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Abstract

Speculative multithreading (SpMT), also known as threadllspeculation (TLS), is a
dynamic parallelization technique that relies on out-afes execution, dependence buffer-
ing, and misspeculation rollback to achieve speedup ofesgeal programs on multipro-
cessors. A large number of hardware studies have shown gsodts for irregular pro-
grams, as have a smaller number of software studies in thexdaf loop level speculation
for unmanaged languages.

In this thesis we explore software method level speculdtodava. A software envi-
ronment means that speculation will run on existing multgssors, at the cost of extra
overhead. Method level speculation (MLS) is a kind of SpMTSThat creates threads on
method invocation, executing the continuation specuwgtivAlthough MLS can subsume
loop level speculation, it is still a relatively unexplorpdradigm. The Java programming
language and virtual machine environment are rich and cexnplosing many implemen-
tation challenges, but also supporting a compelling vaébbject-oriented programs.

We first describe the design and implementation of a proeosystem in a Java byte-
code interpreter. This includes support for various MLS ponents, such as return value
prediction and dependence buffering, as well as variowsantions with features of the
Java virtual machine, for example bytecode interpretatexteption handling, and the
Java memory model. Experimentally we found that althougfh inread overheads pre-
clude speedup, we could extract significant parallelisnvédrbeads were excluded. Fur-
thermore, profiling revealed three key areas for optimazati

The first key area for optimization was the return value prigoi system. In our initial
model, a variety of predictors were all executinguady on every method invocation, in
order that a hybrid predictor might select the best perfogmnes. We developed an



adaptive system wherein hybrid predictors dynamicallyc&deze on a per-callsite basis,
thus dramatically reducing speed and memory costs whilgitaiaing high accuracy.

The second area for optimization was the nesting model. @itiali system only
allowed for out-of-order nesting, wherein a single pardmead creates multiple child
threads. Enabling support for in-order nesting exposasfgigntly more parallelization
opportunities, because now speculative child threads itectheir own children that are
even more speculative. This required developing a memonagex for child threads based
on recycling aggregate data structures. We present antmpetissemantics for our nesting
model derived from our implementation.

Finally, we use this semantics to address the third aregoim@ation, namely a need
for better fork heuristics. Initial heuristics based oninalprofiling made it difficult to
identify the best places to create threads due to compledbfexk interactions between
speculation decisions at independent speculation paiiis. problem grew exponentially
worse with the support for in-order nesting. Instead, weseht clarify the effect of
program structure on runtime parallelism. We did this bytesymtically exploring the
interaction between speculation and a variety of codingndi. The patterns we identify
are intended to guide both manual parallelization andcstatnpilation efforts.



Résum é

L'exécution sgculative multifils (SpMT), aussi connue sous le nom decsfation
au niveau des fils d’@cution (TLS), est une technique de patdlation dynamique qui
se base sur I'eéécution dans le &ordre, la mise en @moire tampon desépendances
speculatives, et le refoulement des erreurs decgfation pour atteindre I'aéteration des
programmeséquentiels sur les multiprocesseurs. D’extensatesles architecturales ont
révelé de bons &sultats dans le cas des programmesginfiers, tout comme plusieurs
études logiciel dans la épulation au niveau des boucles dans un langage @én g

Dans ce ramoire, nous explorons la&pulation logiciel au niveau deséatihodes pour
Java. Un environnement logiciel signifie que l&splation s’ekcute sur les multiproces-
seurs existants, au @bde charge additionnelle. La &gulation au niveau deséthodes
(MLS) est une sorte de SpMT / TLSuiales fils d’excution sont @ésa chaque invocation
de méthode, e&cutant les instructions qui suivent de n&pisgculative. Malge la possi-
bilité de subsomption de la&gulation au niveau des boucles par la@gation au niveau
des néthodes, ce paradigme est relativement peu e&plog langage de programmation
Java, ainsi que I'environnement de sa machine virtuellet Sohes et complexes, ce qui
pose plusieurs difficudtsa I'implémentation, mais qui a I'avantage de supporter une grande
variete de programmes orieeg objet.

Nous cecrivons d’abord la conception et I'imgghentation d’un systme prototype dans
un interpéteur de code-octet Java. Cette igmpentation supporte une @@ de compo-
santes de la §zulation au niveau deséthodes, telles la pdiction des valeurs de retour,
la mise en rdamoire tampon desépendances gpulatives, ainsi qu’une vate d’inter-
actions avec des carécistiques de la machine virtuelle Java (JVM), par exenipte,
terpetation du code-octet, le gestion des exceptions et leeteatk la nemoire de Java.



Des exp@riences nous ont permis de constater d’encourageaststats quané la pa-
rallelisation des programmes, magune charge additionnelle importantie al’embran-
chement des fils d’é@cution, ce qui emgche d’obtenir une aétération significative. De
plus, le profilage effectia €vele trois secteurs d’optimisation importants.

La premeére optimisatioretudie est la pediction des valeurs de retour. Notre reda
initial utilisait plusieurs outils de @diction differents pour chaque invocation détmode,
afin gu’un outil de pediction hybride puisse choisir les plus performants. Nawsns
dévelop@ un systme adaptatif o les outils de pediction hybrides se &gialisent dy-
namiquement pour chaque site d’invocatiogguisant drastiquement la chargémmire
additionnelle et les ralentissements tout eesgrvant un haut degde péecision.

Le deuxeme secteur d’optimisaticgtudie est celui des mades d’embitement. Notre
modele initial permettait seulement I'emiiement dans le@sordre, a un seul fil d'exc-
ution peut en @er plusieurs fils d’excution sgculatifs. L'introduction du support de I'em-
boitement en ordre expose un nombre @meent d'opportunits de paradllisation, parce
gu’un fil d’exécution sgculatif peut maintenant enésr un autre, encore pluséslatif.
Pour ce faire, nous avongdelop@ un gestionnaire de @moire pour les fils d’excution
spéculatifs baé sur le recyclage des structures de danageges. Nous pgsentons une
semantique des @pations de notre made d’embdtement @rivee de notre im@mentation.

Finalement, nous utilisons cettéreantique des @pations pour optimiser nos heuris-
tiqgues d’embranchement. Initialement, I'utilisation etristiques bases sur les doraes
recueillies au temps d'@&cution rendait difficile I'identification des meilleursipts pour
créer de nouveaux fils d’&cution, di a I'interaction entre lesé&tisions spculatives prises
a differents points. Ce probine s’amplifie de facon exponentielle avec le support ae-I'e
boitement en ordre. Comme alternative, nous avons choisi diéiedd’effet de la struc-
ture des programmes sur son padimea I'exécution. Pour ce faire, nous avons explor
sysématiquement I'interaction de la&gulation avec une vate d’idiomes de program-
mation. Les patrons ident#$ sont utiles pour guider les efforts de pdalahation manuelle
ainsi que de compilation statique.
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Chapter 1
Introduction

Many computer programs aserial or sequential there is only one thread of control
and they are designed for, written for, compiled for, andcaked on a single processor.
These programs are straightforward to handle at all lev€le disadvantage is that the
execution time of the program is bound by the speed of thegssmr, and cannot be helped
by adding extra processors to the system. One importanhizgatiion is to usearallel,
concurrent or multithreadedorogramming: now the execution can be spread across multi-
ple processors. This leads to prograpeedupwhich for parallelization work is calculated
simply as the sequential run time divided by the paralleltione.

The standard approach to creating parallel programs isite thiem by hand, either by
converting an existing sequential application or by tangemultiple processors in the ini-
tial design. This process is known @snual parallelizationand results in a program con-
tainingexplicit parallelism Synchronization primitives are required to manage cdiftic
data accesses: these can take the form of monitors, seneaphbadtical sections, barriers,
volatile variables, threads, processes, and atomic apesatfl he dominant paradigm in in-
dustry islock-based programmingA program is split into multiplehreads each of which
has its own flow of control and may execute concurrently orpasge processor. Threads
communicate by first acquirintpcks which grant mutually exclusive accessdantical
sections regions of code that modify shared data. Once finished witthtigal section, a
thread releases its lock and resumes non-shared paraltsgsing. There are many books
on concurrent programming that explore these conceptstail de

1



Introduction

A well-written parallel program can perform very well, aehing great scalability to
many processors, depending on the complexity of the apglican question. However,
lock-based programming is inherently difficult, with issu deadlock, livelock, fairness,
and safety being central concerns. It is widely consideregtlieous and error-prone pro-
cess. Recentlyransactional memorkias been extensively explored as a viable replacement
for lock-based programming [LRO6]. In this programming miptlereads acquire access
to atomic sectionsrolling back the operations inside if they fail to complen the sur-
face, this model is simpler than lock-based programming,ithas the added benefit of
allowing out-of-order speculativeexecution of the code inside atomic sections. However,
like any parallel programming, it still requires progranméo annotate code with syn-
chronization primitives, and there are efficiency concevhen compared to a lock-based
approach [CBM08].

In contrast to these methods that require programmers tafynibeir software isau-
tomatic parallelizationvia compilers and runtime systems. There are two fundarhenta
approaches. First, one can automatically convert a seiquendbgram into a parallel pro-
gram. Second, one can take a parallel program and identifiyeseial regions and paral-
lelize them. In either case, the task is to expiosglicit parallelismhidden in the program
to obtain speedup. Automatic parallelization is perhamneawore difficult than manual
parallelization due to the requirement for general appiidg; the key motivation is that
multithreaded programming is so difficult that it needs asmautomation as possible.

Like any program optimization, the structure of the inpujigntial source code is a
significant contributor to the success of an automatic téot.instance, regular array-based
computations are much more easily parallelized than iteeguointer-based ones. Beyond
applicability and safety, a primary concern is the amountuotime overhead incurred by
parallelization, and whether this is offset by the gainsamfielism to yield a net speedup.
Approaches may be fundamentadhatic, orahead-of-timgdecided based on pre-execution
compiler analysis without knowledge of program inputs,f@ytmay bedynamic or just-
in-time, decided based on runtime analysis of the inputs. Some agpipes exploit profiling
information collected at runtimeffline profilingis a static approach that uses this infor-
mation to improve subsequent program runs, wheoeése profilingis dynamic, applying
the information before the program completes executiomalfy, automatic program trans-

2
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formations, and in particular parallelizing ones, maybaservativepessimisticin-order,
or non-speculativethey respect program structure and provide safety guaearior all in-
puts; or they may béberal, optimistig out-of-order or speculative they allow for unsafe
program behaviours at runtime, but provide a monitoringhmaetsm to catch them and roll
back if necesary.

1.1 Speculative Multithreading

In this thesis we explorgpeculative multithreadingSpMT), also known ashread level
speculation(TLS). It is a dynamic parallelization technique that relien out-of-order
speculative execution of sequential programs to achiegedp on multiprocessors. In
an ideal implementation it is fully automatic, but many gseof-concept rely on some
form of manual guidance. The first step is to splitdeacompos@ sequential region of
code into one non-speculatiy@rentthread and multiple speculativahild threads, also
referred to as childasks This process may be static or dynamic. At runtime, children
are created diorked and they begin speculative execution on separate prase$sdfer-
ing main memory accesses and prohibiting 1/0 to allow rakbar abortion in the case
of dependence violations, thus executing in a safe andtexbfashion. At some future
point the children are joined, and in the absence of depa®deinlations their computa-
tions are merged back into the parent. The advantage of SpM3 ability to parallelize
applications that traditional static compilers cannotdiardue to unknown runtime data
dependences. It is typically considered at a hardware,|l@wetre proposed systems are
capable of showing good speedups in simulation-basedestugrototype SpMT CPUs
have also been manufactured. However, SpMT and relatedsfofraptimistic execution
have also shown viability in various software models, nadtivg the specific focus of this
thesis, namely an investigation of software SpMT at the Jataal machine level.

The salient runtime features of speculative multithregdiystems include: 1) a means
to create speculative threads that execute future codeontaof-order fashion; 2) support
for either memory accesgependence bufferingr undo logging; 3) some mechanism to
detect violations and either undo or prevent unsafe omersitiand 4) a means to either
commit the speculative execution in a manner that preseamgmal program semantics,

3
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or abort the execution safely. Our use of the term dependbuffering includes both
dependence tracking to prevent read-after-write (RAWiroe dependence violations as
well as buffering of speculative modifications to preventtevafter-read (WAR) ornti
dependence violations and write-after-write (WAW poitputdependence violations. Undo
logging differs from dependence buffering in that it pragda rollback mechanism that
allows for speculative writes to go directly to main memoBefore execution, a basic
parallelization or partitioning or thread decompositidrategy is required: speculation
may occur at any or all of the basic block, loop, or method Ikevé\ compiler and its
accompanying dataflow analysis framework is necessaryrtiipa programs into threads
at the basic block and loop levels. Strictly speaking, statialysis is not necessary to
speculate over method calls, as the runtime system or sieeuhardware can detect and
instrument these. Although there exists variance betwkemparallelization strategies,
there is also considerable commonality. Two issues that beuaddressed when preparing
any sequential code for speculative execution are whe@getlg to fork new speculative
threads, and where to verify the speculative execution anthat the results to memory if
correct. Perhaps most importantly, the parallelizatiocuos at the thread level as opposed
to the instruction level, and requires two or more CPUs, canegirtual cores for speedup.

There is extensive work on SpMT, much of it demonstrating pelimg speedups, and
a large number of novel SpMT hardware architectures and geraphat target them have
been evaluated [KNO7]. The standard claim is that novelward is absolutely necessary
due to high speculation overheads, precluding an efficiefttvare-only implementation.
Most of this prior SpMT research also targets loop paraigion, because many important
applications spend a majority of their computation timedadoops. Finally, the primary
focus has been on imperative, regular, and often scientibigrams written in C, C++, and
Fortran, because these are seen as the applications thabatemportant to parallelize
and also most scalable.

The problems with the general trends in SpMT research anesmondingly three-
fold. First, new hardware is prohibitively expensive, amanenercial uptake of research
ideas can be slow and limited. Furthermore, hardware impteations are necessarily
non-portable and platform-specific. Second, there is alalgss of applications that are
significantly more irregular and not loop-based that may ehefit from parallelization,

4
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particularly with the prevalence of multi-core processarmodern machines. Third, the
focus on C, C++, and Fortran means that existing studies teexictade richer languages
such as Java and C#, with even less attention given to dynamgeidges such as Python
and MATLAB, thereby ignoring the impact of higher level lamge semantics and a vir-
tual machine environment on speculation. The net resuitisthere are several interesting
areas in SpMT research that remain relatively unexplored.

The prior work that does exist in these relatively unexplaeeas shows significant po-
tential. Specifically, speculative execution of Java paogs can be effective, particularly
at the method level [CO98, HBJ03, WKO05], and there have been d@uaf advances in
software SpMT research. In summary, overheads are high JpM0arser thread gran-
ularities help offset these overheads [D'SK], manual source code changes are effec-
tive [KLOO, KPW*07,0M08, WJHO05], loop level speculation in software is vaalL05],
and functional programs are good candidates for automatallplization [HSO07]. Related
work is discussed in greater detail in Chapter 5.

1.2 Software Method Level Speculation for Java

Our overall approach is to expand the scope of applicalmit$pMT by turning to these
unexplored areas. Inspired by hardware designs, we pravidiatively complete and self-
contained implementation of SpMT purely in software. Ouru® for speculation is the
method level, which allows us to capture the behaviour ebutar and recursive programs.
In particular, object-oriented programs are often methasled rather than loop-based, and
so any parallelization strategy should be adapted acagikdiRinally, we target Java at the
virtual machine level, addressing many of the complexte#ributed by this language and
development platform. We take a broad perspective and ustheodical approach with the
intent to uncover aspects of speculative execution thaatawace peculiar, interesting, and
foundational. This is the first software-only, method leava VM based implementation
of SpMT. There is significant room for novel contribution &eto reiterate, most SpMT
research to date has focused on loop level speculation dgoitareapplications written in
unmanaged languages such as C, C++, and Fortran that run datsichbardware SpMT
architectures.
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There are two main arguments for software-only SpMT. Firstins on existing multi-
processor machines without the need for specialized haedwaere are considerable time
and money savings if hardware architecture changes candigealy not only is hardware
expensive to produce, but at an experimental researchdecerate hardware simulations
are orders of magnitude slower than those in equivalentvaodt systems. Second, a soft-
ware system is not only more immediately useful, but alsoereasily modified. The
malleability of software allows for clean design, refaatgr abstraction, extension, and
portability. These qualities in turn are conducive to mgviretween a practical experimen-
tal system and a formal theoretical one. And, if new hardvwsapport for SpMT emerges,
software systems can be readily adapted to take advantaige of

However, a software-only approach now introduces two @algr challenges with re-
spect to basic feasibility. First, as a hardware problem,ishues of ensuring correctness
under speculative execution have been well defined; diffena@lback or synchronization
approaches are sufficient to guarantee correct progranvioeinat a low level. Further,
hardware simulations permit simplifying abstractions higlieg portions of the program
instruction stream under consideration, facilitating eskmentation. However, software
approaches cannot rely on the low level mechanisms of therlymag hardware to support
speculation, and so must provide high level, intricate supfo ensure correct language
semantics. Further, for a non-simulated software systatndibes not elide instructions to
work with arbitrary programs, it must account for the fulusce language and complete set
of runtime behaviours. Second, software overheads are & greater barrier to speedup
than hardware overheads, often orders of magnitude highermay require significant
high level optimization, whereas a specialized hardwaséesy can complete many impor-
tant operations in only a few cycles. Software versions eehbardware circuits such as
thread pools, dependence buffers, and value predictorsimaalve completely different
approaches because of the inherent serialization. To suzenany software system is
bound to expose conflicts between the language and specylatioviding an excellent
opportunity to resolve them; and addressing software @aath directly yields insight into
where hardware support would help the most, if at all.

