaed This was necessary to

2



1.1. Virtual Machines

support different computational needs of different grotipsers on shared hardware.

Virtual machines provided a transformation of the singkerface of a computer sys-
tem into manyvirtual interfaces|[Gol73, PG74]. Each interface behaves like aptet®
computer system that is composed of an operating systemugpdd many simultaneous
user processes. Hence, they are cadlgstenvirtual machines [SNO5].

A processvirtual machine supports only a single process. Virtual mvaes for high-
level languages (e.g., McVM, JVM [LY99], and CLR [Int13]) gveocess virtual machines.
They are typically designed to provide platform indepergeby reconciling differences
in architectures and operating systems. In this thesis,re&@ncerned only with imple-
mentations of process virtual machines.

A system’s interface is specified by its instruction set decture (ISA). Virtual ma-
chines are implemented by emulating the instruction setef system — thesource—
on a machine with a different instruction set — tiaeget A process virtual machine pro-
vides a machine-independent interface that is similar wra@ntional machine instruction
set architecture. The ISA of a virtual machine is calleduattinstruction set architecture
(V-ISA).

Many V-ISAs have been designédkcodelNAJ " 75] is a V-ISA for the Pascal machine;
similarly, Java byte codets a V-ISA for the Java virtual machine. Microsoft intermeie
language (MSIL) (or common intermediate language (CLI) facidsoft's common lan-
guage infrastructure (CLI)) [Int13] and LLVM [LAQ4] are mogeneral V-ISAs.

The virtual instruction set of a virtual machine can be ipteted or compiled. This
thesis concentrates on JIT compilation techniques.

1.1.1 JIT Compilation

Compilation concerns the translation of one language inthean language. A spe-
cial translation technique used in implementing virtuathiaes is the JIT (Just-In-Time)
compilation technique. JIT compilation is an old technigevas developed in response
to the performance challenges of the interpretation tegles used in implementing virtual
machines.
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Instead of interpreting virtual instructions, some blooksode are now compiled just
before they are executed. Thus repeated execution of the sade requires no further
interpretation or compilation. This approach combinesh@eefits of static compilation:
compiled code generally runs faster than interpreted dbdéso brings the benefits of in-
terpretation because the compilation process can ber@fitsemantic and runtime infor-
mation. According to Aycock [Ayc(03], McCarthy’s paper on BfMcC60] is the first pub-
lished work on JIT compilation. Several techniques for Jdmpilation of object-oriented
languages were developed in several implementations ofitatkgGR83/DS844, Kay93],
SELF [Cha9?], and, more recently, in many implementationdada virtual machines
[ATCL 98, YMP"99|Kra98, CLS00, PVC01, SOK4,AABT05].

Some virtual machines have interpreters and JIT complensie other VMs begin with
a base-line compiler and recompile methods or functionis a/inore optimizing compiler
after identifying some frequently executed methods or aedens — thehot spots. The
optimizing compiler often performs a range of optimizaipmcluding, traditional opti-
mizations such as register allocation, inlining, commoh-sxpression elimination, and
other runtime optimization tailored to exploit some rel@vauntime information.

McVM [CBHV10] is a recent virtual machine developed for the MAdB language.
It has a basic interpreter and an optimizing JIT compilet thaupported by the LLVM
[LAO4] compiler framework. We introduce the MATLAB languagMcVM and LLVM in
Chaptef 2.

1.2 Motivation

Over the years, numerous MATLAB programs have been develapsolve a variety of
problems in different domains, in particular the numere@hputing domain. To gain some
insight into the way different MATLAB programmers use thatigres of the MATLAB
language, a study of MATLAB programs is necessary. This élp in the identification
of the important features in MATLAB programs; further, it ynalso reveal some major
sources of overhead. In this section, we describe a stucjuoted on a large collection of
MATLAB programs.



1.3. Challenges

1.2.1 Characteristics of MATLAB Programs

To discover the common characteristics of MATLAB programis,conducted a study
of a large collection of MATLAB programQ.The result of this study is shown in Tallell1.1.
Out of 12,946 functions in 3,114 files examined, 31% (3,9%tain loops; 41% (4,356)
of the loops contain conditional statements while 62% (6)&8 the loops have function
calls. About 95% (12,270) of the functions have one or mopelfiparameters while 54%
(6,954) have one or more output parameters.

The results of this study provide a guide to the identificatd key optimizations that
address many of the compilation and performance challengeMATLAB compiler. we
examine the challenges and opportunities in MATLAB progsamthe next section.

Property H Count ‘
Number of files 3,114
Number of functions 12,946
Number of functions with input parameters 12,270
Number of functions with output parameters 6,954
Number of functions with both input and output parametgers6,664
Number of functions with loops 3,992
Number of loops 10,726
Number of loops with conditionals 4,356
Number of loops with calls 6,681

Table 1.1 — Some characteristics of MATLAB programs

1.3 Challenges

A typical MATLAB program operates on large arrays. Althoughny of these opera-
tions are difficult to compile efficiently, static and dynamptimization opportunities exist.

2. These MATLAB programs were collected from a variety of rees, including those from:
http://www.mathworks.com/matlabcentral/fileexchange b
http://people.sc.tsu.edu/ ~ Jburkardt/m_src/m_src.html b
http://www.csse.uwa.edu.au/ ~ pk/Research/MatlabFns/ and

http://www.mathtools.net/ MATLAB/.


http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/.
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In this section, we highlight some performance challengesaptimization opportunities
in MATLAB programs.

1.3.1 Challenge 1: Copy Semantics

The use of copy semantics for array assignments, for paesupassing and for return-
ing values from a function is one of the cases where the sisgbeantics of the MAT-
LAB language helps the programmer to reason about the cadertwvides performance
challenges. Assignment statements in the MATLAB prograngniénguage have different
forms, for example:

a = zerogl0); (1.1)
b = a; (1.2)
¢ = myfunca,b); (1.3)

A naive implementation of the copy semantics for stateniedts 1.3 above would involve
making a copy at every assignment statement. Thus, in statéinl, the object (a 10 x
10 matrix) allocated by functiomeroswould be copied into variable. The MATLAB
language defines a number of memory allocation functiondasito zeros In statement
1.2, arraya would be copied into variablé. In statemenf 113, the argumentandb in
the call to functionmyfuncwould be copied into their corresponding parameters of the
function; the return value ahyfuncwould also copied into variable

With this naive strategy a copy must be generated when: ljiabla is defined from
an existing object; 2) a parameter is passed from one funtbi@nother; and 3) a value
is returned from a function. Obviously, this is inefficieAtmore advanced implementa-
tion can detect opportunities to convert copy-by-valuedpyeby-reference, and similarly,
convert call-by-value to call-by-reference.

The results in Table_1l.1 shows that most MATLAB functionsénane or more input
and/or output parameters. This suggests that in a naiveemgitation, array copying is
potentially a major generator of runtime overhead.

6
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Existing MATLAB systems rely on reference-counting scherteecreate copies only
when a shared array representation is updated. This reduegscopies, but increases the
number of runtime checks.

In addition, reference-counting schemes incur overhelus approach requires space
for storing a reference count for each array object and sfracie code that keeps the
reference counts updated. Keeping the reference countgagpdlso generates execution
time overhead. Hence, adding a reference-counting schemgdrbage-collected runtime
system will have a negative effect on performance.

Because copying large arrays affects performance, an efficrgplementation of ar-
ray copy semantics in MATLAB is a key optimization for imping the performance of
MATLAB programs.

1.3.2 Challenge 2: Function Calls in Loops

The results of the study of MATLAB programs (Talble]1.1) rewbat MATLAB pro-
grams often contain loops. This is not surprising becaus@M¥B is an array-based lan-
guage and loops are typically used to express repetitiveatipas on arrays. It was also
found that a significant proportion of the loops studied Havetion calls. Based of these
results, we can predict that the called functions in thospdaare frequently executed. If
this happens, it will result in excessive function call dweads. Besides, function calls gen-
erally disrupt optimizations, forcing many analyses amehsformations to be necessarily
conservative. It is also hard to vectorize a loop that castéunction calls.

An important optimization technique for eliminating fuiwet call and return overheads
is function inlining or inline expansion. Inlining optimation involves replacing a call in-
struction at a call site with the body of the called functigmlining of call sites that are
frequently executed can lead to an improved performancearAexample, consider the
following code snippet.
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n = 10000;
for i=1:n

compute(i) % a potentially hot call

N o b~ W NP

end

The call of functioncomputein line 5 can prevent loop optimizations such as vectoriza-
tion. By first inlining compute however, we increase the opportunity for vectorizatiod an
increase the scope for the traditional compiler optimaadi Also, ifcomputeis a straight-
line code, the loop computation can be performed on a GPUchaklenge therefore is to
dynamically identify and inline the most critical call stéhat can lead to a performance
improvement.

1.3.3 Challenge 3: Dynamic Function Evaluation ( feval)

The problem with the dynamic function evaluation feaal is related to Challenge 2.
An important feature of the MATLAB programming languagetgssupport of higher-order
functions through théeval construct, which is widely used in many classes of humeri-
cal computations, including fitting functions, estimati@gdinary Differential Equations
(ODE), machine learning algorithms such as simulated dmggaand general plotting
functions. All of these applications share a similar patt¢he main computation func-
tion has a function parameter that can accept either a umbtandle, or a function name
as the actual argument. The body of the computation funttien repeatedly evaluates the
function passed in usingval

However, dynamic function evaluation viaval calls within a frequently executed
loop can incur high runtime overhead. Tfeval call is often interpreted because the
function to be evaluated is generally unknown at the cortipitatime. This can be very
slow. Besides, function evaluation viaval built-in prevents important optimizations
such as inlining that can increase the scope for other madgional compiler optimiza-
tions such as the common sub-expression elimination (C3t.challenge therefore is
to determine the overhead fdval and to develop runtime optimization techniques for
reducing or eliminating the overhead, and thus improvegoerance.

