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Abstract

MATLAB has gained widespread acceptance among enginedrsaantists. Several
aspects of the language such as dynamic loading and ty@fegupdates, copy semantics
for arrays, and support for higher-order functions contetto its appeal, but at the same
time provide many challenges to the compiler and virtualmae MATLAB is a dynamic
language. Traditional implementations of the languagenisepreters and have been found
to be too slow for large computations. More recently, redeans and software developers
have been developing JIT compilers for MATLAB and other dyialanguages. This the-
sis is about the development of new compiler analyses andftranations for a MATLAB
JIT compiler, McJIT, which is based on the LLVM JIT compileotkit.

The new contributions include a collection of novel anasyg® optimizing copying
of arrays, which are performed when a function is first coetpiWe designed and imple-
mented four analyses to support an efficient implementatfarray copy semantics in a
MATLAB JIT compiler. Experimental results show that copytiogzation is essential for
performance improvement in a compiler for the MATLAB langea

We also developed a variety of new dynamic analyses and cadsformations for
optimizing running code on-the-fly according to the curremiditions of the runtime en-
vironment. LLVM does not currently support on-the-fly codanisformation. So, we first
developed a new on-stack replacement approach for LLVMs Gapability allows the run-
time stack to be modified during the execution of a functibnstenabling a continuation
of the execution at a higher optimization level. We then ugedon-stack replacement
implementation to support selective inlining of functioalls in long-running loops. Our
experimental results show that function calls in long-tiagrioops can result in high run-
time overhead, and that selective dynamic inlining can leslus drastically reduce this



overhead.

The built-in functionfeval is an important MATLAB feature for certain classes of
numerical programs and solvers which benefit from havingtions as parameters. Pro-
grammers may pass a function name or function handle to tkrersand then the solver
usesfeval to indirectly call the function. In this thesis, we show tladthoughfeval
provides an acceptable abstraction mechanism for thess wypapplications, there are
significant performance overheads for function callsfesal , in both MATLAB inter-
preters and JITs. The thesis then proposes, implementsoamgbces two on-the-fly mech-
anisms for specialization d&éval calls. The first approach uses our on-stack replacement
technology. The second approach specializes calls ofiimgwithfeval using a combi-
nation of runtime input argument types and values. Expertaieesults on seven numerical
solvers show that the techniques provide good performanpsovements.

The implementation of all the analyses and code transfaomapresented in this thesis
has been done within the McLab virtual machine, McVM, andvalable to the public as
open source software.



Résum é

MATLAB est devenu reconnu parmi les iagieurs et les scientifiques. Plusieurs as-
pects du langage comme le chargement et le typage dynantegquasea jour gir, la
semantique de copie pour les tableaux, et le support desidmscd’'ordre suprieur con-
tribuenta son attrait, mais induisent de nombreuses diffesutour les compilateurs et les
machines virtuelles. MATLAB est un langage dynamique. loeglémentations classiques
du langage fonctionnent@&icea des intergeteurs et sont@reralement trop lentes pour des
larges calculs. Plucemment, les chercheurs ainsi que les programmeursuatop @
des compilateurs JIT pour MATLAB et d’autres langages dyiqaes. Cette thse traite
le deéveloppement de nouvelles analyses et transformationmsusocompilateur JIT MAT-
LAB, McJIT, qui est bas sur I'outil LLVM.

Ces nouvelles contributions comprennent plusieurs aralyseatrices pour optimiser
la copie de tableaux, qui sont@uges quand une fonction est con@glpour la prengre
fois. Nous avons im@mené quatre analyses pour permettre une anpintation efficace
de la €mantique de copie de tableaux dans un compilateur JIT MALlAes esultats
experimentaux montrent que 'optimisation de la copie est mtssige pour angliorer les
performances dans un compilateur pour le langage MATLAB.

Nous avons aussiévelopfe une vate d'analyses dynamigues novatrices et des trans-
formations de code pour optimiser du codlda voke en fonction de I'environnement
d’exéecution. Actuellement, LLVM ne supporte pas les transfdaioms de code la voke.

En congquence, nous avons d’aboreMglop@ une nouvelle approche pour faire du rem-
placement sur la pile avec LLVM. Cette fonctionn@liermet la pile d’execution détre
modifiée pendant I'e&cution de la fonction, ce qui permet de continueré&extiona un
niveau suprieur d’optimisation. Nous avons ensuite uélisette imptmentation du rem-
placement sur la pile pour permettre I'en line des appeledetions dans les boucles. Nos
résultats exerimentaux montrent que les appels de fonctions dans leddsauiong temps
d’exécution peuvent induire un @bimportant en termes de performances, et que I'en line



dynamique et&lectif peutétre utili® pour éduire drastiquement ce @b

La fonction "feval” est une fonctionnaétimportante de MATLAB pour certains pro-
grammes de calcul nugnique qui profitent de la possib#éide passer des fonctions comme
parangetres. Les programmeurs peuvent passer le nom d’'une fanatiaun pointeur de
fonctionsa un programme qui utilisera ensuite feval pour appeleraatiément cette fonc-
tion. Dans cette #se, nous montrons que malgle fait que feval soit un étanisme
d’abstraction appciable pour certaines applications, il induit uriitaignificatif, a la
fois pour les interggteurs et pour les compilateurs JIT. Cettest propose, imphmente
et compare deux atanismes la voEe pour la secialisation des appels utilisant feval.
La premere nethode utilise notre gtanisme de remplacement sur la pile. La seconde
méthode spcialise les appels de fonctions utilisant feval en comtititetype et la valeur
des argumenta I'exécution. Les @sultats exprimentaux sur sept programmes éifénts
montrent que ces techniques permettent une bon@di@ation des performances.

L'impl émentation de toute les analyses et transformations depresienées dans cette
thése aete effectie dans la machine virtuelle McLab, appelMcVM, et est disponible au
public en tant que logiciel libre.
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Chapter 1
Introduction

Almost anyone using a computing device today has used aarogritten in a dy-
namic language. A large proportion of Internet applicatiane developed with dynamic
languages. JavaScript, Perl, PHP, Python, Ruby, amiLMB®H are some of the widely
used dynamic languages. They shared a common propertyatieeglynamically typed.
Their dynamic nature contributes to their appeal. But it @aotributes to their compila-
tion difficulty. Thus, they are mostly interpreted, and peogs written in any of them often
run slower than those written in a static language such as C.

The MATLAB programming language is a dynamic array-basedulaage that is pop-
ular among engineers and scientists. It was designed fdristaqated matrix and vector
operations, which are common in scientific applicationse WMATLAB programming lan-
guage is an important language with a simple syntax. It isgpesed in different computing
domains. By the year 2004, the number of MATLAB users had ed@gene million. Fur-
ther, much like the way transistor growth in microprocestsign has obeyed the famous
Moore’s law [M0065], the number of users of the MATLAB lang@edoubled about every
two years between 1984 and 2004, and continues to increase.

The dynamic nature of the MATLAB language, together withsitsiple syntax, aids
rapid software development by helping programmers to reabout their programs. The
combination, however, poses serious compilation and pedoce challenges. Dynamic

1. http://www.mathworks.com/products/pfo/.
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language features such as dynamic function loading cabgesampiler to delay most
optimizations until run time. This increases runtime oestth

Traditional implementations of the MATLAB programming uage are based on in-
terpreters|[gnul2, TheD2]. They are generally consideydgettoo slow for long-running
MATLAB programs. Recently, researchers and developers baea developing virtual
machines and just-in-time compilers [AP02, Thé02,CB09, CBHVWdhe MATLAB lan-
guage. There remain, however, important compilation ehgks. Although the dynamic
nature of the MATLAB language provides challenges to ruetioptimizations, it also
presents great opportunities. For example, the runtimawetr of a MATLAB program
can be observed to discover opportunities for optimizagiod an on-the-fly optimizer can
dynamically apply suitable optimizations that benefit friiva identified opportunities.

This thesis is about the development of a collection of neeethniques for on-the-fly
transformations and optimizations in JIT compilers for WATLAB language. We show
how to use runtime information about program behaviour fapsut transformations and
optimizations that can improve the performance of virtuathines and JIT compilers for
the MATLAB programming language.

We begin this chapter of the thesis with an introduction toual machines and JIT
compilers. Later, we briefly review a study that further maties our research work. We
then highlight the challenges and our solutions that addties challenges. Further, we
summarize our main research contributions. We concludeltapter with the organization
of the remaining chapters of the thesis.

1.1 Virtual Machines

The increasing growth of the Internet is driving a growingenest in virtualization
among hardware designers, operating system designeggapiming language design-
ers, and compiler writers. In many systems, virtualizati@s helped to achieve cross-
platform independence, inter-operability (i.e., highdlanguage independence), security,
and cross-platform performance. In the past, the main @b for building virtual ma-
chines was to run different operating systems on sharedvaaed This was necessary to

2



1.1. Virtual Machines

support different computational needs of different grotipsers on shared hardware.

Virtual machines provided a transformation of the singkerface of a computer sys-
tem into manyvirtual interfaces|[Gol73, PG74]. Each interface behaves like aptet®
computer system that is composed of an operating systemugpdd many simultaneous
user processes. Hence, they are cadlgstenvirtual machines [SNO5].

A processvirtual machine supports only a single process. Virtual mvaes for high-
level languages (e.g., McVM, JVM [LY99], and CLR [Int13]) gveocess virtual machines.
They are typically designed to provide platform indepergeby reconciling differences
in architectures and operating systems. In this thesis,re&@ncerned only with imple-
mentations of process virtual machines.

A system’s interface is specified by its instruction set decture (ISA). Virtual ma-
chines are implemented by emulating the instruction setef system — thesource—
on a machine with a different instruction set — tiaeget A process virtual machine pro-
vides a machine-independent interface that is similar wra@ntional machine instruction
set architecture. The ISA of a virtual machine is calleduattinstruction set architecture
(V-ISA).

Many V-ISAs have been designédkcodelNAJ " 75] is a V-ISA for the Pascal machine;
similarly, Java byte codets a V-ISA for the Java virtual machine. Microsoft intermeie
language (MSIL) (or common intermediate language (CLI) facidsoft's common lan-
guage infrastructure (CLI)) [Int13] and LLVM [LAQ4] are mogeneral V-ISAs.

The virtual instruction set of a virtual machine can be ipteted or compiled. This
thesis concentrates on JIT compilation techniques.

1.1.1 JIT Compilation

Compilation concerns the translation of one language inthean language. A spe-
cial translation technique used in implementing virtuathiaes is the JIT (Just-In-Time)
compilation technique. JIT compilation is an old technigevas developed in response
to the performance challenges of the interpretation tegles used in implementing virtual
machines.
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Instead of interpreting virtual instructions, some blooksode are now compiled just
before they are executed. Thus repeated execution of the sade requires no further
interpretation or compilation. This approach combinesh@eefits of static compilation:
compiled code generally runs faster than interpreted dbdéso brings the benefits of in-
terpretation because the compilation process can ber@fitsemantic and runtime infor-
mation. According to Aycock [Ayc(03], McCarthy’s paper on BfMcC60] is the first pub-
lished work on JIT compilation. Several techniques for Jdmpilation of object-oriented
languages were developed in several implementations ofitatkgGR83/DS844, Kay93],
SELF [Cha9?], and, more recently, in many implementationdada virtual machines
[ATCL 98, YMP"99|Kra98, CLS00, PVC01, SOK4,AABT05].

Some virtual machines have interpreters and JIT complensie other VMs begin with
a base-line compiler and recompile methods or functionis a/inore optimizing compiler
after identifying some frequently executed methods or aedens — thehot spots. The
optimizing compiler often performs a range of optimizaipmcluding, traditional opti-
mizations such as register allocation, inlining, commoh-sxpression elimination, and
other runtime optimization tailored to exploit some rel@vauntime information.

McVM [CBHV10] is a recent virtual machine developed for the MAdB language.
It has a basic interpreter and an optimizing JIT compilet thaupported by the LLVM
[LAO4] compiler framework. We introduce the MATLAB languagMcVM and LLVM in
Chaptef 2.

1.2 Motivation

Over the years, numerous MATLAB programs have been develapsolve a variety of
problems in different domains, in particular the numere@hputing domain. To gain some
insight into the way different MATLAB programmers use thatigres of the MATLAB
language, a study of MATLAB programs is necessary. This élp in the identification
of the important features in MATLAB programs; further, it ynalso reveal some major
sources of overhead. In this section, we describe a stucjuoted on a large collection of
MATLAB programs.



1.3. Challenges

1.2.1 Characteristics of MATLAB Programs

To discover the common characteristics of MATLAB programis,conducted a study
of a large collection of MATLAB programQ.The result of this study is shown in Tallell1.1.
Out of 12,946 functions in 3,114 files examined, 31% (3,9%tain loops; 41% (4,356)
of the loops contain conditional statements while 62% (6)&8 the loops have function
calls. About 95% (12,270) of the functions have one or mopelfiparameters while 54%
(6,954) have one or more output parameters.

The results of this study provide a guide to the identificatd key optimizations that
address many of the compilation and performance challengeMATLAB compiler. we
examine the challenges and opportunities in MATLAB progsamthe next section.

Property H Count ‘
Number of files 3,114
Number of functions 12,946
Number of functions with input parameters 12,270
Number of functions with output parameters 6,954
Number of functions with both input and output parametgers6,664
Number of functions with loops 3,992
Number of loops 10,726
Number of loops with conditionals 4,356
Number of loops with calls 6,681

Table 1.1 — Some characteristics of MATLAB programs

1.3 Challenges

A typical MATLAB program operates on large arrays. Althoughny of these opera-
tions are difficult to compile efficiently, static and dynamptimization opportunities exist.

2. These MATLAB programs were collected from a variety of rees, including those from:
http://www.mathworks.com/matlabcentral/fileexchange b
http://people.sc.tsu.edu/ ~ Jburkardt/m_src/m_src.html b
http://www.csse.uwa.edu.au/ ~ pk/Research/MatlabFns/ and

http://www.mathtools.net/ MATLAB/.


http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/.
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In this section, we highlight some performance challengesaptimization opportunities
in MATLAB programs.

1.3.1 Challenge 1: Copy Semantics

The use of copy semantics for array assignments, for paesupassing and for return-
ing values from a function is one of the cases where the sisgbeantics of the MAT-
LAB language helps the programmer to reason about the cadertwvides performance
challenges. Assignment statements in the MATLAB prograngniénguage have different
forms, for example:

a = zerogl0); (1.1)
b = a; (1.2)
¢ = myfunca,b); (1.3)

A naive implementation of the copy semantics for stateniedts 1.3 above would involve
making a copy at every assignment statement. Thus, in statéinl, the object (a 10 x
10 matrix) allocated by functiomeroswould be copied into variable. The MATLAB
language defines a number of memory allocation functiondasito zeros In statement
1.2, arraya would be copied into variablé. In statemenf 113, the argumentandb in
the call to functionmyfuncwould be copied into their corresponding parameters of the
function; the return value ahyfuncwould also copied into variable

With this naive strategy a copy must be generated when: ljiabla is defined from
an existing object; 2) a parameter is passed from one funtbi@nother; and 3) a value
is returned from a function. Obviously, this is inefficieAtmore advanced implementa-
tion can detect opportunities to convert copy-by-valuedpyeby-reference, and similarly,
convert call-by-value to call-by-reference.

The results in Table_1l.1 shows that most MATLAB functionsénane or more input
and/or output parameters. This suggests that in a naiveemgitation, array copying is
potentially a major generator of runtime overhead.

6
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Existing MATLAB systems rely on reference-counting scherteecreate copies only
when a shared array representation is updated. This reduegscopies, but increases the
number of runtime checks.

In addition, reference-counting schemes incur overhelus approach requires space
for storing a reference count for each array object and sfracie code that keeps the
reference counts updated. Keeping the reference countgagpdlso generates execution
time overhead. Hence, adding a reference-counting schemgdrbage-collected runtime
system will have a negative effect on performance.

Because copying large arrays affects performance, an efficrgplementation of ar-
ray copy semantics in MATLAB is a key optimization for imping the performance of
MATLAB programs.

1.3.2 Challenge 2: Function Calls in Loops

The results of the study of MATLAB programs (Talble]1.1) rewbat MATLAB pro-
grams often contain loops. This is not surprising becaus@M¥B is an array-based lan-
guage and loops are typically used to express repetitiveatipas on arrays. It was also
found that a significant proportion of the loops studied Havetion calls. Based of these
results, we can predict that the called functions in thospdaare frequently executed. If
this happens, it will result in excessive function call dweads. Besides, function calls gen-
erally disrupt optimizations, forcing many analyses amehsformations to be necessarily
conservative. It is also hard to vectorize a loop that castéunction calls.

An important optimization technique for eliminating fuiwet call and return overheads
is function inlining or inline expansion. Inlining optimation involves replacing a call in-
struction at a call site with the body of the called functigmlining of call sites that are
frequently executed can lead to an improved performancearAexample, consider the
following code snippet.
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n = 10000;
for i=1:n

compute(i) % a potentially hot call

N o b~ W NP

end

The call of functioncomputein line 5 can prevent loop optimizations such as vectoriza-
tion. By first inlining compute however, we increase the opportunity for vectorizatiod an
increase the scope for the traditional compiler optimaadi Also, ifcomputeis a straight-
line code, the loop computation can be performed on a GPUchaklenge therefore is to
dynamically identify and inline the most critical call stéhat can lead to a performance
improvement.

1.3.3 Challenge 3: Dynamic Function Evaluation ( feval)

The problem with the dynamic function evaluation feaal is related to Challenge 2.
An important feature of the MATLAB programming languagetgssupport of higher-order
functions through théeval construct, which is widely used in many classes of humeri-
cal computations, including fitting functions, estimati@gdinary Differential Equations
(ODE), machine learning algorithms such as simulated dmggaand general plotting
functions. All of these applications share a similar patt¢he main computation func-
tion has a function parameter that can accept either a umbtandle, or a function name
as the actual argument. The body of the computation funttien repeatedly evaluates the
function passed in usingval

However, dynamic function evaluation viaval calls within a frequently executed
loop can incur high runtime overhead. Tfeval call is often interpreted because the
function to be evaluated is generally unknown at the cortipitatime. This can be very
slow. Besides, function evaluation viaval built-in prevents important optimizations
such as inlining that can increase the scope for other madgional compiler optimiza-
tions such as the common sub-expression elimination (C3t.challenge therefore is
to determine the overhead fdval and to develop runtime optimization techniques for
reducing or eliminating the overhead, and thus improvegoerance.

8
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Listing 1.1 — A while loop with arfeval call.

while k < maxit

1

2 k =k + 1;

3 [f,dfdx] = feval(fun,x); %Returns f( x(k-1)) and f'(x(k-1))
4 dx = f/dfdx;

5 X =X — dx;

6 if ((abygf) <feps )| ( abgdx) < xeps) )
7 r =x;

8 return ;

9 end

10 end

11 end

Listing[1.1 shows a MATLAB code snippet from Gerald ReckteliigaRec00a] im-
plementation of Newton’s method for finding the root of a panial. The code snippet
contains a loop with afleval call. The first argument to thieval call, that is,fun
contains the name or a handle to the function thatféval call evaluates at run time.
An optimization opportunity exists: becaui is a loop constant, then tHeval call
will evaluate the same function at every iteration of theploBeplacing thdeval call
with a direct call to the function held by varialfien can lead to a significant performance
improvement.

In the next section, we provide an overview of the technighaswe have developed
to overcome these challenges. We describe the techniquaesaitin chapters|3 -H8.

1.4 Solution Overview

The foregoing challenges have been resolved in this thggigeloping suitable opti-
mization techniques as an extension to McJIT, the McVM Jlimpiter [CBO9, CBHV10].
Three major optimization opportunities that have beentiled and addressed are:

1. array copying at assignments and input or output pararpassing;
2. a high number of loops, and a high proportion of loops witiction calls;

3. repeated evaluation of a fixed target function byewal call.

9
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1.4.1 Copy Optimization

To harness the first optimization opportunity, we develogedpproach that is based
on JIT-time static flow analysis. It is a staged static anslgpproach that does not require
reference counts, thus enabling a garbage-collectedaVimachine. It eliminates both un-
needed array copies and does not require frequent runtiseksh

The first stage combines two simple, yet fast, intraprocadarward analyses to elim-
inate unnecessary copies: the fikgtitten parameteranalysis determines the parameters
thatmaybe modified by a function while the secomopy replacemeranalysis determines
if all the uses of a copy variable can be replaced by the alga that the copy statement
defining the copy can be eliminated.

The second stage is comprised of two analyses that togegtennaine whether a copy
should be performed before an array is updated: the fiestessary copy analysis a
forward flow analysis and determines the program points /heray copies are required
while the secondgopy placement analysiss a backward analysis that finds the optimal
points to place copies, which also guarantee safe arraytesad@/e return to copy opti-
mization analyses in Chapfer 3.

1.4.2 On-Stack-Replacement (OSR) Support

To ensure that a function that is in the middle of an executi@am be optimized at a
higher optimization level, the dynamic optimizations Highted below must be supported
by an on-stack replacement capability. Unfortunately, énsv, LLVM does not support
on-stack replacement.

So, we implemented OSR for LLVM. We decided to design and ldgva modular
approach to implementing on-stack replacement in LLVM as$ plathe research work of
this thesis.

Apart from being useful for the techniques developed in tesis, the modular OSR
implementation will allow developers building JIT comp#en LLVM to develop runtime
optimizations that can improve the performance of their ddmpilers. We discuss the
modular OSR approach in Chapiér 4.

10
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1.4.3 Selective Dynamic Inlining of Function Calls in Loops

To exploit the second optimization opportunity, we develdpelective inlining of func-
tions at call sites located in frequently executed loop galthe call sites of interest are
annotated at JIT compilation time. They are considerednianing at run time if the loop
iteration count exceeds a pre-set threshold. This optiizas supported by a novel on-
stack replacement technique. On-stack replacement igosedtinue the execution of the
interrupted loop after the inlining. We describe our sédectlynamic inlining in detail in
Chaptefb.

1.4.4 feval Call Specialization

To exploit the third optimization opportunity, we proposatd developed two on-the-
fly mechanisms for specialization &val calls. The two approaches aim at replacing
feval calls with direct calls to théeval target function. Thus, eliminating interpreter
overhead and allowing an optimization of both the targetfiem and the calling function.

The first approach specializes calls of functions Wétal using a combination of
runtime input argument types and values. The second afgpress on-stack replacement
technology, as supported by McVM/McOERThese two specialization approaches are
described in detail in chapters 1 8.

1.5 Research Contributions

We have designed and developed several techniques thatcaseld to improve the
performance of virtual machines and JIT compilers for theTMAB programming lan-
guage. Our techniques can also be used to improve the imptations of other similar
dynamic languages. To the best of our knowledge, we are renteaoi¥ similar work for the
MATLAB language. We highlight our main contributions below

3. www.sable.mcgill.ca/mclab/mcosr.
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1.5.1 Copy Optimization in McVM

Copy elimination optimization: We designed and implemented a novel copy optimiza-
tion technique, supported by our four new flow analyses, ficieftly implement
array copy semantics in a MATLAB JIT Compiler. Our approachkugable for im-
plementing array copy semantics in a garbage-collectédaltimachine.

Experimental measurements of overheadsWe conducted experiments to demonstrate
the behaviour of reference-counting approaches and toureetiee overhead associ-
ated with dynamic checks in a reference-counting approach.

Experimental measurements of impact: We showed that for our benchmark set, our JIT
compilation-time static approach finds the needed numbeopies, without intro-
ducing any dynamic checks.

1.5.2 Modular On-Stack Replacement in LLVM

Modular OSR in LLVM: We have designed and implemented OSR for LLVM. Our ap-
proach provides a clean API for JIT compiler writers using/M.and clean imple-
mentation of that API, which integrates seamlessly withdtamdard LLVM distri-
bution and that should be useful for a wide variety of appiice of OSR.

Integrating OSR with inlining in LLVM:  We show how we handle the case where the
LLVM inliner inlines a function that contains OSR points.

Experimental measurements of overheadsWe have performed a variety of measure-
ments on a set of MATLAB benchmarks. We have measured théneads of OSR.
This shows that the overheads are usually acceptable.

1.5.3 Selective Dynamic Inlining

Using OSR in McJIT for selective dynamic inlining: In order to demonstrate the effec-
tiveness of our OSR module, we have implemented an OSR-bagseanit inliner
that will inline function calls within dynamically hot lodpodies. This has been com-
pletely implemented in McVM/McJIT. We also designed two Ofdint placement
strategies for inserting an OSR point into a loop within gloest.

12
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Experimental measurements of benefitsWe have performed a variety of measurements
on a set MATLAB benchmarks. We have measured the benefitdauitse dynamic
inlining. This shows dynamic inlining can result in perfante improvements.

1.5.4 Dynamic Function Dispatch via the MATLAB  f eval

Measuring the cost off eval : We evaluated the overheadsfeffal and show signifi-
cant overheads for calls viaval for important classes of benchmarks.

OSR-based specialization of eval : We developed a general technique to detect and in-
strument importanteval sites with OSR points, and we designed an OSR-based
transformation which can be done at the LLVM IR-level, withoequiring access
to the generated assembly code. We also designed appeofifiatime tests to opti-
mize the guards required to determine if the specializeldcoald be made or if the
general backup path should be taken.

JIT value-based specialization: We designed an extension to the McVM JIT specializa-
tion mechanism. Previously specialization was perfornaesd only on the dynamic
typesof function arguments. In the new approach, we also speeial thevalue of
a function argument, for the case where that argument isas#te first argument to
a call tofeval inside the body of the function to be compiled.

Implementation in McVM/ McOSR We implemented the two approaches in McVM.
Our implementation is open source.

Experimental results: We evaluated the OSR-based specialization and JIT valesbas
specialization approaches on a set of benchmarks. We alspared the perfor-
mance of the OSR-based specialization approach with thdteodT value-based
specialization approach (Chapiér 7).

1.6 The Organization of the Thesis

This thesis is divided into five parts. The first part cons@t<hapte 2, where we
provide the necessary background to the research workideddater in the thesis.

13
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The second part consists of Chapter 3. There, we describgpuvach to an efficient
implementation of array-copy semantics in MATLAB. We alsgaliss our experimen-
tal results that show significant overhead for dynamic checkeference-counting-based
implementations, and the experimental results that detradasthe effectiveness of our
approach.

The third part is comprised of Chapféer 4 and Chalpter 5. In Chdptee describe our
implementation of OSR in LLVM. In Chaptér 5, we describe ouplementation of selec-
tive dynamic inlining that is based on the OSR approach. \&fe firesent the results of our
experiments that measure the overhead of OSR over a setdfranks. We also discuss
the experimental results that show the benefits of the OSRBestgul selective dynamic
inlining.

The fourth part is comprised of Chaplér 6, Chapter 7, and Ch8ptarChaptef 6, we
motivate the need for afeval call specialization. In particular, we describe our experi
mental results that show significant overheadséoal call implementations in several
interpreters and JIT compilers for the MATLAB programmiranguage. In Chaptér 7,
we describe our first specialization approach — the OSR-bi@sedl specialization ap-
proach. In Chaptdrl 8, we describe the second approach — thalll@-based specializa-
tion approach.

The last part consists of Chapfér 9 and Chaptér 10. We revieve selated work in
Chaptel 9. We conclude the thesis and highlight the direétiofuture work in Chaptdr 10.
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Chapter 2
Background: MATLAB, McVM and LLVM
Compiler Framework

The research work presented in this thesis is based on semxdsting systems.
MATLAB® system is a proprietary implementation of the MATLAB pragraing language
by MathWork?.H Throughout the thesis, the term MATLAB may refer to the Matrk¢’
implementation of the MATLAB programming language or the MAB programming
language. It will be clear from the context which meaningas referred to. The research
was conducted within the McLAB virtual machine, McVM_[CB09, CBH¥], which is
supported by the LLVM compiler framework [LAO4].

To aid the understanding of the work described later in tlesith) we briefly intro-
duce the MATLAB programming language. We then describe McAid its JIT compiler,
McJIT. We conclude the chapter with an introduction to th&/M.compiler framework,
with a special focus on the JIT compiler toolkit of the franoeku

2.1 MATLAB

The MATLAB system includes an interactive computing enmireent. A MATLAB
user types a command and the MATLAB system evaluates the emtintsers can also

1. http://www.mathworks.com/products/pfo/.
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invoke a MATLAB file from the interactive environment. A fil@ataining valid MATLAB
code is called an M-file. MATLAB accepts two kinds of M-filecriptsandfunctions

A script is a sequence of MATLAB statements or commands; &sdeot accept any
arguments and does not return any values. A script operaiefata in the MATLAB
workspace. For the purpose of the discussions in this thesishall concentrate on MAT-
LAB functions and will not discuss MATLAB scripts further. dfe information on MAT-
LAB scripts can be found in numerous MATLAB books, includitige Matlab 7 Getting
Started Guide [Mat09a].

A MATLAB function can accept zero or more arguments and camrnezero or more
values. Variables defined in a function are internal to tnefion.

MATLAB is a dynamically typed language. This means that thetime value of a
variable determines the type of the variable. Lisfind 2.dwsha MATLAB function that
computes the product of two matrices.

Listing 2.1 — A matrix multiplication MATLAB function.
1 function ¢ = matrixmul(a, b)

2 [m, n] = size(a);

s [n1, p] = size(b);

4 if (n ~=nl)

5 error ('Non conforming matrices' );
s end

7 € =zerogm, p);

s for i=1:m

9 for j=1.p

10 for k=1:n

1 c(i,j) =c(i,j) +a(i,k) = b(k,j);
12 end

13 end

1 end

15 end
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Listing 2.2 — A matrix multiplication driver.
function matrixmul_driver ()

1

2 N =10:;

s a =rand(N, N);

4+ b =rand(N, N);

5 € = matrixmul(a, b);
s disp(c);

7 end

As shown in Listindg 2,11, a function in MATLAB begins with thekwordfunction and
ends with another keyworehd.H MATLAB considers an array access as a mapping from
the index type to the array element type. Thus, MATLAB usesiatal syntax for array
accesses and function calls. As will be shown later in theishgSectiori 316), using the
same syntax for both array accesses and function calls cexase compilation difficulties.