We refer to our choice of basic thread partitioning strategmethod level speculation
(MLS). The literature may substitute ‘procedure’, ‘furmsti, ‘module’, or ‘subroutine’ in
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place of ‘method’, and may also omit ‘leveBpeculative method level parallelig®MLP)

is yet another term, alternatively found with correspogdinbstitutions for ‘method’. Un-
der MLS, aparentthread forks a speculativehild thread at a method call. The child
executes theontinuationpast the return point, as if the call has already returnedeiine
parent executes the target method. Memory dependences ahild are either logged or
buffered, such that any changes can be rolled back or disd@frdecessary. When the par-
ent returns from the call it joins its child, validates itatst, and either commits the state to
main memory or aborts the speculative execution accongidgsuccessful commit allows
the parent to jump ahead to the furthest point reached byhilee Given low enough over-
heads, the resultant parallelism is then a source of speadupultiprocessor machines.
Otherwise, the parent simply re-executes the child’s body.

Although the distinction between which thread is the chifdl avhich is the parent
varies, MLS can be seen as the most optimistic and most atitoaia number of contin-
uation-based parallelization schemes: futures, safedsfyarallel call, and implicit par-
allelization for functional languages. MLS suits our inded domain of irregular, non-
numeric applications. Further, it is practical for implertetion because all fork and join
points already exist as method calls and returns, which mtraat in the strictest sense a
static compiler analysis is not required to identify them.34s also able to subsume loop
level speculation, which is often more suitable for regalaplications, by outlining or ex-
tracting loop bodies into method calls. Extensions to th&dchnique can accomodate
unrolled and nested loops. This means that in theory, MLSexgose at least as much
parallelism as loop level speculation; practical concesunsh as the overhead of method
invocation affect the eventual outcome. We examine thitufeaof MLS in Chapter 4.
Finally, any implementation of MLS will need to consider pegses for creating specula-
tive code, forking and joining child threads, and handlingtinod return values. We will
explore these issues at length.

Figure 1.1 depicts the general MLS execution model. TheHaftd side shows the
sequential execution of a method call in Java bytecode bgfarallelization. First the non-
speculative parent thread T1 executes the pre-invocatsiruictions; next, it executes an
invoke instruction and enters the target method, execukiagnstructions of its body; fi-
nally, T1 returns from the call and executes the post-intronar continuation instructions
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Figure 1.1: Sequential execution vs. method level speculation.

that follow the return point, located immediately after iheoke in the calling method.
The right hand side shows the speculative execution of the skava bytecode after par-
allelization via method level speculation. Upon reaching invoke, or method callsite,
the non-speculative parent thread T1 forks a speculatiud tiread T2. If the method
is non-void, a predicted return value is pushed on T2’s Jpemand stack. T2 then con-
tinues past the return point, executing the continuatiecslatively and in parallel with
T1's non-speculative execution of the target method bo@yprbvides strong isolation by
buffering all reads from and writes to main memory and by gilog execution if any ille-
gal instructions are encountered. When T1 returns from Itstgains T2, first signalling
it and then waiting for it to stop, if it has not already stogdp# its own accord. If the
actual return value matches the predicted return valuettaered are no dependence viola-
tions between T2’s buffered reads and post-invoke valu@saim memory, T2’s buffered
writes are committed and non-speculative execution jurhpaéto where T2 left off. This
yields parallelism, which in turn yields speedup if overtieare low. If thereare depen-
dence violations or the prediction is incorrect, T2 is siyrgdborted and the continuation is
re-executed non-speculatively.

Note that in some implementations of method level parale/ithe distribution of work
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in Figure 1.1 is inverted, such that the method body is exsetut T2 and the continuation
is executed in T1. This paradigm does offer advantages mstaf data locality if the
memory accessed by the caller method pre-invoke instmgtamnd continuation is rela-
tively disjoint from that accessed by the callee method bédso, if the execution model
is non-speculative, reversing the roles of parent and ahiééns the continuation stack
frame can be used without copying it to a new thread. Howeverdid not consider this
approach for three reasons. First, it adds significant cexitglto our speculative stack
model in terms of representation, clarity, and the mecimarics lazy stack frame buffer-
ing. This model is discussed completely in Chapter 4. Seammddesign supports thread
creation even when no free processors are available. Undeaxlternative paradigm, if no
free processors were available, T1 would need to sleep $d theould execute on T1's
processor. This would quite likely mean a higher fork ovarheeven if thread pooling
were used to alleviate the cost of a native thread contexttBwilhird, for multithreaded
programs, if there are monitor exit or re-entry operationthe target method body, then
using T2 to execute the body would require transferring lmekership from T1 to T2.

In some cases, the parent method under MLS may be too long shtwt with respect
to the child continuation. There are several techniqguesdtress this imbalance. One
technique is to move the fork point either forwards into thetmod or backwards into the
pre-invoke instructions. Another is to push the actualrutdtons surrounding the callsite
into the target method, or to pull method body instructionsaf the method and into the
pre-invoke and/or continuation instructions. Finallyisippossible to filter out imbalanced
fork points and promote balanced ones based on profilingthenenline or offline. The
simple dynamic fork heuristics described in Chapter 2 doithicitly. We use this last
technique because it does not require static analysis dpdexuires wrapping callsites in
the executing program. This methodology also supports doermprimary goals, which
is to observe the “natural” properties of Java programs wieg under MLS. Compiler
techniques are certainly interesting, however, and weaudelhem as part of our future
work in Section 6.2.3.

Finally, our focus on Java at the virtual machine level is ivadéd by a number of
considerations. Java is a widely used language, but théoptais not often considered
for SpMT research or parallelization research in genera, to its complex runtime fea-
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tures and the irregular object-oriented nature of programitten for it. Java’'s complex
runtime features, which include garbage collection, dyicariass loading, bytecode inter-
pretation, and exception handling, imply non-trivial stetions with SpMT and require
any Java-based approach to software SpMT to fully accourtham, which in turn im-
plies significant research and development startup coststh® other hand, the partic-
ular interactions with speculation are interesting in ahthemselves, and any practical
workarounds are most likely transferable to other compdergliages. The complex run-
time behaviour also makes a software approach particudagyopriate for Java SpMT, be-
cause there are high level language-specific optimizaagasable that do not necessarily
translate well to generic hardware SpMT designs. The otlan noadblock to paralleliza-
tion, namely the irregular object-oriented programs teattto be written in Java, arises
from the structure of the core Java grammar and class libfémgse kinds of programs are
traditionally the most difficult to parallelize, due to urdwn boundary conditions within
loops and a structure that is statically difficult to padatke outside of loops. However, a
part of good Java practice involves writing loosely cougtases, which in turn suggests
a rich source of speculative parallelism due to locally aored variable dependences. In
particular, the MLS variant of SpMT accommodates Java'sdaibject-oriented method
invocation structure, and has previously been demonstest@ useful SpMT paradigm for
the language. A further argument for Java MLS is that Javag®ired call and return
semantics imply well-behaved call stacks at runtime, whiobvide a similarly regular
structure to Java-based MLS. Given the arguments in favbsoftware SpMT for Java,
the Java virtual machine is a natural place to implementefaired support, because both
software SpMT and the JVM are a kind of virtual hardware. Owlesive focus on the
JVM leverages Java’s write-once run-anywhere philosophy, maximizes SpMT trans-
parency, compatibility, and automation with respect tdlmtisting Java programs and the
underlying hardware. The combination of complex runtimatdees, object-orientation,
language popularity, and relative lack of research attentthen compared to languages
such as C, C++, and Fortran make Java and the Java virtual reagtmatural choice of
implementation platform for any software MLS system.

Our methodology for constructing a software MLS system &walwvas to start with an
existing Java virtual machine and modify it to support MLB8d #éhen use this as a base for
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further development. We primarily used the SableVM Javadtyde interpreter [Gag02],
an in-house project developed by our research group at Mc@ié also used the Soot
Java bytecode compiler framework [VROO], another in-housgept, for some convenient
code transformations and as a base for static analysistigagsns. Our first goal was
to build a complete prototype system. This would be a workimglementation that was
able to run the industry-standard SPEC JVM98 benchmarksrudidlS that accounted
for language and VM level safety requirements. It includefivgare versions of several
hardware components, including dependence buffers,mealue predictors, and thread
management structures, and various novel software comgsni also incorporated var-
ious static analyses. The next step was to experiment widluaderstand this system by
running benchmarks and profiling runtime behaviour. Basetthese results, we identified
where overhead and serialization issues were a significarttecn, and determined some
key SpMT-specific areas for optimization. At this point wéatored most of the SpMT
logic into a separate software library, clarifying the desand providing a good context
for developing optimizations. Then, guided by our profilinge focused our remaining
efforts on providing highly accurate software return vahwediction that is both time and
memory-efficient, supporting arbitrary nested methodllspeculation, and discovering a
range of fork heuristics based on possible source levedipat In general, we moved from
concrete, practical concerns to more abstract, formaliderations once they became ap-
parent in our work, with the intention to broaden applic&pilWe also expressly avoided
manual intervention, wanting to create a fully automatistegn that works with existing
programs. We expand upon our primary contributions to the ifieSection 1.3, and outline
our research process and the overall structure of thissheSection 1.4.

1.3 Contributions

The broad contribution of this thesis is software MLS foralawe began by designing and
implementing a software MLS system, addressing Java{fspeoncerns, and developing
an experimental framework. Building on this work, we exptbseveral optimizations

tailored for MLS in depth, namely return value predictionhittary thread nesting, and
method level structural fork heuristics. In each case watedkan initial version and then
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later added refinements guided by system profiling or devedop experience.

1.3.1 Software Method Level Speculation

We describe a software MLS design at the VM level. This desigiudes many distinct
components, none of which are strongly tied to the Java Eggwr dependent on our
return value prediction, thread nesting, and fork hewsstiptimizations. Indeed, for a
basic MLS system, predictions can be made using any anpitede, thread nesting can be
disabled, and threads can be forked with equal priorityspeetive of program location or
profiling data. The interaction with the Java language hasymfiandamental implications,
but these can all be separated from Java-independent osncer

Our design is inspired by hardware SpMT systems, and sodaslgoftware versions
of hardware components. It also includes software-onlymaments that would be diffi-
cult to implement in a hardware context. In general, theeenaany resources available in
software, and we use these resources to facilitate easaraplicgy of implementation,
rather than aim for maximum efficiency which is typically ttoeus of hardware designs.
The resulting high level design allows for internal reus@tighout the system. As an ex-
ample, we use the same hashtable design for dependencergyffeturn value prediction,
and callsite and method lookup, differentiated in behavimuthe software hash function
employed.

We include a software VM as part of our design, which grantess to the entire
program at runtime, in contrast with typical hardware SpM3tems that only have access
to short instruction windows. This permits considerablgifigity in the overall design,
and either reduces or eliminates the need for ahead-ofd¢ongiler transformations. In
practice we depend on an ahead-of-time compiler for somplsiobde insertions out of
convenience, but our design would readily accomodate oetelyl dynamic approaches
because it works in the absence of static analysis.

The two common concerns of any SpMT system are memory accefesibg and
thread management. We describe a software dependence thaffgprovides strong iso-
lation of speculative reads and writes to heap and staticanenThis is a simple form
of software transactional memory based on layered hagstalibur focus on high-level
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design meant we were able to express our dependence buffeanmism in very few lines,
and the modularity of our system means it could be replacetviesapper around a highly
refined software transactional memory library. A uniqueeaspf our software MLS sys-
tem is that we buffer stack frames on entering and exitinghous speculatively. This
stack frame buffering is independent of the heap and stapendence buffering described
above. The result is that during exection local variablessses do not incur hashtable
lookup costs, and upon joining the speculative child lo@alables are not subject to re-
dundant validation and can be committed immediately.

With respect to thread management, our design includeggses for forking and join-
ing speculative threads, lightweight signalling betwepecsilative and non-speculative
threads, and hardware barriers and atomic instructiortsetigure multiprocessor mem-
ory consistency. We include support for thread pooling andrity queueing based on
speculative thread data structure reuse because OS-eealds and memory allocation
are prohibitively expensive. Actual speculative code akea first requires a mechanism
for transforming regular non-speculative code into spsioté code that accesses the de-
pendence buffer and other speculative runtime support oaengs. Our design is based
on creating duplicate speculative versions of method Isodrel switching between non-
speculative and speculative code at fork and join pointss Kimd of code manipulation
is particularly suitable for software MLS, and is akin to thethod body recompilations
performed by an optimizing just-in-time compiler.

1.3.2 Java Language Support

The Java language and virtual machine have many compleyioeing, all of which must

be considered when implementing a technique as pervasi@peg. Our MLS imple-

mentation is based on a Java 1.4 bytecode interpreter, aslsin Chapter 2. This
necessitated a thorough analysis of safety concerns vagieot to VM and language fea-
tures, including class loading, garbage collection, digélocation, synchronization, non-
speculative multithreading, exception handling, nativethrod execution, bytecode veri-
fiability, and the Java memory model. It also includes a ceteptesign for preparing
Java bytecode for MLS and processes for forking and joinimgatds. Our treatment is
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thorough enough to support speculation on every methocatian for SPECjvm98 and
includes many non-obvious edge cases. Many of these swutie interesting for their
portability to other runtime environments. We finally presexperimental data showing
the impact of various Java language and VM features on wlyskems performance.

We use the significant amount of high level information aialé in the JVM in four
different ways. First, we often extend speculation pasipibiat where it would be forced
to stop at the machine code level. For example, we can adlomjects speculatively
in non-speculative heap space, acquiring a global VM locth@aprocess, because Java
guarantees that they are visible only to threads that hdeeereces to them. Second, we
prevent speculation from causing fatal errors. For exanipldimiting speculative object
references to the start of objects in VM heap space, the VMneWer dereference an
invalid pointer. Third, we optimize our implementation afftsvare speculation support.
For example, by exploiting knowledge of primitive type widt we can reduce storage
and computation costs in our return value prediction fraoréwFourth, we draw on the
wealth of VM information available for profiling and analggpurposes, including symbol
names, types, threads, instructions, callsites, methau$,classes. This supports both
debugging and optimizing the speclative system, as wehalysing the runtime behaviour
of individual benchmarks under speculation.

1.3.3 Experimental Framework and Analysis

To advance the state of the art in SpMT research, we needexhlyoio design and imple-
ment novel optimizations, but to evaluate them with an expental framework. However,
prior to this work, there was no existing software MLS systemJava, and accordingly
no experimental framework. Thus in parallel with the depetent of our optimizations,
which are motivated by the need for performance, we alsoldegd a complete experi-
mental framework, which is motivated by the need for analy®Ve use our framework to
profile, analyse, and understand the behaviour of our syasesmwhole, individual compo-
nents of this system, and a suite of standard benchmarkagrsgthat run on top of it. The
experimental results from our initial implementation in @tex 2 formed the basis for the
optimizations presented in Chapters 3 and 4, as describegtiios 1.4.
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Our software MLS for Java experimental framework is namdale&&pMT. It is an ex-
tension of the SableVM Java virtual machine [Gag02]. Sgii\¢Bprovides a convenient
hardware abstraction layer by operating at the bytecodeictson level, takes the full Java
language and VM specification into account, supports séatidysis through the Soot byte-
code compiler framework [VR00] and parsing of Java classfthbates [PQVR 01], and
runs on existing multiprocessor systems. SableSpMT pesvalfull set of MLS support
features, including generic method level speculation atutn value prediction. Our work
is designed to facilitate SpMT research, and includes auenagbugging mode, signifi-
cant instrumentation and runtime logging, online and daffiomofiling, a range of built-in
performance metrics, and portability amongst the feattir@smake it appropriate for ex-
perimentation and prototyping new designs.