8
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Listing 1.1 — A while loop with arfeval call.

while k < maxit

1

2 k =k + 1;

3 [f,dfdx] = feval(fun,x); %Returns f( x(k-1)) and f'(x(k-1))
4 dx = f/dfdx;

5 X =X — dx;

6 if ((abygf) <feps )| ( abgdx) < xeps) )
7 r =x;

8 return ;

9 end

10 end

11 end

Listing[1.1 shows a MATLAB code snippet from Gerald ReckteliigaRec00a] im-
plementation of Newton’s method for finding the root of a panial. The code snippet
contains a loop with afleval call. The first argument to thieval call, that is,fun
contains the name or a handle to the function thatféval call evaluates at run time.
An optimization opportunity exists: becaui is a loop constant, then tHeval call
will evaluate the same function at every iteration of theploBeplacing thdeval call
with a direct call to the function held by varialfien can lead to a significant performance
improvement.

In the next section, we provide an overview of the technighaswe have developed
to overcome these challenges. We describe the techniquaesaitin chapters|3 -H8.

1.4 Solution Overview

The foregoing challenges have been resolved in this thggigeloping suitable opti-
mization techniques as an extension to McJIT, the McVM Jlimpiter [CBO9, CBHV10].
Three major optimization opportunities that have beentiled and addressed are:

1. array copying at assignments and input or output pararpassing;
2. a high number of loops, and a high proportion of loops witiction calls;

3. repeated evaluation of a fixed target function byewal call.

9
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1.4.1 Copy Optimization

To harness the first optimization opportunity, we develogedpproach that is based
on JIT-time static flow analysis. It is a staged static anslgpproach that does not require
reference counts, thus enabling a garbage-collectedaVimachine. It eliminates both un-
needed array copies and does not require frequent runtiseksh

The first stage combines two simple, yet fast, intraprocadarward analyses to elim-
inate unnecessary copies: the fikgtitten parameteranalysis determines the parameters
thatmaybe modified by a function while the secomopy replacemeranalysis determines
if all the uses of a copy variable can be replaced by the alga that the copy statement
defining the copy can be eliminated.

The second stage is comprised of two analyses that togegtennaine whether a copy
should be performed before an array is updated: the fiestessary copy analysis a
forward flow analysis and determines the program points /heray copies are required
while the secondgopy placement analysiss a backward analysis that finds the optimal
points to place copies, which also guarantee safe arraytesad@/e return to copy opti-
mization analyses in Chapfer 3.

1.4.2 On-Stack-Replacement (OSR) Support

To ensure that a function that is in the middle of an executi@am be optimized at a
higher optimization level, the dynamic optimizations Highted below must be supported
by an on-stack replacement capability. Unfortunately, énsv, LLVM does not support
on-stack replacement.

So, we implemented OSR for LLVM. We decided to design and ldgva modular
approach to implementing on-stack replacement in LLVM as$ plathe research work of
this thesis.

Apart from being useful for the techniques developed in tesis, the modular OSR
implementation will allow developers building JIT comp#en LLVM to develop runtime
optimizations that can improve the performance of their ddmpilers. We discuss the
modular OSR approach in Chapiér 4.

10
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1.4.3 Selective Dynamic Inlining of Function Calls in Loops

To exploit the second optimization opportunity, we develdpelective inlining of func-
tions at call sites located in frequently executed loop galthe call sites of interest are
annotated at JIT compilation time. They are considerednianing at run time if the loop
iteration count exceeds a pre-set threshold. This optiizas supported by a novel on-
stack replacement technique. On-stack replacement igosedtinue the execution of the
interrupted loop after the inlining. We describe our sédectlynamic inlining in detail in
Chaptefb.

1.4.4 feval Call Specialization

To exploit the third optimization opportunity, we proposatd developed two on-the-
fly mechanisms for specialization &val calls. The two approaches aim at replacing
feval calls with direct calls to théeval target function. Thus, eliminating interpreter
overhead and allowing an optimization of both the targetfiem and the calling function.

The first approach specializes calls of functions Wétal using a combination of
runtime input argument types and values. The second afgpress on-stack replacement
technology, as supported by McVM/McOERThese two specialization approaches are
described in detail in chapters 1 8.

1.5 Research Contributions

We have designed and developed several techniques thatcaseld to improve the
performance of virtual machines and JIT compilers for theTMAB programming lan-
guage. Our techniques can also be used to improve the imptations of other similar
dynamic languages. To the best of our knowledge, we are renteaoi¥ similar work for the
MATLAB language. We highlight our main contributions below

3. www.sable.mcgill.ca/mclab/mcosr.
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1.5.1 Copy Optimization in McVM

Copy elimination optimization: We designed and implemented a novel copy optimiza-
tion technique, supported by our four new flow analyses, ficieftly implement
array copy semantics in a MATLAB JIT Compiler. Our approachkugable for im-
plementing array copy semantics in a garbage-collectédaltimachine.

Experimental measurements of overheadsWe conducted experiments to demonstrate
the behaviour of reference-counting approaches and toureetiee overhead associ-
ated with dynamic checks in a reference-counting approach.

Experimental measurements of impact: We showed that for our benchmark set, our JIT
compilation-time static approach finds the needed numbeopies, without intro-
ducing any dynamic checks.

1.5.2 Modular On-Stack Replacement in LLVM

Modular OSR in LLVM: We have designed and implemented OSR for LLVM. Our ap-
proach provides a clean API for JIT compiler writers using/M.and clean imple-
mentation of that API, which integrates seamlessly withdtamdard LLVM distri-
bution and that should be useful for a wide variety of appiice of OSR.

Integrating OSR with inlining in LLVM:  We show how we handle the case where the
LLVM inliner inlines a function that contains OSR points.

Experimental measurements of overheadsWe have performed a variety of measure-
ments on a set of MATLAB benchmarks. We have measured théneads of OSR.
This shows that the overheads are usually acceptable.

1.5.3 Selective Dynamic Inlining

Using OSR in McJIT for selective dynamic inlining: In order to demonstrate the effec-
tiveness of our OSR module, we have implemented an OSR-bagseanit inliner
that will inline function calls within dynamically hot lodpodies. This has been com-
pletely implemented in McVM/McJIT. We also designed two Ofdint placement
strategies for inserting an OSR point into a loop within gloest.

12
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Experimental measurements of benefitsWe have performed a variety of measurements
on a set MATLAB benchmarks. We have measured the benefitdauitse dynamic
inlining. This shows dynamic inlining can result in perfante improvements.

1.5.4 Dynamic Function Dispatch via the MATLAB  f eval

Measuring the cost off eval : We evaluated the overheadsfeffal and show signifi-
cant overheads for calls viaval for important classes of benchmarks.

OSR-based specialization of eval : We developed a general technique to detect and in-
strument importanteval sites with OSR points, and we designed an OSR-based
transformation which can be done at the LLVM IR-level, withoequiring access
to the generated assembly code. We also designed appeofifiatime tests to opti-
mize the guards required to determine if the specializeldcoald be made or if the
general backup path should be taken.

JIT value-based specialization: We designed an extension to the McVM JIT specializa-
tion mechanism. Previously specialization was perfornaesd only on the dynamic
typesof function arguments. In the new approach, we also speeial thevalue of
a function argument, for the case where that argument isas#te first argument to
a call tofeval inside the body of the function to be compiled.

Implementation in McVM/ McOSR We implemented the two approaches in McVM.
Our implementation is open source.

Experimental results: We evaluated the OSR-based specialization and JIT valesbas
specialization approaches on a set of benchmarks. We alspared the perfor-
mance of the OSR-based specialization approach with thdteodT value-based
specialization approach (Chapiér 7).

1.6 The Organization of the Thesis

This thesis is divided into five parts. The first part cons@t<hapte 2, where we
provide the necessary background to the research workideddater in the thesis.

13
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The second part consists of Chapter 3. There, we describgpuvach to an efficient
implementation of array-copy semantics in MATLAB. We alsgaliss our experimen-
tal results that show significant overhead for dynamic checkeference-counting-based
implementations, and the experimental results that detradasthe effectiveness of our
approach.

The third part is comprised of Chapféer 4 and Chalpter 5. In Chdptee describe our
implementation of OSR in LLVM. In Chaptér 5, we describe ouplementation of selec-
tive dynamic inlining that is based on the OSR approach. \&fe firesent the results of our
experiments that measure the overhead of OSR over a setdfranks. We also discuss
the experimental results that show the benefits of the OSRBestgul selective dynamic
inlining.

The fourth part is comprised of Chaplér 6, Chapter 7, and Ch8ptarChaptef 6, we
motivate the need for afeval call specialization. In particular, we describe our experi
mental results that show significant overheadséoal call implementations in several
interpreters and JIT compilers for the MATLAB programmiranguage. In Chaptér 7,
we describe our first specialization approach — the OSR-bi@sedl specialization ap-
proach. In Chaptdrl 8, we describe the second approach — thalll@-based specializa-
tion approach.

The last part consists of Chapfér 9 and Chaptér 10. We revieve selated work in
Chaptel 9. We conclude the thesis and highlight the direétiofuture work in Chaptdr 10.

14



Chapter 2
Background: MATLAB, McVM and LLVM
Compiler Framework

The research work presented in this thesis is based on semxdsting systems.
MATLAB® system is a proprietary implementation of the MATLAB pragraing language
by MathWork?.H Throughout the thesis, the term MATLAB may refer to the Matrk¢’
implementation of the MATLAB programming language or the MAB programming
language. It will be clear from the context which meaningas referred to. The research
was conducted within the McLAB virtual machine, McVM_[CB09, CBH¥], which is
supported by the LLVM compiler framework [LAO4].