Listing 2.3 — A matrix multiplication driver using MATLAB “* opera-

tor.
1 function simple_matrixmul_driver()
2 N=10;
3 a =rand(N, N);
4+ b =rand(N, N);
5 C=axb;
e disp(c);
7 end

As mentioned earlier, MATLAB is an array-based languagegiesi for sophisti-
cated vector and matrix operations. Therefore, funatiatrixmul_driverin Listing[2.2 and
simple_matrixmul_driver in Listing [2.3 are semantically equivalent MATLAB programs
Functionrand is a memory-allocating MATLAB built-in function. The staai MATLAB
library defines several thousand MATLAB built-in functions

Functionmatrixmul shown in Listing 2.lL accepts two parameters and returnsueyval
MATLAB uses call-by-value semantics for passing paransefénus, MATLAB functions
do not have side-effects due to writing parameters and l@@bles.

2. In certain cases, the keywoethd at the end of a function may be omitted.
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Function Handles Itis possible to create a handle to a MATLAB function. Acdogl
to the MATLAB 7 Getting Started Guidé [Mat09a], a functiomide is typically passed as
an argument to other functions that can evaluate or exekbatiinction referenced by the
function handle variable. The following code snippet cesat function handle to built-in
functiontan.

fh = @tan;

A MATLAB function can be called using its name or via a functibandle. For exam-
ple, fh (60); calls the MATLAB built-in functiontan passing 60 to it as an argument.

2.2 The McLab Virtual Machine

McVM is a virtual machine for the MATLAB programming languaglt is a key
component of the McLAB framework [micl]. Figute 2.1 shows thain components of
the McLAB project. The McLAB framework is comprised of an emsible front-end, a
high-level analysis and transformation engine and five adk. Currently there is support
for the core MATLAB language and also a complete extensigpstting ASPECTMAT-
LAB [ADDH10]. The front-end and the extensions are built usingtdexer|[[CH11], and
JastAdd [EHOF]. There are five backends: McFor, a FORTRAN apateerator[[Li09];
Mc2For, a new FORTRAN code generator [mc213]; MiX10, an X1®{[K] code gener-
ator; a MATLAB generator (to use McLAB as a source-to-sowampiler); and McVM,
a virtual machine that includes a simple interpreter andoaisticated type-specialization-
based JIT compiler, named McJIT, which generates LLVM [LPOdde.

In Figure[2.2, we show the main components of McVM. McVM hadTacbmpiler
and an interpreter. As shown in the figure, the VM is suppabted number of analyses,
including, live variable array bounds check eliminatiotype inferencendcopy elimina-
tion analyses. The copy analyses (Chapier 3), OSR library (Chdjpteilynamic inliner
(Chaptei b)feval optimization logic (Chaptdr|6, Chapfer 7, and Chapter 8) arts jodr
the research contributions of this thesis.

McVM is also supported by Boehm garbage collector [BS07], aveal numerical li-
braries|[ABB"99/WPDO01]. It supports most MATLAB data types, includingitea) arrays,
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Figure 2.1 — Overview of the McLAB project (shaded boxes argributions of this thesis).
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Figure 2.2 — The main components of McVM (adapted from [CBOBie shaded compo-
nents are parts of the research work presented in this thesis
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double-precision floating points, double-precision cawrptumber matrices, cell arrays
and function handles.

2.2.1 Type Inference and Specialization

McVM is supported by a type-inference engine. It is a key @enfance driver for the
McVM JIT compiler. The type information provided by the iné@ce engine is used by
McJIT for function specialization.

The type inference is a forward analysis that propagatesdoh variable, the set of
possible types through every branch of a function. Vargloien have different types at
different points in a function.

The type inference assumes that for each input argumensethaf possible types are
known. Given the initial types, it infers, at each progranmpdhe set of possible types for
a variable. The analysis may generate different resultedoh function depending on the
input arguments passed in to the function during a call.

McJIT specializes code based on the function argument ti@#soccur at run time.
When a function is called the VM checks to see if it already haerapiled version cor-
responding to the current argument types. If it does nopjlias a sequence of analyses
including the live variable analysis and type inferencesiidually, it generates LLVM code
for the current version. Next, we discuss how McVM executasex function.

2.2.2 Running a Function

McVM uses the McLAB front-end to parse the input MATLAB comnais and source
files (mfileg. The McLAB front-end sends its output to McVM as an XML file siring.
McVM then creates an abstract syntax tree (AST) for the soaodle from the XML file
or code string.

In Figure[2.8, we illustrate how McVM, with its JIT compilenabled, executes a user-
defined function. When a function is called with argumentsarhs data type, as shown
in the figure, the VM checks whether a compiled code versiahtiatches the argument
types exists in the code cache. If a matching version is foddrectly executes the code.
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Figure 2.3 — Running a function in McVM.

Otherwise, it checks whether a McVM AST has been createdhferfunction and pro-
ceeds to perform a series of analyses and transformatiotisediR (McVM AST). Then
it produces LLVM code, which is then passed to the LLVM codeeagator to produce the
machine code for the function. The address of the generadethime code is stored in the
code cache.

If McVM IR has not been created for the function, the souragecis loaded and passed
to the McLAB front-end for lexical analysis and parsing. Md\then generates McVM
IR for the source code and proceeds to the other stages obtleecompilation shown in
Figurel2.3.

2.2.3 McJIT-Interpreter Interaction

McJIT occasionally generates calls to the interpreter tomate certain complicated
expressions that it is unable to handle or that the JIT cangibes not currently support.
The interaction between the compiler and interpreter isrofacilitated through a symbol
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look-up environment. A symbol environment is a table thabagtes a value to a symbol.
It is used to bind a value to a variable, and to look-up theevalia variable at run time.

The code setting up a symbol look-up environment for a famcis generated lazily
on a need basis. During the code generation for a functienfinst time McJIT generates
an LLVM instruction that requires a symbol environment,g@hgrates the symbol environ-
ment set-up code at the function’s prologue. The set-up cutlalizes the environment
for subsequent look-ups and bindings of values to variables can be a major source of
overhead. In Sectidn 5.2, we show how to minimize the ovettodahis symbol environ-
ment set-up code.

2.3 The LLVM Compiler Framework

LLVM is an open source compiler infrastructure that can bedus build compilers for
static languages and JIT compilers for virtual machine&/MLis designed as a set of li-
braries with well-defined interfaces. It supports a weliiued low-level intermediate code
representation known as the LLVM IR, as well as supporting@elmumber of optimiza-
tions and code generators for a variety of architectures.

The compiler infrastructure is being used in many researofegts and in some pro-
duction systems. LLVM has been used to implement staticaiypiled languages such
as C/C++ and dynamic languages such as MATLAB, Ruby, and JayaSBecently,
an OpenCL GPU programming language implementation was amdetvVM. Apple’s
OpenGL stack and Adobe’s After effect also use LLVM [BW11].

This section introduces the LLVM compiler framework fronetperspective of a JIT
compiler developer.

2.3.1 The Three-Phase Design of LLVM

Figurd 2.4 shows the three-phase design of LLVM. The firsspludithe design includes
the front-ends and the last phase of the design includesttiednds. Connecting the front-
ends to the back-ends is the LLVM Optimizer.
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H / |
MATLAB —! MATLAB Ik
| Frontend "
o 1
Clang C/C++/0bjC| |
o /C++/ X LLVM L s
Frontend X86 Backend
LLVM LLVM
tre llvmm-gce Frontend -
Fortran = 8 Optimizer PowerPC Backend [ PowerPC
LLVM
Haskell —  GHC Frontend LIVM IR LIVM IR| ARM Backend | ARM

Figure 2.4 — Three-phase Design of LLVM (adapted froine Architecture of Open Source
[BW11]). To implement the MATLAB language in LLVM, a MATLAB frot-end must be
implemented.

A front-end for a new language produces code in LLVM IR. LLVMsisongly typed.
The IR instructions are in three-address form: they accapiestyped inputs and produce
results in new virtual registers. The IR also supports kbehte LLVM IR is in static single
assignment (SSA) form [AWZ88, RWZ88, CERS,[BBH"13]. SSA form IR simplifies
many optimizations, including constant propagation, glokalue numbering and dead-
code elimination. We review SSA form in Section 213.2.

The optimizer performs target-independent analyses andfiormations on the LLVM
IR. The output from the optimizer forms the input to the baokise LLVM provides back-
ends for common architectures, including x86, IBM PowerP@,ARM. A developer can
add back-ends for new architectures.

As can be observed from Figure 2.4, LLVM uses a common op&mikhus, imple-
mentations of multiple programming languages can shanegéesback-end. To implement
a new language, a developer needs only to implement a frahtes the new language and
use the existing back-ends. As illustrated in Figure 2.4ewebbper implementing a JIT
compiler in LLVM for the MATLAB language only needs to implemt the front-end (the
box made of dashed lines in Figurel2.4). The implementationuse the existing LLVM
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2.3. The LLVM Compiler Framework

back-ends. Without this design, implementiNganguages foi/ architectures would re-
quire N x M back-ends — a really daunting task.

2.3.2 Static Single Assignment (SSA) Form

The LLVM IR is in static single-assignment form. SSA form is@de transformation
where program variables satisfy the property that theralg one assignment to them in
the program. Because we shall be discussing several LLVMdRstormations in Chap-
ter[4, to simplify later discussions on LLVM IR-level trangfiaations, we review the SSA
form here. First, a review of the dominance relation [Tari@djween nodes in a control
flow graph is presented.

dominator: A nodeX dominates a nod¥, if every execution path frorantry to Y goes
throughX. We write X domY” if a nodeX dominates a nod¥.

postdominator: A nodeY postdominates a node if every execution path fronX to exit
goes througly’.

strict dominance A node X strictly dominates a nod¥ if X dominatesy” and X # Y.
We write X sdomY if a node X strictly dominates a nodg.

immediate dominator: An immediate dominator of a nod€, denoted bydom(Y), is a
node X such thatX is the closest strict dominator &f on any path fronmentry to
Y. Every node (except the entry node) has exactly one imnmed@hinator.

join point: A join point is a node with more than one incoming edge.

Consider the MATLAB code in Listing 214.
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i =0 i =0
if 1> 0.1 if 1> 0.1
tru wi tru w‘e
k = 3.6; k = 4.7; k1 = 3.6; ke = 4.7,
j = 4.2 7 = 3.3 J1 = 4.2 Jo = 3.3;

disp(k); 3 (J1,J2);
disp(5); disp(ks);
disp(j3);

Figure 2.5 — A CFG for functiorntest is shown in (a); an equivalent CFG for the function
in SSA form is shown in (b).

Listing 2.4 — A MATLAB function with anif-elsestatement.
function test ()

1

2 1 =0.0

3 if i >01
4 k = 3.6;
5 j = 4.2
s else

7 k = 4.7;
8 j = 3.3;
o end

10 disp(k);
u  disp(j);
12 end

A corresponding control flow graph (CFG) is given in Figure @) Converting code in
an intermediate representation into an SSA form involveamgng variables and inserting
pseudo assignments namaa functions at join points. The CFG for functiaest in SSA

form is shown in Figuré215 (b).
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As shown in the figurephi nodes have been inserted to merge multiple definitions of a
variable that reach the join poirBB4).

Several algorithms [AWZE8, RWZ88, CER9, BBH"13] exist to convert code in an
intermediate representation into an SSA form. Minimal S8 for a function inserts the

minimum number ophi functions. A function can be converted into minimal SSA fdin
computing thedominance frontierfCFR™89] of all nodes.

Thedominance frontieof a nodeX denoted a® F'(X) is the set of node¥ such that
X dominates a predecessorofbut does not strictly dominaté. Formally,

DF(X)=A{Y|(3P € Pred(Y))(X dom P A X lsdom Y)}

For a set of nodeS of the control flow graph, the dominance frontierfs defined as

DF(S)= | J DF(X)

Xes

and theterated dominance frontieof S

DF* = lim DF'(S)

1—00

where

DF'(S) = DF(S);
DF™*Y(S) = DF(SUDF")

The setJ(S) of join nodes is defined as the set of all nodesuch that there are two
CFG paths that start at two distinct nodessiand haveZ as the first node in common.
Theiteratedjoin J*(S) is defined as

JT = lim J(S)

1—00
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where

J'=J(S);
JH = J(SU T

Cytron et al. [CFR89] show that ifS is the set of assignment nodes for a varidble
the iterated join ofS' is equivalent to the iterated dominance frontierSofThus,D F+(S)
is exactly the set of nodes that negdodes for variablé’.

We now present examples of code in LLVM IR.

2.3.3 LLVM IR: Examples

In this section, we introduce LLVM IR. Listing 2.5 shows a MAAB function that re-
turns the sum of its two parameters. A corresponding LLVM®Rthe MATLAB function
is shown in Listind 2.6.

Listing 2.5 — A simple MATLAB function.
1 function r = addDoubles(argl, arg2)
2 r =argl + arg2;
s end

The code uses instructidadd to add the values dhargl and%arg2. The operands of
fadd are floating point values.

Listing 2.6 — LLVM IR for addDoubles

define double addDoubles(doubtéargl, double%arg2) {
%tmp = fadd doublé¥bargl, %arg2
return double%tmp

}

A W N P

To give a hint of the optimizing power of LLVM, we show two senti@ally equivalent
implementations for the MATLAB function in Listing 2.4. THast is a naive implemen-
tation while the second folds memory operatiolvad store instructions) intop nodes to
produce a more efficient implementation tekt.
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Listing 2.7 — A naive implementation akst (Listing[2.4) in LLVM IR.

1 define void @test() {

2 entry:

3 %i = alloca double

4 %] = alloca double

5 %k = alloca double

s store double 0.000000e+00, doublébi
7

8

9

%iVal =load double %i
%ifCond = fcmp ogt doublésiVal , 1.000000e-01
br i1 %ifCond, label %then, label %else

u then: ; preds =%entry
12 store double 3.600000e+00, doubléok

13 store double 4.200000e+00, doublebj

14 br label %exit

16 else: ; preds =%entry
17 store double 4.700000e+00, doubléok

18 store double 3.300000e+00, doubléj

19 br label %exit

21 exit:

; preds =%else %then
2 %nK =load double %k
23 %nJ =load double %j
24 %0 = call 164 @dispDB(doubléonK)
s %1 =call i64 @dispDB(doubl&onJ)
26 ret void

In Listing[2.8, all the memory accesses in Listing] 2.7 havenbeonverted to register
reads/writes. The LLVM instruction set allows an infinite sevirtual registers.
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Listing 2.8 — A more optimized implementation t&st (Listing[2.4) in
LLVM IR.

1 define void @test() {

2 entry:

3 %ifCond = fcmp ogt double 0.000000e+00, 1.0000004
br i1 %ifCond, label %then, label %else

4
5
s then: ; preds =%entry
7 br label %exit
8
s else: ; preds =%entry
10 br label %exit
11
12 exit:

; preds =%else %then
13 %) .0 = phi double [ 4.200000e+0@%then ], [ 3.300000e+00%else]
14 %Kk .0 = phi double [ 3.600000e+00%then ], [ 4.700000e+00%else]
15 %0 = call i64 @dispDB(doublé&sk.0)
16 %1 =call i64 @dispDB(doublésj.0)
17 ret void

2.3.4 LLVM Transformation and Optimization Pass

LLVM provides a framework for transforming and optimizingde in LLVM IR. Trans-
formations and optimizations are written as passes. An LLjydds is a subclass &hss
or its several, similarly named, derived classes, inclgdiasicBlockPas$or basic block-
level transformationsfFunctionPasg$or function-level transformations; arModulePasgor
module-level transformations. We shall illustrate how tatevan LLVM pass with a
function-level pass.

Suppose we want to count the number of call instructions imatfon. One can write
a function-level pass that scans the instructions in thetfon and updates a counter when
it finds a call instruction.
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Listing 2.9 — An example of a function pass.

namespace{
using namespacdlvm;
/I counts the number of function calls in a function
class CallCountPass public FunctionPass{
public:
CallCountPass() : FunctionPass(ID), callCount{Q)

unsignedgetCallCount () const { return callCount}

© 0 N o g A~ W N e

=
o

virtual bool runOnFunction(Function& F)
countCalls (F);return false ;
}

virtual const charx getPassNamegonst {
return "Call Counter Pass" ;

N A O
N o o A W N P

static char ID;
private :
/[ counts the number of call instructions in a Function
void countCalls (Function& FY
for (Function :: constiterator FI = F.begin (),
FE=F.end(); FI != FE; ++FIY
const BasicBlock& BB =xFl;
for (BasicBlock:: constiterator Bl = BB.begin(),
BE = BB.end(); Bl != BE; ++BI){

NN NN NN B R
a A W N B O © 0

2 const Instruction* | = &=*Bl;
27 if (isa<Callinst>(1)) ++callCount;
2 133

N
©

unsignedcallCount;;

¥

FunctionPass createCallCountPass ()
33 return new CallCountPass();}
s char CallCountPass::ID = 0;

35}

w W w
N B O

Listing[2.9 shows a function pass that counts the numberlisficea function in LLVM
IR. ClassCountCallPasss derived from the standarfeunctionPassso it is a function-level
pass. It operates on a function via methodOnFunctiorwhose input is a valid function in
LLVM IR. Method runOnFunctiorreturnsfalse to indicate that it does not modify the CFG.
If a pass modifies the input LLVM IR, it must retutiue.
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As shown in Listing 2.0, clasSountCallPassdefines a private method namealintCalls
The method is called byunOnFunctionIn lines 17 — 24 countCallstraverses the CFG and
increments a counter in line 24 if the current instructioa ¢all instruction. After scanning
all the basic blocks in the function, data membeltCountwill contain the count of all the
call instructions in the analyzed function.

LLVM provides a variety of pass managers to organize anddidaepasses to be run
on input code in LLVM IR.FunctionPassManagean be used to schedule passes to be run
on functions in LLVM IR. For instance, the following code sp@i creates a function pass
manager and adds some optimization/transformation p&s$es pass manager.

FunctionPassManager FPM(module);
FPM.add(createCountCallPass ());
FPM.add(createConstantPropagationPass ());
FPM.add(llvm::createPromoteMemoryToRegisterPass());
FPM.add(createGVNPass());
FPM.add(createEarlyCSEPass());

In the code snippet, five different passes were submittedegass manageFgM).
The user runs the passes in the order of their creation byngathethodrun of
FunctionPassManagand passing the input function suchras the following code snippet.
A user can also specify dependencies between passes. Tliba&age the order in which
passes are run on an input LLVM IR function.

FPM.rungF);
The call to methodun will cause all the four passes to be run on functfon

2.3.5 LLVM JIT Execution Engine

LLVM provides several execution engines that can be usedkéoute or interpret
LLVM IR. The JIT execution engine allows runtime code generatind is suitable for
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building JIT compilers for dynamic languages. The LLVM frawork also has an LLVM
IR interpreter.

To build a JIT compiler for a programming language, a usedsd¢e create a JIT ex-
ecution engine. MethodreateJITof the classExecutionEnginecan be used to create a JIT
execution engine. A user can also use the diaggneBuilderto create an execution engine.
The following code snippet shows how to USegineBuilderto create a suitable execution
engine.

Listing 2.10 — Creating a JIT execution engine.

1 using namespacdivm;
2 ...
3 EngineBuilder EB(module);

4 EB.setOptLevel(CodeGenOpt::Default);

s EB.setEngineKind(EngineKind::Kind::JIT);
s ExecutionEngine jitEE = EB.create ();

7 ...

In the code snippet shown in Listing 2110, the statementria & creates an engine
builder. In line 3, the code generation optimization leweset to its default optimization
level. Line 4 sets the execution engine kind to JIT and theestant in line 5 creates a JIT
execution engine using the settings from the engine budtgsct EB).

2.4 Summary

In this section, we introduced the most relevant systemd fmethe work presented
in the thesis, which is on runtime optimization techniquasmplementing the MATLAB
programming language.

The chapter began with an introduction to them MATLAB pragnaing language. We
later introduced McVM— an open-source implementation of MAB. McVM is based
on the LLVM compiler framework. We reviewed LLVM at the endtbe chapter.

LLVM supports JIT compilation and execution via its JIT enton engine. Although
LLVM provides support for recompilation of functions, it @® not support on-the-fly opti-
mizations. In other words, a running function cannot begfammed or optimized until all
its instructions have been executed.
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In chapters[ 13 {18, we present the research work of this thesisgsponding to the
shaded boxes in Figure 2.1.

34



Chapter 3
Copy Optimization in MATLAB

In the previous chapter, we introduced the MATLAB programgnianguage and its
implementation in McVM. The problem addressed in this ceaf the efficient compila-
tion of the array copy semantics defined by the MATLAB languabhe basic semantics
and types in MATLAB are very simple. Every variable is assdrtebe an array (scalars
are defined as 1x1 arrays) and copy semantics is used fonassigs of one array to an-
other array, parameter passing and for returning values &dunction. Thus a statement
of the forma = b semantically means that a copylofs made and that copy is assigned
to a. Similarly, for a call of the forma = foo(c) , a copy ofc is made and assigned
to the parameter of the functidoo , and the return value dbo is copied toa. Naive
implementations take exactly this approach.

In the current implementations of MATLAB, however, the comngntics is imple-
mented lazily using a reference-count approach. The capésot made at the time of the
assignment, rather an array is shared until an update tofdhe shared arrays occurs. At
update time (for example a statement of the fdrf) = x ), if the array being updated
(in this caseb) is shared, a copy is generated, and then the update is medoon that
copy. We have verified that this is the approach that Octaem-gource system [gnul?2]
takes (by examining and instrumenting the source code).aNeve that this approach (or
a small variation) is what the Mathworks’ closed-sourcelenpentation does based on the
user-level documentation [Mat09b, p. 9-2].
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Although the reference-counting approach reduces undeamj@es at run time, it in-
troduces many redundant checks, requires space for themetecounts, and requires ex-
tra code to update the reference counts. This is clearlyycosa garbage-collected VM,
such as the recently developed McVM, a type-specializind@BHV10,CB09]. Further-
more, the reference-counting approach may generate adadunopy during an update
of a shared array via a variable if all the other variable$ tagerence the array are dead
variables.

Thus, our challenge was to develop a static analysis apprsadable for a JIT com-
piler that could determine which copies were required, autirequiring reference counts
and without the expense of dynamic checks. Since we are icaigext of a JIT compiler,
we developed a staged approach. The first phase appliesivgrie @nd inexpensive anal-
yses to determine the obvious cases where copies can bedvdite second phase tackles
the harder cases, using a pair of more sophisticated staigses: a forward analysis to
locate all places where an array update requires a aggegsary copy analysiaipd then
a backward analysis that moves the copies to the best locatid which may eliminate re-
dundant copiecppy placement analy3idNe have implemented our analyses in the McJIT
compiler as structured flow analyses on the low-level AS@rimediate representation used
by McJIT.

To demonstrate the applicability of our approach, we havéopeed several experi-
ments to: (1) demonstrate the behaviour of the referenuetow approaches, (2) to mea-
sure the overhead associated with the dynamic checks irtheence-counting approach,
and (3) demonstrate the effectiveness of our static arsadygiroach. Our results show that
actual needed copies are infrequent even though the nurlagmamic checks can be
quite large. We also show that these redundant checks dalagetsignificant overheads.
Finally, we show that for our benchmark set, our static apgdinds the needed number
of copies, without introducing any dynamic checks.

In this chapter, we first describe how the work presented fitsrexto McVM project
discussed in the Chapter 2. Then, we describe the simplesfage analyses followed by
a description of the second-stage forward and backwaryseslwith examples. We con-
clude the chapter with a discussion of our experimentallt®su
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3.1 Background

McVM

McJIT

Analyses and Code

Specialization

QuickCheck

Necessary Copy and
Copy Placement Analyses

LLVM Code
Generation

Figure 3.1 — A simplified overview of McJIT (shaded boxes espond to the analyses
presented in this chapter).

The techniques presented in this chapter have been imptechenMcJIT (described
in Section Z2.R), a JIT compiler for MATLAB. In Chaptel 2, we hiiginted how McJIT
specializes code based on the function argument types ¢bat at run time. When gen-
erating code McJIT assumes reference semantics, and noseopantics, for assignments
between arrays and parameter passing. That is, arraysatedh as pointers and only the
pointers are copied. Clearly this does not match the copy sigesapecified for MATLAB
and thus the need for the two shaded boxes in Figure 3.1 im trdetermine where copies
are required and the best location for the copies. These malysis stages are the core of
the techniques presented in this chapter. It is also impbttanote that the specialization
and type inference in McJIT means that variables that cdythiave scalar types will be
stored in LLVM registers and thus the copy analyses only neaxbnsider the remaining
variables.
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In the next section, we introduce the first stage of our apgroavhich is the
QuickCheckFollowing that we introduce the second stage —theessary copgndcopy
placemenanalyses.

3.2 Quick Check

The QuickCheckphase QC) is a combination of two simple and fast analyses. The
first, written parameters analysiss a forward analysis which determines the parameters
that may be modified by a function. The intuition is that during a cdiltlee function,
the arguments passed to it from the caller need to be copitdtetoorresponding formal
parameters of the function only if the function may modife tharameters. Read-only
arguments do not need to be copied. For example,

function foo(argl, arg2)
disp(argl);
arg2(1) = 1;

end

in functionfoo above, onlyarg2 of the function needs to be copied. There is no need to
copyarglsince itis only read and not modified byo.

The analysis computes a set of pairs, where each pair repsesparameter and the as-
signment statement that last defines the parameter. Forpéxatime entry %, d;) indicates
that the last definition point for parametaris statemend;. The analysis begins with a set
of initial definition pairs, one pair for each parameter deafion. The analysis also builds
acopy list a list of parameters which must be copied, which is iniziedi to the empty list.
The analysis is a forward flow analysis, using union as thegmeperator. The key flow
equations are for assignment statements of two forms:

p=rhs: If the left-hand sidelfis) of the statement is a paramefgrthen this statement
is redefiningp, so all other definitions gb are killed and this new definition qf is
generated. Note that according to the MATLAB copy semansiash a statement is
not creating an alias betweprandrhs, but rathep is a new copy; subsequent writes
to p will write to this new copy.
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p(i) =rhs: If the Ihsis an array index expression (i.e., the assignment statesemiting
to an element op), and the array symbql is a parameter, it checks if the initial
definition of the parameter reaches the current assignnetgnsent and if so, it
inserts the parameter into the copy list.

At the end of the analysis, the copy list contains all the petars that must be copied
before executing the body of the function.

The second analysis ®py replacement standard sort of copy propagation/elimina-
tion algorithm that is similar to the approach used by an ABipiler [Wei85]. It deter-
mines when a copy variable can be replaced by the originéar (copy propagation).
If all the uses of the copy variable can be replaced by ther@igariable then the copy
statement defining the copy can be removed after repladitigealises of the copy with the
original (copy elimination).

To illustrate this point, consider the following equival@ode snippets. Variablein
statement 3 of Box 1

Box 1: Box 2:

1: a=rand(15000); 1: a=rand(15000);
2: b=a; 2: b=a;

3: c=2%b 3:  c=2%;

can be replaced with as done in Box 2; sinckis not referenced after statement 3, state-
ment 2 in Box 2 can be removed by the dead-code optimizer.

The copy replacement analysis computes a set of pairs atblas by examining as-
signment statements of the fotom= a. A pair represents thils andrhs of an assignment
statement, and indicates that if a successor of the statamsesthe first member of the
pair then the variable used could be replaced with the seswrdber of the pair. For ex-
ample, if the pair, (b, a) reaches the statentent2*b thenb could be replaced with in
the statement.

Like thewritten parameteranalysis, it is a forward flow analysis. However, in this case
the merge function is intersection. The key flow equatiomsctpy replacement analysis
are:
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b =a if both thelhs and therhs are variables, a new pair of variables, that is,d) is
generated at the statement.

Ihs=rhs if Insis a member of a pair that reaches the statement, such pakglad at the
statement. This is because the statement is redefing@nd its new value may no
longer match that of the other member of the pairs.

At the end of the analysis, the analyzed function is tramséat using the result of the
analysis.

If the analysed function does not return an array and alléh®aining copy statements
have been made redundant by the QC transformation, themitheo need to apply a more
sophisticated analysis. If copies do remain, however, giase 2 is applied, as outlined in
the next two sections.

3.3 Necessary Copy Analysis

Thenecessary copy analyssa forward analysis that collects information that is used
to determine whether a copy should be generated before ayiammodified. To simplify
our description of the analysis, we consider only simplégassent statements of the form
Ihs =rhs. Itis straightforward to show that our analysis works fotthsingle (onéhsvari-
able) and multiple assignment statements (mullipgevariables). We describe the analysis
by defining the following components.

3.3.1 Domain

The domain of the analysis’ flow facts is the set of pairs tbatgrised of an array refer-
ence variable and the ID of the statement that allocates ¢#imeary for the array; henceforth
calledallocators We write (a, s) if a may reference the array allocated at stateraent

3.3.2 Problem Definition

At a program poinp, a variable references a shared array if the number of yagab
that reference the array is greater than one. An array uptatn array reference variable

40



3.3. Necessary Copy Analysis

requires a copy if the variablmayreference a shared arrayagtnd at least one of the
other variables that reference the same arréiyesafterp. We assume that at each program
point, the set ofive variableshas been computed.

3.3.3 Flow Function
out(S;) = gen(S;) U (in(S;) — kill (S;)).

Given the assignment statements of the forms:

S;:a = alloc (3.2)
Siia = b (3.2)
Siia(j) = x (3.3)
S;:a = f(arg,,arg,,...,arg,) (3.4)

whereS; denotes a statement IBljoc is a new memory allocation performed by statement
SZ-H; a,b are array reference variables;is arvalug f is a function,arg,, arg,, ..., arg,,
denote the arguments passed into the function and the porrésg formal parameters are
denoted withp, ps, ..., pu-

We partitionin(.S;) using allocators. The partitiold);(m), containing flow entries for
allocatorm is:

Qi(m) = {(z,y)|(z,y) €In(S;) Ay = m} (3.5)

Now consider statements of type 13.2 above; if varidbleas a reaching definition &;
then there must exist sonfé, m) € in(.S;) and there exists a non-empdy(m) such that
(b,m) € Qi(m).

In addition, if b may reference a shared arrayStthen|Q;(m)| > 1. Let us call the
set of all suchQ;(m)s, P;. We write P;(a) for the set ofQ);s obtained by partitioningn(S;)
using the allocators of variabte

Considering statements of the fofml13/3(a) # () implies that a copy ofi must be
generated before executigdgand in that cases; is acopy generatarThis means that after
this statementy will point to a new copy and no other variable will refer togitiopy.