After our initial implementation, we separated out the mijaof the speculation sup-
port features into a connected library, which we named fiftsg his library is intended to
be VM and language-agnostic, and forms a base for future woritegration with new
systems, including different virtual machines, interprst ahead-of-time compilers, just-
in-time compilers, and non-Java source languages. Theioatidn of SableSpMT plus
libspmt is quite flexible, in that the various components loarswapped out or used in iso-
lation. For example, in related work we used our frameworlkafoon-speculative dynamic
purity analysis [XPV07]. The library support for return uelprediction that we describe
in Chapter 3 is generic and could similarly be used easily inraspeculative context. A
final example is the dependence buffering component thatsegituwould again be quite
practical to experiment with various transactional menldsaries in place of it. A full
description of libspmt can be found in [PVKO7]; with respgethis thesis it served mostly
as an intermediate engineering step between the initideSaMT implementation and
later optimizations.

A large part of our contribution with SableSpMT and libspsproviding a common
open source platform for future experimentation with saftsyMLS and SpMT in gen-
eral. SpMT has been investigated through many hardwareopat and simulations and
a smaller but not insignificant number of software impleragohs. Each of these offers
its own analysis of various implementation and optimizatiechniques. However, it can
be difficult to evaluate these proposals with respect to armbmbination with each other,
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as there are multiple source languages, thread partiigsgchemes, SpMT compilers, and
hardware simulators being used. Even if these variableairefixed, it is highly unlikely
that an identical software architecture or set of simukaparameters will be used. Our
focus on flexibility and analysis is intended to facilitattese kinds of comparisons: there
are many parameters for runtime configuration in our systei® straightforward to add
new ones, and the same data collection framework providasdtse whether the system
changes are as small as adjusting a single integer parafoetere-grained control or as
large as changing the client of the library from SableSpMariother system.

1.3.4 Return Value Prediction

When speculating on a non-void method it is necessary to g return value if it will
later be consumed speculatively. Mispredictions of coreireturn values generate depen-
dence violations, and so lead to failed speculation. Thus system that allows speculating
on non-void methods, good support feturn value predictiorfRVP) increases speculation
success rates. In general, RVP is best described as a ruettmeique for predicting the
results of non-void function, method, or procedure callsthle case of speculative opti-
mizations, it is useful to know the predicted value beforedall returns, but there are other
applications of RVP such as program understanding whereuége time is not a factor.
RVP is a specific kind of value prediction, its unique feasungth respect to predicting the
results of arbitrary value-generating instructions behmg methods may take arguments,
that methods provide the core building block of modularitgl ahus exhibit an extremely
broad range of behaviour, and that method calls occur velgtinfrequently and so re-
sources available for RVP are less constrained. Genedalaleie prediction is of course
beneficial to all speculative systems, but in this work waukbon RVP as an MLS-specific
optimization, noting that our design is certainly adapgaiol speculative load prediction.
The impact of RVP on MLS is demonstrated in Chapter 2, follolwga detailed account
of our RVP design, implementation, and analysis in Chapter 3.

Consider the example with many complex uses of return valuésgure 1.2. Here
the method oo returns a result inte with type MyObj ect . Following some delay, is
stored into another variable; tested for nullness to inteecontrol flow and then if non-
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MyQbj ect r; [/l variable r with reference type
r = foo (a, b, c); /lpredictreturnvalue if speculating on foo
/l delay before uses of r
s =r; [lstores
if (r '=null) { //control flow
r.f = r.g; /lfield access
r.send (m; //virtual dispatch

}

use (r); [/larguments
return r; //returnvalues

Figure 1.2: Motivating example for return value prediction.

null, dereferenced to read from and write to its fields anddezlas the receiver object for
a virtual call; passed as a parameter; and finally returnam the method. Any misuse
of r will cause speculation to fail. Of course there are othersMayuse values, with
the example serving primarily to illustrate the varietyr fon-reference types arithmetic
computations are an important class of use. Any time sucle asudesired before the call
returns, predicting the return value is important. And ewgthout such a desired use,
prediction data can provide valuable profiling information

In our basic exploration of RVP we investigate a variety afdictors, both fixed-size
and table-based. We experiment with every kind of value iptedthat appeared suit-
able for return value prediction. We investigate a new meatn predictor that hashes
together function arguments to retrieve a prediction frohashtable. This use of memo-
ization differs in that the result can be incorrect, widenits applicability to all methods
instead of only pure ones. We include all of these predidtoeshybrid predictor that uses
many different subpredictors and selects the best perfgymine to make a prediction. A
unique aspect of our software design is that predictors ssecated with individual call-
sites. This means that RVP costs scale with program sizehatdallsites do not interfere
with each other. Overall we find high prediction accuracy tnad memoization is a natural
and useful technique for RVP.
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After MLS system profiling, we found that the RVP executiorihead was so high as
to preclude speculative performance. On this basis we degig hybrid predictor that dy-
namically adapts by freeing the memory and computatioruress associated with unused
sub-predictors after an initial warmup period. This préalicnaintains high accuracy while
reducing time and memory costs. As part of our refactoringito create this new hybrid,
we wrote simplified and independent software versions adWware circuits to replace our
initial highly optimized and enmeshed predictors. Thisegking included basic predictor
logic as well as hash functions and hashtables. Our desigtolan abstract unification
framework for classifying and relating return value prealis. This framework facilitates
understanding and can also be used to combine individuiressaof existing predictors to
synthesize new ones. Our framework is easily extended oostipew predictors, and can
also be used as an independent RVP library without SpMT.

Our software RVP design differs from hardware designs iresdvimportant ways.
First, we exploit the extra memory resources available fiwgwe to ensure a higher pre-
diction accuracy. Second, we use a wide range of predictorse new predictor logic is
essentially free. However, the cost of executing many pteds in succession is expensive;
whereas in hardware predictors can be effectively paiadld) in software they are serial-
ized. Third, the dynamic reconfigurability displayed by dual adaptive hybrid, which
in essence relies on a strategy design pattern, is partitutaur software context; in ex-
isting hardware designs, the memory and hardware circaets@re essentially fixed. This
reconfigurability of the software context is also what peésnmstantiating new predictors
for each callsite in the program and specializing callsiteependently. Finally, we use
high level VM information to facilitate understanding, &ss, and implementation. In
particular, we show how the best predictor for a given dallsiften reveals some inter-
esting aspect of localized behaviour, and how whole-systesdictor performance often
correlates with overall program behaviour. We also exptbheepredictability differences
between Java’s primitive and reference types, and furtioi type information to reduce
memory usage.
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1.3.5 Nested Speculation

The speculation model presented in Figure 1.1 only dephietexecution of a single child.
However, this view of MLS ignores two important questiongst what happens when a
parent thread creates a child, executes the target methdderecounters another method
invocation? If it can create a second child, before joinimgfirst, then this isut-of-order
nesting because the second child is first in sequential progranT,cadd the first child is
second. Second, what happens when a child thread encoanteeshod invocation? If
it can create a child of its own, then thisiisorder nesting Complete support for these
two kinds of nesting is necessary to expose all of the metiwel parallelism available in
programs.

void a() {
b(); //can parent create child 2 here?
X; [/ child 2 might begin execution here

}

void main() {
a(); // parentcreates child 1 here
Y; [/l child 1 begins execution here
c(); /lcanchild 1 create child 3 here?
Z; [l child 3 might begin execution here

Figure 1.3: Motivating example for nested speculation.

Consider the example of nested MLS in Figure 1.3, in which vweei@e threads are
created as soon as possible. If the speculation model pt®h#sting and only allows one
child per parent thread at a time, then the parent exettesX; while child 1 executes
Y; c(); Z; . If the model allows out-of-order nesting, under which agpéican have more
than one child at once, then the parent execb{gs , child 2 executes; , and child
1 executesy; c(); Z; . If instead in-order nesting is allowed, under which cleldrcan
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create children of their own, then the parent exechtes X; , child 1 execute¥; c();,
and child 3 executez; . If both in-order and out-of-order nesting are permittéenb() ; ,
X;,Y;c();,andz can all execute in parallel. The precise nature of the resufiarallel
behaviour at runtime is not intuitively obvious, and depewd the interaction between
source code, MLS system design, and underlying thread sthgd

In our initial system we allowed for unlimited out-of-ordeesting with many children
per parent thread, but no in-order nesting. Results obtaiset) this nesting model are
presented in Chapter 2. Profiling revealed that processoms laggely idle, and so we
developed support for in-order nesting as well to exposesrparallelism. This led to a
speculative stack data type and accompanying algorithmsiémipulating it and forking
and joining threads. In Chapter 4 we present an abstract-bas®#d model of nested spec-
ulation drawn directly from our practical implementatiotperience. We consider all pos-
sible runtime stack configurations at fork points and grdwgnt into nesting models with
varying degrees of flexibility. This is the first comprehemessemantics for nested MLS.
We also address the issue of how to depict speculative thnaradier MLS by presenting
a stack-based form that reads straightforwardly, mirdeesnhachine state at runtime, and
scales linearly on a 2D page as more threads are added.

There are also two specific memory management problemsrikatfar nested spec-
ulation. First, speculative threads require runtime datacgires for an execution context,
and these must be allocated quickly to ensure efficient $geithread creation. A simple
solution is to allocate a fixed number of threads per proegebsba more general solution
must allow for an arbitrary number of threads on a finite nundfgorocessors. We solve
this problem by recycling the entire aggregate thread datatsire at once. Second, under
in-order nesting memory can be allocated in one thread batfm another. The simplest
example is when child thread C1 allocates its own child C2, bhem later C1’s parent P
joins both C1 and C2, which results in P freeing C2’s memory witichd not allocate.
We solve this problem by using per-processor freelists aigglating blocks of threads at
once. Thus we contribute a custom, lightweight, singleppse memory manager that ef-
ficiently recycles entire aggregate data structures at ongrultiprocessor machines, also
described in Chapter 4. This memory manager in turn suppdriisaxily nested MLS.
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1.3.6 Fork Heuristics

Given the ability to fork a thread at any callsite and effitigpredict return values, the final
guestion is where to actually fork threads. Since the ansaeionly be approximated, we
refer to the broad class of thread decomposition or programitipning techniques asrk
heuristics At a coarse granularity, the use of MLS is a heuristic chdsmf, based on the
assumption that method boundaries are appropriate detsnif speculative parallelism;
then within MLS, there are medium-grained decisions to bdeanauch as which callsites
to speculate at; and then given a set of fork points, theréragegrained decisions, such as
how often to speculate or under what performance conditions

void a() {
X

void b() {
e
}

main () {

a(); // speculation success rate = M
b(); //speculation success rate =N
%

Figure 1.4: Motivating example for fork heuristics.

Two primary issues in constructing fork heuristics are ddréengths and speculation
success rates. In an ideal situation, threads would onlgtied if there was a high proba-
bility of success, if the parent and child threads execuiad enough to outweigh overhead
costs, and if the load was fairly balanced between child ardmi. Consider the example
in Figure 1.4. Here, a thread could be forked@}, b(), or both. In the absence of spec-
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ulation, and ignoring function call costs, the parent hagile X + Y + Z. If a child is
forked ata() but notb() then the parent has length whereas the child’s length is any-
where between 0 and + 7, depending on how long takes. If a child is forked ai()
but nota() then the parent has length + Y and the child has length between 0 and
depending on how long + Y takes. If a child forked a() creates another child &t) ,
then the parent has lengfh, child 1 has length between 0 aid and child 2 has length
between 0 and. With respect to success rates, if children are forked byrarpdhread at
a() orb(), then they have probability/ and N of succeeding respectively. However, if a
child forked ata() forks another child ab() , then the probability of success for the child
forked atb() is M x N because a speculative dependence is created, and therBexd th
must succeed in order for the second to.

Tracking all of this data quickly becomes complicated. Nwlyas thread length and
success rate contingent upon which other threads have beated at fork time, but the
decisionnot to fork a thread can affect the lengths and success ratehief speculative
threads. In an ideal model, thread lengths and successwated be tracked according to
precise context. However, for our first approach, we simplysider every callsite to be a
possible fork point and use online profiling and feedbadkedr heuristics to filter out the
unprofitable ones, as described in Chapter 2. This is a coatpléynamic model. Broad
criteria include expected probability of speculation ®&s; return value predictability, the
number of previous speculation attempts, current speoalaesting depth and height, and
expected lengths of parent and child threads.

We found based on profiling that this approach yields threadths that are on average
too short, that there are a large number of factors that infle@especulation, and that we
need more insight into runtime behaviour to support thegiesi better fork heuristics. We
decided on this basis to study the structural features aftipppgrams that determine their
suitability for speculation, as described in Chapter 4. Wesadered a variety of common
programming idioms in abstract forms, and exhaustivelyaeg the relationship between
speculation decisions and parallel behaviour. The reswtpattern language for method
level speculation that draws on our nesting models as welkesing examples of method
level parallelism found in manually parallelized benchksar Many of our conclusions
apply equally well to non-speculative method level patal#ion techniques.
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VM fork
design heuristics

method level

Java language
speculation

considerations

return value
prediction

dependence
buffering

high RVP idle short
overhead processors threads

arbitrary
nesting

adaptive
RVP

S future
work ¢

Figure 1.5: Research process overview.

1.4 Roadmap

At a broad level, this thesis is structured around our reseprocess, as outlined in Fig-
ure 1.5. First, we built an initial SpMT prototype systemb@&&SpMT. This required several
components: 1) basic support for method level speculatubich creates child threads at
callsites and joins them when the parent invocation retu2figeturn value prediction,
which allows children forked at non-void callsites to predgast consumption of the re-
turn value, reducing misspeculations; 3) dependence findgfewhich allows for specula-
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tive children to read from and write to the Java heap in a gigoisolated fashion; 4) fork
heuristics, for deciding where and with what priority toatieechild threads; 5) a VM-based
design that allows for dynamic switching between non-slaise and speculative code;
and 6) support for many Java language safety consideratiaisding garbage collection,
object allocation, native methods, exception handlingetgde interpretation, dynamic
class loading, and the Java memory model. Although thiglmptototype system demon-
strated speedup in a relative sense, it slowed down in ariaessense due to overhead
costs. We then profiled the system to identify performandddmecks. This profiling re-
vealed three things: 1) ha software return value prediction has high overheadsc@3t
that spare processors in the system were mostly idle; 3gtimamitted threads were usually
quite short. We then identified corresponding optimizatittnaddress these bottlenecks: 1)
online adaptive return value prediction that dynamicatlgalizes on a per-callsite basis,
reducing unnecessary computation; 2) arbitrarily nestethod level speculation, which
allows for flexible thread creation by both speculative aod-speculative threads, in turn
providing processors with extra work; and 3) improved foekihstics based on a structural
approach to eliminating the creation of short threads. &oggimizations in turn lay the
foundation for future work on making method level specuolafieasible.

The remainder of this thesis is organized as follows. In Girdptve present the design,
implementation, and experimental evaluation of a softwae¢hod level speculation sys-
tem for Java. In Chapter 3 we explore software return valugigtien in detail, optimizing
for speed, memory consumption, and predictor accuracy. aptén 4 we describe a stack
model for nested method level speculation, and then useanatyse the speculative run-
time behaviour of a range of common programming idioms aniveél@ set of structural
fork heuristics. Chapter 5 we survey related work on speelatrallelization. Finally, in
Chapter 6 we discuss conclusions and future work.
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Chapter 2
Software Method Level Speculation for Java

Speculative multithreading has shown great promise asagegy for fine to medium
grain automatic parallelization. In a hardware contexdhieques to ensure correct SpMT
behaviour and significant performance gains are now wedbdished. However, hardware
is expensive to produce, and software alternatives areaidsi Further, data acquisi-
tion from and analysis of such systems is difficult and comptgpically being limited
to a specific hardware design and simulation environment. tik@r part, software and
virtual machine SpMT designs require adherence to highl levguage semantics and
their performance is limited by increased overhead. Thasifs can impose many addi-
tional constraints on SpMT behaviour, as well as open up ngyeKiunities to exploit both
language-specific information and software plasticity.