To aid the understanding of the work described later in tlesith) we briefly intro-
duce the MATLAB programming language. We then describe McAid its JIT compiler,
McJIT. We conclude the chapter with an introduction to th&/M.compiler framework,
with a special focus on the JIT compiler toolkit of the franoeku

2.1 MATLAB

The MATLAB system includes an interactive computing enmireent. A MATLAB
user types a command and the MATLAB system evaluates the emtintsers can also

1. http://www.mathworks.com/products/pfo/.
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invoke a MATLAB file from the interactive environment. A fil@ataining valid MATLAB
code is called an M-file. MATLAB accepts two kinds of M-filecriptsandfunctions

A script is a sequence of MATLAB statements or commands; &sdeot accept any
arguments and does not return any values. A script operaiefata in the MATLAB
workspace. For the purpose of the discussions in this thesishall concentrate on MAT-
LAB functions and will not discuss MATLAB scripts further. dfe information on MAT-
LAB scripts can be found in numerous MATLAB books, includitige Matlab 7 Getting
Started Guide [Mat09a].

A MATLAB function can accept zero or more arguments and camrnezero or more
values. Variables defined in a function are internal to tnefion.

MATLAB is a dynamically typed language. This means that thetime value of a
variable determines the type of the variable. Lisfind 2.dwsha MATLAB function that
computes the product of two matrices.

Listing 2.1 — A matrix multiplication MATLAB function.
1 function ¢ = matrixmul(a, b)

2 [m, n] = size(a);

s [n1, p] = size(b);

4 if (n ~=nl)

5 error ('Non conforming matrices' );
s end

7 € =zerogm, p);

s for i=1:m

9 for j=1.p

10 for k=1:n

1 c(i,j) =c(i,j) +a(i,k) = b(k,j);
12 end

13 end

1 end

15 end
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Listing 2.2 — A matrix multiplication driver.
function matrixmul_driver ()

1

2 N =10:;

s a =rand(N, N);

4+ b =rand(N, N);

5 € = matrixmul(a, b);
s disp(c);

7 end

As shown in Listindg 2,11, a function in MATLAB begins with thekwordfunction and
ends with another keyworehd.H MATLAB considers an array access as a mapping from
the index type to the array element type. Thus, MATLAB usesiatal syntax for array
accesses and function calls. As will be shown later in theishgSectiori 316), using the
same syntax for both array accesses and function calls cexase compilation difficulties.

Listing 2.3 — A matrix multiplication driver using MATLAB “* opera-

tor.
1 function simple_matrixmul_driver()
2 N=10;
3 a =rand(N, N);
4+ b =rand(N, N);
5 C=axb;
e disp(c);
7 end

As mentioned earlier, MATLAB is an array-based languagegiesi for sophisti-
cated vector and matrix operations. Therefore, funatiatrixmul_driverin Listing[2.2 and
simple_matrixmul_driver in Listing [2.3 are semantically equivalent MATLAB programs
Functionrand is a memory-allocating MATLAB built-in function. The staai MATLAB
library defines several thousand MATLAB built-in functions

Functionmatrixmul shown in Listing 2.lL accepts two parameters and returnsueyval
MATLAB uses call-by-value semantics for passing paransefénus, MATLAB functions
do not have side-effects due to writing parameters and l@@bles.

2. In certain cases, the keywoethd at the end of a function may be omitted.
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Function Handles Itis possible to create a handle to a MATLAB function. Acdogl
to the MATLAB 7 Getting Started Guidé [Mat09a], a functiomide is typically passed as
an argument to other functions that can evaluate or exekbatiinction referenced by the
function handle variable. The following code snippet cesat function handle to built-in
functiontan.

fh = @tan;

A MATLAB function can be called using its name or via a functibandle. For exam-
ple, fh (60); calls the MATLAB built-in functiontan passing 60 to it as an argument.

2.2 The McLab Virtual Machine

McVM is a virtual machine for the MATLAB programming languaglt is a key
component of the McLAB framework [micl]. Figute 2.1 shows thain components of
the McLAB project. The McLAB framework is comprised of an emsible front-end, a
high-level analysis and transformation engine and five adk. Currently there is support
for the core MATLAB language and also a complete extensigpstting ASPECTMAT-
LAB [ADDH10]. The front-end and the extensions are built usingtdexer|[[CH11], and
JastAdd [EHOF]. There are five backends: McFor, a FORTRAN apateerator[[Li09];
Mc2For, a new FORTRAN code generator [mc213]; MiX10, an X1®{[K] code gener-
ator; a MATLAB generator (to use McLAB as a source-to-sowampiler); and McVM,
a virtual machine that includes a simple interpreter andoaisticated type-specialization-
based JIT compiler, named McJIT, which generates LLVM [LPOdde.

In Figure[2.2, we show the main components of McVM. McVM hadTacbmpiler
and an interpreter. As shown in the figure, the VM is suppabted number of analyses,
including, live variable array bounds check eliminatiotype inferencendcopy elimina-
tion analyses. The copy analyses (Chapier 3), OSR library (Chdjpteilynamic inliner
(Chaptei b)feval optimization logic (Chaptdr|6, Chapfer 7, and Chapter 8) arts jodr
the research contributions of this thesis.

McVM is also supported by Boehm garbage collector [BS07], aveal numerical li-
braries|[ABB"99/WPDO01]. It supports most MATLAB data types, includingitea) arrays,
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Figure 2.1 — Overview of the McLAB project (shaded boxes argributions of this thesis).
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Figure 2.2 — The main components of McVM (adapted from [CBOBie shaded compo-
nents are parts of the research work presented in this thesis
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double-precision floating points, double-precision cawrptumber matrices, cell arrays
and function handles.

2.2.1 Type Inference and Specialization

McVM is supported by a type-inference engine. It is a key @enfance driver for the
McVM JIT compiler. The type information provided by the iné@ce engine is used by
McJIT for function specialization.

The type inference is a forward analysis that propagatesdoh variable, the set of
possible types through every branch of a function. Vargloien have different types at
different points in a function.

The type inference assumes that for each input argumensethaf possible types are
known. Given the initial types, it infers, at each progranmpdhe set of possible types for
a variable. The analysis may generate different resultedoh function depending on the
input arguments passed in to the function during a call.

McJIT specializes code based on the function argument ti@#soccur at run time.
When a function is called the VM checks to see if it already haerapiled version cor-
responding to the current argument types. If it does nopjlias a sequence of analyses
including the live variable analysis and type inferencesiidually, it generates LLVM code
for the current version. Next, we discuss how McVM executasex function.

2.2.2 Running a Function

McVM uses the McLAB front-end to parse the input MATLAB comnais and source
files (mfileg. The McLAB front-end sends its output to McVM as an XML file siring.
McVM then creates an abstract syntax tree (AST) for the soaodle from the XML file
or code string.

In Figure[2.8, we illustrate how McVM, with its JIT compilenabled, executes a user-
defined function. When a function is called with argumentsarhs data type, as shown
in the figure, the VM checks whether a compiled code versiahtiatches the argument
types exists in the code cache. If a matching version is foddrectly executes the code.
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Figure 2.3 — Running a function in McVM.

Otherwise, it checks whether a McVM AST has been createdhferfunction and pro-
ceeds to perform a series of analyses and transformatiotisediR (McVM AST). Then
it produces LLVM code, which is then passed to the LLVM codeeagator to produce the
machine code for the function. The address of the generadethime code is stored in the
code cache.

If McVM IR has not been created for the function, the souragecis loaded and passed
to the McLAB front-end for lexical analysis and parsing. Md\then generates McVM
IR for the source code and proceeds to the other stages obtleecompilation shown in
Figurel2.3.

2.2.3 McJIT-Interpreter Interaction

McJIT occasionally generates calls to the interpreter tomate certain complicated
expressions that it is unable to handle or that the JIT cangibes not currently support.
The interaction between the compiler and interpreter isrofacilitated through a symbol

22



2.3. The LLVM Compiler Framework

look-up environment. A symbol environment is a table thabagtes a value to a symbol.
It is used to bind a value to a variable, and to look-up theevalia variable at run time.

The code setting up a symbol look-up environment for a famcis generated lazily
on a need basis. During the code generation for a functienfinst time McJIT generates
an LLVM instruction that requires a symbol environment,g@hgrates the symbol environ-
ment set-up code at the function’s prologue. The set-up cutlalizes the environment
for subsequent look-ups and bindings of values to variables can be a major source of
overhead. In Sectidn 5.2, we show how to minimize the ovettodahis symbol environ-
ment set-up code.

2.3 The LLVM Compiler Framework

LLVM is an open source compiler infrastructure that can bedus build compilers for
static languages and JIT compilers for virtual machine&/MLis designed as a set of li-
braries with well-defined interfaces. It supports a weliiued low-level intermediate code
representation known as the LLVM IR, as well as supporting@elmumber of optimiza-
tions and code generators for a variety of architectures.

The compiler infrastructure is being used in many researofegts and in some pro-
duction systems. LLVM has been used to implement staticaiypiled languages such
as C/C++ and dynamic languages such as MATLAB, Ruby, and JayaSBecently,
an OpenCL GPU programming language implementation was amdetvVM. Apple’s
OpenGL stack and Adobe’s After effect also use LLVM [BW11].

This section introduces the LLVM compiler framework fronetperspective of a JIT
compiler developer.