1. Functions such a=eros ones rand andmagicare memory allocators in MATLAB.
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We are now ready to construct a table gdgnandKkill sets for the four assignment
statement kinds above. To simplify the table, we define:

Kill gefind @) = {(z, 5)|(z,s) €in(S;) Nz = a}

Kill gead = {(, 8)|(z, s) € in(S;) A not live(S;, z)}

Kill ypaard @) = {(z, s)|(z,s) € In(S;) Nz = a A Py(a) # 0}

wherelive(S;, ) is a function that returnsue if variable z is live at program point; and

returnsfalse otherwise.
Stmt | Gen set Kill set
@) | {(z,s)|lr =aAns=S;Nlive(S;,z)} Kill gefind @) U Kill geqq
B2) | {(z,s)|lr =aA(y,s) €in(S;) ANy =bAlive(S;,z)} | Kill gefind @) U Kill gead
B3) | {(z,s)|lr=aNs=S8;APix)# 0} Kill ypdatd @) U Kill geqas
(3.4) | seegen f) below Kill gefind @) U Kill geqqs

Computing thegen set for a function call is not straightforward. Certain buinlt
functions allocate memory blocks for arrays; such fundti@me categorized aalloc
functions A question that arises is: does the return value of the ¢dllaction reference
the same shared array as a parameter of the function? If tine realue references the
same array as a parameter of the function then this sharirsg Ibeumade explicit in the
caller, after the function call statement. Therefore,ghaset for a function call is defined

as:
( {(a,S;)}, if live(S;, a) and isAllocFunction(f)
{(z,s)|z = a A (arg;, s) € In(S;) Alive(S;, z)},
if ret(f) aliases param;(f), 0 < j < size(paramsf)),
ger(f) =

{(a, S;)}, if Y(p € paramg f)), not (ret(f) aliases p)

{(z,s)|lr =aNarg € argsf) A (arg, s) € in(S;) Alive(S;, z)},
{ otherwise (e.g., if f is recursive)
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The first alternative generates a flow entey S;) if the rhs is analloc function and
thelhs (a) is live after statemens;; this makes statemert; an allocator. In the second
alternative, the analysis requests the result of the napes®py analysis orf from an
analysis manag@.The manager caches the result of the previous analysis owea gi
function. From the result of the analysis ¢gnwe determine the return variables pthat
are aliases to the parametersfand hence aliases to the argumentg.ofFhis is explained
in detail under the next section on Initialization. The ratwariable of f corresponds
to thelhs (@) in statement type_3.4. Therefore, using the summary irdtion of f, we
generate new flow entries from those associated with thereegts that the return variable
may reference provided thats alsolive after.S;.

The third alternative generaté¢éa, S;) }, if the return variable aliases no parameters of
f. The fourth alternative is conservative: new flow entries generated from those af
the arguments tg. This can happen if the call of is recursive orf cannot be analyzed
because it is neither a user-defined function noaléot function.

We chose a simple strategy for recursion because recuranaidns occur rarely in
MATLAB. In a separate study by our group, we found that out B85 functions in 625
projects examined, only 48 functions (0.3%) are directtursive. None of the programs
in our benchmarks had recursive functions.

Therefore, we expect that the conservative option in thentiein of gen( /) above will
be rarely taken in practice.

3.3.4 Initialization

The input set for a function is initialized with a flow entryrfeach parameter and an
additional flow entry (a shadow entry) for each parametelsisiaserted. This is necessary
in order to determine which of the parameters (if any) retmable references. We use a
shadow entry to detect when a parameter that has not begmaddo any other variable
is updated. At the entry to a function, the input set is given a

2. This uses the same analysis machinery as the type estmiatvicJIT.
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in(entry) = {(p, s)|p € paramg f) A s = Sp} U{(p', s)|p € paramgf) A s = Sp}.
We illustrate this scheme with an example. Given a funcfipdefined as:

function u = f(x, y)
u=x;
end

thein set at the entry of is {(z, S.), (', S:), (v, Sy), (¥, Sy) } and at the end of the func-
tion, theoutset is{(u, S,), (x, S;), (¥', Sz), (v, Sy), (¥, Sy) }-

We now know that: is an alias for: and encode this information as a set of integers. An
element of the set is an integer representing the input petarthat the output parameter
may reference in the function. In this example, the sét jssincez is the first (1) parameter
of f. This is useful during a call of. For instance, it = f(a, b); we can determine
thatc is an alias for argument by inspecting the summary information generatedffor

3.3.5 Simple Example

Let us illustrate how the analysis works with the followinigple example.

1 function examplel()
2 a =rand(15000);
3 b = a,

4« b(1) = 10;

s a = [1:10];

s disp(a (1:5));

7 disp(b (1:5));

s end

Table[3.1 shows the flow information at each statement ofdhetfon, including the
gen kill, in andout sets. The statement number is shown in the first column ofthie.t

The analysis begins by initializino(.S;) to () since the function does not have any
parameters. The assignment statentgns an allocator because functioand is an alloc
function. Tablé 3.1 shows that despite the assignmentén3djmo copies should be gener-
ated before the assignment in line 4. This is because varat#fined in line 2 is no longer
live after line 3 hence$, is not a copy generator according to our definition.
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#| Genset | Kill set In set Out set
2| {(a,5:)} 0 0 {(a, S)}
3| {(,52) | {(a,52)} | {(a,52)} {(b,52)}
4 0 0 {(b,52)} {(b, 52)}
5| {(a,55) 0 {(b,52)} | {(b,52),(a, S5)}

Table 3.1 — Forward Analysis result fexamplel

3.3.6 if-else Statement

So far we have been considering sequences of statementsir Analysis is done di-
rectly on a simplified AST, analyzing aftelse statement simply requires that we analyze
all the alternative blocks and merge the result at the enteifftelse statement using the
merge operatory).

3.3.7 Loops

We compute the input set reaching a loop and the output sirt@s loop using stan-
dard flow analysis techniques, that is, we merge the input Sleifrom the loop’s entry
with the output set from the loop back-edge until a fixed p@meached.

To analyse a loop more precisely, we implemented a conendisve loop analysis that
distinguishes the sharing of arrays that are initiatedidetthe loop from those initiated
within the loop, and from those initiated in different itdoms of the loop. This distinction
IS necessary in certain cases to prevent unneeded coprasbing generated [LH10].
We found, however, that real MATLAB programs did not require context-sensitivity to
achieve good results. The standard approach is sufficiengga@al MATLAB programs.

3.4 Copy Placement Analysis

In the previous section, we described the forward analybistwdetermines whether
a copy should be generated before an array is updated. Ot usrithis analysis alone
to insert the copy statements, but this may not lead to thieptesement of the copies and
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may lead to redundant copies. The backwesgdy placement analysgetermines a better
placement of the copies, while at the same time ensuringugadates of a shared array.
Examples of moving copies include hoisting copies out ahén constructs and out of
loops.

The intuition behind this analysis is that often it is betteperform the array copy close
to the statement which created the sharing (i.e. statenoétite forma = b) rather than
just before the array update statements (i.e. statemetite &rma(i) = b) that require the
copy. In particular, if the update statement is inside a Jdm the statement that created
the sharing is outside the loop, then it is much better toteréee copy outside of the loop.
Thus, thecopy placement analysis a backward analysis that pushes the necessary copies
upwards, possibly as far as the statement that created @negh

3.4.1 Abstraction

A copy entry is a three-tuple:

e =< copy loc,var, alloc_site > (3.6)

wherecopy loc denotes the ID of the node that generates the a@pyenotes the variable
containing a reference to the array that should be copietighoc siteis the allocation
site where the array referenced \oyr was allocated. We refer to the three components of
the three-tuple as.copy loc, e.var, ande.alloc site

Let C' denote the set of all copies generated by a function.

Given a function, the analysis begins by traversing thelbtdcstatements of the func-
tion backward. The domain of the analysis’ flow entries isgaeof copy objects and the
merge operator is intersection)(

Define Cyy as the set of copy objects at the exit of a block afydas the set of copy
objects at the entrance of a block. Since the analysis bagthe end of a functior(, is
initialized to(). The rules for generating and placing copies are describesl h
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3.4.2 Statement Sequence

Given a sequence of statements, we are givér,afor this block and the analysis
traverses backwards through the block computiig,dor the block. As each statement is
traversed the following rules are applied for the diffedants of the assignment statements
in the sequence. The sa&tg.S;), Q;(m), P;(a) are defined in Sectidn 3.3.

Rule 1: array updates, S; : a(y) = = : Given that the array variable of thes of
statemenb; is a, when a statement of this form is reached, we add a copy forgatition
for a shared array to the current copy set. Thus

if P.(a) =
Cn:=ChU 0 (a) 0
{<s,z,y>|s=S;ANx=aNQ;(y) € P(xr)} otherwise

Rule 2: array assignments, S; : a =b :If Ve € Ciy(e.var # a and e.var # b),
andVe € Cyy(e.var # a and e.var # b), we skip the current statement. However, if in
the current blockJe € Cin(e.var= a or e.var = b), we removee from the current copy
flow setCji,. This means that the copy has been placed at its currenidoeatthe location
specified in copy entry. Otherwise, ifde € Coy(€.var= a or e.var= b), we perform the
following:

if P;(a) =0, thisis usually the case, we move the copy from the statemenpy loc
to S; and remove: from the flow set. The copy has now been finally placed.

if Pj(a) #0, Y(Qi(m)e€ P;(a)), we add a runtime equality test foragainst the variable
z (z # a) of each member of);(m) at the statemerg.copy loc. SinceP;(a) # 0, there
is at least a definition of that reaches this statement and for whicteferences a shared
array. In addition, because copywas generated after the current block there are at least
two different paths to statemeeitcopy loc, the current location of. We place a copy of
at the current statemefst and remove: from the flow set. Note that two copies ehave
been placed; one atcopy loc and another at;. However, runtime guards have also been
placed ak.copy loc, ensuring that only one of these two copies materializesgratime.

The following code snippet illustrates this scenario.
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b=12 4, 8]
a=>b;
if (cond)

¢ =rand(10);

a=c;
end
a(i) =10;
disp(a);
disp(b);

© 0 N o g A~ W N

=
o

StatementS, dominates statemest;; if the then block is taken then, at statemesy
(the array update statement)will reference the array allocated &t. Otherwisea will
reference the array allocatedst Thus, by placing a copy aftéf;, it is guaranteed that
is unique if the program takes the path througho Ss; and the update & is therefore
safe and no copy will be generatedSatbecause the runtime guard will be false. However,
if this path is not taken, then the guard&twill be true and a copy will be generated.

We expect that such guards will not usually be needed, anacimione of our bench-
marks required any guards.

3.4.3 if-else Statements

Let Cs and Cgise denote the set of copies generated infaand anelse block respec-
tively. First we compute

C' = (Oout N CelseN Cif)
Then we compute the differences
Clout = Cout\ C,; C,else5: else\ Cl; Clif = Cjt \ '

to separate those copies that do not intersect with thosthar blocks but should never-
theless be propagated upward. Since the copies in theeotans will be relocated, they
are removed from their current locations.

And finally,

Cin = C'out U C'eise U O U {< s, e.var e.alloc site> |s = Sg Ae e C'}
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Note that a copy object with its first component set t8 ¢ is attached to thé-elsestate-
mentSe. That means if these copies remain at this location, theesgghiould be generated
before thaf-elsestatement.

3.4.4 Loops

The main goal here is to identify copies that could be movedoba loop. To place
copies generated in a loop, we apply the rules for stateneeptesice and thié-else state-
ment. The analysis propagates copies upward from the mist-loop to the outer-most
loop and to the main sequence until either loop dependesgissin the current loop or it
is no longer possible to move the copy according to Rule 2 iti&€8.4.2.

A disadvantage of propagating the copy outside of the lodipasif none of the loops
that require copies is executed then we would have genesaisdless copy. However, the
execution is still correct. For this reason, we assume tlw@will alwaysbe executed and
generate copies outside loops, wherever possible. Threassanable assumption because a
loop is typically programmed to execute. With this assuorptthere is no need to compute
the intersection of’i,op, andCo. Hence

Cin := CoutU {< s, e.var e.alloc_site > |s = Sioop A € € Cloop})

3.5 Using the Analyses

This section illustrates how the combination of the forwand the backward analyses
is used to determine the actual copies that should be gedefétst consider the following
program test3 Table 3.2 (a) shows the result of the forward analysis.
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1 function test3 ()

2 a= [L15];

3 b=a;

s 1 =1

s if (i >2) %l

6 a(l) = 100;

7 else

8 a(l) =700;

s end

10 a(l) = 200;

u disp(a);

12 disp(b);

13 end
# | Gen set In Out
2 | {(a,52)} 0 {(a, Ss)}
3 1 {(b,S2)} {(a, S2)} {(a, S2)(b, S2)}
6 | {(a,5)} {(a, S2), (b, 52)} {(b,52)(a, Se)}
8 {(aa ‘98)} {(a> 52)7(1)? SQ)]’ {<bv SQ)?<a7 SS)}
10 @ {<b7 52)7 <a756)7 (a, SS)} {(b7 S2>7 (CL, S@),(CL, 58)}

(a) Necessary Copy Analysis Result fest3

# Cout Cin Current Result
10 0 0 0

8 0 {< Ss,a,5; >} {(a,S8)}

6 0 {< S,a,8, >} {(a, S6)}

| ] {< Sr,a,5 >} {(a,S1)}

3 | {<Sa,S >} 0 {(a,S1)}

2 ] ] {(a, S1)}

(b) Copy Placement Analysis Result feist3

Table 3.2 — Necessary Copy and Copy Placement Analysésdty
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Table[3.2 (b) gives the result of the backward analysis. Tlised in line 5 oftest3
stands for thef-else statement inest3 The analysis begins from line 12 t#st3 The
out setCy is initially empty. At line 10,C, is still empty. When thef-else statement
is reached, a copy afy (0) is passed to th&lseblock and another copy is passed to
the If block. The copy{< Ss,a, Sy > is generated in th&lseblock becausé®(S,) =
{(a, S2), (b, S2)}| = 2, henceP,(a) # 0. Similarly < Sg,a,S, > is generated in th#
block.

By applying the rule foif-else statement described in Sectlon 314.3, the outputs df the
and theElseblocks are merged to obtain the resultSat(the if-else statement). Applying
Rule 2 for statement sequence (Secfion 8.4.235in< St a, Sy > is removed fromCi,
and the analysis terminates&t The final result is that a copy must be generated before
the if -else statement instead of generating two copies, one in eaclk lmbthe if -else
statement. This example illustrates how common copiesrgtkin the alternative blocks
of anif-else statement could be combined and propagated upward to reddessize.

The second exampl&jdisolveis a MATLAB function from [Cle04]. The forward anal-
ysis information is shown in Table 3.3. The table showsgieandin sets at each relevant
assignment statement widisolve The results in different loop iterations are shown using
a subscript to represent loop iteration. For example, thermamber25, refers to the result
at the statement labellés}; in the second iteration. The analysis reached a fixed pdmt af
the third iteration.
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Listing 3.1 — A MATLAB function ridisolve).

function x = tridisolve (a,b,c,d)
% TRIDISOLVE Solve tridiagonal system of equations.
20: x =d;
21: n =length(x);
for j = 1in—-1 %F 1
mu = a(j)/b(j);
25 b(j+1) = b(j+1) — muxc());
26:  x(j+1) = x(j+1) — muxx());
end
29: x(n) = x(n)/b(n);
for j =n-1.—-1:1 %F 2
31 x(j) = (x())—c()*x(j +1))/b(j);
end

At the function’s entry, thén set is initialized with two flow entries for each parameter
of the function as outlined in Sectign B.3. The analysis iomets by generating thgen
in andout sets according to the rules specified in Sedtioh 3.3. Notiaedtatemens,s is
an allocator becausk;(b) # 0 since|Q25(Sy)| = [{(b, S, 0), (¥, S,,0)}| > 1. Similarly,
Sae and Sy are also allocators. This means that generating a copy clrthy referenced
by the variable just before executing the statemeiat ensures a safe update of the array.
The same is true of the array referenced by the varialielines 26 and 29. However, are
these the best points in the program to generate those @opmsdd the number of copies
be reduced? We provide the answers to these questions whexawene the results of the
backward analysis.

Table[3.4 shows the copy placement analysis informatioact eslevant statement of
tridisolve Recall that the placement analysis works by traversing titerments in each
block of a function backward. In the case toflisolve, the analysis begins in line 31 in
the secondor loop of the function. The sef, is passed to the loop body and is initially
empty. The se€’j, stores all the copies generated in the block offdrestatement. Line 31
is neither a definition nor an allocator, therefore no charage recorded at this stage of the
analysis.

52



3.5. Using the Analyses

# Gen In

20 {(I', Sd,O)} {(CL, Sa70)7(a/75a70)7(b7 Sb70>7(b,75b70)7<c7 5670)7(0,75070)7
(d7 Sda 0)7 (dlv Sda O)}

251 {(bu 32571)} {(a’v Sa70)7(a/75a70)7(ba Sb,O),(b/7Sb70),(C7 SC,O),(C,7SC,O),
(d/7 Sd7 0)7 ($a Sd7 0)}

261 {(:L‘y 52671)} {(CL, Sa,O),(GI,SQ,O),(b/,Sb,O),(C, SC,O),(C/,SC,O),(d/,Sd,O),
(-Ta Sda 0)7 (ba S257 1)}

252 {(ba 52572)} {(av Sa70)7 (a/vsa70)7 (ba Sb70)7 (b/,Sb,O), (07 cho)a (0/75070)7
(dl7 Sd7 0)7 (ZL' Sd7 ) (b S257 )7 (:Ea 3267 1)}

26 | {(z,5%,2)} | {(a,S.,0),(d,S4,0),(,S,0),(c, S, 0), (S, 0),(d,Sq,0),
(‘I,Sd, ) (b 525, ) (CIJ 526;

1)
253 {(bv 52573)} {(a, Saao) (a Saao) (b Sb? )7(b,75b70)7<c’ SC’())’(C,’ SC’O)’
(d',54,0), (%, 54,0), (b, S5, 2), (x, Sa6,2) }

263 {(fL’, 52673)} {(CL, Sa70)7<a/75a70)7(b/75b7 )J(CJ SC,O>,(C,7SC,O),(d/,Sd,O),
('Iu Sda ) b S25a 3)7 (Ia 8267 2

(C, Sm 0)7 (Cl7 Sm 0)7 (d/7 Sd7 0)7

(ﬁ,Sd, ), b 525, ) (ZB,526,3}

(b, )
29 | {(,S2,0)} | {(a, Sa,0), (b, S5, 0), (¥, Sy, 0)
(b, )
), )

314 1] {(d’, S4,0), (b, Sy,
(b, Sas, )7(55,52970}

) (bl7 Sb7 0 ) (C7 SC7 0)7 (CI7 SC7 0)7 (d/7 Sd7 0)7

0)
)
312 @ {(a’,Sa,O), (b7 Sb,O), (b/7Sb70)7 (C7 cho)v (0/75’070)7 (d/75d70)7
(b7 5257 3)7 (IE, 5297 O)}

Table 3.3 — Necessary Copy Analysis Result.
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# Cout Cin Current Result
31 0 0 0

Fy 0 0 0

29 0 {(Sa9,a, Sq)} {(z, Sa9) }

26 | {(S29, 7, 54)} {(S26, 2, Sa)} {(, 5%), (z, 52)}

25 | {(S20,2,80)} | {(525.0,5), (26,2, 5a)} | {(, S29), (%, S26), (b, S25)}
Fy | {(S29, 2, Sa)} | {(Sry, 2, 84), (S25,b, 55)} {(z,5r), (b, S2)}
20 0 {(Sas5,b, Sp) } {(z,Sk,), (b, Sa5) }
0 0 0 {(z, Sk ), (b, S0)}

Table 3.4 — Copy Placement Analysis Resulttfatisolve

At the beginning of loop;, the analysis merges with the main path and the result at this
point is shown in rowr;. Statemenb,g generated a copy as indicated by the forward anal-
ysis, therefore’y, is updated and the result set is also updated. The analgsidtianches
off to the first loop and the currert;, is passed to the loop’s body &%.. The copies
generated in loog; are stored inCj,, which is then merged witld’,; at the beginning
of the loop to arrive at the result in roW,;. The result set is also updated accordingly; at
this stage, the number of copies has been reduced by 1 as $madkaa column labelled
Current Resulof Table[3.4. The copy flow set that reaches the beginningefuhction
is non-empty. This suggests that the definition or the altwaaf the array variables of the
remaining entries could not be reached. Therefore, the aaaables of the flow entries
mustbe the parameters of the function and the necessary copydsbegenerated at the
function’s entry. Hence, a copy of the array referenced byst be generated at the entry
of tridisolve,

3.6 Name Resolution

In Section 2.1L, we mentioned that MATLAB uses the same syfaaboth function
calls and array accesses. Here, we discuss the compilabblem posed by this strategy.
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An obvious advantage of using identical syntax is that a datacture initially im-
plemented as an array could be re-implemented as a funcitbowv changing the array
accesses. A disadvantage of this strategy, however, ig thakes it difficult to determine
statically whether an expression is a function call or anyaaccess, thus making analyses
too conservative. For instance, in the statement belohaiginction or an array?

m = b(c, d);

Without a suitable analysis, it is hard to tell whethér, d) is a function call or an array
access. The forward analysis described in Settidn 3.3reliehe McVM type inference
analysis [CBHV10, CBQ9] to determine the type of a symbol. In tingpte assignment
statement above, the analysis needs to know whether thebiesin, c andd are arrays.
Furthermore, it is a function andn, c andd are arrays, the analysis needs to know whether
m references the same array@asr d. The forward analysis requests the type information
of b and proceeds to analyséf the result of the look-up indicates théats a function.

3.7 Experimental Results

To evaluate the effectiveness of our approach, we set upiexpats using benchmarks
collected from disparate sources, including those from [RG%: Cle04|, Pre&6]. Table 3.5
gives a short description of each benchmark, together wislymmary of the results of our
analyses, which we discuss in more detail in the followinigsgetions. For all the experi-
ments described in this chapter, we ran the benchmarks kéthdmallest input size on an
AMD Athlon™ 64 X2 Dual Core Processor 3800+, 4GB RAM computerning Linux
operating system; GNU Octave, version 3.2.4; MATLAB, vensic9.0.529 (R2009IH)and
McVM/McJIT, version 0.5.

The purpose of our experiments was three-fold. First, wa&eio measure the number
of array updates and copies performed by the benchmarks dimme using existing sys-
tems (Sectiof 3.7.1). Knowing the number of updates givademof how many dynamic
checks a reference-counting-based (RC) scheme for lazyrapstiich as used by Octave

3. We used the later versions of MATLAB for the experimentsatibed in the following chapters.
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and Mathworks’ MATLAB, need to perform. Recall that our appoaloes not usually
require any dynamic checks. Knowing the number of copiegggad by such systems al-
lows us to verify that our approach does not increase the puwftzopies as compared to
the reference-counting-based approaches. Secondly, wiel Vike to measure the amount
of overhead generated in reference-counting-based systactiod 3.7]2). Finally, we
would like to assess the impact of our static analyses indarintheir ability to minimize
the number of copies (Sectién 317.3).

3.7.1 Dynamic Counts of Array Updates and Copies

Our first measurements were designed to measure the numlaeragfupdates and
array copies that are required by existing reference-cogHitased systems, Octave and
Mathworks’ MATLAB. Since we had access to the open-sourcea@csystem we were
able to instrument the interpreter and make the measurerdeattly. However, the Math-
works’ implementation of MATLAB is a proprietary system atidus we were unable to
instrument it to make direct measurements. Instead, we @@ an alternative approach
by instrumenting the benchmark programs themselves viecéspsing our APECTMAT-
LAB compileramc[ADDH10]. Our aspecH defines all the patterns for the relevant points
in a MATLAB program including all array definitions, array dgites, and function calls.
It also specifies the actions that should be taken at thes#spai the source program. In
effect, the aspect computes all of the information that aregfce-counting-based scheme
would have, and thus can determine, at run time, when an apdate triggers a copy be-
cause the number of references to the array is greater tlearmbe aspect thus counts all
array updates and all copies that would be required by aae¢ercounting-based system.

4. This aspect is available at: http://www.sable.mcgilineclab/copy analysis.html. It is also listed in

AppendixB.
5. The benchmarks are also available at: www.sable.mzgithclab/mcvm mcjit.html.
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# Copies
# Array Lower Bound With Analyses
Benchmark Updates || Aspect | Octave || Naive ‘ QC ‘ CA
adpt | adaptive quadrature ust 19624 0 0 12223 | 12223 0
ing Simpson'’s rule
capr | capacitance of a trangt 9790800 || 10000 | 10000 || 40000 | 20000 | 10000
mission line using finite
difference and Gaussg
Seidel iteration
clos | transitive closure of a di+ 2954 0 0 2 2 0
rected graph
crni | Crank-Nicholson So4| 21143907|| 4598 6898 11495| 6897 | 4598
lution to the one-
dimensional heat equat
tion
dich | Dirichlet solution to|| 6935292 0 0 0 0 0
Laplace’s equation
fdtd | 3D FDTD of a hexahe- 803 0 0 5400 | 5400 0
dral cavity with conduct-
ing walls
fft fast fourier transform 44038144 1 1 2 2 1
fiff finite-difference solution|| 12243000 0 0 0
to the wave equation
mbrt | Mandelbrot set 5929 0 0 0 0 0
nbld | N-body problem coded| 55020 0 0 10984 | 10980 0
using 1d arrays for the
displacement vectors.
nb3d | N-body problem coded| 4878 0 0 5860 | 5858 0
using 3d arrays for the
displacement vectors.
nfrc | computes a newton fragt 12800 0 0 6400 | 6400 0
tal in the complex plane
-2..2,-2i..2i
trid Solve tridiagonal system 2998 2 2 5 2 2
of equations

Table 3.5 — Benchmarks and the results of the copy anglysis
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In Table[3.5 the column labelled Array Updateggives the total number of array up-
dates executed. The colurdrCopiesshows the number of copies generated by the bench-
marks under Octave (reported @stavein the table) and MATLAB (column labelleds-
pec). The column# Copiesis split into two:Lower BoundandWith AnalysesThe num-
ber of copies generated by Octave and MATLAB (Aspect) aresicianed the expected
lower bounds (since they perform copies lazily, and only nvtexjuired) and are therefore
grouped undetower Boundn the tabl

At a high-level, the results in Table 3.5 show that our beramtk® often perform a
significant number of array updates, but very few updategén copies. We observed
that no copies were generated in ten out of the thirteen lmeadts. This low rate for
array copies is not surprising because MATLAB programmensl to avoid copying large
objects and often only read from function parameté/igh Analysess comprised of three
columns,Naive QC, andCA representing respectively, the number of copies genemated
our naive system, with the QC phase, and with the copy arsgbysse. We return to these
results in Section 3.7.3.

3.7.2 The Overhead of Dynamic Checks

With the reference-counting-based approaches, a dynadmeickcs needed for each
array update, in order to test if a copy is needed. Our comdlisated that several of our
benchmarks had a high number of updates, but no copies weuged. We wanted to
measure the overhead for all of these redundant dynamiksh&be ideal measurement
would have been to time the redundant checks in a JIT-bastdmnsythat used reference-
counting, such as Mathworks’ MATLAB. Unfortunately we do ri@ve access to such a
system. Instead we performed two similar experiments, parted in Tablé 316, for three
benchmarks with a high number of updates and no requirecesdgich , fiff  and
mbrt ).

6. Note that for the benchmadkni Octave performs 6898 copies, whereas the lower bound angord
to the Aspect is 4598. We verified that Octave is doing somea®psicopies in this case, and that the Aspect
number is the true lower bound.
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McVM Octave(O)
McJIT McJIT(+RC) Overhead(%) Time(s) Overhead
Bmark || t(s) | #LLWM || t(s) | #LLVM || time | size | O(+RC) | O(-RC) (%)
dich 0.18 546 || 0.27 625 || 47.37 | 14.47 425.05| 408.08 4.16
fiff 0.39 388 || 0.52 415 || 33.72| 6.96 468.64| 438.69 6.83
mbrt 5.06 262 || 5.65 271 11.69| 3.44 34.91 31.95 9.29

Table 3.6 — Overhead of Dynamic Checks.

We first created a version of Octave that does not insert dymelnecks before array
update statements. In general this is not safe, but for tieee benchmarks we knew no
copies were needed, and thus removing the checks allowen medsure the overhead
without breaking the benchmarks. The column labedétRC) gives the execution time
with dynamic checks and the column labell@@¢tRC)gives the times when we artificially
removed the checks. The difference gives us the overheadadhwhbetween 4% and 9%
for these benchmarks. Although this is not a huge percentiaigenot negligible. Further-
more, we felt that the absolute time for the checks was saamfiand would be even more
significant in a JIT system which has many fewer other ovetbea

To measure overheads in a JIT context, we modified McJIT tduaec enough
reference-counting machinery to measure the overheadeothiecks (remember that
McVM is garbage-collected and does not normally have ref@recounts). For the mod-
ified McVM we added a field to the array object representatstore reference counts
(which is set to zero for the purposes of this experiment)wadjenerated LLVM code
for a runtime check before each array update statemente[Bablshows, in time and code
size, the amount of overhead generated by redundant chHoksolumn labelled/cJIT
is the original McJIT and the column labell&ttJIT(+RC)is the modified version with the
added checks. We measured code size using the number of Lostictions # LLVM)
and execution time overhead in seconds. For these benchth&kode size overhead was
3% to 14% and the running time overhead ranged from 12% to 47%.

Our conclusions is that the dynamic checks for a referenceting-based scheme can
be quite significant in both execution time and code sizeg@afly in the context of a JIT.
Thus, although the original motivation of our work was to leleea garbage-collected VM
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that did not require reference counts, we think that ouryeesl could also be useful to
eliminate unneeded checks in reference-counting-bastdray.

3.7.3 Impact of our Analyses

Let us now return to the number of copies required by our aeslywhich are given
in the last three columns of Talle B.5. As a reminder, our g@al to achieve the same
number of copies as the lower bound.

The column labelledNaive gives the number of copies required with a naive imple-
mentation of MATLAB’S copy semantics, where a copy is inserted for each paraneeith
return value and each copy statement, wherdhthiss an array. Clearly this approach leads
to many more copies than the lower bound.

The column labelle€A gives the number of copies when both phases of our statie anal
yses are enabled. We were very pleased to see that for ounrbanks, the static analyses
achieved the same number of copies as the lower bound, witaquiring any dynamic
checks. The column labelledC shows the number of copies when only the QuickCheck
phase is enabled. Although the QuickCheck does eliminate miameeded copies, it does
not achieve the lower bound. Thus, the second stage is regjlyred in many cases.