In this chapter we describe SableSpMT, our research SpMieinaork based on method
level speculation. We present a detailed design for thia-3gecific, software MLS sys-
tem that operates at the bytecode level and fully addreksgsroblems and requirements
imposed by the Java language and VM environment. We denadests use as a research
framework by including extensive analysis informatiorgluding data gathered from the
return value prediction component, results from the irdggn of static analyses, an anal-
ysis of speculation overhead, parallelism analysis, dyoamalysis based on runtime pro-
filing, runtime speculation behaviour analysis, and sppethalysis.

Our results provide a comprehensive survey of the corraipgrcosts and benefits
of software MLS for Java. We find that exceptions, GC, and dyoatass loading have
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only a small impact, but that concurrency, native methodd,raemory model concerns do
play an important role, as does an appropriate, languagefgpruntime SpMT support
system. Profiling results further indicate that return egbwediction performance, support
for in-order nested speculation, and improved fork heiggstre areas for future work. Our
experience indicates that full consideration of languagkexecution semantics is critical
to correct and efficient execution of high level SpMT desjgns work here provides a
baseline for future software implementations with feasuss complex as those found in
Java and the Java virtual machine.

2.1 Introduction

SpMT and MLS have been investigated through many hardwageogals and simulations,
and a smaller but not insignificant number of software desigach offering its own anal-
ysis of various implementation and optimization techngjuélowever, it is difficult to
evaluate these proposals with respect to and in combinafittneach other, as there are
multiple source languages, thread partitioning schemp®|TScompilers, and hardware
simulators being used. Even if these variables remain fites ,highly unlikely that an
identical software architecture and/or set of simulatiangmeters will be used. Further-
more, as a hardware problem, the issues of ensuring coesesctmder speculative execu-
tion have been well defined, such that different rollbackymcsronization approaches are
sufficient to guarantee overall correct program behaviSoftware approaches to SpMT,
however, need to take into account the full source languagestics and behaviour to
ensure correct and efficient execution, and in general shisot trivially ensured by low
level hardware mechanisms.

We present SableSpMT as a common framework and solutionegetproblems, as
an extension of the SableVM Java virtual machine [Gag02)l&spMT provides a conve-
nient hardware abstraction layer by operating at the bygleawstruction level, takes the full
Java language and VM specification into account, includlihby@ecode instructions, ob-
ject allocation, garbage collection, synchronizatiorgeptions, native methods, dynamic
class loading, and the Java memory model, supports statigsas through the Soot byte-
code compiler framework [VR00] and parsing of Java classfthbates [PQVR 01], and
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works on existing multiprocessor systems. SableSpMT éunpinovides a full set of SpMT
support features, including thread forking and joiningdeshen method level speculation,
dependence buffering, stack buffering, priority queugary return value prediction. Our
framework is designed to facilitate SpMT research, andiithes a unique debugging mode,
logging, and portability amongst the features that makeptapriate for experimentation
and new designs.

We report on both Java benchmark and framework behaviodlusirate the forms
of experimental and design analysis we support, and to staded the behaviour of our
system. Through dynamic measurements we show that whileuki®e coverage, or
the percentage of sequential program execution that osuasessfully in parallel, can
be quite high in Java programs, the overhead costs are smmtifenough in our initial
implementation to preclude actual speedup. However, walaeeto perform experiments
to determine upper bounds on speedup in the absence of alleack Furthermore, our
execution times are still faster than those offered by hardwimulators providing similar
functionality [KT98].

At a finer level of detail, we also break down the SpMT overheasts to determine
performance bottlenecks and set optimization goals. Incase overhead is dominated
by verification of speculative threads and the concomitat@rprocessor memory traffic,
lock and barrier synchronization, and update costs formetalue prediction. We also find
further opportunities suggested by short thread lengtlsaalack of available threads to
execute under our precise speculation model, out-of-dvtle® nesting. With regards to
RVP, results gathered within our framework extend prevituslies to include more real-
istic benchmark runs, offer further data on the relativediiésy requirements and costs of
various prediction strategies, and expose the potentradfiis of exploiting both static and
runtime feedback optimization information. Finally, larage and VM level speculation
also produce design constraints due to efficiency concdonsnstance, Java programs
tend to have frequent heap accesses, object allocatiodsnathod calls. Our runtime
SpMT support system accomodates this behaviour, and weateahe relative importance
of dependence buffering, stack buffering, return valualigteon, speculative allocation,
and priority queueing.

Hardware simulations have already demonstrated the goga{mal in speculative mul-
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tithreading. We contend that the same techniques, howesehe investigated more gener-
ally and efficiently at the virtual machine level using contityp multiprocessor hardware,
given an appropriate analysis framework. Virtual machigésv for exploration of com-
plex design changes, facilitate detailed instrumentapoovide high level information that
is not generally available to hardware approaches, andoded@interact directly with the
underlying architecture. Our work is intended to enable $piwestigations by providing
an execution and analysis environment as well as real data & working implementa-
tion. In addition to using SableSpMT to characterize botkdld parallelism and overhead
under software speculation, our work here aims to provideoeough Java SpMT design
and implementation suitable for future work and an undeditey of the requirements and
relative impact of high level language semantics.

2.1.1 Contributions

We make the following specific contributions:

e We describe SableSpMT, a complete implementation of MLS0&EpMT for Java
that runs on real multiprocessor hardware, and presentitsbdity as an analy-
sis framework. This is the first complete such work within gual machine. We
include descriptions of all major VM changes necessarfiing bytecode modifi-
cations, novel SpMT runtime support components, and thelimeyof Java language
features.

o We simplify the implementation and analysis of new SpMT gesiby providing
a deterministic, single-threaded uniprocessor mode dsasébgging facilities and
statistics gathering.

e We demonstrate that high level analysis information canas#iyeexploited by our
framework. Ahead-of-time results computed by Soot as weHumtime profiling-
based feedback can passed to our execution engine to impeofgmance, and we
illustrate the technique using our work on return value fotezh.

e We provide detailed data on the speculative execution of(SPEVI98 at size 100,
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a suite of non-trivial benchmark programs. These data dechubreakdown of over-
head costs, the impact of highly accurate RVP, measureraetymiamic parallelism,
the impact of Java language features and MLS support compmrand overall run-
ning times.

In Section 2.2 we give an overview of how our framework is ¢nrded and its main
features. This includes an exposition of the componentsired| for software MLS for
Java, our multithreaded execution and single-threadedgigg modes, system configu-
ration options, and data logging and trace generationffeatWVe then turn to the details of
our Java MLS design. In Section 2.3 we describe how to prepatbod bodies for spec-
ulative execution, in Section 2.4 we survey our speculativgime support components,
and in Section 2.5 we discuss the intricacies of the Javaigeand their interaction with
speculation. In Section 2.6 we analyse actual data, demaoingt the flexibility of our sys-
tem in terms of data gathering and providing a wide varietpladervations. Finally, we
conclude and discuss future work in Section 2.7. Related wpekcific to software MLS
for Java as well as alternative approaches is discussed pi€a

2.2 Framework

We begin with an overview of our framework, followed by a be&position of our multi-
threaded speculative execution model. Then we present sbthe features of our frame-
work that help with the implementation, debugging, and ysialof such a complex un-
dertaking, namely a single-threaded execution mode, mystifiguration options, and
support for logging and trace generation.

2.2.1 Overview

An overview of the SableSpMT analysis framework and Java Bgecution environ-
ment is shown in Figure 2.1. SableSpMT is an extension ofwhils-threaded bytecode
interpreter in SableVM [Gag02], an open source softwara yatwal machine. SableVM
adheres to the JVM Specification [LY99], and is capable ohmg Eclipse and other
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Figure 2.1: The SableSpMT method level speculation execution environment.

large, complex programs. The implementation is complefE)S1X-compliant and writ-
ten in ANSI C. SableVM ports exist for 13 different architees,, such that porting the
SableSpMT engine to new architectures should relativefygitforward; currently it runs
on multicore or multiprocessx86_64 machines. Most of the porting complexity derives
from defining the right atomic operations in assembly laiggua

Soot [VROO] is used to transform, analyse, and attach at&#io Javacl ass files in
an ahead-of-time step [PQVR1], although this could also occur at runtime. SableSpMT
reads in these classes during class loading, parsinguaésiland preparing method bodies.
These method bodies are implemented internallgcate arrayscontiguous sequences of
word-sized instructions and instruction operands derivedch Java bytecode. SableVM
already creates normal non-speculative code arrays atmeinRather than include condi-
tional checks in many non-speculative instructions, wesetio have SableSpMT duplicate
and modify the entire non-speculative code array at metleggration time to create an
exclusively speculative one. Sequential execution depentl/ the non-speculative code
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arrays, and interacts with normal JVM support componentecBlative execution causes
SableSpMT to fork and join child threads at runtime, andeélgepend on the speculative
code arrays for safe out-of-order execution. The matcpingffsets of instructions in these
code arrays allows for straightforward switches betweemsmeculative and speculative
execution. Two execution modes are provided, a singleatlee “simulation” mode and
a true multithreaded mode. The single-threaded mode at&srbetween non-speculative
and speculative execution in a single thread, whereas thighmeaded mode splits single
Java threads across multiple cores or processors.

Various SpMT runtime support facilities are needed, inciggbriority queueing, return
value prediction, dependence buffering, and stack buffersableSpMT also interacts with
SableVM’s own runtime support components, including a sgpaice copying garbage col-
lector, object allocation, native method execution, exiogdhandling, synchronization, and
the Java memory model. Outside of thread forking and joirspgculation has negligible
impact on and is largely invisible to normal multithreadebl ¥xecution. Specifically, it
uses what we define agro-sum speculative threadirguch that = max(n — p,0) spec-
ulative threads run only on free processors, wherge the number of processors apds
the number of non-sleeping non-speculative parent Jaeadisr

2.2.2 Multithreaded Execution Mode

Many components are needed for MLS to work properly in a JUM, full details of
which are given in Sections 2.3, 2.4, and 2.5. A high leveaé the multithreaded mode
involving multiple threads and method calls that bringsetbgr all of these components
is shown in Figure 2.2; the finer details of the execution opacsilative child can be
found in the depiction of our single-threaded simulatiordenm Figure 2.3. Adependence
bufferprotects main memory from out-of-order and possibly irvappeculative operations,
and some form o$tack bufferings necessary to give child threads a protected execution
context. NewSPMI_FORK and SPMr_JA N instructions surround every callsite; the fork
instruction enqueues child threads onto@f1) priority queue, which are dequeued and
executed on separate processors by Mefper threadsand the join instruction stops and
validates children, either committing or aborting them. the figure, children C1, C2,
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non-speculative parent

thread T1 0 O(1) priority queue 10

SPMT_FORK enqueue C1
INVOKEVIRTUAL

SPMT_FORK enqueue C2
INVOKEVIRTUAL

; free. SpMT helper thread pool
SPMT_FORK enqueue C3 Y X

INVOKEINTERFACE
— S1 S2 S3
|| SPMT_GETFIELD
~N
RETURN ] ;
SPMT JOIN| |delete C3 || sPMT_PUTFIELD
IRETURN CPU2| |CcPU3| |cCPU4
SPMT JOIN| |delete C2 |
- SPMT_MONITOREXIT !

free CPU pool

cleanup
ARETURN
SPMT_JOIN join C1

non-speculative execution -

synchronization points

speculative execution

Figure 2.2: Multithreaded execution mode.

and C3 are enqueued, but only C1 is executed and joined, met@ah§?2 and C3 are
deleted from the queueARETURN returns a reference andRETURN returns an integer,
which means that C1 and C2 need some kind of return value piedict execute safely.

On the other handRETURN is used for void methods, and so C3 does not need a predicted
value. While executing speculative code, we neexdlified bytecode instructiots protect
against unsafe control flow; for examp@&ETFI ELDis modified to read from a dependence
buffer, andMONI TOREXI T causes speculation to come to an abrupt halt, although & doe
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SPMT_FORK

if instance is null then stop .
if address not in write buffer .
if address not in read buffer Y
insert address as key
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ARETURN
SPMT_JOIN

non-speculative execution -
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‘| allocate child thread from free list
copy parent JNIEnv to child

copy parent stack frame to child
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adjust operand stack height
predict return value (optional)
save parent pc and stack_size

. | jump over invoke

*\ | switch to speculative code array

SPMT_GETFIELD

SPMT_PUTFIELD

SPMT_MONITOREXIT

enter parent target non-speculatively
all operations are permitted:
\ - reading from main memory
\ - writing to main memory
Y - throwing exceptions
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\ - locking and unlocking objects
\| - starting the garbage collector

return to non-speculative callsite |

get child pointer from stack frame
if (actual return value == prediction &&

5 gc was not called in parent &&

\ buffers did not overflow &&

\ read buffer passes validation)

then

. commit all values in write buffer

: copy all stack frames entered by child
v restore child pc and stack_size

\ | free child thread to free list

\| continue execution non-speculatively

Figure 2.3: Single-threaded execution mode.

not automatically force abortion. Finally, we need to makespeculation interacts safely
with exception handling, object allocation, garbage aditen, native method execution,
synchronization, class loading, and the Java memory model.

We make several different optimizations to these compani@enableSpMT, some of
the more notable ones being aggressive return value pi@d|[€tV04a, PV04b], improve-
ments to the dependence buffer, allowing for speculatikesiths to enter and exit methods,
better enqueueing algorithms, speculative object aliocaand reduction of interproces-
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sor memory traffic. Most of the techniques we have encoudter¢he literature can be
implemented within our framework; in Section 2.6 we illagé typical data gathering and
analysis using our work on return value prediction and trexsfative engine itself as ex-
amples.

2.2.3 Single-Threaded Execution Mode

One of the unique features of our design is a single-threantedlation mode that mimics
the process of speculative execution in a single thready Barin the development of Sa-
bleSpMT, we found ourselves wanting some way to test the colpts we had written in
the context of an executing JVM, without introducing the gdeity of actual concurrency
into our debugging process. The resulting deterministgigieis shown in Figure 2.3. In
this mode a single thread of Java execution follows the ceta@peculative control flow.
Upon reaching a fork point, the method call is skipped, ardeitisuing continuation code
is executed speculatively; when a terminating conditiore@éched, the same thread jumps
back to the non-speculative execution of the method catl ugnon returning from the call,
it attempts to join with its own speculative result.

There are three primary advantages to having this singéatied simulation mode.
First, it allows for testing of SpMT components in an incogtplsystem, most importantly
one without multiprocessor support. It does so by providitade saving and restoral, and
interleaving the execution of speculative and non-spéigelaode. Second, by not running
multiple threads it prevents race conditions, deadloakd raemory traffic from interfering
with development, helping to minimize the search space Whesd with debugging. We
were able to alternate coding with designing support for MicSording to the full JIVM
Specification, and only after we had completed a requiresramalysis in this manner did
we develop the multithreaded execution mode. Third, it mesa have the foundations
for Java checkpointing and rollback within a virtual maehifhis has utility for Java out-
side of SpMT, for example in traditional debugging [CooO3tabase transactions such as
j ava. sqgl . Connect i on, formal verification [Eug03], fault-tolerance [FK03], asdft-
ware transactional memory [LRO6].
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2.2.4 System Configuration

In our framework, system properties specified on the comnliagdare used to select dif-
ferent SpMT algorithms and data structures, which fatdgaexperimental analysis by
eliminating the need for multiple VM builds. As changes t®B&&pMT are introduced,
rather than outright replace old control flow or adjust cant to optimal values, sys-
tem properties are used wherever possible, and thus itigstforward to make controlled
comparisons with old configurations and revert if necesdarynalized builds, these prop-
erties can be automatically converted to constants viarpecegsor directives and a single
Autoconfconf i gur e option, so that the added runtime overhead of conditioresny
them will be optimized away. There are over 50 such propemi&ableSpMT, controlling
everything from maximum RVP hashtable sizes to the numbexetuting MLS helper
threads, and it is easy to introduce new ones. The only oifaifisant compile-time
conf i gur e options in SableSpMT allow the user to 1) enable MLS in the fitace, 2)
enable debugging and assertions, and 3) enable statiatlosrgng for post-execution anal-
ysis.