2.3.1 The Three-Phase Design of LLVM

Figurd 2.4 shows the three-phase design of LLVM. The firsspludithe design includes
the front-ends and the last phase of the design includesttiednds. Connecting the front-
ends to the back-ends is the LLVM Optimizer.
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H / |
MATLAB —! MATLAB Ik
| Frontend "
o 1
Clang C/C++/0bjC| |
o /C++/ X LLVM L s
Frontend X86 Backend
LLVM LLVM
tre llvmm-gce Frontend -
Fortran = 8 Optimizer PowerPC Backend [ PowerPC
LLVM
Haskell —  GHC Frontend LIVM IR LIVM IR| ARM Backend | ARM

Figure 2.4 — Three-phase Design of LLVM (adapted froine Architecture of Open Source
[BW11]). To implement the MATLAB language in LLVM, a MATLAB frot-end must be
implemented.

A front-end for a new language produces code in LLVM IR. LLVMsisongly typed.
The IR instructions are in three-address form: they accapiestyped inputs and produce
results in new virtual registers. The IR also supports kbehte LLVM IR is in static single
assignment (SSA) form [AWZ88, RWZ88, CERS,[BBH"13]. SSA form IR simplifies
many optimizations, including constant propagation, glokalue numbering and dead-
code elimination. We review SSA form in Section 213.2.

The optimizer performs target-independent analyses andfiormations on the LLVM
IR. The output from the optimizer forms the input to the baokise LLVM provides back-
ends for common architectures, including x86, IBM PowerP@,ARM. A developer can
add back-ends for new architectures.

As can be observed from Figure 2.4, LLVM uses a common op&mikhus, imple-
mentations of multiple programming languages can shanegéesback-end. To implement
a new language, a developer needs only to implement a frahtes the new language and
use the existing back-ends. As illustrated in Figure 2.4ewebbper implementing a JIT
compiler in LLVM for the MATLAB language only needs to implemt the front-end (the
box made of dashed lines in Figurel2.4). The implementationuse the existing LLVM
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2.3. The LLVM Compiler Framework

back-ends. Without this design, implementiNganguages foi/ architectures would re-
quire N x M back-ends — a really daunting task.

2.3.2 Static Single Assignment (SSA) Form

The LLVM IR is in static single-assignment form. SSA form is@de transformation
where program variables satisfy the property that theralg one assignment to them in
the program. Because we shall be discussing several LLVMdRstormations in Chap-
ter[4, to simplify later discussions on LLVM IR-level trangfiaations, we review the SSA
form here. First, a review of the dominance relation [Tari@djween nodes in a control
flow graph is presented.

dominator: A nodeX dominates a nod¥, if every execution path frorantry to Y goes
throughX. We write X domY” if a nodeX dominates a nod¥.

postdominator: A nodeY postdominates a node if every execution path fronX to exit
goes througly’.

strict dominance A node X strictly dominates a nod¥ if X dominatesy” and X # Y.
We write X sdomY if a node X strictly dominates a nodg.

immediate dominator: An immediate dominator of a nod€, denoted bydom(Y), is a
node X such thatX is the closest strict dominator &f on any path fronmentry to
Y. Every node (except the entry node) has exactly one imnmed@hinator.

join point: A join point is a node with more than one incoming edge.

Consider the MATLAB code in Listing 214.
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i =0 i =0
if 1> 0.1 if 1> 0.1
tru wi tru w‘e
k = 3.6; k = 4.7; k1 = 3.6; ke = 4.7,
j = 4.2 7 = 3.3 J1 = 4.2 Jo = 3.3;

disp(k); 3 (J1,J2);
disp(5); disp(ks);
disp(j3);

Figure 2.5 — A CFG for functiorntest is shown in (a); an equivalent CFG for the function
in SSA form is shown in (b).

Listing 2.4 — A MATLAB function with anif-elsestatement.
function test ()

1

2 1 =0.0

3 if i >01
4 k = 3.6;
5 j = 4.2
s else

7 k = 4.7;
8 j = 3.3;
o end

10 disp(k);
u  disp(j);
12 end

A corresponding control flow graph (CFG) is given in Figure @) Converting code in
an intermediate representation into an SSA form involveamgng variables and inserting
pseudo assignments namaa functions at join points. The CFG for functiaest in SSA

form is shown in Figuré215 (b).
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As shown in the figurephi nodes have been inserted to merge multiple definitions of a
variable that reach the join poirBB4).

Several algorithms [AWZE8, RWZ88, CER9, BBH"13] exist to convert code in an
intermediate representation into an SSA form. Minimal S8 for a function inserts the

minimum number ophi functions. A function can be converted into minimal SSA fdin
computing thedominance frontierfCFR™89] of all nodes.

Thedominance frontieof a nodeX denoted a® F'(X) is the set of node¥ such that
X dominates a predecessorofbut does not strictly dominaté. Formally,

DF(X)=A{Y|(3P € Pred(Y))(X dom P A X lsdom Y)}

For a set of nodeS of the control flow graph, the dominance frontierfs defined as

DF(S)= | J DF(X)

Xes

and theterated dominance frontieof S

DF* = lim DF'(S)

1—00

where

DF'(S) = DF(S);
DF™*Y(S) = DF(SUDF")

The setJ(S) of join nodes is defined as the set of all nodesuch that there are two
CFG paths that start at two distinct nodessiand haveZ as the first node in common.
Theiteratedjoin J*(S) is defined as

JT = lim J(S)

1—00
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where

J'=J(S);
JH = J(SU T

Cytron et al. [CFR89] show that ifS is the set of assignment nodes for a varidble
the iterated join ofS' is equivalent to the iterated dominance frontierSofThus,D F+(S)
is exactly the set of nodes that negdodes for variablé’.

We now present examples of code in LLVM IR.

2.3.3 LLVM IR: Examples

In this section, we introduce LLVM IR. Listing 2.5 shows a MAAB function that re-
turns the sum of its two parameters. A corresponding LLVM®Rthe MATLAB function
is shown in Listind 2.6.

Listing 2.5 — A simple MATLAB function.
1 function r = addDoubles(argl, arg2)
2 r =argl + arg2;
s end

The code uses instructidadd to add the values dhargl and%arg2. The operands of
fadd are floating point values.

Listing 2.6 — LLVM IR for addDoubles

define double addDoubles(doubtéargl, double%arg2) {
%tmp = fadd doublé¥bargl, %arg2
return double%tmp

}

A W N P

To give a hint of the optimizing power of LLVM, we show two senti@ally equivalent
implementations for the MATLAB function in Listing 2.4. THast is a naive implemen-
tation while the second folds memory operatiolvad store instructions) intop nodes to
produce a more efficient implementation tekt.
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Listing 2.7 — A naive implementation akst (Listing[2.4) in LLVM IR.

1 define void @test() {

2 entry:

3 %i = alloca double

4 %] = alloca double

5 %k = alloca double

s store double 0.000000e+00, doublébi
7

8

9

%iVal =load double %i
%ifCond = fcmp ogt doublésiVal , 1.000000e-01
br i1 %ifCond, label %then, label %else

u then: ; preds =%entry
12 store double 3.600000e+00, doubléok

13 store double 4.200000e+00, doublebj

14 br label %exit

16 else: ; preds =%entry
17 store double 4.700000e+00, doubléok

18 store double 3.300000e+00, doubléj

19 br label %exit

21 exit:

; preds =%else %then
2 %nK =load double %k
23 %nJ =load double %j
24 %0 = call 164 @dispDB(doubléonK)
s %1 =call i64 @dispDB(doubl&onJ)
26 ret void

In Listing[2.8, all the memory accesses in Listing] 2.7 havenbeonverted to register
reads/writes. The LLVM instruction set allows an infinite sevirtual registers.
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Listing 2.8 — A more optimized implementation t&st (Listing[2.4) in
LLVM IR.

1 define void @test() {

2 entry:

3 %ifCond = fcmp ogt double 0.000000e+00, 1.0000004
br i1 %ifCond, label %then, label %else

4
5
s then: ; preds =%entry
7 br label %exit
8
s else: ; preds =%entry
10 br label %exit
11
12 exit:

; preds =%else %then
13 %) .0 = phi double [ 4.200000e+0@%then ], [ 3.300000e+00%else]
14 %Kk .0 = phi double [ 3.600000e+00%then ], [ 4.700000e+00%else]
15 %0 = call i64 @dispDB(doublé&sk.0)
16 %1 =call i64 @dispDB(doublésj.0)
17 ret void

2.3.4 LLVM Transformation and Optimization Pass

LLVM provides a framework for transforming and optimizingde in LLVM IR. Trans-
formations and optimizations are written as passes. An LLjydds is a subclass &hss
or its several, similarly named, derived classes, inclgdiasicBlockPas$or basic block-
level transformationsfFunctionPasg$or function-level transformations; arModulePasgor
module-level transformations. We shall illustrate how tatevan LLVM pass with a
function-level pass.

Suppose we want to count the number of call instructions imatfon. One can write
a function-level pass that scans the instructions in thetfon and updates a counter when
it finds a call instruction.
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Listing 2.9 — An example of a function pass.

namespace{
using namespacdlvm;
/I counts the number of function calls in a function
class CallCountPass public FunctionPass{
public:
CallCountPass() : FunctionPass(ID), callCount{Q)

unsignedgetCallCount () const { return callCount}

© 0 N o g A~ W N e

=
o

virtual bool runOnFunction(Function& F)
countCalls (F);return false ;
}

virtual const charx getPassNamegonst {
return "Call Counter Pass" ;

N A O
N o o A W N P

static char ID;
private :
/[ counts the number of call instructions in a Function
void countCalls (Function& FY
for (Function :: constiterator FI = F.begin (),
FE=F.end(); FI != FE; ++FIY
const BasicBlock& BB =xFl;
for (BasicBlock:: constiterator Bl = BB.begin(),
BE = BB.end(); Bl != BE; ++BI){

NN NN NN B R
a A W N B O © 0

2 const Instruction* | = &=*Bl;
27 if (isa<Callinst>(1)) ++callCount;
2 133

N
©

unsignedcallCount;;

¥

FunctionPass createCallCountPass ()
33 return new CallCountPass();}
s char CallCountPass::ID = 0;

35}

w W w
N B O

Listing[2.9 shows a function pass that counts the numberlisficea function in LLVM
IR. ClassCountCallPasss derived from the standarfeunctionPassso it is a function-level
pass. It operates on a function via methodOnFunctiorwhose input is a valid function in
LLVM IR. Method runOnFunctiorreturnsfalse to indicate that it does not modify the CFG.
If a pass modifies the input LLVM IR, it must retutiue.
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As shown in Listing 2.0, clasSountCallPassdefines a private method namealintCalls
The method is called byunOnFunctionIn lines 17 — 24 countCallstraverses the CFG and
increments a counter in line 24 if the current instructioa ¢all instruction. After scanning
all the basic blocks in the function, data membeltCountwill contain the count of all the
call instructions in the analyzed function.