500000
400000
= 300000
< 00000 M Naive
: W QC
2100000 O CcA
0 — — [ —
£ £ & g8 B & ® B E & & B E
=3 - = = = a
Benchmarks

Figure 3.2 — The total bytes of array data copied by the beacksrunder the three options.

To show the impact copies have on execution performance,aesuned the total bytes
of array data copied by a benchmark together with its cooeding execution time. These
are shown in Figure_3.2 and Tablel3.7 kaive QC andCA. The columns 5236 andfeie
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Bmark | Naive| QC | CA || Nafe | Nome
adpt 157| 157| 1.61| 1.00| 0.98
capr 1.54| 091 058| 1.70| 266
clos 0.49| 0.49| 048| 099 1.01
crni 135.09| 140.35| 131.62| 0.96| 1.03
dich 0.18| 0.18| 0.18| 1.00| 1.00
foltd 3.79| 3.78| 280| 1.00| 1.35
fft 150 1.50| 1.47| 1.00| 1.02
fiff 0.39| 039| 039| 099 0.99
mbrt 506| 5.12| 504| 0.99| 1.00
nbid 0.48| 048| 045| 1.00| 1.07
nb3d 0.48| 048| 036| 1.00| 1.35
nfrc 3.23| 3.23| 325| 1.00| 0.99
trid 157| 1.04| 1.02|| 1.51| 153

Table 3.7 — Benchmarks against the total execution timesconsks.

of Table[3.7 show respectively how many times QC and CA perfoetter tharNaive The
table shows thaCA generally outperform®C and Naive Copying large arrays affects
execution performance and the results in Tablé 3.7 valithegeclaim. Where a significant
number of bytes were copied by the naive implementationgkample,capr, crni and
fdtd, CA performs better than botNaive and QC. In the three benchmarks that do not
generate copies, the performanceG# is comparable tiNaiveandQC. This shows that
the overhead oCA is low. It is therefore clear from the results of our expenmsethat
the naive implementation generates significant overheddsatinerefore unsuitable for a
high-performance system.

Impact of the First Phase =~ We measured the number of functions that are completely
resolved by the first phase of our approach — in terms of findihtpe necessary copies re-
quired to guarantee copy semantics. We found that out of3Hlierittions in the benchmark
set, the first stage (i.e., QuickCheck) was only able to resabout 17% of the functions.
None of the benchmarks was resolved completely by QC. The neason for this poor

61



Copy Optimization in MATLAB

performance is that the first phase cannot resolve functi@iseturn arrays to their callers.
Like most MATLAB programs, most of the functions in the benarks return arrays. This
really shows that the second stage is actually requiredrtgpteiely determine the needed
copies by typical MATLAB programs.

So, the bottom line is that a very low fraction of array updatesult in copies, and
frequently no copies are necessary. For our benchmarkgestatic analysis determined
the needed number of copies, while at the same time avoidlitigeaoverhead of dynamic
checks. Furthermore, our approach does not require refe@munting and thus enables an
efficientimplementation of array copy semantics in garbegjéected systems like McVM.

3.8 Summary

In this chapter we have presented an approach for using stadilysis to determine
where to insert array copies in order to implement the arogy semantics in MATLAB.
Unlike previous approaches, which used a reference-aogistheme and dynamic checks,
our approach is implemented as a pair of static analysisgshaghe McJIT compiler. The
first phase implements simple analyses for detecting reddsarameters and standard
copy elimination, whereas the second phase consists ohafdnecessary copy analysis
that determines which array update statements triggeesppnd a backwartbpy place-
ment analysishat determines good places to insert the array copies.fAllese analyses
have been implemented as structured-based analyses orcth€ itermediate represen-
tation.

Our approach does not require frequent dynamic checks,onaecheed the space and
time overheads to maintain the reference counts. Our aplpiegarticularly appealing in
the context of a garbage-collected VM, such as the one we arkivg with. However,
similar techniques could be used in a reference-countasgdh system to remove redun-
dant checks. Our experimental results validate that, olenchmark set, we do not intro-
duce any more copies than the reference-counting appraadhye eliminate all dynamic
checks.
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Chapter 4
A Modular Approach to On-Stack
Replacement in LLVM

Virtual machines (VMs) with Just-in-Time (JIT) compilerave become common place
for a wide variety of languages. Such systems have an adyaotzer static compilers in
that compilation decisions can be made on-the-fly and theyadapt to the characteristics
of the running program. On-stack replacement (OSR) is onapp that has been used to
enable on-the-fly optimization of functions/methods [HCIFR03,PVCO1L,SKO6]. A key
benefit of OSR is that it can be used to interrupt a long-rupifumction/method (without
waiting for the function to complete), and then restart atinoized version of the function
at the program point and state at which it was interrupted.

As mentioned in Chaptét 2, LLVM is an open compiler infrastowe that can be used
to build JIT compilers for VMs[[LAO4, [lv1?2]. It supports a Walefined code representa-
tion known as the LLVM IR, as well as supporting a large numtespiimizations and
code generators. LLVM has been used in production systesngethas in many research
projects. For instance, MacRuby is an LLVM-based implentertaof Ruby on Mac OS
X core technologie@ Rubiniu@ Is another implementation of Ruby based on LLVM JIT.
Unladen-swallow is a fast LLVM implementation of PythENM Kit gis an LLVM-based

1. http://macruby.org/

2. http://rubini.us/

3. http://code.google.com/p/unladen-swallow/

4. Previously http://vmkit.llvm.org/ and now http://vntRigforge.inria.fr/
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project that works to ease the development of new languags,\&d which has three
different VMs currently developed (Java, .Net, and a pygietR implementation). A com-
mon theme of these diverse projects is that they could benait further on-the-fly op-
timizations, but unfortunately LLVM does not support OSRséx optimizations. Indeed,
we agree with the developers of VMKit who believe that usinfgROwould enable them
to speculate and develop runtime optimizations that camangthe performance of their
VMS.H Thus, given the value of and need for OSR and the wide-spicaptian of LLVM
in both industry and academia, our research work aims tdfglimportant void and pro-
vide an approach and modular implementation of OSR for LLVM.

Implementing OSR in a non-Java VM and general-purpose demigolkits such as
LLVM requires novel approaches. Some of the challenges ptementing OSR in LLVM
include:

(1) Deciding at what point should the program be interruptedtawl should such points
be expressed within the existing design of LLVM, without sgmg the LLVM IR.

(2) The static single-assignment (SSA) nature of the LLVM IRuiegs correct updates of
control flow graphs (CFGs) of LLVM code, thus program trangfations to handle
OSR-related control flow must be done carefully and fit intodtracture imposed
by LLVM.

(3) LLVM generates a fixed address for each function; how therulshthe code of a
new version of the running function be made accessible atlthaddress without
recompiling the callers of the function? This was actualpaaticularly challenging
issue to solve.

(4) The OSR implementation must provide a clean integratioh WitvM'’s capabilities
for function inlining.

(5) As there are many users of LLVM, the OSR implementation shaot require modi-
fications to the existing LLVM installations. Ideally the @3mplementation could
just be added to an LLVM installation without requiring argcompilation of the
installation.

5. Private communication with the authors, October 2012.
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We addressed these and other challenges by developing danagproach to imple-
menting OSR that fits naturally in the LLVM compiler infrastture.

To illustrate a typical use of our OSR implementation, weehased the implemen-
tation to support a selective dynamic inlining optimizatim a MATLAB VM. MAT-
LAB [Mat09b] is a popular platform for programming scierntifipplications [Mol085]. It is
a dynamic language designed for manipulation of matricdssantors, which are common
in scientific applications [Cle04]. The dynamic featuresha language, such as dynamic
typing and loading, contribute to its appeal but also makefcient compilation difficult.
MATLAB programs often have potentially long-running log@sd because its optimiza-
tion can benefit greatly from on-the-fly information such ysets and array shapes, we
believe that it is an ideal language for OSR-based optingnati Thus, we wanted to ex-
periment with this idea in McVM/McJIT [CBHV10, McL12], an opaource VM and JIT
for MATLAB, which is built upon LLVM.

The main contributions of this chapter are:

Modular OSR in LLVM: We have designed and implemented OSR for LLVM. Our ap-
proach provides a clean API for JIT compiler writers using/M.and clean imple-
mentation of that API, which integrates seamlessly withstamdard LLVM distri-
bution and that should be useful for a wide variety of appiice of OSR.

Integrating OSR with inlining in LLVM:  We show how we handle the case where the
LLVM inliner inlines a function that contains OSR points.

The rest of the chapter is organized as follows. In Sectidihwe classify OSR tech-
nigues according to their runtime transition capabilities Section 4.2, we outline the
application programming interface (API) and demonstragusage of our OSR module,
from a JIT compiler writer’s point of view. In Sectidn 4.3, wescribe the implementation
of our API and the integration of inlining. We conclude thepter in Sectiof 414.

4.1 OSR Classification

The term OSR is used in the literature [HCU92, PVIC01, FQ03, ABRISKO6] to
describe a variety of similar, but different, techniquessdoabling an on-the-fly transition

65



A Modular Approach to On-Stack Replacement in LLVM

from one version of running code to another semanticallyvadgent version. To see how
these existing techniques relate to each other, and to opoped OSR implementation,
we propose a classification of OSR transitions, as illustrat Figure 4.11.

. a7l 'mize
tim? eopt?
OPSR ReDSR
base opty opta
i~ per s

Figure 4.1 — OSR classification.

In most systems with OSR support, the execution of the runoode often begins
with interpretation or the execution of the code compiledabyon-optimizing base-line
compiler. We refer to this version of the running code adaseversion. This is shown in
the darker shaded block of Figure4.1.

We call an OSR transition from tHeaseversion to more optimized code (suchas,
in Figure[4.1) arOptimize OSRThe OSR support in the Java HotSpot server compiler
[PVCO1] uses this kind of transition.

Some virtual machines allow an OSR transition from optimizede such aspt; in
Figure[4.1 to unoptimized code (thmaseversion). We call this &eoptimize OSRran-
sition. This was the original OSR transition pioneered lijzte et al. [HCU92] to allow
online debugging of optimized code in the SELLF [CU91] virtoedchine.

Systems such as the Jikes RVM [AABS5], V8 VMH, and JavaScriptCoHasupport
both Optimize OSRndDeoptimize OSRansitions. Once a system has deoptimized back
to the base code, it can potentially trigger ano@etimize OSRperhaps at a higher-level
of optimization.

We call a transition from optimized code such@#; to more optimized code such
asopt, in Figure[4.1 aReoptimize OSR-urther, we call an OSR transition from more

6. https://developers.google.com/v8/
7. http:/itrac.webkit.org/wiki/JavaScriptCore/
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optimized code (e.ggpt») to the last version of less optimized code (ewpt;) a Last-
version OSR

The OSR technique presented in this chapter supports baght@gsitions to a more
optimized version and deoptimizations to the last versidms, if one starts with the base
code, our OSR machinery can be used to perforrdptimize OSRransition. From that
state, our OSR machinery can be used eithemsaptimize OSRansition to return to the
base code (which is the last version of the code), orRea@ptimize OSR transition to an
even more optimized version. Our OSR implementation alveaghes the last version of
the code, so it can also be used to suppdrast-version OSRo transition from a higher-
level of optimization to the previous level.

We now present the API of our OSR impIementaHon

4.2 The OSR API

The key objective of this work was to build a modular systertiaiclean interface that
is easy to use for VM and JIT compiler writers. In this sectie present the API of our
OSR module and how JIT compiler developers who are alreadgify JITs/VMs with
LLVM can use our module to add OSR functionality to their érig JITs. We provide some
concrete examples, based on our McJIT implementation of 8&fRd dynamic inlining.

Figure[4.2(a) represents the structure of a typical JIT ldgesl using LLVM.LLVM
CodeGeris the front-end that produces LLVM IR for the JIT. The JIT quhar may per-
form transformations on the IR via thd.VM Optimizer This is typically a collection of
transformation and optimization passes that are run on tM&/LIR. The output (i.e., the
transformed LLVM IR) from the optimizer is passed to the targede generatoifarget
CodeGenthat produces the appropriate machine code for the codeMMUR.

In Figure[4.2(b), we show a JIT (such as that shown in FiguZ¢a)) that has been
retrofitted with OSR support components (the shaded conmighé&\Ve describe the func-
tions of InserterandOSR Passhown in Figuré 412(b) shortly. In Sectibn ¥.3, we present

8. Available at http://www.sable.mcgill.ca/mclab/mdosr
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the implementation of these components and how they irttefiicthe JIT to provide OSR
support to the JIT.

LLVM CodeGen

LLVM CodeGen

Inserter

LLVM IR LLVM IR

LLVM Optimizer
LLVM Optimizer

LLVM IR

LLVM IR OSR Pass

LLVM IR

Target CodeGen

l

Machine Code

Target CodeGen

Machine Code
(a) Existing JIT (b) Retrofitted JIT

Figure 4.2 — Retrofitting an existing JIT with OSR support.

4.2.1 Adding the OSR Point Inserter

To support OSR, a JIT compiler must be able to mark the progm@intgp(henceforth
called OSR points) where a running program may trigger OSReveldper can add this
capability to an existing JIT by modifying the compiler tdldche genOSRSigndlunction,
provided by our API, to insert an OSR point at the beginning tdop during the LLVM
code generation of the loop. The LLVM IR is in SSA form. As ik shown later, an OSR
point instruction must be inserted into its own basic blagkich must be preceded by the
loop header block containing all thenodes. This ensures that if OSR occurs at run time,
the continuation block can be efficiently determined.

In addition to marking the spot of an OSR point, the JIT coepitriter will want to
indicate what transformation should occur if that OSR pdiigigers at run time. Thus,
the genOSRSigndlnction requires an argument which is a pointer wode transformer
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function - i.e. the function that will perform the requiraansformation at run time when
an OSR is triggered. A JIT developer that desires differamsformations at different OSR
points can simply define multiple code transformers, and theert OSR points with the
desired transformation for each point. A valid transforisea function pointer of the type
Transformerthat takes two arguments as shown below.

typedef unsigned int OSRLabel;
typedef bool (  *Transformer) (llvm::Function * . OSRLabel);

The first argument is a pointer to the function to be transéatnThe second argument is
an unsigned integer representing the label of the OSR gaantriggered the current OSR
event. The code of the transformer is executed if the exagttinction triggers an OSR
event at a corresponding label. A user may specifulatransformer if no transformation is
requiredH As an example of a transformation, our OSR-based dynamiein{Section 5]1)
uses the transformer shown in Listingl4.1. It inlines all s&es annotated with labekrPt

After the inliner finishes, the OSR pass is executed over ¢ineversion of the function
to process, any remaining OSR points. Finally, as showmesliL3 — 18 of the figure, some
LLVM optimization passes are run on the new version of thefiom.

9. Anull transformer can be used to test that the OSR triggering ttiondias been set up properly.
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Listing 4.1 — A code transformer.
bool inlineAnnotatedCallSites (llvm :: FunctiorF, osr:: OSRLabel osrPt)

llvm :: McJITInliner inliner (FIM, osrPt, TD);
inliner .addFunction( inlineVersion );
inliner . inlineFunctions ();

/I create and run the OSR Pass
llvm :: FunctionPassManager FPM(M);
FPM.add(createOSRInfoPass());
FPM.rungrunningVersion);

© 0 N o g A~ W N e

P
S

/[ create and run LLVM optimization passes
[lvm :: FunctionPassManager OP(M);
OP.add(llvm:: createCFGSimplificationPass ());
OP.add(llvm:: ConstantPropagationPass ());

N
o o &~ W N

OP.run¢runningVersion);

[
3

H
[ee]
—

To illustrate with a concrete example of inserting OSR miotir OSR-based dynamic
inlining implementation uses the code snippet shown inihgd#l.2 to insert conditional
OSR points after generating the loop header block contginirly ¢ nodes. In the code
snippet (lines 6 — 12), a new basic blan$r is created and the call genOSRSignahserts
an OSR point into the block. The rest of the code inserts aitondl branch instruction
into targetand completes the generation of the LLVM IR for the loop.
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Listing 4.2 — Sample code for inserting an OSR point.

1
2 .
s /I get the loop header block —— the target

4 llvm:: BasicBlock: target = builder . GetlnsertBlock ();
s llvm:: Functionr F = target—>getParent();

6 I/ create the osr instruction block

7 llvm :: BasicBlock osrBB =

s llvm::BasicBlock:: Create (F>getContext(),'osr" , F);
o // now create an osr pt and register a transformer
10 llvm:: Instruction* marker =

1 osr :: Osr::genOSRSignal(osrBB,

12 inlineAnnotatedCallSites |,

13 looplnitializationBB );

14 ...
s /| create the osr condition instruction

s llvm::Value xosrCond = builder . CreatelCmpUGT(counter,
17 getThreshold (context );ocond" );

18 builder . CreateCondBr(osrCond, osrBB, fallThru );

19 ...

B

4.2.2 Adding the OSR Transformation Pass

After modifying the JIT with the capability to insert OSR pts, the next step is to add
the creation and running of the OSR transformation pass. iiee@SR pass is run on a
function with OSR points, the pass automatically instrutaehe function by adding the
OSR machinery code at all the OSR points (note that the Jifpder developer only has
to invoke the OSR pass, the pass itself is provided by our OS&ui).

The OSR pass is derived from the LLVM function pass. Lisking ghows a simplified
interface of the pass. An LLVM front-end, that is, an LLVM @denerator, can use the
following code snippet to create and run the OSR pass on difung after the original
LLVM optimizer in Figure[4.2(b) finishes.

[lvm::FunctionPass * OIP = osr::.createOSRInfoPass();
OIP->runOnFunction(  *F);

The OSR pass can also be added to an LLVM function pass manager
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Listing 4.3 — The OSR Pass interface.

namespace osf
class OSRInfoPass : public llvm:: FunctionP&ss
public:
OSRInfoPass();
virtual bool runOnFunction(llvm:: Function& F);
virtual const char getPassName() const
{ return "OSR Info Collection Pass}; ...

¥

llvm :: FunctionPass createOSRInfoPass ();

}

4.2.3 Initialization and Finalization

To configure the OSR subsystem during the JIT’s start-up, tiheeJIT developer must
add a call to the methodsr :: init. This method initializes the data structures and registers
the functions used later by the OSR subsystem. The JIT desefoust also add a call to the
methodvoid Osr:releaseMemory(p de-allocate the memory allocated by the OSR system.
The code snippet in Listing 4.4 shows how an existing JIT cdtalize and release the
memory used by the OSR subsystem. As shown in line 4, the angisnoOsr:: init are
a JIT execution engine and the module. The execution engidd¢hee module are used to
register the functions used by the system.

Listing 4.4 — Initialization and Finalization in the JITrsainfunction.
int main(nt argc, const char* argv) {

/I initialize the OSR data structures
Osr:: init (EE, module);

/I JIT's Code

/I free up the memory used for OSR ...
Osr::releaseMemory();

return O;

}
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4.3 Implementation

In the previous section, we outlined our API which providesraple and modular ap-
proach to adding OSR support to LLVM-based JIT compilerghla section, we present
our implementation of the API. Our implementation assurhasthe application is single-
threaded. We first discuss the main challenges that infleeoge implementation deci-
sions, and our solution to those challenges.

4.3.1 Implementation Challenges

Ouir first challenge was how to mark OSR points. Ideally, wededean instruction to
represent an OSR point in a function. However, adding a nsteuation to LLVM is a non-
trivial process and requires rebuilding the entire LLVMtgys. It will also require users of
our OSR module to recompile their existing LLVM installatg® Hence, we decided to use
the existing call instruction to mark an OSR point. This ase@s us some flexibility as the
signature of the called function can change without the needbuild any LLVM library.

A related challenge was to identify at which program poin&RGnstructions should
be allowed. We decided that the beginning of loop bodies wagal points because we
could ensure that the control flow and phi-nodes in the IRabel correctly patched in a
way that does not disrupt other optimization phases in LLVM.

The next issue that we considered was portability. We déctdeimplement at the
LLVM IR, rather than at a lower level, for portability. This gmilar to the approach used
in Jikes research VM [FQO03], which uses byte-code, rathar thachine code to represent
the transformed code. This approach also fits well with therestble LLVM pass manager
framework.

A very LLVM-specific challenge was to ensure that the codehaf mew version is
accessible at the old address without recompiling all thiersaof the function. Finding a
solution to this was really a key point in getting an efficiantl local solution.

Finally, when performing an OSR, we need to save the currate ¢te., the set of
live values) of an executing function and restore the saate #ter. Thus, the challenge is
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how to restore values while at the same time keeping the $8A-CFG of the function
consistent.

We now explain our approach which addresses all these olgake In particular, we
describe the implementation bfserterandOSR Passhown in Figuré 4]2(b).

4.3.2 OSR Point

In Section 4.21, we explained how a developer can add thabdap to insert OSR
points to an existing JIT. Here we describe the represemtafi OSR points.

We represent an OSR point with a call to a native function ra@e osrSignal It
has the following signature.

declare void @__osrSignal( i8*, i64)

The first formal parameter is a pointer to some memory lona#ocorresponding ar-
gument is a pointer to the function containing the call istion. This is used to simplify
the integration of inlining; we discuss this in detail in 8en[4.3.5. The second formal
parameter is an unsigned integer. A function may have mel@SR points; the integer
uniquely identifies an OSR point.

The OSR module maintains a table named OSR function talftle The table maps a
function in LLVM IR onto a set of OSR-point entries. The set ggaw or shrink dynam-
ically as new OSR points are added (e.g., after a dynamiaimg) and old OSR points
removed (e.g., after an OSR). An entrin the set is an ordered pair.

e = (osr_call inst, code transformej

The first member of the pair -esr call inst— is the call instruction that marks the posi-
tion of an OSR point in a basic block. The second isabee transformer(Sectiori 4.2.11).

4.3.3 The OSR Pass

The OSR pass in Figuie_4.2(b) is a key component of our OSReimghtation. As
shown in Listind 4.8, the OSR transformation pass is derfk@u the LLVM FunctionPass
type. Like all LLVM function passes, the OSR pass runs on ation via itsrunOnFunc-
tion (Listing[4.3) method.
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4.3. Implementation

The pass first inspects a functiomw# entry to determine whether the function has at
least one OSR point. It returns immediately if the functi@s imo OSR points. Otherwise,
it instruments the function at each OSR point. Figuré 4.3wshesimplified CFG of a loop
with no OSR points. The basic block labelleH1 is the loop headeL.B contains the code
for the body of the loop; and the loop exitslLE.

ENTRY:

i
]
]
¥
LH1:

br il %loopCond,
label LB, label %LE

y ~

LE: LB:

br label %LH1

Figure 4.3 — A CFG of a loop with no OSR points.

Figure[4.4 shows a simplified CFG for the loop in Figurd 4.3 withOSR point. This
represents typical code an LLVM front-end will generatehnf@SR enabled. Insertion of
OSR points is performed biypsertershown in Figuré 4]2(b). The loop header block (now
LHO in the Figurd_ 4.4) terminates with a conditional branchringion that evaluates the
Boolean flag¥oosrCondand branches to either the basic block label@8Ror to LH1.
LH1 contains the loop termination condition instructitB contains the code for the body
of the loop; the loop exits dtE.

The OSR compilation pass performs a liveness analysis dd3#eform CFG to deter-
mine the set of live variables at a loop header sudtH&in Figure[4.4. It creates, using the
LLVM cloning support, a copy of the function named tb@ntrol version As we explain
later in this section, this is used to support the transitiom one version of the function
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ENTRY:

y

|

LHO:

br i1 %osrCond,
label %0SR, label %LH1

tr

alse

OSR:

call void @__osrSignal(...)

br label %LH1

LH1:

br i1 %loopCond,

label LB, label %LE

false

LE:

rue

br label %LHO

LB:

L |

Figure 4.4 — The CFG of the loop in Figure 4.3 after insertin@&R point.

to another at run time. It also creates a descriptor [HCU923fQor the function. The

descriptor contains useful information for reconstrugtine state of a function during an

OSR event. In our approach, a descriptor is composed of:

version; and

a pointer to the current version of the function;
a pointer to the control version of the function;

a map of variables from the original version of the functioro those in the control

the sets of the live variables collected at all OSR points.

After running the OSR pass on the loop shown in Figuré 4.4QR6& will be trans-
formed into that shown in Figufe 4.5. Notice that in the tfamsed CFG, the OSR block
now contains the code to save the runtime values of the liiablas and terminates with a

return statement. We now describe in detail the kinds ofumséntation added to an OSR

block.

76



4.3. Implementation

ENTRY:

L

LHO:

br i1 %osrCond,
label %0SR, label %LH1

alse
e
OSR:

LH1:

call void @_osrSignal(...)

store ... br il %loopCond,
. label %LB, label YLE

ret ...

falS € rue

LE: LB:

br label %LHO

[

Figure 4.5 — The transformed CFG of the loop in Fidure 4.4 aftening the OSR Pass.

4.3.3.1 Saving Live Values

To ensure that an executing function remains in a consisti@ae after a transition
from the running version to a new version, we must save theentistate of the executing
function. This means that we need to determine the live blasaat all OSR points where
an OSR transition may be triggered. Dead variables are mdtius

As highlighted in Sectioh 412, we require that the headerloba with an OSR point
always terminates with a conditional branch instructiothefform:

br i1 %et, |abel %osr, | abel %cont

This instruction tests whether the function should perf@8R. If the test succeeds (i.e.,
%etis set tatrue), the succeeding block beginning at lab&srwill be executed and OSR

transition will begin. However, if the test fails, executiwill continue at the continuation

block, %cont This is the normal execution path.
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In %o0srblock, we generate instructions for saving the runtime eafieach live vari-
able computed by the liveness analysis. The code snippéstim$j[4.5 shows a typicasr
block in a simplified form.

Listing 4.5 — OSR instrumentation.

oSr:
call void @ _ osrSignal(f, i64 1)
store double?7, double @live
store double?8, double @livel

store i32 1, i32 @osr flag
call void @ recompile(f,i32 1)

© 0 N o o~ W N

call void @f(...)
10 call void @ recompileOpt(f)
1 ret void

The call to@ osrSignal(f, i64 1)in line 2 marks the beginning of the block. Fol-
lowing this call is a sequence dffore instructions. Each instruction in the sequence saves
the runtime value of a live variable into a global varialdive*. The laststore instruction
stores the value 1 int@osr flag. If @osr flagis non-zero at run time, then the executing
function is performing an OSR transition. We explain thechions of the instructions in
lines 7 — 10 later.

The saved variables are mapped onto the variables in theotwatsion. This is a key
step as it allows us to correctly restore the state of theugxegrfunction during an OSR.

4.3.4 Restoration of State and Recompilation

The protocol used to signify that a function is transitignfrom the executing version
to a new version, typically, a more optimized ver@n’s to set a global flag. The flag is
reset after the transition.

At run time, the running function executes the code to saveutrent state. It then
calls the compiler to recompile itself and, if a cama@nsformeris present, the function is

10. It may also transition from an optimized version to a lgstsmized version depending on the applica-
tion.
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transformed before recompilation. The compiler retriagixesdescriptor of the function and
updates the running version using ttantrol version as illustrated in Figute 4.6.

fo
CT:
oOT: fe = clone(f,)

move( fe, fo) 3

Figure 4.6 — State management cycle.

Let f, denote the original version of the LLVM IR of the running fulon, and f,
denote the control version that was generated by cloningtigénal version. We denote
the set of all the live variables ¢f, at the program poing, with V,(p,). Similarly, V.(p.)
denotes the state of the control version at the matchingranogointp.. Becausef, is a
copy of f,, it follows that

Vo(po) = Ve(pe).

Figurel4.6 illustrates the state management cycle of theimgrfunction. The function
starts with versiory,. At compilation time*] (shown as event'T" in Figure[4.6), we clone
f, to obtainf.. We then compile/,. At run time, when an OSR (eve®I in Figurel4.6) is
triggered by the running function, we first remove the instians in f, and thermovethe
code (LLVM IR) of f. into f,, transform/optimize as indicated by the OSR transform, and
then recompilef, and execute the machine codefpf

This technique ensures that the machine code of the runanagibn is always accessi-
ble at the same address. Hence, there is no need to recotsm#dliers: the machine code
of the transformed, is immediately available to them at the old entry point of ilmening
function.

To locate the continuation program popt(p, = p.), the compiler recovers the OSR
entry of the current OSR identifier; using the variable magpiin the descriptor, finds the
instruction that corresponds to the current OSR point. Fiois) it determines the basic

11. This includes the original compilation and all subsefuecompilations due to OSR.
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block of the instruction. Because the basic block of an OSRtpostruction has one and
only one predecessor, the compiler determines the reqtargdt,p,.

4.3.4.1 Restoration of State

To restore the state of the executing function, we createvebasic block namegrolog
and generate instructions to load all the saved values srbibck; we then create another
basic block that merges a new variable defined imptiaéog with that entering the loop via
the loop’s entry edge. We ensure that a loop header has oalgredecessors and because
LLVM IR is in SSA form, the new block consists gfnodes with two incoming edges: one
from the initial loop’s entry edge and the other frgmolog. The ¢ nodes defined in the
merger block are used to update the users of an instructarcdnresponds to a saved live
variable in the previous version of the function.

Figure[4.Y shows a typical CFG of a running function beforesitisg the code for
recovering the state of the function. The basic blbeK. defines a) node for an induction
variable (i in Figure[4.Y) of a loop in the function. The body of the lo@B, contains a
add instruction that increments the value%f by 1.

Assuming that we are recovering the value%f from the global variable/ive i,

Figure[4.8 shows the CFG after inserting the blocks for resgahe runtime value ofbi.
In this figure,prolog contains the instruction that will load the runtime value/af from
the global variabledlive i into % i; similarly, the basic bloclprolog.exitcontains ap
instruction (4 m i) that mergess i from prolog and the value 1 fronENTRY This
variable (i.e..% m i) replaces the incoming value (1) froENTRYin the definition of
%i in the loop headei(H1) as shown in Figure 4.8. Notice that the incoming bl&tKTRY
has been replaced witirolog.exit(PE) in the definition of%: in LH1.