2.2.5 Logging and Trace Generation

Finally, SableSpMT provides a comprehensive logging amcktgeneration system that can
present Java SpMT events by themselves, or interleave th#mexisting execution traces
of class loading, method invocation, garbage collectigngBronization, and bytecode ex-
ecution. An example trace with interleaved method invacgtbytecode, and SpMT events
is shown in Figure 2.4. Here a speculative child executesthmstructions of the continua-
tion past a non-speculative call @j ect . <i ni t > before being successfully committed.
These traces are primarily useful for debugging purposesnvitmplementing new tech-
niques. SableVM supports only the JVMDI and JDWP for intagratvith debuggers at
this time, and although we do not provide trace compressicanamplementation and
extension of the related JVMPI or JVMTI profiling interfac#sese facilities could be in-
corporated to permit detailed analysis of SpMT executiands, using a dynamic metrics
tool such as *J [Duf04].

35



Software Method Level Speculation for Java

Thread pthread type code address  bytecode instruction or intermdl eve
T1 P16384 N @x2a976bad68 ALOAD.O
T1 P16384 N @x2a976bad70 SPMI_FORK
T1 P16384 N <internal > enqueue spmt child @x5ed850
T1 P16384 N @x2a976bad88 | NVOKESPECI AL
T1 P49156 S <internal> dequeue spnt child @x5ed850
T1 P49156 S
T1 P16384 N <internal > entering javal/lang/ Object.<init>()V
T1 P49156 S (@x2a976baf38 ALOAD.O
N
S
N
N
S
N
S
N

<internal > start spnt

Tl P16384 @x2a976baf 90 RETURN

Tl  P49156 @x2a976baf 40 ALOCAD.1

T1 P16384 <internal > exiting javal/lang/ Object.<init>()V
T1 P16384 @x2a976badb0 SPMr_Ja N

Tl  P49156 @x2a976baf 48 SPMI_PUTFI ELD

T1 P16384 <internal > signalling spnmt thread halt @x5ed850
Tl  P49156 <internal > stop spnmt - signalled by parent

T1 P16384 <internal > spm passed @x5ed850

Figure 2.4: SpMT execution tracdlype N means non-speculative and type S means speculative.

2.3 Speculative Method Preparation

Before speculative execution can begin, method bodies neugteparedfor MLS. This
process entails parsing classfile attributes for statitdyarsainfo, inserting fork and join
points, and modifying bytecode instructions. The actualegation of a parallel specula-
tive code array occurs when a given method is invoked for tisetfime. Once primed for
speculation, a child thread can be forked at any callsiteiwithe method body. Further-
more, speculation can continue across method boundariesmigss the methods being
invoked or returned to have been similarly prepared.

2.3.1 Static Analysis and Attribute Parsing

An advantage to language level SpMT is the ability to use gkl program informa-
tion. In our case, we use the Soot bytecode compiler framejddR00], a convenient tool
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Figure 2.5: Static analysis integration.

for ahead-of-time static analysis and transformation andbsence of the runtime static
analysis support typically found in JIT compilers. In Figut.5 we show the use of Soot
to transform the base input Java classfiles in order to i8R _FORK and SPMI_JO N
instructions. The same process can also be used to appeiccastalysis information as
classfile attributes [PQVR01], which are then interpreted by the SpMT engine duringsla
loading. We use attributes to encode the results of two aralfor improved RVP using
Soot [PV04a]. During method preparation, the analysis detaassociated with callsites
for use by the RVP component; a summary of results is givereati@n 2.6.2.

2.3.2 Fork and Join Insertion

The SableSpMT engine needs the ability to fork and join cthil@ads. TheSPMI_FORK
and SPMr_Ja N instructions provide this functionality. Under MLS threadre forked
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and joined immediately before and after method invocatiand so these instructions are
inserted around evenyNVOKE<X> instruction. This design is callsite-oriented; a target-
oriented design would insert the fork and join instructiahmethod entry and exit instead.

The actual insertion by Soot involves placing calls to dunstatic voidSpnt . f or k
andSpnt . j oi n methods around every callsite, and then during runtime oueginepara-
tion replacing these with the appropri&eMr _FORK andSPMT_JO Ninstructions. This ap-
proach has several advantages: first, transformed classilleun in the absence of SpMT
support, the dummy methods being trivially inlined; secantkgration with a static analy-
sis to determine good fork points is facilitated; and thingtecode offsets are automatically
adjusted.

2.3.3 Bytecode Instruction Modification

The majority of Java’s 201 bytecode instructions can be uséoatim for speculative ex-

ecution; however, roughly 25% need modification to proteeiiast potentially dangerous
behaviours, as shown in Table 2.1. If these instructionewesodified in place, the over-

head of extra runtime conditionals would impact on the spé®dn-speculative execution.

Instead, modification takes place in a duplicate copy of ttaearray created especially
for speculative execution. Indeed, the only significaningfeato non-speculative bytecode
is the insertion of fork and join points. Problematic opienas include:

e Global memory accesReads from and writes to main memory require buffering,
and so thecX>A( LOAD| STORE) and( GET| PUT) ( FI ELD| STATI C) instructions are
modified to read and write their data using a dependencerpaffelescribed in Sec-
tion 2.4. If final or volatile field access flags are set, thesgructions may also
require a memory barrier to correctly order memory accessedescribed in Sec-
tion 2.5, in which case speculation must also stop.

e ExceptionsIn unsafe situations, many instructions must throw exoaptto ensure
the safety of bytecode execution, including L) ( DI V| REM that throw amri t h-
met i cExcept i on upon division by zero, and others that may throwud | Poi n-

t er Exception, Arrayl ndexQut Of BoundsExcept i on, or Cl assCast Excep-
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instruction reads| writes| locks [unlocksallocates throws | enters | loads | orders|forces
global|global| object| object| object |exceptionnative codéclass(esimemory stop
CGETFI ELD yes maybe once | maybe|maybe
GETSTATIC yes once | maybe|maybe
<X>ALOAD yes maybe maybe
PUTFI ELD yes maybe once | maybe|maybe
PUTSTATI C yes once | maybe|maybe
<X>ASTORE yes maybe maybe
(I'|L)(DI'V|] REM maybe maybe
ARRAYLENGTH maybe maybe
CHECKCAST maybe once maybe
ATHROW yes yes
| NSTANCECF once maybe
RET maybe
MONI TORENTER | yes | yes | yes maybe yes yes
MONI TOREXI T yes | yes yes maybe yes yes
I NVOKE<X> maybemaybemaybe maybe | maybe | once | maybe|maybs
<X>RETURN maybemaybe maybe maybe | maybe | once | maybe|maybe
NEW yes yes maybe once maybe
NEWARRAY yes yes maybe maybe
ANEWARRAY yes yes maybe once maybe
MULTI ANEWARRAY yes yes maybe once maybe
LDC_STRI NG once once

Table 2.1: Java bytecode instructions modified to support speculati@th instruction is marked

according to its behaviours that require special attention during speeuttecution. These be-

haviours are marked ‘once’, ‘maybe’, or ‘yes’ according to theiratailities of occurring within

the instruction. ‘Forces stop’ indicates whether the instruction may forceirtation of a spec-

ulative child thread, but does not necessarily imply abortion and failuret sNown are branch

instructions; these are trivially fixed to support jumping to the right
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ti on. Application or library code may also throw explicit excepis usingATHROW

In both implicit and explicit cases, speculation rolls béckhe beginning of the in-
struction and stops immediately; however, the decisiomtotaor commit is deferred
until the parent joins the child. Exceptions must also bedrehsafely if thrown by
non-speculative parent threads with speculative childasmliscussed in Section 2.5.

Detecting object referenced he | NSTANCECF instruction computes type assigna-
bility between a pre-specified class and an object referendbe stack. Normally,
bytecode verification promises that the stack value is adveayalid reference to the
start of an object instance on the heap, but speculativeuggeccannot depend on
this guarantee. Accordingly, speculation must stop if #fenence does not lie within
heap bounds, or if it does not point to an object header. Cilyres insert a magic
word into all object headers, although a bitmap of heap wirdbject headers would
be more accurate and space-efficient.

Subroutines.JSR (jump to subroutine) is always safe to execute because the ta
get address is hardcoded into the code array. However, thenraddress used by
its partnerRET is read from a local variable, and must point to a valid ingian.
Furthermore, for a given subroutine, if tdSR occurs speculatively and tHeET
non-speculatively, or vice versa, the return address naustdusted to use the right
code array. Thus a modifietbn-speculativ&ET is also needed.

Synchronization.The | NVOKE<X> and <X>RETURN instructions may lock and un-
lock object monitors, ant¥ONI TOR( ENTER| EXI T) will always lock or unlock ob-

ject monitors; they furthermore require memory barrierd are strongly ordering.
These instructions are also marked as reading from anchgriti global variables,
as lockwords are stored in object headers. In our designsspeoulative threads
that encounter a locked object monitor must block and caheobme speculative
instead. Similarly, speculative threads that encountek & unlock operations are
always forced to stop. We discuss related work on specel&ioking in Section 5.7
and future work on speculative locking in Section 6.2.1.
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e Method entry. Speculatively,] NVOKE<X> are prevented from entering unprepared
methods and triggering class loading and method preparaforthermore, at non-
static callsites, the receiver is checked to be a valid objestance, the target is
checked to have the right stack effect, and the type of tlgetarclass is checked for
assignability to the receiver’s type. Invokes are also @néxd from entering native
code or attempting to execute abstract methods.

e Method exit. After the synchronization check, tkex>RETURN instructions require
three additional safety operations: 1) potential buffgiwhthe non-speculative stack
frame from the parent thread, as described in Section 2 ver#fying that the caller
is not executing greparation sequengea special group of instructions used in
SableVM to replace slow instructions with faster versiarg] 3) ensuring that spec-
ulation does not leave bytecode execution entirely, whiolilds mean Java thread
death, VM death, or a return to native code.

e Object allocation Barring an exception being thrown or GC being triggered Nl
and ( ( MULTI | ) Al ) NEWARRAY instructions are safe to execute. THBC_STRI NG
specialization of.DC allocates a constast r i ng object upon its first execution, the
address of which is patched into both non-speculative aedusgtive code arrays,
and forces speculation to stop only once. Allocation and @&Qisscussed in greater
detail in Section 2.5.

2.3.4 Parallel Code Array Generation

The goal of this extensive bytecode modification is to prejparallel code arrays for spec-
ulative execution, as shown in Figure 2.6. The non-spegslatray is duplicated, branch
targets are adjusted, and modified instructions replaceamdnon-speculative versions
where necessary. Additionall$PMI _FORK andSPMT_JO N surround every NVOKE<X> in
both code arrays, enabling both non-speculative and spa@ithreads to create and join
children. Transitions between non-speculative and spéigalexecution are facilitated by
identical instruction offsets in each array.
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Figure 2.6: Parallel code arrays.(a) non-speculative code array prepared for methad; (b)
speculative version of the same code array with modified instructions.

2.4 Speculative Runtime Support

Following the preparation of method bodies for speculagixecution, the speculation en-
gine makes use of various runtime support components thatart with bytecode and
allow for child thread forking, queueing, execution, anihijjog to take place while ensur-
ing correct and efficient execution through appropriaterrevalue prediction, dependence
buffering, and stack buffering.

2.4.1 Thread Forking

Speculative child threads are forked by non-speculativerga and also by speculative
children atSPMI_FORK instructions. Speculating at every fork point is not neagisopti-
mal, and in the context of MLS various heuristics for optimgfork decisions have been
investigated [WKO05]. SableSpMT permits relatively arbmgréork heuristics based on run-
time profiling information; however, we limit ourselves tsiaple “always fork” strategy
in this chapter as a more generally useful baseline measmtetm Chapter 4 we consider
structural fork heuristics for MLS.

Having made the decision to fork a child, several steps apeimed. First, those vari-
ables of the parent thread environment that can be accegsedlatively are copied to a
child thread environment. The parent environment J8NBEnv struct, and so each child
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thread needs &Nl Env struct of its own. In this fashion, the child assumes the titheof

its parent. Second, a child stack buffer is initialized amel parent stack frame is copied
to the child, giving it an execution context. Third, a depemck buffer is initialized; this
protects main memory from speculative execution, and alltav child validation upon
joining. Fourth, the operand stack height of the child isuatgd to account for the stack
effect of the invoke following the fork point, and thee of the child is set to the first
instruction past the invoke. Fifth, a return value is présticfor non-void methods; tech-
nically, any arbitrary value can be used as a predictiohpalgh the chance of speculation
success is greatly reduced by doing so. Speculation in tike ttien begins, continuing
until some stopping condition is reached: either unsaférobfiow, a predefined sequence
length limit, or the parent signalling the child from a joiaipt. The complete join process
is discussed in Section 2.4.6.

In the above steps, memory reuse is critical in reducing Weehead of thread environ-
ment, dependence buffer, and stack buffer allocation. \Werdee our child thread memory
allocator fully in Section 4.2. Further, to reduce the fakioverhead on non-speculative
parent threads, the child is enqueued on the priority quétee the first step and the re-
maining steps occur in a separate helper thread after thebishiemoved from the queue
for execution.

2.4.2 Priority Queueing

In the default multithreaded speculative execution modddien are enqueued at fork
points on a globalD(1) concurrent priority queue. As discussed, a minimal amodint o
initialization is done prior to enqueueing to limit the ingbaf fork overhead on non-
speculative threads. Priorities 0-10 are computenhiag! x /1000, 10), wherel is the
average bytecode sequence length ansl the success rate; higher priority threads are
those that are expected to do more useful wéork.computed as,/ f, wheref is the total
number of speculative threads forked at the current caltsidi, is the total number of
speculative instructions executed by these threads. &imil is computed as/ f, where

c is the total number of successful commitsitself is computed as. + i,, wherei. and

1, are the number of instructions executed by committed andedthreads respectively.
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Internally,i., i,, c, andf are runtime statistics gathered at each callsite. Funtheestrength
reducel x r = (i. + i,/ f) X (¢/f) to ((i. + i) x ¢)/(f x f), replacing one out of two
divide operations with a multiply. This formula implies thvae consider long threads with
low success rates and short threads with high success catesds good as each other.
A more sophisticated priority computation might include trarious sources of overhead
identified in Section 2.6.3. Although the “always fork” hetic used in our experiments
forks threads independent of priority, it is straightford/éo use a heuristic that forks only
above a certain priority.

The queue consists of an array of doubly-linked lists, ome&ah priority, and supports
enqueue, dequeue, anddel et e operationsenqueue inserts a thread into the beginning
of a list with a specified prioritylequeue removes a thread from the end of the highest pri-
ority non-empty list, andel et e unlinks the specified thread. Helper OS threads compete
to dequeue and run children on separate processors; ousuerspeculative threading
model ensures that one helper thread is active per free ggocen the system. If a parent
thread joins a child that it previously enqueued, and thdd chd not get dequeued by a
helper OS thread, the child is deleted by simply unlinkinfygdm the list for that priority,
and its memory is recycled. Otherwise, the child has stapedulative execution, and so
the parent signals it to stop before beginning validatidme Gueue is globally synchronized
using spinlocks, which works well for a small number of pities and processors [SZ99].

Although commits always occur in correct program order,gtherities we use do im-
ply an ordering to thdeginningof speculative thread execution. This ordering can invert
or maintain the dependence ordering between threads. Batht@ads with different pri-
orities both waiting on the priority queue, the higher piiothread # will begin execution
before the lower priority thread, even if in sequential program ordércomes beforédd.
The only exception is if{ is deleted from the queue by its parent. For two threads of the
same priorityA and B attached to a parent thredt] where A occurs earlier in sequen-
tial program order tham, either in-order or out-of-order nesting is possible, asashin
Figure 2.7, each of which has different implications forax@n ordering.

Under in-order nesting, whete forks A and thenA forks B, there is only one possible
ordering of queue operationst is enqueued/ is dequeuedpB is enqueued, and finally
B is either dequeued or deleted. This is true even whemd B have different priorities.
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Figure 2.7: In-order nesting vs. out-of-order nesting.

Under out-of-order nesting, where the same parent thifadks A in a higher stack frame
than B (assuming call stacks grow upward®) will be enqueued beford. In our design,
dequeueing threads removes them from the end of the prigitysuch thatB will also
begin execution beford, maintaining the out-of-order relationship between thredls.