LLVM provides a variety of pass managers to organize anddidaepasses to be run
on input code in LLVM IR.FunctionPassManagean be used to schedule passes to be run
on functions in LLVM IR. For instance, the following code sp@i creates a function pass
manager and adds some optimization/transformation p&s$es pass manager.

FunctionPassManager FPM(module);
FPM.add(createCountCallPass ());
FPM.add(createConstantPropagationPass ());
FPM.add(llvm::createPromoteMemoryToRegisterPass());
FPM.add(createGVNPass());
FPM.add(createEarlyCSEPass());

In the code snippet, five different passes were submittedegass manageFgM).
The user runs the passes in the order of their creation byngathethodrun of
FunctionPassManagand passing the input function suchras the following code snippet.
A user can also specify dependencies between passes. Tliba&age the order in which
passes are run on an input LLVM IR function.

FPM.rungF);
The call to methodun will cause all the four passes to be run on functfon

2.3.5 LLVM JIT Execution Engine

LLVM provides several execution engines that can be usedkéoute or interpret
LLVM IR. The JIT execution engine allows runtime code generatind is suitable for
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building JIT compilers for dynamic languages. The LLVM frawork also has an LLVM
IR interpreter.

To build a JIT compiler for a programming language, a usedsd¢e create a JIT ex-
ecution engine. MethodreateJITof the classExecutionEnginecan be used to create a JIT
execution engine. A user can also use the diaggneBuilderto create an execution engine.
The following code snippet shows how to USegineBuilderto create a suitable execution
engine.

Listing 2.10 — Creating a JIT execution engine.

1 using namespacdivm;
2 ...
3 EngineBuilder EB(module);

4 EB.setOptLevel(CodeGenOpt::Default);

s EB.setEngineKind(EngineKind::Kind::JIT);
s ExecutionEngine jitEE = EB.create ();

7 ...

In the code snippet shown in Listing 2110, the statementria & creates an engine
builder. In line 3, the code generation optimization leweset to its default optimization
level. Line 4 sets the execution engine kind to JIT and theestant in line 5 creates a JIT
execution engine using the settings from the engine budtgsct EB).

2.4 Summary

In this section, we introduced the most relevant systemd fmethe work presented
in the thesis, which is on runtime optimization techniquasmplementing the MATLAB
programming language.

The chapter began with an introduction to them MATLAB pragnaing language. We
later introduced McVM— an open-source implementation of MAB. McVM is based
on the LLVM compiler framework. We reviewed LLVM at the endtbe chapter.

LLVM supports JIT compilation and execution via its JIT enton engine. Although
LLVM provides support for recompilation of functions, it @® not support on-the-fly opti-
mizations. In other words, a running function cannot begfammed or optimized until all
its instructions have been executed.
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In chapters[ 13 {18, we present the research work of this thesisgsponding to the
shaded boxes in Figure 2.1.
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Chapter 3
Copy Optimization in MATLAB

In the previous chapter, we introduced the MATLAB programgnianguage and its
implementation in McVM. The problem addressed in this ceaf the efficient compila-
tion of the array copy semantics defined by the MATLAB languabhe basic semantics
and types in MATLAB are very simple. Every variable is assdrtebe an array (scalars
are defined as 1x1 arrays) and copy semantics is used fonassigs of one array to an-
other array, parameter passing and for returning values &dunction. Thus a statement
of the forma = b semantically means that a copylofs made and that copy is assigned
to a. Similarly, for a call of the forma = foo(c) , a copy ofc is made and assigned
to the parameter of the functidoo , and the return value dbo is copied toa. Naive
implementations take exactly this approach.

In the current implementations of MATLAB, however, the comngntics is imple-
mented lazily using a reference-count approach. The capésot made at the time of the
assignment, rather an array is shared until an update tofdhe shared arrays occurs. At
update time (for example a statement of the fdrf) = x ), if the array being updated
(in this caseb) is shared, a copy is generated, and then the update is medoon that
copy. We have verified that this is the approach that Octaem-gource system [gnul?2]
takes (by examining and instrumenting the source code).aNeve that this approach (or
a small variation) is what the Mathworks’ closed-sourcelenpentation does based on the
user-level documentation [Mat09b, p. 9-2].
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Although the reference-counting approach reduces undeamj@es at run time, it in-
troduces many redundant checks, requires space for themetecounts, and requires ex-
tra code to update the reference counts. This is clearlyycosa garbage-collected VM,
such as the recently developed McVM, a type-specializind@BHV10,CB09]. Further-
more, the reference-counting approach may generate adadunopy during an update
of a shared array via a variable if all the other variable$ tagerence the array are dead
variables.

Thus, our challenge was to develop a static analysis apprsadable for a JIT com-
piler that could determine which copies were required, autirequiring reference counts
and without the expense of dynamic checks. Since we are icaigext of a JIT compiler,
we developed a staged approach. The first phase appliesivgrie @nd inexpensive anal-
yses to determine the obvious cases where copies can bedvdite second phase tackles
the harder cases, using a pair of more sophisticated staigses: a forward analysis to
locate all places where an array update requires a aggegsary copy analysiaipd then
a backward analysis that moves the copies to the best locatid which may eliminate re-
dundant copiecppy placement analy3idNe have implemented our analyses in the McJIT
compiler as structured flow analyses on the low-level AS@rimediate representation used
by McJIT.

To demonstrate the applicability of our approach, we havéopeed several experi-
ments to: (1) demonstrate the behaviour of the referenuetow approaches, (2) to mea-
sure the overhead associated with the dynamic checks irtheence-counting approach,
and (3) demonstrate the effectiveness of our static arsadygiroach. Our results show that
actual needed copies are infrequent even though the nurlagmamic checks can be
quite large. We also show that these redundant checks dalagetsignificant overheads.
Finally, we show that for our benchmark set, our static apgdinds the needed number
of copies, without introducing any dynamic checks.

In this chapter, we first describe how the work presented fitsrexto McVM project
discussed in the Chapter 2. Then, we describe the simplesfage analyses followed by
a description of the second-stage forward and backwaryseslwith examples. We con-
clude the chapter with a discussion of our experimentallt®su
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3.1 Background

McVM

McJIT

Analyses and Code

Specialization

QuickCheck

Necessary Copy and
Copy Placement Analyses

LLVM Code
Generation

Figure 3.1 — A simplified overview of McJIT (shaded boxes espond to the analyses
presented in this chapter).

The techniques presented in this chapter have been imptechenMcJIT (described
in Section Z2.R), a JIT compiler for MATLAB. In Chaptel 2, we hiiginted how McJIT
specializes code based on the function argument types ¢bat at run time. When gen-
erating code McJIT assumes reference semantics, and noseopantics, for assignments
between arrays and parameter passing. That is, arraysatedh as pointers and only the
pointers are copied. Clearly this does not match the copy sigesapecified for MATLAB
and thus the need for the two shaded boxes in Figure 3.1 im trdetermine where copies
are required and the best location for the copies. These malysis stages are the core of
the techniques presented in this chapter. It is also impbttanote that the specialization
and type inference in McJIT means that variables that cdythiave scalar types will be
stored in LLVM registers and thus the copy analyses only neaxbnsider the remaining
variables.
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In the next section, we introduce the first stage of our apgroavhich is the
QuickCheckFollowing that we introduce the second stage —theessary copgndcopy
placemenanalyses.

3.2 Quick Check

The QuickCheckphase QC) is a combination of two simple and fast analyses. The
first, written parameters analysiss a forward analysis which determines the parameters
that may be modified by a function. The intuition is that during a cdiltlee function,
the arguments passed to it from the caller need to be copitdtetoorresponding formal
parameters of the function only if the function may modife tharameters. Read-only
arguments do not need to be copied. For example,

function foo(argl, arg2)
disp(argl);
arg2(1) = 1;

end

in functionfoo above, onlyarg2 of the function needs to be copied. There is no need to
copyarglsince itis only read and not modified byo.

The analysis computes a set of pairs, where each pair repsesparameter and the as-
signment statement that last defines the parameter. Forpéxatime entry %, d;) indicates
that the last definition point for parametaris statemend;. The analysis begins with a set
of initial definition pairs, one pair for each parameter deafion. The analysis also builds
acopy list a list of parameters which must be copied, which is iniziedi to the empty list.
The analysis is a forward flow analysis, using union as thegmeperator. The key flow
equations are for assignment statements of two forms:

p=rhs: If the left-hand sidelfis) of the statement is a paramefgrthen this statement
is redefiningp, so all other definitions gb are killed and this new definition qf is
generated. Note that according to the MATLAB copy semansiash a statement is
not creating an alias betweprandrhs, but rathep is a new copy; subsequent writes
to p will write to this new copy.
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p(i) =rhs: If the Ihsis an array index expression (i.e., the assignment statesemiting
to an element op), and the array symbql is a parameter, it checks if the initial
definition of the parameter reaches the current assignnetgnsent and if so, it
inserts the parameter into the copy list.