Fixing the CFG to keep the SSA form consistent is non-triAaimple replacement of
a variable with a new variable does not work. Only variablesshated by the definitions
in the merger block need to be replaced. Nemodes might be needed at some nodes with
multiple incoming edges (i.e., only those that are in the idamce frontier of the merger
block). Fortunately, the LLVM framework provides an SSA @pel that can be used to
update the SSA-form CFG. We exploited the SSA Updater to fibxCiR6€.
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ENTRY:

l

i

[}

¥
LH1:

/i = phi 164
(1, %Entry]l, [hi.u, %LB]

br i1 %loopCond,

label %LB, label JLE

fals

tru

LE:

LB:

%i.u = add i64 %i, 1

br label %LH1

L

Figure 4.7 — A CFG of a loop of a running function before insgrtthe blocks for state

recovery.
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prolog.entry:

br il %ocond,
label %ENTRY, label %prolog

pl‘Olog: \

/i-i = load i64* Qlive_i

br label Jprolog.exit —

— |

prolog.exit(PE):
%m_i = phi i64 ii = phi i64
[1’ %Entry], [%7:-'-’ %PI‘OlOg] I:A.J[Ll, APE], [A:l-u’ %LB]

br i1 %loopCond,
label %LB, label J%LE

fals

br label JLH1

tru

LB:

LE:
ii.u = add i64 %i, 1

br label %LH1

I

Figure 4.8 — The CFG of the loop represented by Figure 4.7iaferting the state recovery
blocks.
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To complete the state restoration process, we must fix theatdlow to ensure that
the function continues at the correct program point. Fas, tive insert a new entry block
namedprolog.entrythat loads@osr flag and tests the loaded value for zero to determine,
during execution, whether the function is completing antcamsition or its being called
following a recent completion of an OSR. The content of the ratvy block is shown in
the following code snippet.

1 prolog. entry :

> %osrPt =load i32 @osr flag

3 %cond =icmp eq i32%o0srPt, 0

4+ br il %cond, label %entry, label %prolog

If %osr Pt is non-zero, the test succeeds and the function is comglatnOSR; it will
branch to%prolog. In %prolog, all the live values will be restored and control will pass
to the target block: the loop header where execution wiltiome. However, it%osr Pt is
zero, the function is not currently making a transitionsibeing called anew. It will branch
to the original entry basic block, where its execution wilhtinue.

As shown in Figuré 418, the basic blogkolog.entryterminates with a conditional
branch instruction. The new version of the running functol begin its execution from
prolog.entry After executing the block, it will continue at eitherolog or ENTRY (the
original entry block of the function) depending on the romivalue o®b6cond

4.3.4.2 Recompilation

We now return to the instructions in lines 7 — 10 of Listingl4T'e instruction in line
7 calls the compiler to perform OSR and recompilasing the code transformer attached
to OSR point 1. After that, functiorf will call itself (as shown in line 8), but this will
execute the machine code generated for its new version.\Widriks because the LLVM
recompilation subsystem replaces the instruction at tley goint of function f with a
jump to the entry point of the new version. During this cdie function completes OSR
and resumes execution. The original call will eventualtyne to the caller any return value
returned by the recursive call.
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Normally after an OSR, subsequent calls (if any)foéxecutes the code in thwo-
log.entry which tests whether or not the function is currently perfiomlg an OSR. How-
ever, this test succeeds only during an OSR transition; herotvords, the execution of
the code irprolog.entryafter an OSR has been completed is redundant. To optimizg awa
the prolog.entry we again call the compiler (line 9 in Listirig 4.5) but thim&, the com-
piler only removes therolog.entryand consequently, other dead blocks, and recongpile
In Section 5.3.2, we compare the performance of our bendtsnwainen theprolog.entry
is eliminated with the performance of the same benchmarlenwheprolog.entryis not
eliminated.

4.3.5 Inlining Support

Earlier, we discussed the implementation of OSR points amdthe OSR transforma-
tion pass handles OSR points. However, we did not specify Wwevnandled OSR points
inserted into a function from an inlined call site. A searsle@gegration of inlining opti-
mization poses further challenges. When an OSR event isetegicat run time, the runtime
system must retrieve the code transformer attached to tiegat from theoft entry of
the running function. How then does the system know the maigunction that defined an
inlined OSR point? Here we explain how our approach handlesng.

Remember that an OSR point instruction is a call to a funcfidre first argument is
a pointer to the enclosing function. Therefore, when an O&iRtps inlined from another
function, the first argument to the inlined OSR point (i.ecadl instruction) is a function
pointer to the inlined function. From this, we can recoverttansformerassociated with
this point by inspectingft using this pointer. We can then modify these OSR points by
changing the first argument into a pointer to the currenttioncand assign a new ID to
each inlined OSR point. We must also update dffteentry of the caller to reflect these
changes.

We distinguish two inlining strategies: static and dynarimcstatic inlining, a call site
is expanded before executing tballer. This expansion may introduce a new OSR point
from the calleeinto the caller and invalidates all the state informatiotleted for the
existing OSR points. We regenerate this information afgrialining process.
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Dynamic inlining concerns inlining of call sites in a rungifunction during the exe-
cution of the function after observing, for some time, itatimne behaviour. Typically, we
profile a program to determirtet call sites and inline those subject to some heuristics. We
used OSR support to implement dynamic inlining of call sitebbng-running loops. We
discuss this implementation in the next chapter.

4.4 Summary

In this chapter, we have introduced a modular approach tdemgnting OSR for
LLVM-based JIT compilers. Our approach should be very easpthers to adopt because
it is based on the LLVM and is implemented as an LLVM pass. lkermmnore, we found
a solution which does not require any special data strustimestoring stack frame val-
ues, nor any instrumentation in the callers of functiong@oimg OSR points. It also does
not introduce any changes to LLVM which would require rethmty the LLVM system.
Finally, our approach also provides a solution for the calsere/ a function body contain-
ing OSR points is inlined, in a way that maintains the OSR soémd adapts them to the
inlined context.

In the next chapter, we describe a case study of how we hawvkaigeOSR imple-
mentation to support selective dynamic inlining of hot adilés in long-running loops in
the McVM JIT compiler for the MATLAB language. Then we desariand discuss the ex-
periments that we conducted to measure the overheads OSiReahdnefits of our OSR-
supported selective dynamic inlining.
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Chapter 5

Selective Dynamic Inlining in McVM

This chapter is a continuation of the previous chapter, wigabout the implementa-
tion of our OSR approach. Here, we present an example apphoaf the OSR approach
to support selective dynamic inlining in McJIT. We selectieid as our first application of
OSR because inlining impacts OSR since it must properly @#hlOSR points in the in-
lined functions. Moreover, inlining can provide larger pedor many traditional compiler
optimizations and can increase the opportunity for loogameation.

The main contributions of this chapter are

Using OSR in McJIT for selective dynamic inlining: In order to demonstrate the effec-
tiveness of our OSR module, we have implemented an OSR-bgseanit inliner
that will inline function calls within dynamically hot lodpodies. This has been com-
pletely implemented in McVM/McJIT.

Experimental measurements of overheads/benefitsVe have performed a variety of
measurements on a set of 16 MATLAB benchmarks. We have neshsie over-
heads of OSRs and selective dynamic inlining. This showsttiebverheads are
usually acceptable and that dynamic inlining can resultenfggmance improve-
ments.
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5.1 The McJIT dynamic inliner

In our approach to dynamic inlining, we first modified McJITidentify potential in-
lining candidates. In our case, a call is considered aniimgicandidate if the body of the
called function is less than 20 basic blocks, or it is less th@ basic blocks and it has
an interpreter environment associated with the E@MCJlT generates LLVM IR for each
function in a program. The LLVM IR generated by McJIT may @ntcalls to the inter-
preter for special cases and for those cases the symbobamant set-up code facilitates
the interaction with the interpreter. In our case, inlingan reduce the interpreter environ-
ment overheads.

We then modified McJIT so that loops which contain potenhéhing candidates are
instrumented with a hotness counter and a conditional wéociiains an OSR point (where
the OSR pointis associated with a new McJIT inlining transfer). When an OSR triggers
(i.e. the hotness counter reaches a threshold), the Mcliilnig transformation will inline
all potential inlining candidates associated with that Qfsit.

There are many strategies for determining which loops shbelgiven an OSR point,
and a JIT developer can define any strategy that is suitablediiner situation. For McJIT,
we defined two such general strategies, as follows:

CLOSEST Strategy: The LLVM front-end is expected to insert OSR points only ie th
loop that is closest to the region that is being considereaptimization. For ex-
ample, to implement a dynamic inlining optimization usimgststrategy, an OSR
point is inserted at the beginning of the closest loop emupan interesting call site.
This strategy is useful for triggering an OSR as early asipless.e., as soon as that
closest enclosing loop becomes hot.

OUTER Strategy: The LLVM front-end is expected to insert an OSR point at the be
ginning of the body of the outer-most loop of a loop nest coing the region of
interest. This approach is particularly useful for trigggrmany optimizations in a
loop nest with a single OSR event. In the case of dynamiciigirone OSR will trig-
ger inlining of all inlining candidates within the loop ne3te potential drawback

1. We experimented with different thresholds for basic kéolut found 20 and 50 to work best for our
benchmarks.
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of this strategy is that the OSR will not trigger until the ewnhost loop becomes hot,

thus potentially delaying an optimization.

In Figurel5.1, we illustrate the difference between the ttkategies using an hypothet-

ical loop nest. We use a call site to represent an interestigign for optimization.

Lo LO LO

I, I OSR Point 1: L, OSR. Point 1:

Lo Loy Lo
OSR Point 2:
Cy: call £() Cy: call £() Cy: call £()

Lg L3 Ls
OSR. Point 3:
Cs5: call g() Cs: call g() C5: call g()
Cl: call h() Co: call h() Co: call h()

(a) A four-loop loop nest (b) Outer-most-loops Strategy (¢) Closest-loops Strategy

Figure 5.1 — A loop nest showing the placement of OSR pointguse closest or outer-
most strategy.

A loop is represented with a box. The box labellegdenotes the outer-most loop of
the loop nest. The nest contains four loops and has a depthLobs/; andL; are at the
same nesting level., is nested insidé.;. The loop nest has three call sité%;in loop L,

(5 inloop Lo, andCs in loop Ls. Figurel5.1(a) shows the loop nest with no OSR points.

With the outer-most-loops strategy, an OSR point will besitesd only at the beginning
of the outer-most loopl, as shown in Figure 5.1(b). However, if the strategy is clbses
enclosing loops, the front-end will insert an OSR point & Bleginning of loopd.g, L,
and L3 as shown in Figure 5.1(c). Although, is inside L;, no OSR points are inserted
into L, becausd.; is not the closest-enclosing loop Gf.

As shown in the figure, the outer-most-loops strategy caoislysone OSR point to be
inserted into the entire loop nest, while the closest-asiotploops strategy causes three
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OSR points to be inserted. Thus, depending on the optimizgerformed during an OSR
event, the choice of strategy can make a difference in pedoce.

In our VM, a user specifies an OSR strategy from the commaedaitmen invoking the
VM, like the following example.

Jmcvm -jit_enable true -jit_osr_enable true
-jit_osr_strategy outer.

This command starts McVM with OSR enabled withter strategy. In our JIT, the default
strategy iouter.

When the OSR triggers it calls the McJIT inliner transformatiOur McJIT inliner
calls the LLVM basic-inliner library to do the actual inlimg. However, the McJIT inliner
must also do some extra work because it must inline the doregsion ofcalleefunction
body. The key point is that if thealleehas an OSR point, it must not inline the version
of the callee which has already been instrumented with tde ¢o store values of the live
variables at this OSR point. If this version is inlined inke taller — the function that is
performing OSR— the instrumentation becomes invalid asdlde does not correctly save
the state of the caller at that inlined OSR point. We resotiedproblem by recovering the
control version of the called functiorcéllee and modifying the call site. We change the
function called by the call instruction to the control versiof the callee. For instance, if
the inlined call siteizal | void @f(...) ,and the control version gfis f/, then the
call site will be changed toal | voi d @f(...) . Note that the control version has an
identical OSR point but is not instrumented to save the nbatvalues of live variables at
that program point. For consistency, the function desaript the function is updated after
inlining as outlined in Section 4.3.5.

5.2 Symbol Environment Simplification

One important optimization that we perform on an inlinedeoégion is the symbol
environment optimization. As discussed in Section 2. A& cbde of a function can contain
calls to the interpreter. Some calls to the interpreterireghe function’s symbol environ-
ment, and a function that contains such calls has symbot@nwient initialization code in
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its entry basic block. If a function with a symbol environmenfrequently called within a
hot loop body, the execution of the symbol environment getade can be a major source
of overhead, especially if multiple functions with symbet-sip code have been inlined
into a function.

Inlining, however, enables an opportunity to eliminate gi;bol set-up code from an
inlined code region. If the calling function has a symbolieswment set-up in its entry
block, this symbol environment can be used by the code inrtlieed region. This will
render the symbol set-up code from an inlined function rednh The code can then be
removed from the inlined region.

As an example, Listing 5.1 shows the inner loop of #i@ anl [matl3] MATLAB
program.

Listing 5.1 — The inner loop adim_anl.

for k=0:500
%We generate new test point using mnv function [3]
dx=mu_inv(2«rand(sizgx))—1,mu)=* (u—I);
x1=x+dx;
XI=(xL < 1).x [+(I < x1)*(x1 < u)xx1+(u < x1)=*u;
fx1=feval(f,x1); df=fx1—fx;

if (df <0 || rand < exp(—Txdf/(abgfx)+ep9/TolFun))==1
x=x1;fx=fx1;
end

© 0 N o o~ W N
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if fx1 <f0==1
x0=x1;f0=fx1;
end

bR R
A ow N

end

[
(5]

The entry basic block of the LLVM code generated by McJITdwn anl contains the
instructions shown in Listing_5.2. Instructions 5 and 7 setausymbol environment for
functionsim_anl.
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Listing 5.2 — LLVM code forsim_anl entry basic block. (We show only

the most relevant instructions.)

1 define void @sim anl 0x1f86a80( i8«, i8+, i8x, i8x, 164, double, i64}* %arg,
2 { i8%, 8%, 164 }* %argl) {

3 entry:

4

s %tmpl3 = call i8 @"ProgFunction::getLocalEnv"

6 (i8* inttoptr (i64 30596480 i8+))

7 %env = call i8+ @"Environment:.extend" (i8* %tmp13)
8

Line 3 of Listing[5.1 contains a call to functionu_inv. The MATLAB code, and the
corresponding LLVM code generated by McJIT fau _inv is shown in Listing 5.8 and
Listing[5.4 respectively.

Listing 5.3 — Functiormu inv.

function x=mu_inv(y,mu)

%This function is used to generate new point according to lower and

%upper %and a random factor proportional to current point.
x=(((1+mu).abgy)—1)/mu)+sign(y);

end

a A~ W N e
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Listing 5.4 — McJIT generated LLVM code fonu inv.

1 define void @mu_inv_0x1f869a0( i8+, double, i64}* %arg, { I8+, 164 }+ %argl) {
2 entry:
3

%tmp5 = call i8« @"ProgFunction::getLocalEnv"
(i8+ inttoptr (i64 3059628&0 i8*))
%r env=call i8x @"Environment::extend" (i8+ %tmp5)

br i1 %tmp11, label%bb29, label%bb

© 0 N o a »

bb: ; preds =%entry
10 %tmpl2 = call i8x @"ArrayObj::getArrayObj" (i8* %tmp9, i64 0)
1 %tmpl3 = call i @"Environment::bind" (i8* %r _env,
12 i8+ inttoptr (i64 3055996&0 8 x), 8% %tmpl2)
13
14 %tmpl4 = call i3« @"MatrixF640bj::makeScalar" (double%tmp7)
15 %tmpl5 = call i8 @"Environment::bind" (i8x %r env,
16 i8+ inttoptr (i64 305600320 i8 %), i8x %tmpl4)
17
18 %tmpl6 = call i8« @"Interpreter:.evalBinaryExpr"
19 (i8+ inttoptr (i64 338880320 i8 %), i8+ %r env)
20
21 ...
22 }

Notice that the LLVM code for functiomu inv (Listing[5.4) contains a symbol en-
vironment set-up code in lines 4 — 6; some uses of the symhaloement (i.e., LLVM
virtual register%r env created in line 6) for runtime variable binding in lines 1d&kd,
and for evaluating an expression in line 18 — 19.

If our dynamic inliner decides to inline functionu_inv into functionsim _anl, the inner
loop of sim anl shown in Listing 5.1L will contain the set up code and will beexted
many times. Because functi@m anl also has a symbol environment associated with it
(i.e.,%env defined in Listind 5.R), it is possible to eliminate the syrdet up instructions
in the inlined region corresponding to the codevaf inv.

Thus, we use the algorithm in Algorithid 1 to eliminate symbolironment set-up
code from an inlined region. The input to Algorithh 1 is a ftion in LLVM IR whose
relevant call sites have just been inlined, and a set of ldgaks. Each basic block in the
set is the beginning of an inlined region (the code of theecallinction at an inlined call
site).
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Input: LLVM IR, and a set of LLVM basic blocks
Output: A simplified LLVM IR

if caller has a symbol environmehtthen
[* process each inlined region */

for each inlined regionk do

if R has a symbol environment; then

find all the uses of’; in R ;

for each usd/ of E do
replaceEr with F;

end
remove the definition o'z from R
end
end

end

Algorithm 1: Simplification of symbol environments.

The algorithm first checks whether there are inlined regiamd searches the entry
basic block of the input function (which we call theller) to find the symbol environment
associated with the function. If no symbol environment igrfd in the entry block, the
algorithm terminates. If, however, the environment is fuihe algorithm processes each
code region found in the input set of basic blocks. It loctitessymbol environment in the
current code region and replaces all the uses of the symbimbement found in the region
with the symbol environment of the caller. It then removes skt up code for the symbol
environment in the code region.

In the next section, we discuss our experimental resultstl@impact of this symbol
environment simplification on performance.

5.3 Experimental Results

We used our McJIT dynamic inliner to study the overheads dR@8d the potential
performance benefit of inlining. We used a collection of MAYR. benchmarks from a
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previous MATLAB research project and other sources [RG6; Cle04, Pre&6], Table 5.1
gives a short description of each benchmark. All the bencksnaave one or more loops,
the table also lists the total number of loops and max looprdfep each benchmark.

BM Description # Loops | Max Depth
adpt || adaptive quadrature using Simpson'’s rule 4 2
capr || capacitance of a transmission line using finite 10 2

difference and and Gauss-Seidel iteration.

clos || transitive closure of a directed graph

crni Crank-Nicholson solution to the one 7
dimensional heat equation

dich || Dirichlet solution to Laplace’s equation 6 3

diff Young'’s two-slit diffraction experiment 13 4

edit || computes the edit distance of two strings 2

fdtd | 3D FDTD of a hexahedral cavity 1
with conducting walls

fft fast fourier transform 6 3

fiff finite-difference solution to the wave equation 13 4

mbrt || Mandelbrot set 2

nbld || N-body problem coded using 1d arrays 6 2
for the displacement vectors

nfrc || computes a Newton fractal in the 3 2

complex plane -2..2,-2i..2i

nnet || neural network learning AND/OR/XOR functions 11

schr || solves 2-D Schroedinger equation

sim || Minimizes a function with simulated annealing

Table 5.1 — The benchmarks.
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The configuration of the computer used for the experimentabrkw is:

Processor: Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz
RAM: 16 GB;

Cache Memory: L1 32KB, L2 256KB, L3 12MB;
Operating System: Ubuntu 12.04 x86-64;

LLVM: version 3.0; and

McJIT: version 1.0.

Our main objectives were:

— To measure the overhead of OSR events on the benchmarkghevaurter-most and
closest-loop strategies. The overhead includes the cdsstifimentation and per-
forming OSR transitions. We return to this in Section 5.3.1.

— To measure the impact of selective inlining on the benchmale discuss this in
detail in Section 5.3]2.

We show the results of our experiments in Table 5.2 and TaBle™r these experiments,
we collected the execution times (showntés in the tables) measured in seconds, for 7
runs of each benchmark. To increase the reliability of ouadae discarded the highest
and the lowest values and computed the average of the ramganvalues. To measure
the variation in the execution times, we computed the stahdeviation (STD) (shown as
std) of the 5 values for each benchmark under 3 different categoAll the results shown
in both tables were collected using the outer-most-loogdegyy, with the default LLVM
code-generation optimization level.

The column labelledNormal gives the average execution times and the corresponding
STDs of the benchmarks run with OSR disabled, while the caollabelledwith OSRyives
similar data when OSR was enabled. Colukvith OSRin Table[5.8 shows the results
obtained when dynamic inlining plus some optimizationsaégh by inlining were on.

The number of OSR points instrumented at JIT compilatioretimmsshown under of
the column labelled#OSR while the number of OSR events triggered at run time is shown
under the column labelled of #OSR The execution ratio for a benchmark is shown as
the ratio of the average execution time when OSR was enabldtetaverage execution
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Normal(N) || With OSR(O) || #OSR || Ratio
BM t(s) | std t(s) std|| I | T O/N
adpt || 17.94| 0.06|| 17.84| 0.08 1| 1| 0.99
capr || 11.61] 0.01|| 12.63| 0.02}| 2| 2| 1.00
clos || 16.96| 0.01| 16.96| 0.01 0| O 1.00
crni 7.20|10.04|| 740| 0.04| 1| 1| 1.03
dich || 13.92| 0.01|| 13.92| 0.00{ 0| O 1.00
diff 12.73| 0.07 | 12.80| 0.09/| 0| 0| 1.01
edit 6.58| 0.03|| 6.66| 0.09| 1| 0| 1.01
fdtd || 12.14| 0.03|| 12.16| 0.05| 0| 0| 1.00
fft 13.95| 0.05( 14.05| 003} 1| 1| 1.01
fiff 8.02{0.01| 805 0.01|1| 1| 100
mbrt | 9.05|0.11| 9.22| 011 1| 1| 1.02
nbld| 3.44|0.02| 3.47| 001|0| 0| 1.01
nfrc 9.68| 0.05|| 10.00f 0.04( 2| 2| 1.03
nnet || 5.41|0.02| 559 0.03|2] 1| 1.03
schr || 11.40| 0.01| 11.42| 0.03]/ 0| O 1.00
sim | 15.26| 0.03| 15.92| 0.07| 1| 1| 1.04
GM 1.01

Table 5.2 — OSR Overhead.
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Normal(N) (| With OSR(O) || #OSR Ratio
BM t(s) | std t(s) std|| I | T| FI|CA O/N
adpt || 17.94| 0.06|| 17.85| 0.06( 1| 1| 1| F 0.99
capr || 11.61| 0.01|| 11.69| 0.02( 2| 2| 2| T 1.01
clos || 16.96| 0.01|| 17.18| 0.22({0| 0| O] F 1.01
crni 72,004 6.73| 024||1| 1| 1| T 0.93
dich || 13.92| 0.01|| 13.94| 0.01{0| O O] F 1.00
diff 12.73] 0.07 || 12.74| 0.04({0| 0| O] F 1.00
edit 6.58| 0.03|| 6.66| 0.07||1| 0| O| F 1.01
fdtd || 12.14| 0.03 | 12.13| 0.03]|0| O| O| F 1.00
fft 1395/ 0.05( 13.91| 0.02(1| 1| 2| F 1.00
fiff 8.02/ 0.01 826| 0.03(1| 1| 1| F 1.03
mbrt || 9.05| 0.11| 9.06| 0.03|1| 1| 1| F 1.00
nbld| 3.44|0.02| 347| 0.01|0| O} O| F 1.01
nfrc 9.68| 0.05( 4.26| 0.02(2| 2| 5| T 0.44
nnet | 5.41|0.02| 571 003| 2| 1| 1| F 1.05
schr 11.4| 0.01| 1145 0.05|/0| O O| F 1.00
sim || 15.26| 0.03|| 14.72] 0.09( 1| 1| 1| F 0.96
GM 0.95

Table 5.3 — Dynamic inlining using OSR (lower executionaasi better).
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time when OSR was disabled (this is the default case). Colutihsof Table[5.2 and
O/N of Table[5.B8 show, respectively, the ratio for each benchkmnadren OSR only was
enabled and when OSR and inlining were enabled. The last fdatbe[5.2 and Table 5.3
shows the average execution ratio (the geometric mean (G¥)) all the benchmarks.
In Table[5.8, we show the number of functions inlined unBerThe column labelled
CA indicates whether at least one function in the benchmarlalied again after it has
completed an OSR event.

The STDs of our data sets range from 0.00 to 0.24, showingtleagxecution times
are quite reliable. We now discuss the results of our exparimin detail.

5.3.1 Cost of Code Instrumentation and OSR

Because our approach is based on code instrumentation, wedvemmeasure the
overhead of code instrumentation and triggering OSRs. THisallow us to assess the
performance and develop an effective instrumentationegiya

ColumnOI/N of Table[5.2 shows that the overheads range from about O tal%os
also the range for the closest-enclosing-loops strategyessting that the overheads under
the two strategies are close. Out of the 16 benchmarks, 16 &aleast one OSR point;
and 8 of these 10 benchmarks triggered one or more OSR eVéatsave not shown the
table of the results for the closest-enclosing loops bexaus of the 8 benchmarks that
triggered an OSR event, the outer-most and the closesb®nglloops are different only
in 3 benchmarksmbrt, nfrc, andsim The execution ratios for these benchmarks under
the closest-enclosing-loops strategy are: 1.00nfdart, 1.02 for nfrc, and 1.04 forsim
The mbrt and nfrc benchmarks have lower execution ratios under the closesbsng-
loops strategy. It is not entirely clear whether the closestiosing-loops strategy is more
effective than the outer-most-loops strategy; althougith ¥hese results, it appears that
using the closest-loops strategy results in lower overfieBide choice between these two
will depend largely on the kinds of the optimizing transfations expected at OSR points.
We return to this discussion in Sectibn 513.2, where we enarttie effectiveness of our
dynamic inlining optimization.
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We investigated the space performance and found that, deygean the strategy, the
three benchmarksar(brt, nfrc and sim) compiled up to 3% more instructions under the
closest-enclosing-loops strategy. This is hardly suipgisthe OSR overhead depends on
the number of OSR points instrumented and the number of O$Rspiwiggered at run
time. The size of the instrumentation code added at an OSR woa function depends on
the size of the live variables of the function at that poimigl ¢his varies depending on the
position of the OSR point in a loop nest. The outer-most I@djkely to have the smallest
set of live variables.

Although the overhead peaked at 4%, the average overheadlbtbe benchmarks
(shown asGM in Table[5.2) is 1%. Thus, we conclude that on average, thenewe is rea-
sonable and practical for computation-intensive appbcat As we continue to develop
effective optimizations for MATLAB programs, we will workmotechniques to use OSR
points in locations where subsequent optimizations asdlito offset this cost and there-
fore increase performance.

5.3.2 Effectiveness of Selective Inlining With OSR

Our objective here is to show that our approach can be usedpjmost dynamic opti-
mization. So, we measured the execution times of the bendisnadnen dynamic inlining
is enabled. When an OSR is triggered, we inline call sitesenctirresponding loop nest.
ColumnWith OSRof Table[5.8 shows the results of this experiment.

The results show significant improvements ¢oni, nfrc andsim This shows that our
dynamic inlining is particularly effective for this clas$ programs. Further investigation
revealed that these benchmarks inlined multiple smalltfans and several of these func-
tions fall back to the McVM’s interpreter to compute some pticated expressions. As
discussed in Sectidn 5.2, McJIT’s interactions with theiipteter are facilitated by setting
up a symbol environment for binding variables at run timer @gnamic inlining enables
the symbol environment simplfication discussed in Sedti@) Wwhich eliminates the en-
vironment set-up instructions in the inlined code. Thishis main cause of performance
improvement imfrc andsim and is impossible to do without inlining.
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Only thefiff andnnetshow a real decrease in performance when using the outdr-mos
loop strategy with inlining. We found that the function m#d bynnetcontains some ex-
pensive cell array operations, which our optimizer is auttyeunable to handle. The bench-
mark also triggered an OSR event once, but performed thréei@$rumentation phases:
two at the compilation time and one re-instrumentationriythe only OSR event.

We wanted to assess the impact of recompilation to optintiegtolog.entryblock
added during an OSR event; so we turned off recompilatiar &SR and re-collected the
execution times for the benchmarks. Out of the 9 benchmbstperformed inlining, only
3 benchmarks contain at least one further call to a functiah¢ompleted an OSR. These
are the rows with the valueT” against the column labelle@A in Table[5.8. The results
for these benchmarks under the no-recompilation after @SR01 forcapr, 0.95 forcrni,
and 0.45 fomfrc. These results suggest that the recompilation to removprtieg.entry
contributes to the increase in performancedapr andnfrc. The basic block has the poten-
tial to disrupt LLVM optimizations and removing it might ld&o better performance. The
recompilation after OSR does not result in a slowdown foratier benchmarks.

In Section[5.3.11, we mentioned that the kinds of the optingizransformations can
guide the choice of strategy that lead to better performaoasidering the 3 benchmarks
with a loop nest where the outer-most and closest-encldsiogs are different, that is,
mbrt, nfrc and sim we found that the outer-most-loop strategy outperfornesdiosest-
enclosing-loop strategy. In particular, teienbenchmark results in about 5% performance
degradation. These results support our claim.

We recorded the average performance improvement overalbénchmarks (shown
asGM in Table[5.8) of 5%. We conclude that our OSR approach is &ffecin that it
efficiently supports this optimization, and that it worksaathly with inlining. To see fur-
ther benefits of OSR for MATLAB, we shall develop more sopbatied optimizations
that leverage the on-the-fly dynamic type and shape infoom#hat is very beneficial for
generating better code.
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5.4 Summary

In this chapter, we described how we have used the OSR maghmanplement dy-
namic incremental function inlining. We also described elsgl environment simplifi-
cation optimization. On our benchmarks, we found some pexdoce improvements and
slight degradations, with several benchmarks showing geofbrmance improvements.

We used our OSR strategy in the McJIT implementation, amthubis implementation,
we demonstrated the feasibility of the approach by meaguha overheads of the OSR
instrumentation for two OSR placement strategies: outestioops and closest-enclosing
loops. On our benchmark set, we found overheads of O to 4%.