It would be straightforward to conduct alternative expenms in which dequeueing
threads removed them from the beginning of the priority ksirrecting the execution or-
dering betweem and B to be in-order in the case of out-of-order nesting. We chose t
prioritize B over A under out-of-order nesting to allow for a longer parent etieo in
the event that” returns toA’s fork point before it has been dequeued, thereby deleting
it from the queue instead of joining it. Although our final iementation of SableSpMT
supports both in-order and out-of-order nesting, the erparts in this chapter are based
on an initial version that only supports out-of-order negtit was the profiling work here
that motivated the later in-order nesting support. Both &iofithread nesting are explored
in detail in Chapter 4.
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2.4.3 Return Value Prediction

Speculative children forked at non-void callsites needr therand stack height adjusted
to account for the return value, and must be aborted if arriacbvalue is used. Accurate
return value prediction can significantly improve the perfance of Java MLS, particu-

larly because return values are on average consumed withimsfructions after a method
call [HBJO3]. We previously reported on our initial returdwa prediction implementation

in SableSpMT [PV04b] and the use of two static compiler asedy{PV04a]. The attributes
generated by the RVP compiler analyses are parsed durigpchpteparation, and can be
used to relax predictor correctness requirements and eeohgmnory consumption. We
discuss these analyses in Section 2.6.2.

We depend on a variety of well-known predictors in the ihitigplementation of Sable-
SpMT used for the experiments in this chapter. Fixed-spaseyds include last value and
stride predictors (Table 3.1), a two-delta stride preditable 3.2), and a parameter stride
predictor (Table 3.6). The table-based designs we use awensim Figure 2.8. They in-
clude a finite context method predictor that hashes togetikstory of the last five return
values (Table 3.4), and a new memoization predictor thabdmsogether method argu-
ments (Table 3.5). These six predictors are unified by a tdymedictor that executes and
updates them all on every method invocation, selecting &%t performing one to make
a prediction (Table 3.7). Hybrid predictors are associat#l individual callsites, along
with other dynamic per-callsite information. In Chapter 3exglore the RVP subsystem, a
wider variety of sub-predictors, and adaptive optimizagito the hybrid predictor in detail.

The hybrid predictor we use maintains a dynamic measureeafigior accuracy per
callsite, as discussed in Chapter 3. The accuracy of a givenichgredictor instance can
be used as a measuregrédictor confidencéor that callsite. We did not include predictor
confidence as a separate input to the priority computatiscudsed in Section 2.4.2, for
the success rate measure used already includes returrpvatlietor confidence implicitly.
This is because return value prediction failure induces@aéion failure. Nevertheless,
it would be straightforward to modify SableSpMT to incluagurn value predictor confi-
dence explicitly in the priority computation and thus dyn@fork heuristics.
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Figure 2.8: Table-based return value prediction.

2.4.4 Dependence Buffering

Many SpMT designs propose a mechanism to track specul&adsrfrom main memory
and buffer speculative writes to main memory to protectregfadependence violations; if
not, they propose an alternativado loggingmechanism to reverse speculative writes. We
focus on tracking reads and buffering writes, which we rédegollectively asdependence
buffering In hardware, dependence buffers can be built as table Isasedures similar to
caches [SCZMO05]. We propose a similar design for software B@g shown in Figure 2.9.
In Java, main memory consists of object instances and aoaybe garbage-collected
heap, and static fields in class loader memory. As discuss&edtion 2.3.3, one set of
bytecodes writes to class static, object field, and arraypete locations, and a matching
set reads from these locations. We modified the speculagirgons of these bytecodes to
access the dependence buffer instead of main memory.

At a high level, the dependence buffer maps addresses tes/aging a write hashtable
layered on top of a read hashtable, which in turn is layeretoprof main memory. A
speculative write to the buffer goes directly to the writsttable, overwriting any previous
value for that address, such that the buffer always conthmdatest speculative writes.
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Figure 2.9: Dependence bufferingVhen a speculative global read instruction is executed, first the
write buffer is searched, and if it does not contain the address of #ieedevalue then the read
buffer is searched. If the value address is still not found, the valtieadtaddress is loaded from
main memory. When a speculative global write instruction is executed, the wiffe¥ s searched,
and if no entry is found a new mapping is created.

A speculative read from the buffer first searches the wrightable. If the value is not
found, it searches the read hashtable. If the value is gilfound, it is retrieved from
main memory and stored in the read hashtable, such that ffex lalways contains the
earliest speculative reads. Thus the read hashtable tR&Rsdependences and the write
hashtable buffers WAR and WAW dependences. Note that ougrie®es not support
forwarding values between buffers in different specutativeads. This is an optimization
that can reduce misspeculations, and we include it as patirdfiture work in Section 6.2.
At a low level, buffers are attached to speculative thregdatb and implemented as
pairs of hashtables. For a given read or write hashtablejatues are stored and retrieved
using the value address as a key. We use open addressinghbiashtith double hashing
for fast lookup [CLRSO01]. The algorithm to find the index of aajgivkey (address) is
provided by the functiosear ch_t abl e_f or _key shown in Figure 2.10. It requires that
the table size be a power of two. For a particular key and haa#htthis algorithm will
search until one of the following three cases is true: eitherkey is found, the key is not
found and there is an empty slot for a new key, or the key isawatd and there are no empty
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wor d_t
search_table_for_key (table_t »table, word_t key)
{
bool ean_t new _key = FALSE
bool ean_t found = FALSE
word_t index = O;
word t hash_1 key & (table->size - 1);
word_t hash_2 hash_1 | 1;
for (word_t i 0; i < table->size & !new key && !found; i++)
{
i ndex = (hash_1 + i * hash 2) & (table->size - 1);
if (table->keys[index] == 0)
new _key = TRUE;
i f (tabl e->keys[index] == key)
found = TRUE;

}
if (new_key)
{
t abl e- >keys[ i ndex] = key;
tabl e->entri es[tabl e->l oad++] = index;
}

else if (!found)
t abl e- >overfl ow = TRUE
return index;

Figure 2.10: Source code for hashtable key index lookup based on double hashing.

slots, which means that the table is overflowing. In the eséatnew key being added, its
index is appended to an array-based list of entries. Thissligter used for fast iteration
over hashtable elements during validation, committal, rsset operations. The key index
retrieved by this function is used as an index into an arrayatifies to implement buffer
read and write operations. Note that we also use open aduydsashtables with double
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hashing to implement the table-based return value predidescribed in Section 2.4.3 and
Chapter 3, except that there the input keys are computed asagesdigests.

For the experiments in this chapter, each child thread haes peirs of read and write
hashtables associated with it: one pair for each of the dmld primitive types and another
pair for reference types. These tables each have a fixedibapat28 entries. When we
later refactored SableSpMT into the implementation indibs[PVKO7], we used a single
pair of read and write hashtables for the entire thread aggkthvalues according to their
widths to differentiate between types. Further, althougtsé new tables are also created
with an initial 128 entry capacity, they can expand dynaithyca

2.4.5 Stack Buffering

In addition to heap and static data, speculative threadsatsayaccess local variables and
data stored on the Java operand stack. It follows that stec&saes must be buffered
to protect the parent stack in the event of failure, as shawFigure 2.11. The simplest
mechanism for doing so is to copy stack frames from pareaaths to separate child stacks
both on forking children and on exiting methods speculftivedditionally, children must
create new stack frames for any methods they enter.

Pointers to child threads are stored one per stack frames dlluws for convenient
out-of-order thread nesting [RTI05], such that each parent can have multiple immediate
children. This in turn exposes significant additional patesim. When in-order speculation
is combined with out-of-order nesting it can lead to a treehiiiren for a single fork point.
In this chapter we consider only out-of-order nesting; fulpport for in-order nesting is
described in Chapter 4.

2.4.6 Thread Joining

Upon reaching some termination condition, a speculativiel ahill stop execution and
leave its entire state ready for joining by its parent. Thiédahnay stop of its own accord if
it attempts some illegal behaviour as summarized in Talilgfdt reaches arlder sibling
that is, a speculative child forked earlier on by the sameraat a lower stack frame, or if
it reaches a pre-defined speculative sequence length [iné.parent may also signal the
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Figure 2.11: Stack buffering. fthroughf6 are stack frames corresponding to Java methods. A
speculative child is forked d4 in the parent, and in turn a second-generation grandchild thread is
forked atf5 in the child. Note that this constitutes in-order nesting. Stack frames areredfon
forking, and additionally when children return from methoi®sin the grandchild is buffered from

the non-speculative parent, as its immediate ancestor never descefayedBbe

child to stop if it reaches the join point associated with¢hid’s fork point, in which case
it will attempt to join the child, or if it reaches the childferking frame at the top of the
VM exception handler loop, in which case it will unconditaly abort it.

The join process involves verifying the safety of child extéan and committing results.
First, a full memory barrier is issued, and the child is thalhdated according to four tests:
1) the predicted return value is checked against the actair value for non-void meth-
ods, according to the safety constraints of static analy®é84a]; 2) the parent is checked
for not having had its root set garbage-collected sincerigrihe child; 3) the dependence
buffers are checked for overflow or corruption; and 4) vaindbe read dependence buffer
are checked against main memory for violations.

If the child passes all four tests, then the speculatiorfes sdl values in the write buffer
are flushed to main memory, buffered stack frames enteretiebgttild are copied to the
parent, and non-speculative execution resumes witlp¢hend operand stack size set as
the child left them. Otherwise, execution continues noeesjatively at the first instruction
past theSPMT_JO N. Regardless of success or failure, the child’s memory isaledyfor
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use at future fork points, as described in Section 4.2. Nweluffer commits may result
in a reordering of the speculative thread’s write operatjovhich must in turn respect the
requirements imposed by the Java memory model, as discusSedtion 2.5.

2.5 Java Language Considerations

Several traps await the unsuspecting implementor tha toieenhance a JVM to support
method level speculation. These traps are actually coterfEsof the Java language —
class loading, object allocation, garbage collectionjveatnethod execution, exception
handling, synchronization, and the Java memory model — abava SpMT implemen-
tation must handle them all safely in order to be consideudlgl §eneral. The impact of
these features is measured in Section 2.6.6.

2.5.1 Class Loading

All methods in Java belong to some class, such that eachinorgalass must be linked,
loaded, and initialized before its methods can execute.eSdasses are loaded as part of
a VM bootstrap process, whereas others are loaded whengheeference to them is en-
countered. In our design speculative class loading is eread simply forces speculation
to stop. The cost is small for most programs since classesdydoaded once.

2.5.2 Object Allocation

Object allocation occurs frequently in many Java programsh that permitting speculative
allocation significantly increases maximum child threawbkbs. A benefit of speculative
allocation is that it becomes unnecessary to buffer acedssebjects allocated specula-
tively. Speculative threads can either allocate withouickyonization from a thread-local
heap, or compete with non-speculative threads to acquitelaigheap mutex. Specula-
tion must stop if the object to be allocated has a non-trifirallizer, i.e. not bj ect . -
finalize, for it would be incorrect to finalize objects allocated byebd children. Al-
location also forces speculation to stop if either GC ooanCf Menor yEr r or would be
triggered as a result. Object references only become gitihon-speculative Java threads
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upon successful thread validation and committal; abort@dren will have their allocated
objects reclaimed in the next collection. Although this siaecrease collector pressure,
we did not observe any difference in GC counts at the defaaplsize when speculative
allocation was enabled.

2.5.3 Garbage Collection

All objects in Java are allocated on the garbage-collected heap. This is one of the
main attractions of the language, and as such, any seriopsgal to extend it must con-
sider this feature; indeed, many Java programs will simply out of memory without
GC. SableVM uses a stop-the-world semi-space copying ¢otley default, meaning that
every object reference changes upon every collection; stiysspeculative thread started
before GC must be invalidated after GC. Speculative thregemeaisible to the rest of the
VM and are not stopped or traced during collection. Howelvecause heap accesses are
buffered, speculation can safely continue during GC, eveiiihately the computation is
wasteful. The mechanism for invalidation is simple: thieade aborted if the collection
count of the parent thread increases between the fork amggants. The default collector
in SableVM is invoked relatively infrequently, and we findattGC is responsible for a
negligible amount of speculative invalidations. Other Ggbdathms are trickier to nego-
tiate with, and may require either pinning of speculativetgessed objects or updating of
dependence buffer entries.

2.5.4 Native Methods

Java provides access to native code through the Java Nateréalce (JNI) [Lia99]. Native
methods are used in class libraries, application code, ¥ itself for low-level oper-
ations such as thread management, timing, and 1/O. Althdiughg-dependent execution
cannot always be sped up, speculation can still be usefulinktance, consider higher
quality processing of video playback buffers by specudativeads. Speculation must stop
upon encountering native methods, as these cannot be egeow buffered environment
without significant further analysis. However, non-spativeé threads can safely execute
native code while their speculative children execute pytednde continuations.
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2.5.5 Exceptions

Implicit or explicit exceptions simply force speculatiandtop. Speculative exception han-
dling is not supported in SableSpMT for three reasons: lggtkons are rarely encoun-
tered, even for “exception-heavy” applications suchask (refer to Table 3.8); 2) writing
a speculative exception handler is somewhat complicateti3giexceptions in speculative
threads are often the result of incorrect computation, hod turther progress is likely to
be wasted effort.

Non-speculatively, if exceptions are thrown out of a metimoskearch of an appropriate
exception handler, any speculative children encountesestack frames are popped must
be aborted. In order to guarantee a maximum of one child pek $tame, children must
be aborted at the top of the VM exception handler loop, befomging to the handler
pc. This prevents speculative children from being forkeddeseithercat ch orfinal | y
blocks while another speculative child is executing in thes stack frame.

2.5.6 Synchronization

Object access is synchronized either explicitly by Mosl TORENTER andMONI TOREXI T
instructions, or implicitly via synchronized method enémyd exit. Speculative synchro-
nization is unsafe without explicit support [MT02], and rhfce children to stop; some-
what surprisingly, synchronization has been unsafely igddy past Java SpMT stud-
ies [CO03a, HBJO3]. Non-speculatively, synchronizationagisvremains safe, and it is
even possible to fork and join speculative threads insideal sections.

2.5.7 The Java Memory Model

The Java memory model [MPAQO5] imposes constraints on rhud#tded execution; these
constraints can be satisfied by inserting appropriate mgbariers [Lea05b]. Speculative

execution can only continue past a memory barrier if the dédpece buffer records an exact
interleaving of memory accesses and the relevant barreratipns; that we reuse entries
for value addresses already in the buffer and do not recondanebarriers precludes doing

S0 in our current implementation.
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The orderings required for various API calls, including repeculative thread creation
and joining, are provided by our design due to their implet@gons as native methods,
which already force speculation to stop. For object synaizadgion several rules apply;
most critically, a memory barrier is required before unlagerations to guarantee that
writes in the critical section are visible to future threagering the same monitor. By
disabling speculative locking entirely we provide a mucbsgier guarantee than required;
future work on speculative locking will need a finer graing@g@ach.

Loads and stores of volatile fields also require memory eexrto ensure interprocessor
visibility between operations. Java also providds aal keyword which can be used to
annotate fields. A non-static final field can only be writtennae in the constructor method
of the class that defines it. Loads and stores of final fieldsiredparriers, except that on
x86 andx86_64 these are no-ops [Lea05b]. However, speculatively, we stogton final
field stores, which appear only in constructors, to enswaealiinal field is not used before
the object reference has been made visible, a situationstingdde possible by reordering
writes during commit operations. Our conservative sotui®to stop speculation on all
volatile loads and stores and also all final stores.

2.6 Experimental Analysis

In this section we present various kinds of analysis avkalaising SableSpMT, which
themselves form an analysis of the MLS engine itself. Thesdyaes include analysis of
our return value prediction framework, static analyse$mfgaroved return value prediction,
speculation overhead analysis, parallelism analysispempirofiling, Java language feature
and MLS support component analysis, and speedup analysesprvide experimental
results that demonstrate how these analyses give insighthie properties of individual
benchmarks, components of the framework, and the frameasewhole. We also show
how the results suggest interesting areas for future ilgaggin and optimization research.
Our codebase consisted of SableSpMT revision 4320, an e&tenf the SableVM
1.1.9 switch interpreter. SableSpMT also includes vargtasic analyses that depend on
slight modifications to Soot found in Soot revision 1704. Boe JDK class libraries,
SableVM Classpath revision 3311 was required, itself a déwe of GNU Classpath 0.13.
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For benchmarks we used the SPEC JVM98 benchmark suite at@z€S100) [Sta98].
Althoughr ayt r ace is technically not part of SPEC JVM98 and therefore excluidech
geometric means, we include results for purposes of cosgarit is the single-threaded
equivalent ofnt rt . All runtime results were performed on a 1.8 GHz 4-way SMP AMD
Opteron machine running Linux 2.6.7 using native 64-bitbies. Children were forked at
every callsite reached non-speculatively, which mearttitharder nested speculation was
disabled but out-of-order nesting was enabled. These twosof nesting are discussed in
Section 2.4.2 and illustrated in Figure 2.7. All free pram@s were occupied by speculative
helper threads, and an optimally accurate return valuegired configuration was used,
unless otherwise stated.