At the end of the analysis, the copy list contains all the petars that must be copied
before executing the body of the function.

The second analysis ®py replacement standard sort of copy propagation/elimina-
tion algorithm that is similar to the approach used by an ABipiler [Wei85]. It deter-
mines when a copy variable can be replaced by the originéar (copy propagation).
If all the uses of the copy variable can be replaced by ther@igariable then the copy
statement defining the copy can be removed after repladitigealises of the copy with the
original (copy elimination).

To illustrate this point, consider the following equival@ode snippets. Variablein
statement 3 of Box 1

Box 1: Box 2:

1: a=rand(15000); 1: a=rand(15000);
2: b=a; 2: b=a;

3: c=2%b 3:  c=2%;

can be replaced with as done in Box 2; sinckis not referenced after statement 3, state-
ment 2 in Box 2 can be removed by the dead-code optimizer.

The copy replacement analysis computes a set of pairs atblas by examining as-
signment statements of the fotom= a. A pair represents thils andrhs of an assignment
statement, and indicates that if a successor of the statamsesthe first member of the
pair then the variable used could be replaced with the seswrdber of the pair. For ex-
ample, if the pair, (b, a) reaches the statentent2*b thenb could be replaced with in
the statement.

Like thewritten parameteranalysis, it is a forward flow analysis. However, in this case
the merge function is intersection. The key flow equatiomsctpy replacement analysis
are:
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b =a if both thelhs and therhs are variables, a new pair of variables, that is,d) is
generated at the statement.

Ihs=rhs if Insis a member of a pair that reaches the statement, such pakglad at the
statement. This is because the statement is redefing@nd its new value may no
longer match that of the other member of the pairs.

At the end of the analysis, the analyzed function is tramséat using the result of the
analysis.

If the analysed function does not return an array and alléh®aining copy statements
have been made redundant by the QC transformation, themitheo need to apply a more
sophisticated analysis. If copies do remain, however, giase 2 is applied, as outlined in
the next two sections.

3.3 Necessary Copy Analysis

Thenecessary copy analyssa forward analysis that collects information that is used
to determine whether a copy should be generated before ayiammodified. To simplify
our description of the analysis, we consider only simplégassent statements of the form
Ihs =rhs. Itis straightforward to show that our analysis works fotthsingle (onéhsvari-
able) and multiple assignment statements (mullipgevariables). We describe the analysis
by defining the following components.

3.3.1 Domain

The domain of the analysis’ flow facts is the set of pairs tbatgrised of an array refer-
ence variable and the ID of the statement that allocates ¢#imeary for the array; henceforth
calledallocators We write (a, s) if a may reference the array allocated at stateraent

3.3.2 Problem Definition

At a program poinp, a variable references a shared array if the number of yagab
that reference the array is greater than one. An array uptatn array reference variable
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requires a copy if the variablmayreference a shared arrayagtnd at least one of the
other variables that reference the same arréiyesafterp. We assume that at each program
point, the set ofive variableshas been computed.

3.3.3 Flow Function
out(S;) = gen(S;) U (in(S;) — kill (S;)).

Given the assignment statements of the forms:

S;:a = alloc (3.2)
Siia = b (3.2)
Siia(j) = x (3.3)
S;:a = f(arg,,arg,,...,arg,) (3.4)

whereS; denotes a statement IBljoc is a new memory allocation performed by statement
SZ-H; a,b are array reference variables;is arvalug f is a function,arg,, arg,, ..., arg,,
denote the arguments passed into the function and the porrésg formal parameters are
denoted withp, ps, ..., pu-

We partitionin(.S;) using allocators. The partitiold);(m), containing flow entries for
allocatorm is:

Qi(m) = {(z,y)|(z,y) €In(S;) Ay = m} (3.5)

Now consider statements of type 13.2 above; if varidbleas a reaching definition &;
then there must exist sonfé, m) € in(.S;) and there exists a non-empdy(m) such that
(b,m) € Qi(m).

In addition, if b may reference a shared arrayStthen|Q;(m)| > 1. Let us call the
set of all suchQ;(m)s, P;. We write P;(a) for the set ofQ);s obtained by partitioningn(S;)
using the allocators of variabte

Considering statements of the fofml13/3(a) # () implies that a copy ofi must be
generated before executigdgand in that cases; is acopy generatarThis means that after
this statementy will point to a new copy and no other variable will refer togitiopy.

1. Functions such a=eros ones rand andmagicare memory allocators in MATLAB.
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We are now ready to construct a table gdgnandKkill sets for the four assignment
statement kinds above. To simplify the table, we define:

Kill gefind @) = {(z, 5)|(z,s) €in(S;) Nz = a}

Kill gead = {(, 8)|(z, s) € in(S;) A not live(S;, z)}

Kill ypaard @) = {(z, s)|(z,s) € In(S;) Nz = a A Py(a) # 0}

wherelive(S;, ) is a function that returnsue if variable z is live at program point; and

returnsfalse otherwise.
Stmt | Gen set Kill set
@) | {(z,s)|lr =aAns=S;Nlive(S;,z)} Kill gefind @) U Kill geqq
B2) | {(z,s)|lr =aA(y,s) €in(S;) ANy =bAlive(S;,z)} | Kill gefind @) U Kill gead
B3) | {(z,s)|lr=aNs=S8;APix)# 0} Kill ypdatd @) U Kill geqas
(3.4) | seegen f) below Kill gefind @) U Kill geqqs

Computing thegen set for a function call is not straightforward. Certain buinlt
functions allocate memory blocks for arrays; such fundti@me categorized aalloc
functions A question that arises is: does the return value of the ¢dllaction reference
the same shared array as a parameter of the function? If tine realue references the
same array as a parameter of the function then this sharirsg Ibeumade explicit in the
caller, after the function call statement. Therefore,ghaset for a function call is defined

as:
( {(a,S;)}, if live(S;, a) and isAllocFunction(f)
{(z,s)|z = a A (arg;, s) € In(S;) Alive(S;, z)},
if ret(f) aliases param;(f), 0 < j < size(paramsf)),
ger(f) =

{(a, S;)}, if Y(p € paramg f)), not (ret(f) aliases p)

{(z,s)|lr =aNarg € argsf) A (arg, s) € in(S;) Alive(S;, z)},
{ otherwise (e.g., if f is recursive)
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The first alternative generates a flow entey S;) if the rhs is analloc function and
thelhs (a) is live after statemens;; this makes statemert; an allocator. In the second
alternative, the analysis requests the result of the napes®py analysis orf from an
analysis manag@.The manager caches the result of the previous analysis owea gi
function. From the result of the analysis ¢gnwe determine the return variables pthat
are aliases to the parametersfand hence aliases to the argumentg.ofFhis is explained
in detail under the next section on Initialization. The ratwariable of f corresponds
to thelhs (@) in statement type_3.4. Therefore, using the summary irdtion of f, we
generate new flow entries from those associated with thereegts that the return variable
may reference provided thats alsolive after.S;.

The third alternative generaté¢éa, S;) }, if the return variable aliases no parameters of
f. The fourth alternative is conservative: new flow entries generated from those af
the arguments tg. This can happen if the call of is recursive orf cannot be analyzed
because it is neither a user-defined function noaléot function.

We chose a simple strategy for recursion because recuranaidns occur rarely in
MATLAB. In a separate study by our group, we found that out B85 functions in 625
projects examined, only 48 functions (0.3%) are directtursive. None of the programs
in our benchmarks had recursive functions.

Therefore, we expect that the conservative option in thentiein of gen( /) above will
be rarely taken in practice.

3.3.4 Initialization

The input set for a function is initialized with a flow entryrfeach parameter and an
additional flow entry (a shadow entry) for each parametelsisiaserted. This is necessary
in order to determine which of the parameters (if any) retmable references. We use a
shadow entry to detect when a parameter that has not begmaddo any other variable
is updated. At the entry to a function, the input set is given a

2. This uses the same analysis machinery as the type estmiatvicJIT.
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in(entry) = {(p, s)|p € paramg f) A s = Sp} U{(p', s)|p € paramgf) A s = Sp}.
We illustrate this scheme with an example. Given a funcfipdefined as:

function u = f(x, y)
u=x;
end

thein set at the entry of is {(z, S.), (', S:), (v, Sy), (¥, Sy) } and at the end of the func-
tion, theoutset is{(u, S,), (x, S;), (¥', Sz), (v, Sy), (¥, Sy) }-

We now know that: is an alias for: and encode this information as a set of integers. An
element of the set is an integer representing the input petarthat the output parameter
may reference in the function. In this example, the sét jssincez is the first (1) parameter
of f. This is useful during a call of. For instance, it = f(a, b); we can determine
thatc is an alias for argument by inspecting the summary information generatedffor

3.3.5 Simple Example

Let us illustrate how the analysis works with the followinigple example.

1 function examplel()
2 a =rand(15000);
3 b = a,

4« b(1) = 10;

s a = [1:10];

s disp(a (1:5));

7 disp(b (1:5));

s end

Table[3.1 shows the flow information at each statement ofdhetfon, including the
gen kill, in andout sets. The statement number is shown in the first column ofthie.t

The analysis begins by initializino(.S;) to () since the function does not have any
parameters. The assignment statentgns an allocator because functioand is an alloc
function. Tablé 3.1 shows that despite the assignmentén3djmo copies should be gener-
ated before the assignment in line 4. This is because varat#fined in line 2 is no longer
live after line 3 hence$, is not a copy generator according to our definition.
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#| Genset | Kill set In set Out set
2| {(a,5:)} 0 0 {(a, S)}
3| {(,52) | {(a,52)} | {(a,52)} {(b,52)}
4 0 0 {(b,52)} {(b, 52)}
5| {(a,55) 0 {(b,52)} | {(b,52),(a, S5)}

Table 3.1 — Forward Analysis result fexamplel

3.3.6 if-else Statement

So far we have been considering sequences of statementsir Analysis is done di-
rectly on a simplified AST, analyzing aftelse statement simply requires that we analyze
all the alternative blocks and merge the result at the enteifftelse statement using the
merge operatory).