Our ultimate goal is to use OSR to handle recompilation ofl&eps, taking advantage
of type knowledge to apply more sophisticated loop optitnes, including parallelizing
optimizations which can leverage GPU and multicores. ThgsMcJIT and MATLAB-
specific optimizations develop, we plan to use OSR to enaldk sptimizations. In addi-
tion to our own future uses of our OSR implementation, we htgue that other groups will
also use our OSR approach in LLVM-based JITs for other laggsigand we look forward
to seeing their results.
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Chapter 6
Dynamic Function Evaluation with  f eval

As we mentioned in Sectidn 1.8.3, MATLAB supports highederfunctions through
thefeval construct, which is widely used in many classes of numedoaiputations. A
typical use ofeval involves a dynamic evaluation of a function passed in asguraent
to the function whose body contains tfeval call [Mat09a]. For many classes of appli-
cations, such a dynamic evaluation of a fixed function is aggin a long-running loop,
and is often performed via interpretation.

This chapter focuses on determinindgaf’al causes significant overheads in both the
interpreter and JIT settings, and then proposes two mesimarto optimizdeval

To determine potential overheadsfefal , we identified a set of seven benchmarks
that use algorithms that naturally uleval , and performed initial experiments on three
interpreters (Octave, Mathworks MATLAB 7 in interpreter deg and McVM in interpreter
mode), plus two JITs (Mathworks MATLAB with the JIT enablesd McVM with the JIT
enabled). These experiments showed, in both the interpreter and tllatgins, that there
are significant overheads for calls viaval , as compared to direct function calls and
inlined function calls.

To reduce the overheadsfeival we then designed and implemented two alternative
mechanisms. The first is the more general of the two mechanisihat it can handle a
wider variety of uses ofeval , and is based on on-the-fly code generation and on-stack
replacement (OSR) techniques implemented in McVM [LH13}e OS5R-based technique

1. Octave is an open source interpreter-only implementatioich does not have a JIT.
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identifies potentially importarfeval calls, and then uses McVM’s OSR technology to
specialize thdeval calls to specific direct calls, and to provide correct bactaphe
general case when the specialized calls do not match thegabntext. We describe the
OSR-based approach in Chagter 7. The second mechanism ettterldsVM JIT com-
piler with on-the-fly code specialization mechanism to sgee on thevalue of function
parameters in those cases where the parameter is usedtimsidedy of the function as
the first argument téeval . This is described in Chapter 8.

This chapter describes our experiments that show significegrheads for calls via
feval for important classes of benchmarks. The discussion hésetlse stage for the
descriptions, in Chapter 7 and Chajpter 8, of our two mecharfiamsducing the overheads
of feval calls.

6.1 Motivation and Problem

In this section, we provide some key background on MATLAB asteval function,
as well our experimental results that demonstrate thefsignt overheads déval

MATLAB and f eval

In order to provide some intuition about MATLAB and tfeval challenges, consider
the example MATLAB functiomewtonin Listing[6.1. As shown on line 1, the function
takes four input arguments, with the first argumimt corresponding to either the name
of a function or a function handle. Note that MATLAB has no léeed types, although
the programmer certainly has some expected types in minddesited by the comments
on lines 3 to 13. Indeed, not only does the programmer expectirtst argument to be a
string containing the name of a function, but she also espidet named function to take
one input argument and produce two outputs. This is also fii@a line 22, wherdeval
is used to call the function provided by the argumfemt Listing[6.2 shows the definition
of fx3n which is one possible function that could be provided¢aton
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Listing 6.1 — Newton’s method to find a root of the scalar eigufi(x) =

0, adapted froni[Rec00a, Rec00b]. Functixdnis shown in Listind 6.2.
function r = newton(fun,x0, xtol , ftol )

% newton Newton's method to find a root of the scalar

1

2

3

4 % equation f(x) =0

s % Synopsis:  r = newton(fun,x0, xtol , ftol )

s % Input:  fun = ('string) name of mfile that
7 % returns f(x) and f'(x).
s % x0 = initial guess

s % xtol = absolute tolerance on X.

10 % Smallest: xtol=bkeps

1 % ftol = absolute tolerance on f(x).
12 % Smallest: ftol =5eps

13 % Output: r = the root of the function

-
'

xeps =max(xtol,5+eps);
feps =max(ftol,5+eps); % Smallest tols are <&ps
x =x0; k=0;
maxit = 15; % Initial guess, current and max iterations
while k < maxit
k =k + 1;
% Returns f( x(k-1)) and f'(x(k-1))
[f,dfdx] = feval(fun,x);
dx = f/dfdx;
X =X — dx;
if (abg(f) <feps ), r =x; return; end
if (abqdx) <xeps ), r =x; return; end
27 end
28 end

NONN N NN N PR R R e
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Listing 6.2 — Functiorix3nfrom [Rec00&, RecO0Db].

function [f, dfdx] = fx3n(x)
% fx3n Evaluate f(x) = x—x"(1/3) — 2 and
% dfdx for Newton algorithm
f=x —x."(1/3) —2;
dfdx = 1 —(1/3)x."(—2/3);
end

o g A W N P

The MATLAB functionfeval is a built-in function, that is used in MATLAB to indi-
rectly evaluate a function at run timieval is overloaded, with two versions available:
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[vyl, y2, ..] =feval(fhandle, x1, ..., xn)

[yl y2, ..] =feval(fname, x1, ..., Xn)

wherefhandleis a first class type in MATLAB which can be bound to a MATLAB litin
function or a user-defined function using the ‘@’ operatbthé second version is used,
thenfnamemust be a string containing a single function name and casordtin a path to
a function or a director

For our example program in Listirig 6.1, a typical call woulldne of the following:
newton(@fx3n, 3, 516, 5e-16)
newton{fx3n' , 3, 5e-16, 5e-16)
where the first case passes a function handle and the secsngdasses a string containing
the name of the function.

Clearly algorithms such asewtonare naturally parameterized over the evaluation func-
tion, and MATLAB’s feval provides a mechanism for this abstraction. However, one
might wonder if the use dieval causes any significant slow down. To determine this,
we studied the cost deval implementations in three implementations of MATLAB:
(1) Mathworks’ implementation for the MATLAB programmingriguage; (2) Octave, a
GNUH open-source implementation of the MATLAB language; and\8VM, our open
source MATLAB framework.

The Mathworks’ MATLAB system (called MATLAB in the tablesyqvides an inter-
preter for the language and also an accelerator (a JIT cemp®ctave is an interpreter
for the MATLAB language. It does not have a JIT compiler. LMathworks’ MATLAB,
McVM has an interpreter and an optimizing JIT compiler.

We conducted our experiments on these systems over a set SLMB programs
from numerical computing domains. These benchmarks iecprdgrams for finding the
roots of polynomials and to integrate first order ordinaffedential equations. All but one
(sim_anl H) of our benchmarks were collected from [RecO0b]. We give atstescription,
together with a static count of the total numbefefal calls in the program in Table 6.1.
The table also shows the numberfeval calls in a loop in each benchmark.

2. Seehttp://www.mathworks.com/help/matlab/ref/feval.ntml
3. www.http://www.gnu.org/software/octave/
4. http://www.mathworks.com/matlabcentral/fileexchang
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6.1. Motivation and Problem

BM Description #feval # feval
(total) (in loops)
bisect Uses bisection to find a root of 3 1
the scalar equation f(x) =0
newton Newton’s method to find a root of 1 1
the scalar equation f(x) =0
odeEuler || Euler's method for integration of 1 1
a single, first order ODE
odeMidpt || Midpoint method for integration of 2 2
a single, first order ODE
odeRK4 Fourth order Runge-Kutta method for 4 4
a single, first order ODE
gaussQuad| Composite Gauss-Legendre quadrature 1
sim_anl Minimizes a function with the
method of simulated annealing
Table 6.1 feval benchmarks.
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We conducted all our experimental work on a computer withfetlewing configura-

tion.
Processor: Intel® Core™ {7-3930K CPU @3.20GHz

RAM: 16 GB;

Cache Memory: L1 32KB, L2 256KB, L3 12MB;
Operating System: Ubuntu 12.04 x86-64;

LLVM Compiler framework: version 3.0;

McJIT: version 1.1; McOSR: version 1.1;

GNU Octave: 3.0.5;

MATLAB: Version 7.12.0.635 (R2011a) 32-bit (gInx86).

In Table[6.2 and Table 8.3, for each benchmark, we show theuére times for the
three systems: Octave, MATLAB and McVM. For all our experis the execution times
do not include the start-up cost of the VM/interpreter. urithe JITs, the execution time
of a benchmark is the average of 10 separate runs of the bamnkhin addition, only
the execution time of the first run includes the compilatiomet By taking the average of
the execution times of 10 runs, we spread the compilatiobh@ee the 10 runs. For the
interpreters, the execution time is the average of 5 sepauas.

Table[6.2 gives the execution times measured in seconds thikedpenchmarks were
interpreted under the three systems. Similarly, Table &:8sgthe execution times, also
measured in seconds, when the benchmarks were run with MBTaad McVM JITs
enabled. As we mentioned earlier, Octave does not have abdhpiter.

In each table, the column labelled (F) gives the time for theimal benchmark, with
thefeval call. The column labelled (D) gives the time when we teeal is replaced
(by hand) with a direct call to the input function used to rbe benchmark, and the ()
column gives the time when the function is inlined (by hafdie rightmost columns give
the speedups of the (D) and (F) versions as compared to thiealfieval version.

These results are very interesting because they show teatferthe interpreted cases
there are substantial overheadsfieval . When thefeval s replaced by a direct call
the speedups range from 1.05 — 1.23 for Octave, 1.00 — 1. NAGLAB, and 1.00 — 1.30
for McVM. When the direct call is inlined the speedups inceeagen more, ranging from
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Interpreter
feval direct inlined Speedup
F (D) 0)
t(s) t(s) t(s)|| F/ID  F

bisect
Octave 1994 17.36 12.85| 1.15 1.55
MATLAB 543 485 240 1.12 2.26
McVM 3.60 3.60 2.40/| 1.00 1.50
newton
Octave 19.04 16.60 11.02| 1.15 1.73
MATLAB 6.23 5.64 3.13|| 1.10 1.99
McVM 6.20 4.80 3.73|| 1.30 1.66
odeEuler
Octave 32.86 28.56 18.41] 1.15 1.78
MATLAB 12.63 11.56 6.38| 1.09 1.98
McVM 7.05 6.81 452 1.03 1.56
odeMidpt
Octave 5485 46.65 25.22| 1.18 2.17
MATLAB 20.75 18.29 7.76| 1.13 2.67
McVM 11.31 11.01 6.6 1.03 1.71
odeRK4
Octave 101.80 82.74  40.45 1.23 252
MATLAB 36.09 31.25 10.68| 1.15 3.38
McVM 2110 1995 11.33/ 1.06 1.86
gaussQuad
Octave 20.12 17.97 14.22| 1.12 1.42
MATLAB 13.29 12.90 9.89| 1.03 1.34
McVM 3.77 371 290 1.02 1.30
sim_anl
Octave 23.81 2261 20.33 1.05 1.17
MATLAB 16.14 16.15 1452 1.00 1.11
McVM 4.48 4.45 3.93| 1.01 1.14

Table 6.2 — Interpretefeval overheads as compared to direct and inlined calls.
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JIT
feval direct inlined Speedup

F (D) 0

t(s) t(s) t(s) F/D F/
bisect
Octave * * * * *
MATLAB 299 263 0.28| 1.14 10.65
McVM 2.38 1.67 1.07| 141 2.22
newton
Octave * * * * *
MATLAB 352 320 0.7 110 4.98
McVM 260 1.40 0.73]| 185 3.56
odeEuler
Octave * * * * *
MATLAB 2.65 2.40 211 1.11 1.26
McVM 461 0.58 0.73| 7.97 6.29
odeMidpt
Octave * * * * *
MATLAB 321 2091 217 110 1.48
McVM 7.10 0.67 0.65|| 10.56 10.91
odeRK4
Octave * * * * *
MATLAB 4.07 331 222 123 184
McVM 12.79 0.68 0.66| 18.88 19.22
gaussQuad
Octave * * * * *
MATLAB 3.92 3.69 242 1.06 1.62
McVM 1.27 0.97 0.96| 131 1.32
sim_anl
Octave * * * * *
MATLAB 338 331 222 100 111
McVM 3.47 2.51 2.21)| 1.38 1.57

Table 6.3 — JITfeval overheads as compared to direct and inlined calls.
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6.2. Summary

1.11 - 3.38.

Thefeval overhead for the JIT-based system are proportionally eigiveh For the
MATLAB JIT replacing thefeval with a direct call results in speedups of 1.00 — 1.23,
and for the McVM JIT the results are 1.31 — 18.88. Inlining threct call results in large
speedups for the MATLAB JIT of 1.11 — 10.65 and for the McVM JhE results are 1.32
—19.22.

One might be surprised that the overheads for lb@hl calls and ordinary calls ap-
pear to be so high for MATLAB. There are two reasons for thissti-the lookup semantics
for function calls in MATLAB are quite complex, and withouptimization they require
a heavy-weight dynamic lookup based on the current dirgctbe current path, and the
type of the dominant argument. Secondly, the presentevaf can disrupt the intra- and
inter-procedural analyses needed to correctly approsiahatamic types and array shapes,
which is a key factor in generating efficient code.

Focusing on the JIT results, it appears that the McVM JIT aarniewe more benefit
than the MATLAB JIT by just replacing afeval call with a direct call, even without in-
lining. This is because McVM does on-the-fly interprocetlshepe analysis and function
specialization, which is enabled as soon asféwal is converted to a direct call. Al-
though we do not have access to the implementation of MaktsVMATLAB JIT, these
results would seem to indicate that the MATLAB JIT is not dpansimilar interprocedural
analysis and that it requires inlining to get a similar banefi

6.2 Summary

MATLAB programmers often uséeval to implement a wide variety of numeric
solvers.feval provides a mechanism to pass function names or function|éswras
parameters. This use éval is a very reasonable way to implement general-purpose
solvers, but in this chapter we showed thatal incurs a significant performance over-
head, both on interpreted systems and in existing JIT cemsil

Since we see potential speedups for all systems, for boghpirgters and JITs, there
does seem to be an important optimization opportunity fonagyically specializing
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feval calls to direct calls, and then potentially inlining thoseedt calls. In the next
two chapters, we present two techniques for runtime opétion offeval calls. In chap-

ter Chaptef]7, we present the first technique, which uses O8fRadtgy for on-the-fly
transformations ofeval calls. The second technique, presented in Chapter 8, usdts inp
arguments and values to specialize functions ¥attal calls.
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Chapter 7
OSR-Based f eval Specialization

This chapter presents the first of our two approaches to wpgahe implementa-
tion offeval calls in McJIT. The approach leverages the OSR implememtakescribed
in Chapte.4 to perform on-the-fly transformationfefial calls in the body of a long-
running loop. We begin the chapter with a description of th@lementation of the ap-
proach. At the end of the chapter, we discuss our experirhezgalts, which show that
our OSR-based approachfeval calls specialization can be used to obtain good perfor-
mance improvements.

The main contributions of this chapter are:

OSR-based specialization of eval : We developed a general technique to detect and in-
strument importanteval  sites with OSR points, and we designed an OSR-based
transformation which can be done at the LLVM IR-level, withoequiring access
to the generated assembly code. We also designed appeojiifaime tests to opti-
mize the guards required to determine if the specializelccoald be made or if the
general backup path should be taken.

Implementation in McCVM/McOSR: We implemented the proposed approach in McVM.
Our implementation is open source.

Experimental Results: We evaluated the approach on the set of benchmarks desanibed
Sectior{ 6.1L.
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7.1 feval in McVM

As in most implementations of the MATLAB language, the codmerated for an
feval call by our JIT compiler can be significantly less efficient.

Anfeval call often prevents compiler optimizations because itgifgnction cannot,
in general, be determined until the run time. In MATLAB, thdueof the input function
of anfeval call — which we shall from now cafl eval evaluated functioiffef) — can
be formed dynamically (e.g., a string formed by a concatenaitf some run-time values).
The value can also come from a data structure (e.g., an areagtouct) or as a return value
from a function call.

When McJIT encounters a MATLAB statement involving a calldeal , it generates
LLVM code to call to a dynamic dispatcher. For example, wiarttiefeval statement at
line 22 of Listing 6.1, it generates the code in Listingl 7.&t us examine this code snippet.
The compiler generates the code to save the arguments fewdke call into an array
of objects. This is shown in lines 1-5. Then, it generates#iketo the dynamic function
dispatcher, that is, the call tinterpreter :: callFunctiorin line 6.

Listing 7.1 — LLVM code generated for daval call.
%argsPtr = call 8« @"ArrayObj::.create”(i64 2)
call void @"ArrayObj::addObject”(i8 %argsPtr,

i8x %argl)
call void @"ArrayObj::addObject”(i8 %oargsPtr,
I8+ %arg2)
%retVal = call i8« @”Interpreter :: callFunction”
(i8+ %funcPtr,
i8+ %argsPtr,
i64 %nargout)

© O N o o~ W N

When the dispatcher is called at run time, it examines its dirgtiment to determine
that this is arfeval call site. It then calls the library functidieval passing it its own
second argument — the array containing the arguments téetta¢ call. Thefeval
library examines its own first argument and determines thlet fiunction to dispatch. It
then prepares the input arguments needed by this functwoalls the function. The result
of executing this function is what the dispatcher evenyuaturns in line 6.
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The foregoing procedure can be slow, and furthermore, ibitdifunction inlining and
other flow analyses. However, since the value of the fund¢hatfeval built-in evaluates
at run time cannot be determined statically in general,ith@ementation represents what
is typically done to implement thieval library function.

A key point to note is that function binding and the argumemes of the function
called byfeval often do not change through the whole loop execution, or dweaugh
the whole method execution, as is the case for the typicahplain Listing[6.1. For this
class of MATLAB programs, we can improve the runtime perfance if it is possible
to dynamically do on-the-fly code transformation and fumct$pecialization and possibly
inlining.

7.1.1 OSR Background

McVM has support of OSR (Chapter 4) which works completelyatltLlVM IR level.
The main idea is that LLVM IR instructions can be tagged asrggting, and OSR points
can be inserted on any loop that encloses the tagged insttacEach OSR point is asso-
ciated with an LLVM-IR transformer, which is applied wheret®SR point triggers. The
OSR library takes care of saving the appropriate state, estdnting the transformed code
at the appropriate location and state. In the next sectiempnovide the details of how we
leverage the OSR machinery to optimizeal

7.2 OSR-Based f eval Transformation

In Section 6.11, we discussed the cosf@fal in MATLAB programs and the chal-
lenges to an efficient implementationfefzal in a MATLAB JIT compiler. We begin this
section with a short discussion of the objectives for ouragph to optimizdeval , and
then we highlight the major steps in our approach to on-thegecialization using OSR.
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7.2.1 feval Optimization Goals and Strategy

In Listing[Z.1 we illustrated the code currently generated call tofeval . Line 6
contains the key problem, which is an indirect call to theipteter callFunction method
that is required in order to dispatch to the correct function

The aim of our approach is to replace the call to the dispateith a direct call to the
function given as the first argument to ttewal  call while maintaining the correctness of
the code. To maintain correctness, we will need some salfetyks that will backup to the
general case if the current call does not match the lastapesd version. Thus, another
key challenge is minimizing the overhead for the check.

Our solution strategy has three important steps, the firststeps are done at JIT-
compilation time (for example, when functiorewtonis first JIT-compiled), whereas the
third step happens at run time (for example, when the whdp Inside oinewtonexecutes).

Dispatcher call annotation: During JIT-compilation of a function body, all dispatcher
calls that correspond feval calls in aloop must be identified and marked. This is
discussed in detail in Sectién 7.2.2.

OSR instrumentation: If the first phase identifies sonfeval dispatcher calls, then the
closest enclosing loop of each such dispatcher call mustdtrimented to include a
conditional OSR trigger, usually based on the number of itenations. In addition,
an OSR point must be inserted, where the OSR point is asedaiath thefeval
optimizing transformation. We discuss this further in 8at7.2.3.

Triggering an OSR event at run time: At run time, if an OSR is triggered by a running
function, the code transformer attached to that OSR poilitb&i executed. In our
approach, this is where tlieval optimizing transformation is actually performed.
This transformation must rewrite the LLVM IR to replace thatatedeval call
with the appropriate direct (or inlined) call, and it must@insert appropriate guards
to ensure that the specialized call is only executed for ¢ineect specialized function
and argument types, and it must backup to the general casenitle. We give a
detailed description of the code transformer in Sedfiodr.2
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7.2.2 Dispatcher Call Site Annotation

As mentioned in the introduction to this section, we haveeada pass to the McJIT
compiler to identify all the calls to the dispatcher thatrespond to afeval call. These
call sites are annotated with the OSR ID of their closestasmegy loop. For example, for
thefeval callin Listing[7.2, the following would be generated:

%retV =call i8« @"Interpreter :: callFunction "(i8 %funcPtr,
i8+ %argsPtr, i64 %nargout), !FI 'OSR1

where!Fl and!OSR1are the metadata used to annotate the call sites with théoctile
dispatcher for arfeval call. The string!OSR1indicates that this call site will be con-
sidered for arfeval optimizing transformation if OSR is triggered in the looidified
with OSR ID 1.

We also assign a unique ID to eafdval call site. This ID is used to index a fixed
memory area for caching the types that the arguments to $paidher had just before OSR
is triggered at run time. To facilitate this processtare instruction of the following form
IS generated:

store 8 %argsPtr, i8+ addrOfCacheSlot, !Fl

which stores the pointer to the array of objects passed tdiipatcher to a fixed cache slot
associated with the currefdgval call. Notice that this instruction is also annotated with
the same metadata as the call to the dispatcher.

The metadataFl encapsulates some JIT-time information about the argwsrathe
associatedeval call. It is a 3-tuple. The first operand or field is the uniqueal§signed
to thisfeval call; the second and the third represent relevant JIT-tias¢sfabout the
feval call site. We defer the discussion on the information ctdldat the JIT-time to
Sectior 7.2.b.

The annotations attached to the call to the dispatcher arguooed by the code trans-
former during an OSR event. We discuss the transformer irrmetail in Sectioh 7.2.4.
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7.2.3 OSR Instrumentation

At JIT compilation time for a function, if a loop contains taval call, the loop must
be instrumented with a test that determines whether a loopteo has reached a given
threshold. This is the OSR condition. We experimented withrashold value set at 2.
So, at run time, after the execution of the second iteratidheloop, the OSR condition
will be satisfied. The conditional execution of the OSR p@rdachieved by generating the
following LLVM conditional instruction at end of the loop ader.

br i1l %osrCond, label%cOSR, label%LB

This instruction inspects the OSR conditigdsrCond) and branches to the basic
block named%OSR (which triggers the OSR) if the test is successful. Otherwise
branches t@LB where the body of the loop will be executed as normal.

For ourfeval optimization, we use a closest-enclosing-loop strategye place-
ment of an OSR point. The McOSR library requires that each @8R is associated with
a code transformer - it is this transformer that will exeowteen the OSR triggers. Thus,
our feval optimizing transformation logic is implemented by the cdadasformer that
we attach to the inserted OSR point. Our code transformethiesf®llowing signature:

void transformFeval (llvm :: FunctionF, osr:: OSRLabel L);

whereF is the LLVM IR of the function that has triggered an OSR evant]L is the OSR
label of the loop where an OSR has been triggered. We disousstail the logic of the
code transformer in Sectign 7.2.4.

Listing[7.2 shows a code snippet from our running examplée,jafrigure 7.1, we show
in a simplified form, the corresponding control flow graph (GHGLLVM IR. LH1 is the
loop header block and terminates with a conditional branskruction. The basic block
branches to the loop body BB or the loop exit block at.E depending on the loop exit
condition @oloopExitCong.
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Listing 7.2 —while loop extracted from (Listing 611).

v;/.f.ﬂle k < maxit
k =k + 1;
[f, dfdx] = feval(fun,x);

end
end

N o g W NP

ENTRY:

]

A 4
LH1:

br il %loopExitCond,
label %LB, label %LE

Jalse rue

LE: LB:

br label %LH1

I

Figure 7.1 — A CFG for the MATLABwhile loop in Figurd 7.P.

The CFG shown in Figuiie 4.1 is transformed into that showngufe 7.2 after insert-
ing an OSR point. As can be observed from the figure, the loagdéreblock now contains
the instruction to compute the OSR triggering conditisso$rCond) and terminates with
a conditional branch instruction as discussed earlier.

7.2.4 OSR Triggering and Runtime Transformation

At the heart of our implementation is the code transformat ik attached to an OSR
point. When an OSR is triggered at run time, the OSR runtimesypasses control to the
code transformer. This is where deval optimizing transformation is performed.

The code transformer first traverses its input function the LLVM IR of the running
function) and collects all the calls to the dispatcher thatassociated with afeval call
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ENTRY:

T
|
|
|

|

br i1 %osrCond,
label %0SR, label J%LH1

alse

A A
LHO:

tr

OSR: LH1:
: : . ...
call void @ _osrSignal(...) br i1 %loopCond,
br label %LH1 label %LB, label %LE
false rue
LE: LB:

lbr label %LHO

L

Figure 7.2 — The CFG of a loop with an OSR point.

site in the source program. The transformer can identifgaheall sites using the OSR
label attached to such instructions at their creation tilfe transformer also identifies
and removes all thetore instructions that were inserted to cache the last-knowasypr
the arguments to the dispatcher.

The transformer then processes the call instructions é@n®l For each dispatcher
call, the transformer extracts the cache slot ID of the eureall dispatcher. It then uses
the cache slot ID as an index into the cache to retrieve thatgroio the array of objects
containing the last arguments passed to the dispatcherglitsis pointer, the code trans-
former determines the function being dispatched —f#fie— at this call site. However, if
the cache slot is unset, the processing of the current cblagted and the code transformer
continues with the next call.

Having determined precisely the function passetet@l at this call site, the trans-
former begins a series of transformations at the basic ldookaining the current call. We
illustrate the actions of the code transformer in Fiquréah@8 Figuré 7 4.
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OBB:
br label NBB
OBB:
CBB: NBB:
br label NBB )
T r CBB = call f r NBB = call dispatch OSR1]
¥ br label CON"fBB
OBB: NBB: !
) ) i
r.OBB = call dispatch OSRL T NBB = call dispatch OSRL CONTBB:
br ... br ... br ...

(a) (b) ()

Figure 7.3 — Actions of the code transformer. Basic bl@&Bin (a) is split into two. The
result of the splitting process is shown in (b). In ({BBis split intoNBBandCONTBB
A new unlinked basic block name@BB s also generatedBB contains a call to the new

compiled function ().

OBB:

if (guard)

%\K&

CBB: NBB:
r CBB = call f£ r NBB = call dispatch_OSR1
br label MBB br label MBB

\/

MBB:
r = phi i8% [r_CBB, CBB], [r_MBB, MBB]
br label CONTBB

CONTBB:

br ...

Figure 7.4 — Actions of the code Transformer. Two new basickd have been inserted into
the CFG:CBB contains a call to the compiled functiori)( andMBB merges the results
from the call inCBBand the original call to the dispatcherNBB.
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Figure[7.8(a) shows a basic blod®RBB) with a call to the dispatcher, represented with
dispatcher OSR1 As shown in the figure, the call to the dispatcher is anndtatéh OSR
label OSR1

The transformer first splits the original basic blo€8Bin Figure[7.8(a)) to obtain the
basic blocks shown in Figufe 7.3(b). In Figlre] 7.3(b), thétoahe dispatcher i©OBBhas
been moved into the beginning of a new basic block naRigB.

Later, the transformer forms a string from the types deteeohifor the last arguments
passed to the dispatcher. This string forms a key into the cadhe. Recall that McJIT
caches code based on the types of the arguments passed ttiarfuat a call site. The
code transformer inspects the code cache using this keg. tfiatching compiled code is
found, the code transformer calls the compiler to compiteftinction. Let us call such
a newly compiled functiorf. Note that the code transformer may choose to infirieit
considers it as a good inlining candidate and performs éurdiptimizations on the calling
function as well.

After the compilation, the transformer creates a new bakickband creates the in-
structions to call the compiled functiorf); This new block is shown in Figufe 7.3(c) as
CBB. To terminateCBB, the code transformer must first determine the continudtiock.
Of course, after the call t¢ in CBB returns, the execution must continue with the code
after the call to the dispatcher in the original blo€8Bin Figure[7.3(a)). Thus, the code
transformer splittNBBafter the call to the dispatcher to obtain a new basic bOONTBB
This is the continuation block faZBB.

Now, we have two alternative paths to evaluating functfor{1) via a direct call in
CBBand (2) via the call to the dispatcher NBB. Because the code in the currédBB
(Figure[7.B(c)) is always executed before the call to theather in the originaDBB
(Figure[7.8(a)), it must follow that the curre®BB dominates botiCBB andNBB. Thus,
the code transformer terminat€BB with a runtimeguard We discuss thguard in the
next section. The transformer also creates a new basic IblasiedMBB. As shown in
Figure[7.4,MBB merges the results frol@BB and NBB via a phi instruction generated
by the code transformeMBB then terminates with a branch to the continuation block,
CONTBBas shown in Figure 7.4.

The code transformer essentially implements our OSR-biasedl optimization. To
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some degree, the runtime performance depends on the coghloheng theguard that
determines the execution path taken at run time. We now skstie functions of thguard

7.2.5 Runtime Guards

The code transformer generates a runtime guard (shown indfig3(c)) that will de-
termine the path taken by the program at run time. It choases &mong several guards
depending on the quality of the metadata it retrieved froencil! instruction that calls the
dispatcher. In Sectidn 7.2.2, we mentioned that we colleatiaty of JIT compilation-time
facts onfeval call sites in theFI metadata. The second component of the metadata is
an unsigned integer that encodes three bits of informatiomesponding to the following
queries.

1. Isthe first argument to deval call a read-only variable in the function? We shall
denote this query witROQ

2. Is the first argument a loop constant variable? We shalLG$gto denote this query.

3. Do all the arguments to tifeval call have a fixed runtime type? We shall denote
this with FTQ.

The first two pieces of information are computed at JIT coath time using standard
flow analyses. The third is computed using McJIT’s type iafee [CBHV10], which starts
with the actual runtime types for all arguments to the funttand infers a set possible
types for each variable at every program point. Therefotieeatall to arfeval , the type-
inference can determine the set of possible types for alhithements to théeval call.

If only one type exists in the type set for each argument, FHEQ is true.

The combination of these queries guides the choice of thedgugenerated by the
transformer. IfROQis true, we can move the part of the computation of the guard (t
determine whether or not the runtime value of this argumemntesponds to the function
that will be called aCBBshown in Figuré 7]4) to the function’s entry block.