2.6.1 Return Value Prediction

We first performed an initial RVP study without speculatiorwihich we instrumented the
RVP component of our system to obtain a wealth of profilingtinfation [PV04b]. When
a variety of existing predictors from the literature werentned in a hybrid we achieved
an average return value prediction accuracy of 72% over SPE@98. The inclusion
of our new memoization predictor increased this averagel#b.8Exploiting VM level
knowledge about the width of primitive types then allowedaiszduce hashtable memory
by 35%. One of the more interesting results obtained was hewinite context method
and memoization predictors exhibited dramatically défgraccuracy depending on bench-
mark. Another was how we were able to identify a small pelagabof callsites as being
responsible for either the production or consumption ohlyigyariable data, according to
final finite context method or memoization predictor sizespestively. We build on this
study and explore RVP exhaustively in Chapter 3.

Given our success with predicting return values, the RViesydecame a key part of
SableSpMT. The predictors used in our initial study are ased in every experiment in
this chapter, except where explicitly disabled. Specifiaifeon the individual predictors
are given in Section 2.4.3. Note that one important diffeesthat ends up affecting speed,
accuracy, and memory consumption is that our initial reswitre based on a 32-bit ar-
chitecture, whereas the version of SableSpMT we analysedrat in Chapter 3 is 64-bit.
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The RVP system is easily extendable to support new typeswfirealue predictors, and
could even be used for general purpose load value predibyiogspeculative threads. In
general, as far as using SableSpMT as an experimental frarkésvconcerned, any MLS
support component could be instrumented for similar amalysrposes, for example the
dependence buffer or priority queue.

2.6.2 Static Analysis Integration

Following our initial RVP study, we next used side effect aradlgraph information de-
rived from Soot’s points-to analysis in two compiler analy$or improved RVP [PV04a].
We could then study the effect on runtime predictor behavising SableSpMT. The first
analysis is aeturn value useanalysis that determines how return values are used after
returning from a method call. We found statically that anrage 10% of non-void call-
sites generatanconsumedeturn values that are never used, and 21% of callsites gener
inaccuratereturn values, which we define as those that are used onlgeirisiolean or
branch expressions. Unconsumed return values do not nggatediction, whereas inac-
curate return values have relaxed predictor accuracy i@ntst that must nevertheless be
checked at validation time. Actual runtime measuremernawséss improvement: only 3%
of dynamic method invocations return unconsumed valuesreds 14% return inaccurate
values. This analysis does reduce hashtable collisionsga% of predictor memory and
increasing accuracy by up to 7%.

The second analysis compuferameter dependenca form of slicing that determines
which parameters affect the return value. Statically, weeoled that 25% of consumed
callsites with one or more parameters have zero paramependences, and 23% have
partial dependences, such that the return value does nehd@&m one or more parameters.
At runtime, however, we found that 7% of dynamic method imt@mns have zero depen-
dences and only 3% have partial dependences. The resutis a@inalysis are exploited to
eliminate inputs to the memoization predictor, and the eamuof memoization alone for
j ack,j avac, andj ess increases by up to 13%, with overall memory requirementsgoei
reduced by a further 2%. Although these analyses yield ordgemental improvements,
at least in their current form, they do demonstrate how naticsanalyses can be easily
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incorporated into SableSpMT and both validated and emplayeuntime. Although their
contribution is minor, we nevertheless make use of thesgsamfor the subsequent results
in this chapter.

2.6.3 Speculation Overhead

The overhead of thread operations in any SpMT system is aro@ajeern [WSO01], and this
is especially true in a pure software environment. As showigure 2.12, parent threads
suffer overhead when forking, enqueueing, joining, andlasihg child threads, and child
threads suffer on startup and when they reach some stoppimgjtion. We introduced
profiling support based on hardware timestamp countersantdramework in order to
provide a complete breakdown of SpMT overhead incurred bly bon-speculative parent
and speculative helper threads; the results are shown ieg2at2 and 2.3 respectively.

The striking result in Table 2.2 is that the parent spendsschrof its time forking and
joining speculative threads that its opportunities for mgkprogress through normal Java
bytecode and native code execution are reduced by up ta5fbis overhead on the non-
speculative thread is in the critical path of the programgcWimeans that any optimizations
here will improve performance. We see that joining threadsgnificantly more expensive
than forking threads, and that within the join process, iotedupdates and waiting for the
speculative child to halt execution are the most costly catlegories. We choose to focus
on return value prediction overhead for its unique releeatoacmethod level speculation,
and describe optimizations to predictor updates and vadilan Chapter 3. Of course, the
other overhead sub-categories are not insignificant, antiave several suggestions for
future work in this area. The cost of buffer validation anddlommittal would perhaps
be best addressed by using one of several highly optimiZéda® transactional memory
packages, as discussed in Section 5.6. The cost of deletikgd but unstarted children
could be minimized by a less aggressive or adaptive forkiregegyy, perhaps following
the guidelines in Chapter 4. Finally, the cost of signalling aaiting could be addressed
by an AOT or JIT compiler that modified the parent method tmaighe child some num-
ber of instructions before returning from the call. The aafsprofiling itself is high, but
disappears in a final production build.
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Figure 2.12: Speculation overheadBoth non-speculative parent and speculative child threads
suffer wasted cycles due to overhead at fork at join points.

parent execution conp db | jack |javac | jess | npeg | ntrt rt
USEFUL WORK | 39% | 24% | 29% | 30% | 21% | 59% | 49% | 58%
initialize child 2% 5% 3% 4% 4% 2% 1% 2%
enqueue child 4% | 10% | 10% 9% 7% 3% 2% | 2%
TOTAL FORK 6% | 15% | 13% 13% | 11% 5% 3% 4%
update predictor 7% | 13% | 12% 11%| 12% | 6% 7% | 7%
delete child] 5% | 5% 5% 4% 5% 2% 2% | 2%
signal and wait 15% | 14% | 11% 11% | 19% 8% | 26% | 11%
validate prediction 4% | 4% | 4% 5% 7% 3% 2% | 3%
validate buffer] 4% | 6% 6% 5% 5% 3% 1% | 2%
commit child 5% 5% 7% 6% 6% 3% 2% 3%
abortchild| <1% | <1% | <1% | <1% | <1% | <1% | <1% | <1%
cleanupchild] <1% | <1% | <1% | <1% | <1% | <1% | <1% | <1%
profiing | 11% | 10% | 10% 12% | 11% | 7% 5% | 6%
TOTALJOIN | 53% | 59% | 57% | 56% | 67% | 34% | 47% | 36%
PROFILING 2% | 2% 1% 1% 1% 2% 1% | 2%

Table 2.2: Non-speculative thread overhead breakdo®arent execution consists of useful work,
fork overhead, and join overhead, and also the profiling overheadenhin delineating these three
broad tasks. Profiling in the join process includes the cost of gathererpead info for the other
eight sub-tasks, and of updating various SpMT statistics.

59



Software Method Level Speculation for Java

helper execution conp | db |jack | javac | jess | npeg | ntrt rt
IDLE | 86% | 82% | 78% 78% | 78% | 55% | 53% | 71%
INITIALIZE CHILD 3% 4% 4% 4% 4% 2% 5% 4%
startup| <1% | <1% | <1% | <1% | <1% | <1% 1% | <1%
guery predictor] 3% 5% 4% 4% 6% 5% | 15% | 8%
useful work| 5% 6% | 10% 10% | 10% | 34% | 20% | 13%
shutdown| <1% | <1% | <1% | <1% | <1% | <1% | <1% | <1%
profiling | <1% | <1% | <1% | <1% | <1% 1% 2% 1%
EXECUTE CHILD 9% | 12% | 16% 16% | 17% | 41% | 40% | 24%
CLEANUPCHILD | <1% | <1% | <1% | <1% | <1% | <1% | <1% | <1%
PROFILING 1% 1% 1% 1% | <1% 1% 1% | <1%

Table 2.3: Speculative thread overhead breakdowelper SpMT threads execute in a loop, idling
for an opportunity to dequeue children from the priority queue, and théalize them, execute
them, and clean them up. The child execution process itself consists opstguirying the return
value predictor, useful worki.€. bytecode execution), and shutdown, induced by reaching some
termination condition. There is profiling overhead both when executingifgie® code, and when
switching between tasks in the helper loop.

In Table 2.3, we can make several observations about thegxeof speculative chil-
dren. First, the SpMT helper threads spend the majorityeaif time being idle, waiting to
dequeue tasks from the priority queue, the implication ¢péat the queue is often empty.
In these experiments, we allow for out-of-order nestingl[RU5], in which multipleimme-
diatechildren are attached to a non-speculative parent, oneaparsiack frame. However,
we donot allow for in-order nesting, wherein speculative childreandork speculative
children of their own, which greatly limits the availablerpbelism. We extend our system
to support in-order nesting in Chapter 4.

When the helper threadse running speculative children, they spend a majority ofrthei
time doing useful work, which is all bytecode execution fpesulative threads. In fact, if
idle times are ignored, the ratio of useful work to overheguigher speculatively than non-
speculatively, due to higher non-speculative overheadssi@e of bytecode execution, we
see that predictor lookup is quite expensive, due mostlyutadve hybrid design.
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2.6.4 Speculative Parallelism

SableSpMT allows for investigation into runtime specwkatparallelism at a fairly fine
granularity. Speculative thread lengths are recorded @r-aglsite basis and can be anal-
ysed in both the single-threaded simulation and multitteeamodes. Thread length in-
formation, particularly when associated with specificgisdls, can be quite instructive as
to the effect of SpMT optimizations on the system. In the l@rgreaded mode, chil-
dren run until either an unsafe operation occurs or an argitimit on sequence length is
reached. Using a sequence length limit of 1000 instructiamesfound that over all specu-
lative children, 30% are successful and in the 0-10 byteawstaeuctions range, with very
few failures, and 15% are successful and run for 90+ insomst On the other hand, 25%
of all threads are accounted for by failures at 90+, whiclveesrfrom the correspondence
between thread length and risk of dependence violation saferexecution.

In the multithreaded mode, child threads are additionatipged when parents return
to fork points or pop frames in the exception handler. Hef &® speculative threads are
accounted for by success in the 0—-10 instruction range ,omith1—2% found in subsequent
10 instruction buckets. As we reduce overhead costs, wecegp#dren to run longer, and
for parallelism to increase. An interesting point to notehiat in hardware simulations,
thread lengths of 4hachinanstructions are considered impressive [JEV04], and atjho
uncommon, some children in our multithreaded mode can rumdoadreds obytecode
instructions. Our fork heuristic that speculates on evemy-speculative method call is a
large contributor to short thread lengths. We explore impdofork heuristics based on
program structure in Chapter 4.

In Figure 2.13, we examingpeculative coveragéhe percentage of sequential program
execution that occurs successfully in parallel. We comthiteasi../(i. + i,), wherei,. is
the number of instructions executed by committed spewgldtireads, and, is the num-
ber of instructions executed by non-speculative threaaklingy processors to the system
has an effect on all benchmarks, and with just 4 processatsharsupport for in-order
nesting, the amount of parallel execution is quite high,\@rage of 33%. Disabling the
RVP component by always predicting zero brings the averpgewsative coverage on four
processors from 33% down to 19%. Thus we can confirm the rpseliously obtained
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speculative coverage (%)

234 234 234 234 234 234 234 234

comp jack javac ‘jess mpeg mtrt rt

Figure 2.13: Speculative coverage with and without RVRe SPEC JVM98 benchmarks are shown

running with 2, 3, and 4 processors, and the dark regions indicate theviement as return value
prediction is enabled.

by Hu et al, namely that RVP plays an important role in MLS [HBJO3]. Ndtattto truly
disable return value prediction, we would need to eithealulis forking at non-void call-
sites or force all speculations at non-void callsites t§ fa@cause predicting zero is still
correct in some instances; for details, refer to the acgushthe null predictor (N) in Fig-
ure 3.5. This means that the value of RVP is actually somewighier than indicated by
these results.

2.6.5 Runtime Profiling

SableSpMT provides a facility for runtime profiling and féadk-directed optimization.
This is often crucial to performance in runtime systems;eicample, JIT compilers typi-
cally depend on interpreter profiling to determine hot exiecupaths [AFG 05]. We make
various measurements of the dynamic performance of ougrsyatailable to optimizations
by associating data with the fork and join points surrougdnvokes. Currently our opti-
mizations are written to exploit per-callsite informati@amd thus calling context-sensitivity,
although the data does generally remain available on aapgettbasis.

In the context of return value prediction, our hybrid predicselects the best sub-
predictor over the last 32 return values, predictor hasésabxpand according to load
factors and performance, and future work in Chapter 3 adesedisabling sub-optimal
predictors after a warmup period. In the context of choosipggmal fork points, we can
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assign child thread priorities or disable speculation detety according to various dy-
namic profiling data, including transitive target methazksispeculation success and fail-
ure and the corresponding reasons, speculative sequergytkdepredictor confidence, and
premature child termination due to various stopping reason

Despite the extent of online profiling information, we haw discovered optimal fork
heuristics, although others have had success with offlioiipg for Java programs [WKO05].
As we disable speculation at undesirable fork points, ostesy does exhibit speedup, but
its source is both better opportunity for speculation ad a®lreduced overhead. Given
that significant reductions in overhead are likely possitaout reducing the number of
dynamic forks, we defer investigations based on dynanyicaktricting fork points until
no further speedup can be made on that front. However, we plorexthe relationship
between program structure, choice of fork point, and rasufparallelism in Chapter 4.

2.6.6 Speculation Behaviour

We now employ the SableSpMT framework to analyse the implaobith speculation sup-
port components and Java language features on MLS runtiheigeir. In Table 2.4, total
counts are given for all child thread termination reasonslll cases, the majority of chil-
dren are signalled by their parent thread to stop speculagignificant numbers of child
threads are deleted from the queue, and elder siblingseagedntly reached. We examined
the average thread lengths for speculative children anadftiiem to be quite short, typi-
cally in the 0-10 instruction range. These data all inditiad¢ threads are being forked too
frequently, and are consistent with the general undersigrad Java application behaviour:
there are many short leaf method calls and the call graphrysdense [DDHVO03]. Further
experiments with dynamic fork heuristics were hampered lack of insight into whole-
system behaviour. We chose instead to explore the impacidifig idioms and fork point
choice on speculation behaviour to create a set of strddnaheuristics, as detailed in
Chapter 4. Method inlining is another vector for optimizatidnlining changes the call
graph structure, often by eliminating calls to short leatmods, which are naturally un-
desirable fork points. Het al. previously argued that the coarser method granularity of
inlined execution in a JIT compiler benefits Java MLS in maitr [HBJO3]. Introducing
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termination reasonconp | db | jack |javac|jess | npeg | ntrt rt
class resolution and loadin@.14K| 1.76K| 94.8K| 487K| 3.80K| 14.7K| 4.79K| 5.64K
failed object allocation 1 3 23 17 39 0 28 40
invalid object reference 563| 553K| 342K| 280K| 431K| 485| 407K| 278K
finals and volatiles 842|1.45M|2.17M| 1.11M|1.95M| 888| 115K| 68.8K
synchronization 4.30K|26.8M|6.95M| 17.0M|4.89M| 10.4K| 658K| 351K
unsafe method entry or exiR.66K| 1.55K| 16.0K| 622K| 2.62K| 1.65K| 3.60K| 3.00K
implicit non-ATHROWexception 989K| 828K| 9.57K| 572K| 78.6K| 2.00K| 31.2K| 20.8K
explicit ATHROWexception 0 0| 187K 82 0 0 0 0
native code entry 332| 28.2K|1.02M| 1.02M|2.63M| 527K| 259K| 260K
elder sibling reached..24M| 3.81M|5.06M| 16.1M|5.62M| 14.1M| 4.03M| 4.23M
deleted from queue 348K| 686| 559K| 3.13M|2.55M|4.48M|34.2M|1.57M
signalled by parent202M|92.6M|20.1M| 42.1M|56.3M|80.8M| 122M| 124M
TOTAL CHILD COUNT | 204M| 127M| 36.5M| 82.4M| 74.5M|99.9M| 162M| 131M

Table 2.4: Child thread termination.

inlining into our system is part of our future work, as dissed in Section 6.2.5.

Outside of these categories, it is clear that synchrominaind the memory barrier re-
guirements for finals and volatiles are important; enabdipgculative locking and record-
ing barrier operations would allow threads to progressfrrtNative methods can also be
important, but are much harder to treat speculatively. Tthercsafety considerations of
the Java language do not impact significantly on speculatreeution; even speculative
exceptions are responsible for a minority of thread tertronag.