3.3.7 Loops

We compute the input set reaching a loop and the output sirt@s loop using stan-
dard flow analysis techniques, that is, we merge the input Sleifrom the loop’s entry
with the output set from the loop back-edge until a fixed p@meached.

To analyse a loop more precisely, we implemented a conendisve loop analysis that
distinguishes the sharing of arrays that are initiatedidetthe loop from those initiated
within the loop, and from those initiated in different itdoms of the loop. This distinction
IS necessary in certain cases to prevent unneeded coprasbing generated [LH10].
We found, however, that real MATLAB programs did not require context-sensitivity to
achieve good results. The standard approach is sufficiengga@al MATLAB programs.

3.4 Copy Placement Analysis

In the previous section, we described the forward analybistwdetermines whether
a copy should be generated before an array is updated. Ot usrithis analysis alone
to insert the copy statements, but this may not lead to thieptesement of the copies and
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may lead to redundant copies. The backwesgdy placement analysgetermines a better
placement of the copies, while at the same time ensuringugadates of a shared array.
Examples of moving copies include hoisting copies out ahén constructs and out of
loops.

The intuition behind this analysis is that often it is betteperform the array copy close
to the statement which created the sharing (i.e. statenoétite forma = b) rather than
just before the array update statements (i.e. statemetite &rma(i) = b) that require the
copy. In particular, if the update statement is inside a Jdm the statement that created
the sharing is outside the loop, then it is much better toteréee copy outside of the loop.
Thus, thecopy placement analysis a backward analysis that pushes the necessary copies
upwards, possibly as far as the statement that created @negh

3.4.1 Abstraction

A copy entry is a three-tuple:

e =< copy loc,var, alloc_site > (3.6)

wherecopy loc denotes the ID of the node that generates the a@pyenotes the variable
containing a reference to the array that should be copietighoc siteis the allocation
site where the array referenced \oyr was allocated. We refer to the three components of
the three-tuple as.copy loc, e.var, ande.alloc site

Let C' denote the set of all copies generated by a function.

Given a function, the analysis begins by traversing thelbtdcstatements of the func-
tion backward. The domain of the analysis’ flow entries isgaeof copy objects and the
merge operator is intersection)(

Define Cyy as the set of copy objects at the exit of a block afydas the set of copy
objects at the entrance of a block. Since the analysis bagthe end of a functior(, is
initialized to(). The rules for generating and placing copies are describesl h
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3.4.2 Statement Sequence

Given a sequence of statements, we are givér,afor this block and the analysis
traverses backwards through the block computiig,dor the block. As each statement is
traversed the following rules are applied for the diffedants of the assignment statements
in the sequence. The sa&tg.S;), Q;(m), P;(a) are defined in Sectidn 3.3.

Rule 1: array updates, S; : a(y) = = : Given that the array variable of thes of
statemenb; is a, when a statement of this form is reached, we add a copy forgatition
for a shared array to the current copy set. Thus

if P.(a) =
Cn:=ChU 0 (a) 0
{<s,z,y>|s=S;ANx=aNQ;(y) € P(xr)} otherwise

Rule 2: array assignments, S; : a =b :If Ve € Ciy(e.var # a and e.var # b),
andVe € Cyy(e.var # a and e.var # b), we skip the current statement. However, if in
the current blockJe € Cin(e.var= a or e.var = b), we removee from the current copy
flow setCji,. This means that the copy has been placed at its currenidoeatthe location
specified in copy entry. Otherwise, ifde € Coy(€.var= a or e.var= b), we perform the
following:

if P;(a) =0, thisis usually the case, we move the copy from the statemenpy loc
to S; and remove: from the flow set. The copy has now been finally placed.

if Pj(a) #0, Y(Qi(m)e€ P;(a)), we add a runtime equality test foragainst the variable
z (z # a) of each member of);(m) at the statemerg.copy loc. SinceP;(a) # 0, there
is at least a definition of that reaches this statement and for whicteferences a shared
array. In addition, because copywas generated after the current block there are at least
two different paths to statemeeitcopy loc, the current location of. We place a copy of
at the current statemefst and remove: from the flow set. Note that two copies ehave
been placed; one atcopy loc and another at;. However, runtime guards have also been
placed ak.copy loc, ensuring that only one of these two copies materializesgratime.

The following code snippet illustrates this scenario.
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b=12 4, 8]
a=>b;
if (cond)

¢ =rand(10);

a=c;
end
a(i) =10;
disp(a);
disp(b);

© 0 N o g A~ W N

=
o

StatementS, dominates statemest;; if the then block is taken then, at statemesy
(the array update statement)will reference the array allocated &t. Otherwisea will
reference the array allocatedst Thus, by placing a copy aftéf;, it is guaranteed that
is unique if the program takes the path througho Ss; and the update & is therefore
safe and no copy will be generatedSatbecause the runtime guard will be false. However,
if this path is not taken, then the guard&twill be true and a copy will be generated.

We expect that such guards will not usually be needed, anacimione of our bench-
marks required any guards.

3.4.3 if-else Statements

Let Cs and Cgise denote the set of copies generated infaand anelse block respec-
tively. First we compute

C' = (Oout N CelseN Cif)
Then we compute the differences
Clout = Cout\ C,; C,else5: else\ Cl; Clif = Cjt \ '

to separate those copies that do not intersect with thosthar blocks but should never-
theless be propagated upward. Since the copies in theeotans will be relocated, they
are removed from their current locations.

And finally,

Cin = C'out U C'eise U O U {< s, e.var e.alloc site> |s = Sg Ae e C'}

48



3.5. Using the Analyses

Note that a copy object with its first component set t8 ¢ is attached to thé-elsestate-
mentSe. That means if these copies remain at this location, theesgghiould be generated
before thaf-elsestatement.

3.4.4 Loops

The main goal here is to identify copies that could be movedoba loop. To place
copies generated in a loop, we apply the rules for stateneeptesice and thié-else state-
ment. The analysis propagates copies upward from the mist-loop to the outer-most
loop and to the main sequence until either loop dependesgissin the current loop or it
is no longer possible to move the copy according to Rule 2 iti&€8.4.2.

A disadvantage of propagating the copy outside of the lodipasif none of the loops
that require copies is executed then we would have genesaisdless copy. However, the
execution is still correct. For this reason, we assume tlw@will alwaysbe executed and
generate copies outside loops, wherever possible. Threassanable assumption because a
loop is typically programmed to execute. With this assuorptthere is no need to compute
the intersection of’i,op, andCo. Hence

Cin := CoutU {< s, e.var e.alloc_site > |s = Sioop A € € Cloop})

3.5 Using the Analyses

This section illustrates how the combination of the forwand the backward analyses
is used to determine the actual copies that should be gedefétst consider the following
program test3 Table 3.2 (a) shows the result of the forward analysis.
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1 function test3 ()

2 a= [L15];

3 b=a;

s 1 =1

s if (i >2) %l

6 a(l) = 100;

7 else

8 a(l) =700;

s end

10 a(l) = 200;

u disp(a);

12 disp(b);

13 end
# | Gen set In Out
2 | {(a,52)} 0 {(a, Ss)}
3 1 {(b,S2)} {(a, S2)} {(a, S2)(b, S2)}
6 | {(a,5)} {(a, S2), (b, 52)} {(b,52)(a, Se)}
8 {(aa ‘98)} {(a> 52)7(1)? SQ)]’ {<bv SQ)?<a7 SS)}
10 @ {<b7 52)7 <a756)7 (a, SS)} {(b7 S2>7 (CL, S@),(CL, 58)}

(a) Necessary Copy Analysis Result fest3

# Cout Cin Current Result
10 0 0 0

8 0 {< Ss,a,5; >} {(a,S8)}

6 0 {< S,a,8, >} {(a, S6)}

| ] {< Sr,a,5 >} {(a,S1)}

3 | {<Sa,S >} 0 {(a,S1)}

2 ] ] {(a, S1)}

(b) Copy Placement Analysis Result feist3

Table 3.2 — Necessary Copy and Copy Placement Analysésdty
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Table[3.2 (b) gives the result of the backward analysis. Tlised in line 5 oftest3
stands for thef-else statement inest3 The analysis begins from line 12 t#st3 The
out setCy is initially empty. At line 10,C, is still empty. When thef-else statement
is reached, a copy afy (0) is passed to th&lseblock and another copy is passed to
the If block. The copy{< Ss,a, Sy > is generated in th&lseblock becausé®(S,) =
{(a, S2), (b, S2)}| = 2, henceP,(a) # 0. Similarly < Sg,a,S, > is generated in th#
block.

By applying the rule foif-else statement described in Sectlon 314.3, the outputs df the
and theElseblocks are merged to obtain the resultSat(the if-else statement). Applying
Rule 2 for statement sequence (Secfion 8.4.235in< St a, Sy > is removed fromCi,
and the analysis terminates&t The final result is that a copy must be generated before
the if -else statement instead of generating two copies, one in eaclk lmbthe if -else
statement. This example illustrates how common copiesrgtkin the alternative blocks
of anif-else statement could be combined and propagated upward to reddessize.