If LCQ s true, we can compute the guard outside the loop and usessodt to de-
termine the path taken by the program ai@BB. If FTQ is true, it means that all the
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arguments are monomorphic and we can completely elimiha&eheck that determines
whether the type of any argument changes at run time. We stidbis further below.
Let

f: denote the first argument to &wval call;

P: denote the set of the remaining argumentss, ..., p, to thefeval call;
lastValue(f): denote the cached value 6f

newValue(f): denote the current value ¢f

lastType(p): denote the cached type of variable

newType(p): denote the current type of variahle

FEB: be the entry basic block of a function containingfewal call; and
LEB: be the entry basic block of a loop with &é&val call.

We enumerate in Table 7.1, the different possible guardsetban the three queries)
that the code transformer can generate together with thalgboint to compute a guard.
To simplify the table, we define

f cond = lastValue(f) == newValue(f)
a_cond = V(pe€ P),lastType(p) == newType(p)

and writef cond (FEB) if f cond should be computed at the entry basic block of the
function containing a correspondifgval call.

Let us examine Table 7.1. In the first case (i.e., table roiRDQ LCQ, andFTQ are
true, in this case, only condshould be computed and can be donéBB, that is, the
calling function’s entry basic bloclkeTQ is true. Thus, we know that the runtime type of
each argument at tHeval call site is fixed so, there is no need to incldecondin the
guardthat is evaluated @BB.

In Case 2 (i.e., table row 2), the required guard that the aaahsftormer must generate
is: guard = f cond A a cond This is because the type of each argumenf tmay
change at run time. Furthermore, if after transforming tbdeg; the value off changes
(i.e., in a subsequent call of the function with #ewxal call), the backup path must be
taken. Thef condcomponent of the guard can be evaluated at the functiony éasic
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ROQ | LCQ | FTQ || Guard Compute Point
T T T f cond |f cond(FEB)
T T F f condA | f cond(FEB);
a cond | a cond(OBB)

3| T F T * *

4| T F F * *

5 F T T f cond |f cond(LEB)

6 F T F f condA | f cond(LEB);
a cond | a cond(OBB)

7 F T f cond |f cond(OBB);

F f condA | f cond(OBB);
a cond | a cond(OBB)

Table 7.1 — Guard truth table (a “*” denotes an impossibleltes

block becaus¢ is read-only in the calling function. It must be a parametehe function.
However, because the types of the arguments may changesltbédeval call site, the
second component of the guaed,cond must be evaluated just before the use of the guard
in basic blockOBB.

Cases 3 and 4 represent impossible cases because it canhait lfes a read-only
variable in the calling function and at the same time not ke constant in that function.

In Case 5, only condshould be computed and this can be donieE.

Case 6 is similar to Case 2 except thRDQ s false, meaning thaf is not a read-
only variable but it is a loop constant. For this reason, {iase 2, the required guard is
guard=f condA a cond Unlike Case 2, however, the optimal point to comguteond
is atLEB. The second componerd (cond must still be computed &BB.

In Case 7, we know that the arguments have constant typesfatvidde call site. But
we also know thay is neither a read-only nor a loop constant. So, the requineddjis to
evaluate onlyf condat OBBbefore the use of the guard.

Case 8 requires that bothcondanda condbe computed a®BB before the use of
the guard in the block. This is becauseés neither a read-only nor a loop constant variable.
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Further, the types of the arguments may change at run timedasated by the value of
FTQin row 8 of Tabld_7.1L. Observe that this is the most expensiagdjcomputation the
code transformer can generate.

The least expensive guard is in Case 1. This is the ideal aaslee lworst case (Case
8), the code transformer inserts a relatively expensivedyatithe end ofOBB that tests
whether the current runtime value f&f (of anfeval call) corresponds to the compiled
function and that the remaining arguments have stable tylgs may have an impact on
performance, although we believe this seldom happensmiiti@ class of the applications
that we have considered.

7.2.6 Resuming Execution after an OSR is Triggered

You will note that we have only focused on defining the OSR tsoamd the transfor-
mation that occurs when an OSR triggers, but have not defioedhe newly transformed
code is executed and how the state is restored or how cordvelisl correctly resumed.
These important details are handled automatically by th©®R library [LH13].

7.3 Experimental Results

In Sectiori 6.1, we demonstrated tifiedal resulted in significant overheads, and that
replacing arfeval by a direct call resulted in substantial speedups, whickddoeifurther
increased by inlining the direct call. In this section werakae the performance improve-
ments achieved through our OSR-based specialization pgegsEnSectiofn 7J2. We exam-
ine both the benefits and limitations of the approach, andomgpare its performance with
the upper bound speedups provided under the hand-codet ciitband inlined versions.

In Table[7.2, the column labelleBaselineshows the results of executing the bench-
marks with McVM JIT in the normal mode. The columns label@8R-based Optimiza-
tion give the execution times for three variations of the OSR a@gin. OptO gives the
results when the benchmarks were run with our basic OSR-agadd optimization en-
abled. We also experimented with two further improvemenite column labelledDptl
shows the benchmarks with the OSR-baf®al optimization plus a dynamic function
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Baseline OSR-based Optimization Hand-coded
t(s) t(s) Speedup Speedup

Benchmark Baseline(F)|| Opt0 Optl Opt2|| F/Opt0 F/Optl F/OptZ| F/D F/
bisect 238 193 192 1.93 1.23 1.24 1.23| 141 2.22
newton 2.60| 223 223 1.55 1.17 1.17 168/ 185 3.56
odeEuler 461 271 282 264 1.71 1.63 1.75| 7.97 6.29
odeMidpt 7.10|| 4.22 4.18 4.15 1.68 1.70 1.71)| 10.56 10.91
odeRK4 12.79|| 735 7.46 7.36 1.74 1.72 1.74)| 18.88 19.22
gaussQuad 1.27| 1.03 1.04 1.05 1.23 1.22 1.21) 131 1.32
sim 3471 340 336 2.98 1.02 1.03 1.16| 1.38 1.57
Geometric Mean| | 137 136 147 358 416

Table 7.2 — Overall results for OSR-based optimitimzatioNoVM JIT

inlining optimization that is performed when the OSR pomngders.Opt2is a further im-
provement where we first apply the dynamic inlining, and theply a further optimization
of the symbol table environment, which is sometimes enayetthe inlining. We describe
this optimization in more detail in our discussion of thefpanance of this optimization.

From the results, we found that di@val optimization was effective. McJIT with the
feval optimization consistently outperforms the standard McMW@n our benchmark
set. The geometric mean of speedup®ptOis 1.37. The dynamic inlining optimization
enabled byOptl does not improve performance on its own, but in combinatidth the
subsequent symbol table optimization enabled@pt2, there is an improvement, with a
geometric mean speedup of 1.47.

At optimization level 2 Opt2), we recorded the highest performance improvements
with the newtonand sim benchmarks. In McVM, the interaction between the compiled
code and the interpreter is often facilitated through a sylrdok-up environment. A sym-
bol environment is a table that associates a value to a syhii®lused to bind a value to
a variable, and to look-up the value of a variable at run tivideen needed, McJIT inserts
the instructions to set up a symbol look-up environment fianation at the function’s pro-
logue. The set-up code initializes the environment for sgbent look-ups and bindings of
values to variables. This can be a major source of overhelier dynamic inlining, we
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perform an optimization that eliminates redundant setagecWe found that the interac-
tion simplification was particularly effective in two of thHeEnchmarksnewtonand sim
which contained significant redundant setup code aftaming.

Although speedups of 1.47 are good, it is also important sorere if our dynamic
optimization is approaching the upper bound speedups teaheasured by hand-coding
the direct call and hand-lining that call. The last two cohashow the speedups we had
measured for the hand-coded versions, and we see that threeggeomean speedups were
3.58 for the direct call and 4.16 for the inlined call. Thusere is still a significant gap
between what the dynamic technique achieves and the uppadbo

To see why this is the case, we examined the kinds of the rergunards and the LLVM
code generated for our benchmarks. We show the kinds for leamthmark in Table 7.3,
with column# feval (in loop)showing the number deval calls in the loops of a bench-
mark. We show the kinds of the runtime guards generated éfetral calls in a bench-
mark under columfypes of Guards

Benchmark | # feval Types of
(in loop) | Guards
bisect 1 Case P
newton 1 Case 2
odeEuler 1 Case 2
odeMidpt 2 Case 2
odeRK4 4 Case 2
gaussQuad 1 Casel
sim_anl 1 Casel

a. According to Tablé 7]1, Case 1 means that only the valueeofethis checked
at the function’s entry basic block. The types of the argusémthefeval call are

stable.
b. According to Tablé 7]1, Case 2 means that the value ofethis checked at the

function’s entry basic block; while the types of all the amgnts are checked in the
loop containing théeval call.

Table 7.3 — Types of the runtime guards used by each benchmark

128



7.4. Summary

We can see from Table_7.3 that a somewhat expensive guard —thanhehecks the
value of thefef passed in at thentry basic block and the types afl the arguments to an
feval callinaloop —is generated for eafdval call in theodebenchmarks. This is the
case because the type inference engine infers that the tytdeast one of the arguments
is variable orunknown This can be a source of runtime overhead. In addition, secthe
type-inference infers that the type of an argument to thgetaiunction of eaclieval
call in theodebenchmarks is variable, the LLVM code generated foratlebenchmarks
is less efficient. This is the main reason for the relativelydr performance recorded for
the OSR-based version running the actodé benchmarks. We continue this discussion
in Section[8.2.2, where we compare the performance resigitsigbed here with those
obtained for the benchmarks under our second mechanisfeMalr call specialization.

We conclude that converting an indirect call to a direct cah reveal good optimiza-
tion opportunities that may be exploited for a performamsprovement. Our OSR-based
feval optimizing transformation technique is effective and picad. We will continue to
improve our optimizer and we believe that our technique camiged to improve perfor-
mance in similar JIT compilers.

7.4 Summary

We proposed a general on-the-fly mechanism for specialfeva calls in hot loops
using the OSR mechanism available in McVM, an open sourasareb virtual machine
for MATLAB. We demonstrated good performance improvemestagithe approach.

In the next chapter, we present a different approach that peemeter values to spe-
cialize functions witfeval calls. We then compare the performance of this new approach
with our OSR-based approach.
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Chapter 8
JIT Value-Based Specialization

We presented in Chaptér 7, the first of our two approaches toajzéng feval
calls. In this chapter, we present the second approachhwéhitends the McJIT type-
specialization mechanism. The approach named JIT valsedmpproach specializes func-
tions withfeval calls using the runtime values of the arguments to the fanctt is based
on the observation that, for some class of MATLAB programisinetion with anfeval
call often accepts as an argument the name or the functiatidnema function evaluated by
thefeval call. Further, the call is often executed repeatedly withiong-running loop,
which, as we showed in Chapfér 6, can cause a major perfornstoveelown.

The main contributions of this chapter are:

JIT value-based specialization: We designed an extension to the McVM JIT specializa-
tion mechanism. Previously specialization was perfornaesitd only on the dynamic
typesof function arguments. In the new approach, we also speeial thevalue of
a function argument, for the case where that argument isas#te first argument to
a call tofeval inside the body of the function to be compiled.

Implementation in McCVM/McOSR: We implemented the proposed approaches in
McVM. Our implementation is open source.

Experimental results: We evaluated the JIT value-based approach. We also comered
JIT value-based approach with the OSR-based approach rdserChaptelr]7.
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JIT Value-Based Specialization

Our JIT-time code specialization fdeval replaces calls to a function that has an
feval call with a call to a special dispatch function. This disjpatenction (called the
dispatcher for short) evaluates the value of the paramiedicorresponds to def. It then
generates a new version of the function with all teeal calls replaced with direct calls
to thefef This is illustrated in Figure 8l1.

caller(...) g(func, ...) ¢ (func, ...)

g(myFunc, ...); r = fewval(func, x, ...); r = myFunc(x, ...);

(a) (b) ()

Figure 8.1 feval Runtime Code Specialization.

In Figure[8.1, functiorealler calls functiong. As shown in (b), functior has arfeval
call that evaluates one of its parameters, nanatg. Functioncaller calls g with an ar-
gumentmyFun¢ which references a function (e.g., a function handle omation name).
This is the function that thieval call in g will evaluate.

However in Figuré 8l1(c), a new version of functipmamedg’ is created and all the
feval calls that evaluattunchave been replaced with direct calls to functragFunc

In the next section, we describe in detail the implememnatifcthis approach.

8.1 JIT Code Specialization

During the parsing of the XML string for a compilation unitgj, a list of MATLAB
functions in a MATLAB mfile (Figuré 2.13)), McJIT analyzes #tle functions in the com-
pilation unit and annotates those withfawal call, whosefef, that is, the first parameter,
is a read-only parameter of the enclosing function.

Normally, after McJIT has compiled the right version of adtian at a call site, it
inserts the corresponding LLVM call instruction into therant basic block. However, to
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8.1. JIT Code Specialization

support the runtime code specialization feval , we modified McJIT so that it does not
insert the call instruction but, instead, generates a netwiation of the form

call void @'JITExt::dispatchFunction” (i8+ %baselRPtr,
i8+ %fefValue,
i8+ %inArgsPtr ,
i8+ %oretValsPtr,
i32 %csID)

that calls the dispatcher. The dispatcher, that is, funcli®Ext::dispatchFunctiopac-
cepts five arguments:

(1) the firstis the pointer to the base IR (i.e., the original \eref the IR) that corresponds
to the called function at the call site;

(2) the second is a pointer to the argument that corresponds feftfi.e., the first param-
eter) of a markedeval call in the called function;

(3) the third is a pointer to a structure containing the inputiaxgnts to the called function;
(4) the fourth is a pointer to a structure containing the ret@ines;

(5) the last argument is an integer that denotes the index ofteecdot where a pointer to
the descriptor of the AST can be located.

Each AST representing a function with &é&wval call has one or more code cache
descriptors. A code cache descriptor contains informatdaied to the code of the AST
that corresponds to the types of the arguments passed tortbioin at a call site.

A function that is called with different argument types dfetient call sites has a code
cache descriptor for each call site. A code cache desciigtofour-tuple.

descriptor = < entry_addressargument types

counter feval versions>

whereentry addresss the address of the entry to the compiled code correspgridithe
AST of the called function. We shall denote the called fumctat a call site withf. Field
argument typesdenotes the types of the arguments at the call site. Due tdéTMdadode
specialization on argument types at call sites, the setpdsyor the arguments at a call
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site is immutable. Fieldounterdenotes a compilation counter that counts the number of
versions that are generated at different consecutive éreswof the call to the dispatcher
instruction. Fieldeval versionss a map containingXST, entry addres$ pairs. The first
member of the pair is the IR corresponding to the value of Hrameter used as the first
argument to soméeval calls in f. The second member of the pair is the address of the
entry point to the compiled code g¢fthat corresponds to def.

8.1.1 Functions of the Dispatcher

At run time, the dispatcher first uses a combination of it$ fiessameter (i.e., the AST)
and its last parameter (i.e., the cache slot index) to ketrike code cache descriptor that
matches the argument types at the current call site. Thisosrsin line 1 of Algorithm 2.
Then, in line 2, the dispatcher performs a look-up usingetad parameter to determine
whether a corresponding code version had been generated.

If the look-up is successful, the dispatcher executes fia i3 of Algorithm[2) the
function at the address returned by the look-up.

Otherwise, the dispatcher compares the current value afdbeter in the code cache
descriptor with a givethreshold If the counter has exceeded the threshold, the dispatcher
executes the initial code generated for the AST at this @&l $his is shown in line 15
of Algorithm 2. If the counter is below the threshold, howewbe dispatcher clones the
original AST and replaces all the markéslral calls with direct calls to the evaluated
function given as its second parameter. After, the disgatcdtrieves the types attached to
this call site and calls the compiler to compile and genettegecorrect code matching the
argument types at this call site. These actions are perfbmmiges 3 — 11 of Algorithni 2.

After the compilation of a new version, the dispatcher itssan entry — that is, a pair
comprising of the AST corresponding to the current valueheffef and the entry point
address of the compiled code — into a map in the code cacheptes®f the base IR.
This action is performed by the call of functigmutNewVersionn line 9 of Algorithm[2.
The dispatcher does this so that if the function is calledragdh the samdef value, it can
retrieve and execute the correct code. Finally, the disieatepdates the counter associated
with the cache slot descriptor.
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10

11

12

13

14

15

16

input : baselR fef, inArgPtr, outArgPtr, cacheSlot
output: void

ci + getCodeCachelnfo  (baselR cacheSlof

entryPoint < lookupFunction (ci, fef);

if entryPoint == NULL AND ci.counter<= THRESHOLD then

newlR <+ clone (baselR;

replaceFevalCalls (newlR, fef);

llvmIR < compileFunction (newlR, ci.argTypessStr);

entryPoint < compCallWrapper (llvmIR, newlR, ci.argTypesStr);
/l insert an entry for a new version into the cache;

putNewVersion (ci, getFunction  (fef), entryPoint);

ci.counter~ ci.counter + 1;

end

if entryPoint ## NULL then

‘ call entryPoint (inArgsPtr, outArgsPtr)
else

‘ call ci.entryPointi(hArgsPtr, outArgsPtr)
end

Algorithm 2: dispatch function
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Although the base AST and new versions of the AST have the saméeer of input and
output parameters, the types of the values returned by tin@ited code that corresponds
to a givenfef may be different. This presents a problem in that the reshefcode of
the calling function was generated using the informatiotaiied from the base AST.
We resolved this problem by generating a wrapper (line 7 gfofithm[2) that converts
from the types returned by a new version to the types usedriargéng the code for the
original version. Because of this problem, we always callabée that matches daf via
a wrappek A wrapper is a short function. It is composed of a call ingdirc and the
instructions that convert the return values to their exgetypes.

A code cache look-up miss causes a compilation of a new veikibe value of the
counter in the code cache descriptor has not exceeded thehtid. After the counter
has exceeded the given threshold, the dispatcher stopsiloampew versions. Thus, for
a newfef value, the dispatcher then always executes the origina gedierated for the
base AST of the called function. This scheme can preventssik@compilation actions in
cases where too many different functions are being callededer, this rarely happens in
practice. So, we expect only a reasonable number of newovesrsb be generated.

Again, we stress that this approach only works in cases wheffef of anfeval call
in the called function is a read-only function parametelisTovers most of the programs
under study. In Section 8.2.2, we compare the performanteifpproach with that of
our OSR-based approach that we described in Chiapter 7.

8.1.2 General Dispatcher

We can extend Algorithri] 2 to cover more cases of JIT valuedbapecialization. Al-
gorithm[3 shows a more general dispatcher. Here, we havaceglthe input parameter
namedef in Algorithm[2 with V. The general dispatcher specializes the called functien us
ing the runtime values df". We have also replaced the calls to functieplaceFevalCalls
andgetFunctionin Algorithm[2 with calls to functiortransformIR(line 5) andmakeKey
(line 9) in Algorithm[3 respectively.

1. Instead of using a wrapper, our future implementatiorlsuse a specialized compiler that directly
performs the type conversion in the generated specialigesion.

136



8.1. JIT Code Specialization

10

11

12

13

14

15

16

input : baselRV, inArgPtr, outArgPtr, cacheSlot
output: void

ci + getCodeCachelnfo  (baselR cacheSlof

entryPoint < lookupFunction (ci, V);

if entryPoint == NULL AND ci.counter<= THRESHOLD then

newlR <+ clone (baselR;

transformlIR  (newlR, V);

llvmIR < compileFunction (newlR, ci.argTypessStr);

entryPoint < compCallWrapper (llvmIR, newlR, ci.argTypesStr);
/l insert an entry for a new version into the cache;

putNewVersion (ci, makeKey (V), entryPoint);

ci.counter~ ci.counter + 1;

end

if entryPoint ## NULL then

‘ call entryPoint (inArgsPtr, outArgsPtr)
else

‘ call ci.entryPointi(hArgsPtr, outArgsPtr)
end

Algorithm 3: A more general dispatch function
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As an example of an application of the general dispatchesider the MATLABeval
(many dynamic languages have a similar feature as well). MAELAB eval built-in
evaluates MATLAB code given as its input string expressloke thefeval specializa-
tion, in some cases, we can also specialize a function witvah call whose input string
is a parameter of the function by developing a suitéiRlegansformeifor the specialization.

Another example is the specialization of a function with sapaeter that is an array.
We can specialize the function using the properties of th@yasuch as array bounds, to
generate more efficient code for loops that operate on sudrray in the body of the
function.

8.2 Experimental Results

We have described the implementation of our JIT value-bapedialization approach.
We shall now evaluate its performance over the existing Medth no feval call spe-
cialization. Later, we shall compare the performance ofiffievalue-based specialization
with the OSR-based specialization approach.

8.2.1 JIT value-based-specialization approach

The OSR-based approach (Section| 7.2) is general-purpodegaanoperate on any
feval within aloop. However, our results show that there is stijap between the perfor-
mance of the OSR-approach and the upper bound. The valuespson (Sectior 8]1)
approach applies to a common case whereféfieof the feval call is a read-only pa-
rameter of the enclosing function. In these cases the \seeialization can generate a
completely specialized version of the function, withouw tieed for run-time guards, and
in which the JIT-time type and shape analysis can operate amgurately.

In Table[8.1, we show the results of the value-based speaialn in a context where
we can compare it to both the hand-coded, and OSR-basedsteBaé column labelled
VB-specialization gives the time and the speedup relative to the baseline. \i¢ethat
this gives excellent results, with speedups approachie@pamd-coded upper bound for all
the benchmarks. The value-based results gave a geometiitspeedup of 3.22, which is
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Benchmark Baseline | OSR-based (OPTO0)| VB-Specialization | Hand-coded (D)

t(s) | t(s) speedup t(s) speedup t(s) speedup
bisect 2.38| 1.93 1.23| 1.66 1.43| 1.68 1.42
newton 2.60| 2.23 1.16| 1.61 1.61| 1.40 1.85
odeEuler 461 2.70 1.71| 0.67 6.86| 0.58 7.97
odeMidpt 7.10| 4.22 1.68| 0.83 8.53| 0.67 10.56
odeRK4 12.79| 7.35 1.74| 0.89 14.30| 0.68 18.88
gaussQuad 1.27 | 1.03 1.23| 0.90 1.41| 0.97 1.31
sim 3.47 | 3.40 1.02| 2.60 1.33]| 2.51 1.38
Geometric Mean| | 1.37 3.22 3.58

Table 8.1 — Comparing Value-based specialization to OSRelas@ hand-coded

substantially better than the 1.37 for the OSR-based aplpy@ad almost as good as the
upper bound of 3.58.

Under the JIT value-based specialization approach, theajzed versions of the func-
tions with feval calls may no longer contaifeval calls. Thus, allowing McJIT to
generate much more efficient code. ToaeRK4benchmark has foueval calls within
a long-running loop. These calls are replaced with direlis ¢ga the specialized version
generated at run time. Because feeal target functionfef) is now known, the type in-
ference engine can analyze the function more preciselyiVaddT can then generate more
efficient code for both the target function and the callingdtion.

8.2.2 A comparison of the OSR-based and JIT value-based-
specialization approaches

To understand in more detail why the value-based approaaVides better perfor-
mance, we need to examine the quality of the LLVM code geedrdr each benchmark,
and the sources of overheads under the two approaches.

Under the OSR-based approach, McJIT generates less effio@at This is so because
McJIT generates a call to the interpreter forfamal call afterboxingthe arguments to
thefeval call to make them more generic. In addition, because thed&linction fef)
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at the call site is unknown during the compilation time, Wy@etinference engine is unable
to infer precise types for the values returned byfthal call, thus forcing the compiler

to generate more generic instructions that are suitabledndling different types. This is

a major source of inefficiency in the OSR-based approach.

Runtime guard computation can be expensive. The OSR-basesbapmenerates run-
time guards, which, as discussed in Sediion ¥.2.5, depemdhether or not the arguments
to anfeval call have a fixed type. As mentioned in Section 7.3, for thedgbdebench-
marks, the type inference engine infers that the types tthafieval calls are variable,
forcing the code transformer to generate an expensive dgaaghchfeval call special-
ization.

We examineddeRK4 The code snippet for the only loop of the benchmark is shown
in Listing[8.1.

Listing 8.1 — TheodeRK4benchmark (from [[Rec00a, Rec00b]).
1 for j=2:n
2 ki1 = feval(diffeq, t(j—1), y(j—1) )i
s k2 = feval(diffeq, t(j—1)+h2, y(j—1)+h2kl );
4+ k3 = feval(diffeq, t(j—1)+h2, y(j—1)+h2k2 );
5
6
7

k4 = feval(diffeq, t(j—1)+h, y(j—1)+hk3 );
y(j) =y(j—1) + h6:(k1+k4) + h3 (k2+k3);
end

In the firstfeval call (line 2), the type inference engine infers thgt—1) is a scalar
floating point value. It, however, infers thg{j —1) can either be a scalar floating point
value or a scalar complex value. In all the remaining tHesl calls (lines 3 — 5), the
type inference engine infers that the second parameter ety point value, but infers
unknownfor the third parameter.

Thus, in specializing the fodeval calls inodeRK4 the code transformer inserts an
expensive guard for each call specialization. The guardergéed correspond to Row 2
of Table[7.1, that isf condis evaluated at the function’s entry basic block anadondis
evaluated in the loop.

The JIT value-based approach is less affected by the farggssues. If all théeval
calls in a function have the sanfef and thefef is a read-only parameter of the function,
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then the specialized code generated to matckethet run time will not contain anfeval

call implementation. Eacfeval call in the AST of the function would have been replaced
with a direct call to thdef. This allows the type inference engine to analyze the célied-
tion, which, in turn, allows McJIT to further specialize tball site and generate efficient
code. Thdeval calls in all the benchmarks have théfs passed in as a parameter, thus
contributing to the generation of the more efficient codelerspecialized versions.

It is, however, true that the JIT value-based approach snsame runtime overheads,
including that of the code cache look-up. But this is smalégithe expected gains. Further,
unlike the OSR-based approach that is limited to speciazaif feval calls within a
long-running loop, the JIT value-based approach can sipgemfunction with arfeval
call that occurs anywhere within the body of the function.

We conclude that although the JIT value-based approackdiplewverful than the OSR-
based approach, it is more effective on our benchmark setJThapproach only works
where thefef is passed as a read-only parameter to a function. It does oréitifvthe fef
is a local variable in the function with tHeval call. The OSR-based approach works
in all cases but incurs much larger runtime overhead. It ssiile to combine the two
approaches in a JIT compiler by first analyzing a functiomaitfeval call to determine
whether a call of the function can benefit from the JIT valasdal specialization approach.
With speedups of up to 14 times faster, it would seem that seadimiques are well worth
incorporating into JIT compilers for MATLAB and other dynantanguages which have
compute-intensive solvers which are abstracted over thmgpatation functionfef).

8.3 Summary

We introduced an effective JIT value-based specializatgmmnique for optimizing
feval calls, whose first argument is a function parameter. This iglgrnative approach
to the OSR-based on-the-fly mechanism for specialifeval calls in hot loops dis-
cussed in Chaptér 7. We showed how the JIT value-bésead  specialization can be
extended to handle more cases of JIT value-based speti@iza a MATLAB JIT com-
piler. The approach can also be used for JIT value-basedasipation in other similar
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dynamic languages as well. Indeed, the OSR-based approadte camilarly extended.

We collected a set of seven typical benchmarks thatesssd , and demonstrated that
our specialization approaches provide significant speedupr the baséeval imple-
mentation for this benchmark set. In some cases the perfmenig near to the optimal
performance of a hand-inlined function, but in other casgaparemains. We would like to
continue to develop new optimizations to further close tagt, and to apply the same sort
of transformations to other dynamic features in MATLAB.

A somewhat surprising discovery in this work was the commearplay between the
JIT-time interprocedural type analysis and the on-therfipgformations. The JIT value-
based specialization can repladesal calls with direct calls in a function body, before
doing the type analysis of that function body, thus leadonmtich better specialized code
(because the interprocedural analysis can handle thet dals much more precisely). On
the other hand, this specialization can only happen at thetitan level, and only when the
feval target function corresponds to a read-only parameter. TBR-Based method is
more general, and can be applied at the level of loops, btgrsufom less precise type
information. It would be interesting to look at future wotkat combine the strengths of
both approaches.
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Chapter 9
Related Work

The work presented thus far in this thesis builds upon thength of other work in
the literature. Therefore, in this chapter, we present thekwipon which this thesis has
been developed. First, we discuss the work that are relatedrtarray copy optimization
approach. Second, we describe the work that are relatedrt@8R approach and show
how our system is different from the past work on OSR. Thirddigeuss the work related
to our OSR-based dynamic inlining approach. Fourth, we vetie past work related to
ourfeval call specialization approach. We conclude the chapteraw#view of the work
related to our JIT value-based code specialization apprimaidunctions withfeval calls.

Before we present the related work, it is important to note timike dynamic opti-
mization systems such as Dynarho [BDBO0O] that work on the natsteuction stream, our
transformations and optimizations are performed only atititermediate-representation
level.

9.1 Copy Optimization

Redundant copy elimination is a hard problem and implemiemsbf languages such
as Python|[pyt12] are able to avoid copy elimination optetians by providing multiple
data structures: some with copy semantics and others wiherece semantics. Program-
mers decide when to use mutable data structures. Howetiereef implementations of
languages like the MATLAB programming language that usey@gmantics require copy
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elimination optimization. The problem is similar to the agggate update problem in func-
tional languages [HB85, GH89, Ode91, Sas94, WCO01]. To modifgggregate in a strict
functional language, a copy of the aggregate must be made.igim contrast with the

imperative programming languages where an aggregate manpigied multiple times.

APL [Ilve62] is one of the oldest array-based languages. 8vejdWei85] describes a
range of optimizations for APL compiler, including a copytiagization that finds uses of
a copy of a variable and replaces the copy with the originahisée wherever possible. We
implemented this optimization as part of our QuickCheck ph&ge found the optimiza-
tion effective at enabling the elimination of redundantygpatements by the dead-code
optimizer. However, this optimization is unable to elintmeaedundant copies of arguments
and return values. Hudak and Bloss [HB85] use an approach loasahstract interpreta-
tion and conventional flow analysis to detect cases wheregggregate may be modified
in place. Their method combines static analysis and dyn#stmiques. It involves a re-
arrangement of the execution order or an optimized versiageference counting, where
the static analysis fails. Our approach is based on flow aizabut we do not change the
execution order of a program.