The second exampl&jdisolveis a MATLAB function from [Cle04]. The forward anal-
ysis information is shown in Table 3.3. The table showsgieandin sets at each relevant
assignment statement widisolve The results in different loop iterations are shown using
a subscript to represent loop iteration. For example, thermamber25, refers to the result
at the statement labellés}; in the second iteration. The analysis reached a fixed pdmt af
the third iteration.
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Listing 3.1 — A MATLAB function ridisolve).

function x = tridisolve (a,b,c,d)
% TRIDISOLVE Solve tridiagonal system of equations.
20: x =d;
21: n =length(x);
for j = 1in—-1 %F 1
mu = a(j)/b(j);
25 b(j+1) = b(j+1) — muxc());
26:  x(j+1) = x(j+1) — muxx());
end
29: x(n) = x(n)/b(n);
for j =n-1.—-1:1 %F 2
31 x(j) = (x())—c()*x(j +1))/b(j);
end

At the function’s entry, thén set is initialized with two flow entries for each parameter
of the function as outlined in Sectign B.3. The analysis iomets by generating thgen
in andout sets according to the rules specified in Sedtioh 3.3. Notiaedtatemens,s is
an allocator becausk;(b) # 0 since|Q25(Sy)| = [{(b, S, 0), (¥, S,,0)}| > 1. Similarly,
Sae and Sy are also allocators. This means that generating a copy clrthy referenced
by the variable just before executing the statemeiat ensures a safe update of the array.
The same is true of the array referenced by the varialielines 26 and 29. However, are
these the best points in the program to generate those @opmsdd the number of copies
be reduced? We provide the answers to these questions whexawene the results of the
backward analysis.

Table[3.4 shows the copy placement analysis informatioact eslevant statement of
tridisolve Recall that the placement analysis works by traversing titerments in each
block of a function backward. In the case toflisolve, the analysis begins in line 31 in
the secondor loop of the function. The sef, is passed to the loop body and is initially
empty. The se€’j, stores all the copies generated in the block offdrestatement. Line 31
is neither a definition nor an allocator, therefore no charage recorded at this stage of the
analysis.
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# Gen In

20 {(I', Sd,O)} {(CL, Sa70)7(a/75a70)7(b7 Sb70>7(b,75b70)7<c7 5670)7(0,75070)7
(d7 Sda 0)7 (dlv Sda O)}

251 {(bu 32571)} {(a’v Sa70)7(a/75a70)7(ba Sb,O),(b/7Sb70),(C7 SC,O),(C,7SC,O),
(d/7 Sd7 0)7 ($a Sd7 0)}

261 {(:L‘y 52671)} {(CL, Sa,O),(GI,SQ,O),(b/,Sb,O),(C, SC,O),(C/,SC,O),(d/,Sd,O),
(-Ta Sda 0)7 (ba S257 1)}

252 {(ba 52572)} {(av Sa70)7 (a/vsa70)7 (ba Sb70)7 (b/,Sb,O), (07 cho)a (0/75070)7
(dl7 Sd7 0)7 (ZL' Sd7 ) (b S257 )7 (:Ea 3267 1)}

26 | {(z,5%,2)} | {(a,S.,0),(d,S4,0),(,S,0),(c, S, 0), (S, 0),(d,Sq,0),
(‘I,Sd, ) (b 525, ) (CIJ 526;

1)
253 {(bv 52573)} {(a, Saao) (a Saao) (b Sb? )7(b,75b70)7<c’ SC’())’(C,’ SC’O)’
(d',54,0), (%, 54,0), (b, S5, 2), (x, Sa6,2) }

263 {(fL’, 52673)} {(CL, Sa70)7<a/75a70)7(b/75b7 )J(CJ SC,O>,(C,7SC,O),(d/,Sd,O),
('Iu Sda ) b S25a 3)7 (Ia 8267 2

(C, Sm 0)7 (Cl7 Sm 0)7 (d/7 Sd7 0)7

(ﬁ,Sd, ), b 525, ) (ZB,526,3}

(b, )
29 | {(,S2,0)} | {(a, Sa,0), (b, S5, 0), (¥, Sy, 0)
(b, )
), )

314 1] {(d’, S4,0), (b, Sy,
(b, Sas, )7(55,52970}

) (bl7 Sb7 0 ) (C7 SC7 0)7 (CI7 SC7 0)7 (d/7 Sd7 0)7

0)
)
312 @ {(a’,Sa,O), (b7 Sb,O), (b/7Sb70)7 (C7 cho)v (0/75’070)7 (d/75d70)7
(b7 5257 3)7 (IE, 5297 O)}

Table 3.3 — Necessary Copy Analysis Result.
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# Cout Cin Current Result
31 0 0 0

Fy 0 0 0

29 0 {(Sa9,a, Sq)} {(z, Sa9) }

26 | {(S29, 7, 54)} {(S26, 2, Sa)} {(, 5%), (z, 52)}

25 | {(S20,2,80)} | {(525.0,5), (26,2, 5a)} | {(, S29), (%, S26), (b, S25)}
Fy | {(S29, 2, Sa)} | {(Sry, 2, 84), (S25,b, 55)} {(z,5r), (b, S2)}
20 0 {(Sas5,b, Sp) } {(z,Sk,), (b, Sa5) }
0 0 0 {(z, Sk ), (b, S0)}

Table 3.4 — Copy Placement Analysis Resulttfatisolve

At the beginning of loop;, the analysis merges with the main path and the result at this
point is shown in rowr;. Statemenb,g generated a copy as indicated by the forward anal-
ysis, therefore’y, is updated and the result set is also updated. The analgsidtianches
off to the first loop and the currert;, is passed to the loop’s body &%.. The copies
generated in loog; are stored inCj,, which is then merged witld’,; at the beginning
of the loop to arrive at the result in roW,;. The result set is also updated accordingly; at
this stage, the number of copies has been reduced by 1 as $madkaa column labelled
Current Resulof Table[3.4. The copy flow set that reaches the beginningefuhction
is non-empty. This suggests that the definition or the altwaaf the array variables of the
remaining entries could not be reached. Therefore, the aaaables of the flow entries
mustbe the parameters of the function and the necessary copydsbegenerated at the
function’s entry. Hence, a copy of the array referenced byst be generated at the entry
of tridisolve,

3.6 Name Resolution

In Section 2.1L, we mentioned that MATLAB uses the same syfaaboth function
calls and array accesses. Here, we discuss the compilabblem posed by this strategy.
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An obvious advantage of using identical syntax is that a datacture initially im-
plemented as an array could be re-implemented as a funcitbowv changing the array
accesses. A disadvantage of this strategy, however, ig thakes it difficult to determine
statically whether an expression is a function call or anyaaccess, thus making analyses
too conservative. For instance, in the statement belohaiginction or an array?

m = b(c, d);

Without a suitable analysis, it is hard to tell whethér, d) is a function call or an array
access. The forward analysis described in Settidn 3.3reliehe McVM type inference
analysis [CBHV10, CBQ9] to determine the type of a symbol. In tingpte assignment
statement above, the analysis needs to know whether thebiesin, c andd are arrays.
Furthermore, it is a function andn, c andd are arrays, the analysis needs to know whether
m references the same array@asr d. The forward analysis requests the type information
of b and proceeds to analyséf the result of the look-up indicates théats a function.

3.7 Experimental Results

To evaluate the effectiveness of our approach, we set upiexpats using benchmarks
collected from disparate sources, including those from [RG%: Cle04|, Pre&6]. Table 3.5
gives a short description of each benchmark, together wislymmary of the results of our
analyses, which we discuss in more detail in the followinigsgetions. For all the experi-
ments described in this chapter, we ran the benchmarks kéthdmallest input size on an
AMD Athlon™ 64 X2 Dual Core Processor 3800+, 4GB RAM computerning Linux
operating system; GNU Octave, version 3.2.4; MATLAB, vensic9.0.529 (R2009IH)and
McVM/McJIT, version 0.5.

The purpose of our experiments was three-fold. First, wa&eio measure the number
of array updates and copies performed by the benchmarks dimme using existing sys-
tems (Sectiof 3.7.1). Knowing the number of updates givademof how many dynamic
checks a reference-counting-based (RC) scheme for lazyrapstiich as used by Octave

3. We used the later versions of MATLAB for the experimentsatibed in the following chapters.
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and Mathworks’ MATLAB, need to perform. Recall that our appoaloes not usually
require any dynamic checks. Knowing the number of copiegggad by such systems al-
lows us to verify that our approach does not increase the puwftzopies as compared to
the reference-counting-based approaches. Secondly, wiel Vike to measure the amount
of overhead generated in reference-counting-based systactiod 3.7]2). Finally, we
would like to assess the impact of our static analyses indarintheir ability to minimize
the number of copies (Sectién 317.3).

3.7.1 Dynamic Counts of Array Updates and Copies

Our first measurements were designed to measure the numlaeragfupdates and
array copies that are required by existing reference-cogHitased systems, Octave and
Mathworks’ MATLAB. Since we had access to the open-sourcea@csystem we were
able to instrument the interpreter and make the measurerdeattly. However, the Math-
works’ implementation of MATLAB is a proprietary system atidus we were unable to
instrument it to make direct measurements. Instead, we @@ an alternative approach
by instrumenting the benchmark programs themselves viecéspsing our APECTMAT-
LAB compileramc[ADDH10]. Our aspecH defines all the patterns for the relevant points
in a MATLAB program including all array definitions, array dgites, and function calls.
It also specifies the actions that should be taken at thes#spai the source program. In
effect, the aspect computes all of the information that aregfce-counting-based scheme
would have, and thus can determine, at run time, when an apdate triggers a copy be-
cause the number of references to the array is greater tlearmbe aspect thus counts all
array updates and all copies that would be required by aae¢ercounting-based system.

4. This aspect is available at: http://www.sable.mcgilineclab/copy analysis.html. It is also listed in

AppendixB.
5. The benchmarks are also available at: www.sable.mzgithclab/mcvm mcjit.html.
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