The interprocedural aliasing and side-effect problem [8#]ds related to the copy
elimination problem. By using call by reference semantidsemvan argument is passed
to a function during a call, the parameter becomes an aliathéargument in the caller
and if the argument contains an array reference, the refecearray becomes a shared
array; any updates via the parameter in the callee updatesatime array referenced by
the corresponding argument in the caller. Without perfagma separate and expensive
flow analysis, our approach easily detects aliasing andesfdets in functions. Wand and
Clinger present [WCOQ01] interprocedural flow analyses for alig&nd liveness based on
set constraints. They present two operational semanliesfitst one permits destructive
updates of arrays while the other does not. They also defirmaformation from a strict
functional language to a language that allows destrucpeates. Like Wand and Clinger,
our approach combines liveness analysis with flow analysidike Wand and Clinger,
however, our analyses are intraprocedural and have bedanmpted in a JIT compiler
for an imperative language.
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The work of Goyal and Paige [GP98] on copy optimization fofTEESDSD86] is par-
ticularly interesting. Their approach combines a RC scheiitie static analysis. A com-
bination of must-alias and live-variable analyses is usadéntify dead variables and the
program points where a statement that redefines a dead leaciab be inserted to facil-
itate destructive updates. Like our approach, this tecleiq capable of eliminating the
redundant copying of a shared location that can occur damgpdate of the location;
however, it is different from our approach. In particuldrgenerates dynamic checks to
detect when to create copies. As mentioned in Se€tidn 3r7amproach rarely generates
dynamic checks.

9.2 On-Stack Replacement

Holzle et al. [HCU92] used an OSR technique to dynamically pigsdze running
optimized code to debug the executing program. OSR tecbhaitpave been in used in
several implementations of Java programming languagdydimg Jikes research VM
[FQO3/AABT05] and HotSpot [PVC01] to support adaptive recompilatioruoiing pro-
grams. A more general-purpose approach to OSR for the Jikks/as suggested by So-
man and Krintz[[SK06] which decouples OSR from the programecdur approach is
more similar to the original Jikes approach in that we alspl@ment OSR points via ex-
plicit instrumentation and OSR points in the code. Howewar,have designed our OSR
points and OSR triggering mechanism to fit naturally into 8®A-form LLVM IR and
tool set. Moreover, the LLVM IR is entirely different from \la byte-code and presents
new challenges to OSR implementation at the IR level (SeEE8). Our approach is also
general-purpose in the sense that the OSR can potentigiiyetrany optimization or de-
optimization that can be expressed as an LLVM transform.

Recently, Sisskraut et al. [SKW10] developed a tool in LLVM for making a transition
from a slow version of a running function to a fast versiorkd_8isskraut et al., our system
is based on LLVM. However, there are significant differencethe approaches. While
their system creates two versions of the same functiorcatbti and transitions from one
version to another at run time, our proposed solution insémts and recompiles code
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dynamically at run time. This is more suitable for an adap@iT. Secondly, the approach
used by 8sskraut et al. stores the values of local variables in aalheallocated area that

is always accessible when an old stack frame is destroyed ard stack frame is created
for the executing function. This requires a special memaapagement facility beyond that
provided by LLVM. In contrast to their approach, our apptodoes not require a special
allocation because the stack frame is not destroyed unt @&hsition is completed. The

recursive call of the executing function essentially egtethe old stack frame. We only
have to copy the old addresses and scalar values from thdaakl sfame onto the new

stack frame. Finally, another notable difference betwegnapproach and that taken by
Susskraut et al. is that their approach requires instrumerlie caller to support OSR in a
called function. This may result in high instrumentatioredwead. In our approach, we do
not instrument a caller to support OSR in a callee.

OSR has been implemented in several virtual machines f@Staipt. Like the Jikes
virtual machine, V8 VM|[[V8V13] and JavaScriptCore [Jav13bpal transitions to a more
optimized version of a running function and de-optimizatio the original version. In
our approach, we allow transitions to a more optimized wersind de-optimization to the
last version of the less optimized code. In contrast to tlsyséems, our OSR technique
supports a transition from optimize code to more optimizediec

9.3 Selective Dynamic Inlining

Inlining is an important compiler optimization. It has begsed successfully in many
production compilers, especially compilers for objeaented programming languages.
Several techniques for effective inlining were introdugethe several implementations of
SELF [CU91| HU94]. SELF-93 [HU94] uses heuristics to detemnihe root method for
recompilation by traversing the call stack. It then in-8rtee traversed call stack into the
root method. The HotSpot Server VM [PVCO01] uses a similaninly strategy.

Online profile-directed inlining has been explored in manys8/[CLS00, AFG 00,
AHRO02,SYNO2,ATBC 03/HGO03]. The Jikes research VM [AAB5S] considers the effect
of inlining in its cost-benefit model for recompilation byisig the expected benefit of
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recompiling a method with a frequently executed call sitegé&huma et al. report that
for inlining decisions for non-tiny methods, heuristicsed solely on online profile data
outperforms those based on offline, static data [SYNO2].eezod and Grove [HGO03]
suggest using a combination of profiling data with contextsg@ity to guide inlining
decisions. They recorded a good reduction in compilatime tand code space.

In our approach, like the HotSpot server compiler [PVCO1]use an iteration counter
to detect long-running loops and consider calls to smalttions occurring in those loops
as good inlining candidates. Further, calls to functionthvai symbol environment set-
up code are also considered for inlining, provided that @léng function has a symbol
environment associated with it.

Online profile-directed inlining in a MATLAB compiler has hbeen reported in the
literature. We expect that by using online profiling infotioa to identify hot call sites and
guide inlining decisions, inlining of the most critical taites will boost performance.

9.4 (OSR-Based f eval Specialization

Historically, function dispatch in dynamic languages wagplemented with a dis-
patch look-up table. This was found to be slow. More efficegomproaches have emerged;
they often employ a variety of caching techniques to speethbie look up. Smalltalk-
80 [GR85, Kra83] uses a global cache to improve look up perdoica.

Our OSR-based approach is more related to the inline cacid&84b] approach
used in another Smalltalk implementation. Interestintg, Smalltalk implementation was
based on several studies of Smalltalk programs that revdhbt 95% of the time, the
type of a Smalltalk message receiver is constant [DS84b7/\BR&87]. Our approaches to
feval optimization are also based on the observationfihatl calls in most MATLAB
loops have unchanging first argument.

The inline caching technique used in the Smalltalk compiteolves caching the ad-
dress of a looked-up method at the call site by modifying thamiled target code on-the-
fly — by overwriting the call instruction. This allows the rhetd to be called directly in
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a subsequent execution, avoiding the need for a look upsdtialolves generating addi-
tional code (often called prologue) in the method that tésisthe receiver type is correct
before executing the body of the method. However, if thedess not succeed, it calls the
look-up code.

Holzle et al. extended the inline caching technique to hapdlgmorphic call sites
by including more than one cached look-up result per cadl ditis technique is known
as polymorphic inline caching (PI1C) [HCU91]. The PIC approaabhes all the receiver
types at a call site in atubthat is generated on-the-fly and rebinds the call to the stub
routine.

In contrast to these approaches, our implementation isclameletely at the LLVM-IR
level, and not at target code level. Without on-stack reggteent support [HCU92, PVCO1,
FQO3| AAB05/SK06, [LH13,Lam12], it is hard to cache previous functmok-up result
“inline” (i.e., at the call site). We also do not need addiabcode in the called function. We
insert runtime guards so that execution can continue wétotiginal call to the dispatcher
if the guard fails. Also our backup path obviates the needtie look-up results in a stub
as in the PIC case used in the implementations of SELF [CU994{U

Although multi-paradigm programming languages such a$d?yt JavaScript, and
functional languages, including Lisp, Haskell, Schemepsuphigher-order functions, the
function arguments are directly evaluated at run time atehdead to runtime code gen-
eration that is typically supported by polymorphic typeecirdnce, and sometimes, binding
time analysis/[NN91]. The MATLAHeval is an overloaded built-in that accepts a func-
tion name as a string or function handle and indirectly eai@s, at run time, the function
argument. Our approaches are supported by a type-infeasadygsis, although it is explicit
that thefeval Dbuilt-in evaluates functions only. Our approaches are diatamproving
JIT compiled code, and facilitating efficient compilatiohtbe MATLAB feval , which
can be extended to handle similar features in other dynamguages, where it would have
otherwise appeared impossible.

To the best of our knowledge, we are not aware of any work ommigdtion technique
for feval ina JIT compiler for MATLAB.
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9.5 JIT Value-Based Specialization

Ina SELF [Cha92] compiler, Chambers and Ungar [CU89] custothzenethod called
at a call site to a specifieceivertype. SELF is a pure object-oriented programming lan-
guage. Like Chambers and Ungar, Chevalier-Boisvert et alopuze a called function at
a call site in the McVM JIT compiler [CBHV10]. They, however,deal their customiza-
tion on the set of inferred types fatl the arguments to the called function at the call site.
Our JIT value-based specialization approacfet@l call optimization in the McVM JIT
compiler extends this type specialization further with atomization based on the runtime
value of an argument that corresponds to a target functi@mné&val call in the called
function.

Systems such asc [PEK97], Tempo[CHM 98], Dyc [GMP*0Q] use annotations to
express code on which dynamic compilation should be peddrriviuth et al.[[MWDOO]
use profiling and runtime guards to determine when speelcode should be used. In
our case, we neither use user-level annotations to markregiten nor profile the runtime
values of variables that can reference a function that isgeetaf anfeval call. Rather,
we replace a call to the version of the called function thatlisady specialized to a fixed
set of argument typeshe initial versior) with a call to a generic dispatch function. At run
time, we generate a specialized version of the called fanaising the value passed in to
the parameter that is a target of fmval call within the function. We use a small look-
up table to cache or select the correct version to dispatchnatime. If the value varies
frequently, we stop generating new versions and insteatestacuting the initial version.

The use of templates to reduce runtime code generation exeras been thoroughly
investigated [CN96, CHM98,APC 96, CEA"95]. Templates are sequence of instructions
with holesin place of some values [LL96]. We explored the use of tenegldabd reduce
runtime code generation overhead at the LLVM IR level.

If, instead of using the AST, we can generate an LLVM-codepiate for a function
with anfeval call whose target function is a parameter, we can signifigaatuce the
cost of generating the LLVM code for a specialized versiomatiime. We can achieve this
by simply copying the template and replacing twein the copy with the known value of
the parameter corresponding to the target function ofdlial call.
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For our implementation, however, we found that generatigffcient template ahead
of time is often not possible. This is because the name, aréfibre, the precise types of
the return values of a function that is a target offeval call are generally unknown at
that time. This causes the compiler to generate generictbadean handle different types
for the operations that depend on those values after theltmlcode generated at run time
from the AST benefits greatly from the type information proeld by the type-inference
engine after it has analyzed the now known target dieaal call and the caller as well.

It is possible, using partial evaluation [JG$93] techngyaenilar to that used in the
FABIUS compiler [LL9€], to generate ahead of time specialized ie@1s of a function
with anfeval call whose target function is a parameter, provided thateswvalues of
thefeval target function can be determined ahead of time. We do nothise@pproach
because it can lead to a large increase in compilation tirdetsncreation of code that is
never executed.
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Chapter 10
Conclusions and Future Work

We discussed several compilation and performance chateioga MATLAB JIT com-
piler, and presented a collection of novel techniques thdtess the challenges. Our tech-
niques use runtime information about program behavioumufpsrt on-the-fly program
transformations and optimizations in a JIT compiler for MA&TLAB language. Some of
the techniques are supported by our new JIT-time static flealyaes.

Throughout the thesis, we demonstrated through expergribat measured different
aspects of our approaches. We found that our techniqueseaasell to obtain good perfor-
mance in a JIT compiler for the MATLAB language and other amilynamic languages.

We discussed an approach to using JIT-time static analgsesable an efficient im-
plementation of array copy semantics in a MATLAB JIT compil/e developed four
JIT-time static analyses to support a staged approach toampnization. The first stage
is supported by two fast and effective analyses, and thensestage is supported Nec-
essary CopwndCopy Placemerdanalyses. We found that this approach generates as many
copies as the reference-counting approach and with namertheck.

As we have explained, on-the-fly transformations and ogtmions often require on-
stack replacement, but implementing on-stack replacemwemtbe very challenging. We
proposed, designed and developed a modular approach terirapting on-stack replace-
ment that can easily be added to a JIT compiler developed WM, lwithout the need to
re-build the underlying LLVM libraries. This was an impantastep towards the realization
of the on-the-fly techniques presented in this thesis. Wavstlpusing a case study, how
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our OSR approach can be used to support selective dynarmalof hot call sites in
long-running loops. We also presented how to leverage the i@plementation to support
other on-the-fly optimizations such as theval call specialization

We demonstrated that dynamic function evaluation via MABfa&val can cause sig-
nificant overheads in interpreters and JIT compilers. Weeted two new techniques for
optimizing suchfeval calls. We explained the first mechanism, which uses OSR to spe
cializefeval calls in long-running loops, and gave evidence to show thattechnique
can lead to significant performance gains. We also descrpeddiscussed the second
mechanism, which is less general but more effective thafirdteapproach. It specializes
a function with anfeval call whose target function is a parameter of the function. It
uses the argument passed into the parameter for the spatiaii. We found this particular
technique to be highly effective on our benchmark set.

We compared the OSR-based approach with JIT value-basedaappand found that
the latter is much more effective than the former. The JITi@ddased approach can trans-
form anfeval call located anywhere within a function provided that thrgéafunction of
thefeval callis aread-only parameter of the enclosing functionehdfits much from the
more precise runtime-type information that McJIT uses toegate more efficient code at
run time. The OSR-based approach, however, can transfofavah call located within
a loop body whether or not the target function is a read-oahameter of the function, but
suffers from less precise type information.

The ideas presented in this thesis have been influencedyngimhany research work
in object-oriented languages — both static and dynamic. 8Veewed the literature and
presented the main work related to ours. For MATLAB, we areavadre of any work on
on-the-fly transformations and optimizations for a MATLAB ompiler. Thus, our re-
search work is the first in this area, and we hope that our wdtknspire other researchers
as well.

We implemented OSR for the LLVM JIT compiler toolkit. Our gopptimization and
feval call specialization techniques have been implemented i M®©ur implementa-
tion is available as open source software.
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10.1 Future Work

Here, we highlight the direction for the future work of thesearch presented in this
thesis.

Copy Optimization: The copy optimization [LH11] works on shared arrays. If an up
date is made to a shared array, the whole array is copied.wdriss well for one-
dimensional arrays. However, if the array is multi-dimensil, the whole array will
still be copied even when the update affects a location inobtige dimensions only.
It would be nice to extend our copy optimization approacHhlmasharing of arrays
based on array dimensions. This will reduce the amount afcatied when a shared
array is updated.

On-stack replacement: Our current approach to on-stack replacement assumedthat t
application is single-threaded. This is sufficient for olir dompiler for the MAT-
LAB programming language and other similar languages. Tmbee useful to the
larger programming language and virtual machine commasjitiowever, it would
be nice to extend our approach with the capability of hamgdhmlti-threaded appli-
cations.

f eval call specialization: We discussed the strengths and limitations of both the OSR-
based and JIT value-based approaches to speciafeeady calls in long-running
loops. We believe that these two approaches can be combidezktended to support
more runtime value-based specializations in JIT compitardynamic languages, in
particular, for the MATLAB language.

As we mentioned in Chaptefl 7, one interesting area of furtpgmization is MAT-
LAB eval . MATLAB eval is more generalthan MATLABeval ;itcan evaluate
MATLAB code in a string expression. An analysis of this sirican reveal certain
patterns of usage common to MATLAB programs, which can glewpportunities
for specialization in some cases. Indeed, for a MATLAB JIThpder, more inter-
esting value-based specializations can be performed i®dpgand array properties,
such as loop and array bounds.
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McJIT’s type inference enginé [CBHVI10] has some limitatio®e of which is its
inability to propagate array shape information. By enhagtie type inference engine with
the capability to infer array shape information, more Id@sed on-the-fly transformations
and optimizations that use array shape information can belalged.
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Appendix A
Relevant McVM compilation flags

Here we present McVM flags related to the work presented stttasis.

Jmcvm -jit_enable true -jit_osr_enable true
-jit_osr_strategy outer

-jit _enable: Enables JIT compilation in McVM. The default execution emais the in-
terpreter. If the flag is set twue, JIT compilation is used, otherwise, all code will be
interpreted.

-jit _osr_enable: Enables OSR if JIT compilation is enabled. It is setaizeby default.

-jit _osr_strategy: If OSR is enabled, it uses the strategy specified. Anothéal egition
is inner, which is used to specify that McJIT should insert OSR painthie inner-
most loop of a loop nest. If the specified strategypuger, McJIT will insert OSR
points in the appropriate outer-most loops.

-jit _osr_inline: To force dynamic inlining, if OSR is enabled.
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Relevant McVM compilation flags
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Appendix B
Copy optimization aspect

In this section, we list thaspectused in estimating the number of copies a MATLAB
program would perform under the reference-counting amtrdar implementing array
copy semantics in MATLAB system.
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49

Copy optimization aspect

aspect refcounter

% This aspect counts the number of copies generated

% in a matlab program, using the matlab copy semantics:
% 'copy on write '.

% Only copies generated in program functions are

% considered. Built-in functions may generate further

% copies. However, such copies are not counted since
% aspectMatlab compiler (amc) can not profile

% built—in functions .

%

% Limitations: For accurate result only one uselefined

% function may be used as a rhs of an

% assignment statement. Complicated expressions
% involving multiple user-defined functions

% should be split into 'simple forms'.

% However, this does not affect builins and

% matlab-defined m-files.

%

% Date: February 2010.

% Author: Nurudeen Lameed
% Email: nlamee@cs.mcgill.ca

properties

verbose = 0; % # display progress

matlab builtin _home ='/packages/matlab’ ; % for builtin
defs count =0; % # of definitions

writes_count_ = 0; % # of array writes

num_copies =0; % # of copies generated

m ID gen =0; % # uniqgue memory id generator
top_ = 0; % top_ of stack pointer

mem_ = struct(); % mem ory

stack = {}; % array of stack frames

% for the current callee

last assign line = —1;

multi_assign on_ =0;

arg names ={}; % temp for arg names
param write off =0; % flag for setting params
end

methods

function push(this, s)
this .top = this.top + 1;
this .stack {this.top } =s;
end

function s = pop(this)
s = this .stack {this.top };
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

this .top = this.top — 1;
end

function retVal = isDefFromFunc(this line)

retVal = 0;

if (isfield (this .stack {this.top }, 'last_call_addr_'
lastCallAddr = getfield ( this .stacK this.top }, ...

'last_call_addr_' );
if (lastCallAddr ==line)
retvVal = 1;
end
end
end

function incrDefsCount( this)

this .defs count = this.defs count + 1,

end

function genMem (this, name)

%generate a new menory space for this name

this.m ID gen =thism ID gen +1;
mID =['m' , num2str(this.m ID _gen )];
this .mem = setfield( this .mem, miD, 1);

% update the current stackframe

this .stack {this .top_} = setfield (this .stack{this.top }, name, miD);

end

function incrRefCount( this, mID)
rc = getfield (this .mem, miD);

this .mem = setfield( this .mem, miD, rc + 1);

end

function decrRefCount(this, miID)
rc = getfield (this .mem, mID);
if ((rc —1)==0) % garbage ?

this .mem_= rmfield(this.mem , mID);

else

this .mem = setfield( this .mem, mID, rc — 1);

end
end

function incrCpCount(this, loc, namdine)

% increment the number of copies

% find the mem ory referenced by this symbol
mID = getfield ( this . stack{ this .top_}, name);

%disp (['memory ="', mID, ' symbol =
%disp(this .mem);

, hame]);
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Copy optimization aspect

102 %disp(this . stack{ this .top_});

103 % get the reference count for the object referenced
104 rc = getfield ( this .mem, miD);

105

w6 if (rc > 1) %perform copy

107 if (this .verbose)

108 disp(['ARRAY COPY:: (name, line) : (' ,hame,," ..
109 num2str(line), V' 1)

110 end

111 this .num copies = this.num copies +1;

112 this .genMem (name);

113

114 % update ref count

115 this .mem = setfield( this .mem, mID, rc — 1);
116 end

117 this .incrWritesCount ();

1s end

119

120 function incrWritesCount ( this)

121 this .writes count = this .writes count + 1;
122 end

123

124 function init ( this)

125 this .verbose = 1;

126 this .matlab builtin_home ='/packages/matlab’
127 this .defs count =0;

128 this .writes count = 0;

129 this .num copies =0;

130 this.m ID_gen =0;

131 this.top = 0;

132 this .mem = struct();

133 this .stack = {};

134

135 % for the current callee

136 this .last assign line . = —1;

137 this .multi_assign on =0;

138 this .arg names ={};

139 this .param write off =0;

140 end

141

142 function  printStatistics (this, name)

143 disp(['Result for ' , hame]);

144 disp(’ ' ;

145 disp ([ 'Array-definition count: ' , num2str(this.defs count )]);

146 disp(['Array-write count:' , hum2str(this.writes_count )]);

147 disp(['Total number of copies generated: ' , hum2str(this.num copies )]);
148

149 % if (this.verbose)

150 % disp (‘Mem ory dump);
151 % disp(this .mem);
152 % end
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153 end

154

1s5 function insertDef (this, loc, lhs, rhs)

156 tmp = [];

157

158 % is it a redefinition ?

150 if (isfield (this .stack {this.top }, Ihs))

160 tmp = getfield ( this .stack{this.top }, lhs);
161 end

162

163 Ylocate the rhs from the current stack

164 if (isfield (this .stack {this.top }, rhs)) %found
165

166 % get the memory for the rhs

167 mID = getfield (this .stack{this .top_}, rhs);
168

169 % test for a redundant assignment

170 if (—isequal(mID, tmp))

171

172 this .stack {this.top _} = setfield (this .stack{this.top },lhs, mID);
173

174 % incr the mem ory ref count

175 this .incrRefCount(mID);

176 if (—isequal (tmp,[]))

177 this .decrRefCount(tmp);

178 end

179 end

180 else

181 this .genMem (lhs);

182 if (—isequal(tmp ,[]))

183 this .decrRefCount(tmp);

184 end

185 end

186 this .incrDefsCount ();

187 end

188 end

189

190 patterns

101 allDefs: set(x); % match all defs

192 aWrites: set ((..)); % match any array write
193 aDefsOnly:set(x) & (— set (x(..))); % match any array def only
104 callMain: execution ( rctest );

105 callMain2: execution ( rctest2 );

106 callMain3: execution ( rctest3 );

197 callMain4: execution ( rctest4 );

108 funcExec: execution)); % match any func execution
199 funcCall: call ¢); % match any function call
200

201 % begin benchmarks

202 callTRID: call (trid test );

203 execTRID: execution( tridtest );
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204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Copy optimization aspect

callADPT: call (adpt test);
execADPT: execution(adptest);

callCAPR: call (capr test);
execCAPR: execution(captest);

callCLOS: call ( clos test);
execCLOS: execution(clogest );

callCRNI: call (crni test);
execCRNI: execution( crnitest );

callDICH: call (dich test);
execDICH: execution(dichtest );

callDIFF: call ( diff _test );
execDIFF: execution ( difftest );

callFDTD: call (fdtd test);
execFDTD: execution(fdtdtest );

callFFT:  call ( fft_test );
execFFT: execution ( ffttest );

callFIFF: call ( fiff test );
execFIFF: execution ( fifftest );

callMBRT: call(mbrt _test);
execMBRT: execution(mbrttest);

calINB1D: call (nb1d test);
execNB1D: execution(nbldest);

callNB3D: call (nb3d test);
execNB3D: execution(nb3dest);

calINFRC: call ( nfrc test);
execNFRC: execution(nfrgest );
% end benchmarks

end

actions

afterAllDefs : after allDefs :(loc, name, aobjline)

if (this.last assign line  ==line && -—this.param write off )

% multiple assignment detected

if (this .verbose)

disp([ 'multiple assignment in line
"lhs: ', name, position:
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255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

num2str(this.multi_assign on_ + 2)]);
end

if (this .multi_assign on )
this .multi_assign on_ = this.multi_assign on_ + 1;

else
this .multi_assign on_ =1;
end
else
this .last assign line = line;
this .multi_assign on_ =0;
end
end

afterDefsAct: after aDefsOnly: (loc, name, aoljne)
if (this .verbose)
disp(['DEF:: (name, line) : (' ,hame,,’ ,num2str(line),")’ ...
' =" ,aobj]);
end
if (this .param write off )
this .param write off = this.param write off — 1;
elseif (this .isDefFromFundihe))
retCount = getfield ( this .stacK this.top }, ...
'ret_cnt ' );
retVallndex = this .multi assign on_ + 1;
if (retValindex < retCount)
if ( isfield (this .stack {this.top }, name))
tmp = getfield (this .stack{this.top_}, name);
this .decrRefCount(tmp);

end
retvar = [ret_val ' , num2str(retVallndex)];
%disp (['ret val = ', retvar ]);
mID = getfield (this .stack{this .top _}, retvar );
this .stack {this .top_} = setfield (this .stack{this.top }, ...
name, miD);
end
else
this . insertDef (loc, name, aobj);
end
end

afterAWriteAct: after aWrites: (loc, namdine)
if (this .verbose)
disp(['ARRAY WRITE:: (name, line) : (' , hame,," ...
num2str(line), " 1);
end
if isfield (this .stack {this.top_}, name)% undefined?
this .incrCpCount(loc, naméine );
else
this .genMem (name); % define
end

175



306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

Copy optimization aspect

end

beforeFuncCallAct: before funcCall: (name, argne, ainput)
val = line;

if (exist(name,builtin' ) | strfind@which(name), ...
this .matlab builtin _home ))
val = —-1;

end

this .stack {this.top _} = setfield (this .stack{this.top }, ...
'last_call_addr_' , val);

% set the call arg names
this .arg names = ainput;
end

afterFuncCallAct : after funcCall: (name, argdine)
% do some stack clean up task
end

beforeFuncExecAct: before funcExec: (name, ainput, anjyss)
% disp ( this .mem);
if numel(ainput) numel(this .arg names)
disp([name,": error: # of args ('
num2str(numel(ainput)),
" I= # of parameters (' , hum2str(humel(this.arg names ))));
exit ;
end

if (this .verbose)

disp(['pushing a new stack frame for
end
% create a stack frame for the function
this .push( struct ());

, namey);

%process args-> params transition
for i=1:numel(this.argnames)
if (isempty(this .arg names {i}))

% generate a new memory for the parameter
this .genMem (ainputi});

else
%disp ([ Arg name ', this .argnames {i}])
mID = getfield (this .stack{this .top_ — 1}, this.arg names {i});
this .stack {this.top } = ...

setfield (this .stack{this.top }, ainput{i }, mID);

this .incrRefCount(mID);

end

end
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357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

(=]

% parameter writing off
this .param write off = numel(this.arg names);

end

afterFuncExecAct: after funcExec: (loc, name, aoutput,
line)
if (this .verbose)
disp(['popping the stack_ frame for
end
sframe = this .pop();
if (this.top > 0)

, hamel);

% add a return values count to the callers stadkame
this .stack {this.top } = ...
setfield ( this .stack{this.top }, 'ret_cnt_’ e
numel(aoutput));

for j=1l:numel(aoutput)
mID = getfield (sframe, aoutp{i} });
retvar = [ret val ' , num2str(j)];
% copy ret val to the caller 's stack
this .stack {this.top _} = ...
setfield (this .stack{this.top }, retvar, miD);
this .incrRefCount(mID);
end
end
if ( isfield (sframe,'last_call_addr_' )
sframe = rmfield (sframe’last_call_addr_' );
end
if ( isfield (sframe,'ret_cnt ' )
sframe = rmfield (sframe'ret_cnt ' );
end

fields = fieldnames (sframe);
for i=1:numel(fields)
if ( strfind ( fields{i}, 'ret_val_' ) >0)
continue; %oskip it
end

% get the memory ID
mID = getfield (sframe, field$i });
this . decrRefCount(mID);

end

if (this .verbose)

disp([final stack_ frame for ' , hame,:" );
disp(sframe);
disp(['caller"s stack_ frame for ' , name,” ]);
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if (this .top_ > 0)
disp( this . stack {this .top _});
end
disp('Memory dump' );
disp( this .mem );
end
end

afterMainCallAct: after callMain: (name)
this . printStatistics (name);

end

afterMainCall2Act: after callMain2: (name)
this . printStatistics (name);

end

afterMainCall3Act: after callMain3: (name)
this . printStatistics (name);

end

afterMainCall4Act: after callMain4: (name)
this . printStatistics (name);

end

% print result for benchmarks
beforeCallADPT: before callADPT

this . init ();
end
afterExecADPT: after execADPT: (name)

this . printStatistics (name);
end

beforeCallCAPR: before callCAPR

this . init ();

end

afterExecCAPR: after execCAPR: (name)
this . printStatistics (name);

end

beforeCallCLOS: before callCLOS

this . init ();
end
afterExecCLOS: after execCLOS: (hame);

this . printStatistics (name);
end

beforeCallCRNI: before callCRNI

this . init ();

end

afterExecCRNI: after execCRNI: (hame)
this . printStatistics (name);

end

beforeCallDICH: before callDICH
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this . init ();
end

afterExecDICH: after execDICH: (name)
this . printStatistics (name)

end

beforeCallDIFF: before callDIFF

this . init ();

end

afterExecDIFF: after execDIFF: (name)
this . printStatistics (name);

end

beforeCallFDTD: before callFDTD

this . init ();

end

afterExecFDTD: after execFDTD: (name)

this . printStatistics (name);
end

beforeCallFFT: before callFFT
this . init ();

end

afterExecFFT: after execFFT: (name)
this . printStatistics (name);
end

beforeCallFIFF: before callFIFF
this . init ();

end

afterExecFIFF: after execFIFF: (name)

this . printStatistics (name)

end

beforeCallMBRT: before callMBRT

this . init ();

end

afterExecMBRT: after execMBRT: (hame)
this . printStatistics (name);

end

beforeCallNB1D: before callNB1D

this . init ();

end

afterExecNB1D: after execNB1D: (hame)
this . printStatistics (name);

end

beforeCallINB3D: before callNB3D

this . init ();
end
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afterExecNB3D: after execNB3D: (name)
this . printStatistics (name);
end

beforeCalINFRC: before callNFRC

this . init ();

end

afterExecNFRC: after execNFRC: (name)
this . printStatistics (name);

end

beforeCallTRID: before callTRID : (name)
this . init ();
end

afterExecTRID: after execTRID: (hame)
this . printStatistics (name);

end

% end benchmark

end

end
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