Data on the number of speculative thread successes anefaias well as a breakdown
of failure reasons, are given in Table 2.5. Failures due tolse@er overflows and excep-
tions are quite rare, and the majority of failures typicalyme from incorrect return value
prediction. This again emphasizes the importance of ateleP in Java MLS, and the
weak impact of exceptions and GC. Dependence violation samstnot insignificant, and
reusing predictors from the RVP framework for generalizeatll value prediction should
help to lower them. In general, failures are much less comthan successes, the geo-
metric mean failure rate being 12% of all speculations. Wthile is encouraging, many
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join status| conp db jack |javac | jess | npeg | ntrt rt
exception in parent 0 0| 386K | 23.4K 0 0 0 0
incorrect prediction 18.0M | 22.7M | 2.80M | 11.3M | 5.80M | 7.73M | 4.85M | 3.72M
garbage collection 4 20 119 206 470 0 90 68
buffer overflow 0 0 0 10 0 0 0 0

dependence violation 1.60M | 1.44K| 160K | 1.53M | 342K | 14.7M | 4.14M | 4.00M
TOTAL FAILED | 19.6M | 22.7M | 3.34M | 12.9M | 6.14M | 22.4M | 9.00M | 7.72M
TOTAL PASSED| 184M | 103M | 32.6M | 66.4M | 65.8M | 73.0M | 119M | 122M

Table 2.5: Child thread success and failure.

threads are quite short due to an abundance of method cdlharefore forked children,
and the high overheads imposed by thread startup. Thuskely the case that had they
progressed a lot further, more violations would have oazrr

2.6.7 Speedup

The ultimate goal of any speculative system is measurablgram speedup. Speedup can
be calculated simply as the sequential run time divided byp#rallel run time. Parallelism
contributes positively to speedup whereas overhead toméss negatively; thus, there may
be positive parallelism effects that are masked by excessrerheads, leading to system
slowdown. Slowdown itself is simply the inverse of speedup.order to factor out the
effects of speculation overhead, we computelative speedupHere the sequential run
time is replaced by a new baseline execution time from erpants in which speculation
occurs as normal but failure is automatically induced atyej@n point. This provides an
upper bound on performance.

We provide overall performance data in Table 2.6. Currenltisgad overheads pre-
clude actual speedup, and run times with speculation ed@péewithin one order of mag-
nitude of sequential execution. Over the entire SPEC JVM@&8 swvhich does not include
raytrace, there is a geometric mean slowdown of 4.49x. This is cortipetwith hard-
ware simulations providing full architectural and prograrecution detail, which can be
slower by up to three orders of magnitude [KT98]. Slowdowrgease as parallelism in-
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experiment| conp db jack | javac | jess | npeg | ntrt rt mean
vanilla SableVM| 368s| 144s| 43s| 108s| 77s| 347s 55s 67s| 120s
MLS must fail | 1297s| 931s| 293s| 641s| 665s| 669s| 1017s| 1530s| 722s
MLS may pass 1224s| 733s| 211s| 468s| 405s| 662s| 559s| 736s| 539s
slowdown| 3.33x | 5.09x | 4.91x| 4.33x| 5.26x | 1.91x | 10.16x| 10.99x | 4.49x
relative speedup 1.06x | 1.27x| 1.39x | 1.37x| 1.64x| 1.01x| 1.82x| 2.08x| 1.34x

Table 2.6: Execution times, slowdown, and relative speeduye first row is the sequential vanilla
SableVM run time. The second row is an experiment in which MLS occur$aiute is forced
at every join point, thereby incurring speculation overhead but eliminatimgllglism. The third
row is the parallel run time of regular MLS execution. The fourth row is thetesy slowdown,
computed as rol / row 1. The fifth row is relative speedup, computed as Eyvrow 3.

creases, due to the concomitant increase in overhead stamsivith our observation that
eliminating even good speculation opportunities can leaeedup. From an analysis per-
spective, experiments run in acceptable times, well slgithdy normal, interactive usage.
This demonstrates the utility of SableSpMT as a researclanalysis framework.

When overhead is factored out, the geometric mean relateedsyp over SPEC JVM98
is 1.34x, again excludingayt r ace. This means that at least for these benchmarks, out-
of-order nesting alone provides only limited speedup. &ligh this amount of speedup
would be useful on a 2-way machine, these results are for aylmachine, which trans-
lates to at best 36% processor utilization fawyt r ace. This relatively low upper bound
motivates any work on increasing it, such as the complemgstaport for in-order nest-
ing described in Chapter 4, under which speculative threadsrbe able to fork their own
children. Although our approach here is not perfectly aataifor obvious reasons, our
results do lean towards being somewhat pessimistic in tefnealculated speedup: Ta-
ble 2.2 shows that MLS failure is slightly less expensiventsaccess, and the fact that
we compute a relative speedup of only 1.01xrfpegaudi o despite a speculative cover-
age of 9% derives from this. In general, loop-based apjdicatthat produce or consume
random compressed data exhibit the least speethnp( ess andnpegaudi o), numeric
and embarrassingly parallel applications exhibit the tgsaft rt andr aytrace), and
object-oriented applications fall somewhere in-betwetn  ack, j avac, andj ess).
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experiment conp | db |jack |javac|jess |npeg |ntrt rt mean

no method entry and exjit0.94x| 1.02x| 0.97x| 0.98x| 1.02x| 0.95x| 0.79x| 0.91x| 0.95x
no dependence bufferindl.04x| 1.22x| 1.12x| 1.05x| 1.16x| 1.02x| 0.95x| 0.97x| 1.08x
no object allocation 0.95x| 1.30x| 1.39x| 1.26x| 1.55x| 0.98x| 1.13x| 1.23x| 1.21x

no return value predictionl.03x| 1.17x| 1.28x| 1.24x| 1.44x|1.03x| 1.72x| 1.70x| 1.25x
no priority queueing 0.94x| 1.22x| 1.35x| 1.32x| 1.58x| 0.97x| 1.68x| 2.05x| 1.27x

full runtime MLS support 1.06x| 1.27x| 1.39x| 1.37x| 1.64x| 1.01x| 1.82x| 2.08x| 1.34x

Table 2.7: Impact of MLS support components on application speeduy priority queue was
disabled by only enqueueing threads if a processor was free, redlura prediction was disabled
by always predicting zero, and the remaining components were disablecting premature thread
termination upon attempting to use them. As discussed in Section 2.6.4, truly dis@tlingvalue
prediction would require either disabling forking at non-void callsites otifiy all speculations
at non-void callsites to fail. This means that these results actually understavaltte of RVP
somewhat.

Clearly there are significant improvements required in otderchieve actual speedup
with our MLS design. Our overhead analysis suggests a nuoflpatential optimizations
to reduce overhead and increase the relative amounts aflgpiee execution. Designing
and implementing these further improvements is part of oturé work. In Chapter 3 we
describe optimizations to the RVP system, eliminating athadl of the overhead incurred
by it. In Chapter 4 we describe support for in-order nestinigictv significantly increases
the amount of available parallelism, and we also descrildeffeuristics that operate at the
level of program structure to provide longer thread lengths

We can use a similar kind of speedup analysis to examine thertance of various
contributors to parallelism in the system. Table 2.7 shdwsmpact of individual support
components on Java MLS speedups. Speedups are givenaétetine baseline experiment
in Table 2.6 where speculation occurs as normal but faik@ced at every join point, thus
factoring out overhead costs. The performance of the sysii#imall components enabled
and also with individual components disabled is shown teidean understanding of their
relative importance.

We note first of all that onpr ess andnpegaudi o are resilient to parallelization, likely
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due to a combination of our current,iwa thread forking strategies and their use of highly
variable compressed data. In some cases, disabling comisocen even lead to slight
speedup. This phenomenon occurs if overhead costs outweigiponent benefits; for
example, disabling return value prediction can mitigatedbst of committing many short
threads. In general, we can order the support componentsgayriance: the priority queue
is least important; method entry and exit, or stack bufgramd dependence buffering are
most important; return value prediction and speculativeaallocation lie somewhere
in-between. However, it is important to remember that theselusions pertain not only
to the benchmarks in question but also the overall systerfigroation.

2.7 Conclusions and Future Work

Investigation of any sophisticated, general optimizasiwategy requires significant design,
implementation and experimental flexibility, as well as encoon ground for investigation.
Further, analysis of speculative execution in Java haslyiosén confined to data gathered
from hardware simulation studies. Such work validates ifipdtardware designs, but is
not typically targetted at general analysis of SpMT and @issed program behaviour.

Our design focuses on defining correct Java semantics irréisepce of software MLS
and demonstrating the associated cost. Our main goal hiereiievide a complete, correct
system and basic analysis useful to further Java MLS or SpiMdstigations. Our system
provides a robust framework for Java MLS exploration thatifies the implementation
effort and allows for easy data gathering and analysis. $aateSpMT does not depend
on a hardware simulator means that empirical measureméMk® behaviour are made
using a cycle and timing accurate implementation, that ex@atation with different, ex-
isting multiprocessors is possible through porting to neshiectures, and that a variety
of MLS or even more general SpMT designs are available dueetgéneral plasiticity of
software components.

We include detailed collection of dynamic data and alsonaftor application of internal
feedback at runtime. To evaluate high level program infaiomawe include an interface
to Soot-generated Java attributes, and can thus incoepstatic information as well. We
have demonstrated the use of all these features throughkti®@alptimization and perfor-
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mance analyses. Measurements of speculative sequentie, Ispgculative coverage, and
relative speedup all indicate that significant parallelgimas exist in the sequential threads
of Java programs, and our analysis of speculative overhehcaites where to focus opti-
mization efforts. We are relatively optimistic as to impiray the efficiency of our initial
MLS implementation.

Language and software based thread level speculatiorresquon-trivial consideration
of the language semantics, and Java in particular imposes strong design constraints.
Here we have also defined a complete system for Java MLS iicplart taking into ac-
count various aspects of high level language and virtuahmadehavioural requirements.
Our implementation work and experimental analysis of Jaecific behaviour show that
while most of these concerns do not result in a significantaichpn performance, con-
servatively correct treatment of certain aspects can egdatential speedup, most notably
synchronization. Part of our future work is thus to investeydifferent forms of speculative
locking [RGO1, MT02, RS03] within a Java-specific context.

As with any speculative system, performance and SpMT owaellaee major concerns,
and efforts to improve speedup in many fashions are wortlewdis suggested by our profil-
ing results. We address the problem of RVP overhead in Chaptegh support for adaptive
hybrid prediction, and the problems of idle processors &mdtgshreads in Chapter 4 with
support for in-order nesting and structural fork heursstiespectively. In fact, when we
developed the support for in-order nesting as described aptén 4, we found that when
combined with out-of-order nesting it exposedrsachparallelism that a straightforward
experimental comparison with the results in this chaptes iwgpractical.

We are confident that other sources of overhead can be gredtiged in our prototype
implementation, through optimization of individual conmamts, greater use of high level
program information, and employment of general and JaeaiBp heuristics for making
forking decisions and assigning thread priorities. Furmeedup can also be provided
by reusing parts of the RVP subsystem for generalized loagevarediction. Significant
further work is required, but providing JIT compiler suppfar software MLS is another
major challenge. The presence of a JIT offers both positieereegative opportunities for
MLS analysis and execution, and will certainly be interggto examine. There are two key
techniques directly related to MLS that are enabled by @ or JIT compiler support.

69



Software Method Level Speculation for Java

First, method inlining should reduce the overhead due tkirigrthreads on very short leaf
methods that almost immediately return and join their ¢kidd Second, methaalitlining
or extraction of key loop bodies into their own methods caxgose more parallelism in
certain loop-centric applications. Disabling fork poimtside library code could also have a
strong positive effect. Soot would be a useful experimdraahework for prototyping these
transformations. We describe opportunities for futureknorgreater detail in Section 6.2.
Continued improvements to our framework will also providerfew research opportu-
nities. We have implemented method level speculation, théraesearchers have also had
success with loop level [RS01], lock level [MT02,RGO01], anblitiary speculation [BF04]
strategies. These approaches have largely common intequatements, and side-by-side
implementations within our framework will make direct an@aningful comparisons of
the various techniques feasible, and furthermore enabledbmposition.
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Chapter 3
Adaptive Software Return Value Prediction

In the preceding chapter, return value prediction (RVP) used by speculative chil-
dren to predict the return values of method calls before #uyally completed, exposing
additional parallelism under method level speculation lignang speculation to proceed
past the consumption of return values in non-void methodicoations. In addition to
improving MLS performance, RVP can also enable a numbertadrgbrogram optimiza-
tions and analyses. However, despite the apparent ussfyIRYP and value prediction
in general have seen limited uptake in practice. Hardwaspgsals have been successful
in terms of speed and prediction accuracy, but the cost atdtstl circuitry is high, the
available memory for prediction is low, and the flexibilis/negligible. Software solutions
are inherently much more flexible, but awaapproach can only achieve high accuracies in
exchange for significantly reduced speed and increased mamoesumption. In this chap-
ter we first express many different existing predictiontstyaes in a unification framework,
using it as the basis for a software implementation. We thxptoee an adaptive software
RVP design that relies on simple object-orientation in artdypredictor. It allocates pre-
dictors on a per-callsite basis instead of globally, anddrine resources associated with
unused hybrid sub-predictors after an initial warmup pkrie find that these techniques
dramatically improve speed and reduce memory consumptiole waintaining high pre-
diction accuracy. The framework we present here is modulaugh for general purpose
reuse in a variety of applications, which we discuss.
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3.1 Introduction

Return value prediction (RVP) is a runtime technique for guesthe result of a function,
method, or procedure call. It is a specific case of value ptiexi in general, differentiated
by the fact that functions may take arguments, and also bfatttehat as the core build-
ing block of modularity, functions provide an extremely &dorange of behaviour. Value
prediction enables a variety of speculative optimizatjamsh their success and practical
value depending on the accuracy and relative overhead @iréugction system.

Following our initial results in Chapter 2, we knew that RVPswa@eneficial to MLS
execution, per Figure 2.13 and Table 2.7. However, it was alsource of significant per-
formance overhead: on average, predictor execution ateddor 14% of non-speculative
execution and 44% of speculative execution, per Tablesri12 respectively. To address
this, we first refactored our JVM-based implementation oPRRto libspmt, a software li-
brary with much cleaner, object-oriented code, as destribe€hapter 2. This included
removing the overlap between sub-predictor state, whidhrim enabled an optimization
based on adaptively specializing hybrid predictors. Wedles these new hybrids in this
chapter and demonstrate their comparable accuracy andwegperformance. We also
increase the number of predictors under consideration éigito twelve, making this study
much broader than our initial efforts.

Value prediction is typically investigated in a hardwaret@xt, where the focus is on
providing high accuracy with minimal circuit and cycle costh a novel architecture. Soft-
ware designs are much less common, but can be supported simgxand off-the-shelf
machines. The primary implementation advantages of soétyweediction are relatively
unbounded memory resources, cheap development costsigmigvel runtime informa-
tion. In terms of applications, software prediction allagreater and more portable use of
value prediction data in optimization and analysis, butsbaequires careful optimization
and understanding of predictor performance in order to rengractical efficiency. Previ-
ous work in software value prediction has concentrated anicking hardware designs in
software. We believe that software value prediction can beengenerally useful and is
worth exploring in its own right, its relationship to hardwavalue prediction being analo-
gous to that between software transactional memory anduaaedtransactional memory.
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In this chapter we seek to establish a software state of thia s&alue prediction by pro-
viding a fast, accurate, and memory efficient design andemphtation for return value
prediction. Note that although in this chapter we focus oRingaaccurate predictions, ac-
curacy requirements can be relaxed somewhat fefuan value usenalysis, as discussed
in Section 2.6.2.

Our approach was to implement several known predictorgydiveg both simple fixed-
space designs that need only limited resources and moreleotable-based predictors
that have significant resource requirements. A significaoblpm we encountered in
reviewing the hardware literature was understanding gxactw the existing predictors
worked, and how they were related to each other. To this endeveloped a unifica-
tion framework for organizing the various predictors anelated straightforward software
implementations of them. We included both space-efficiembutational predictors and
space-inefficient table-based predictors in our desigme Higher level of abstraction pro-
vided by a software approach simplified the design of easilgmosable, modular predic-
tors, and this was in fact essential to designing an effectoftware hybrid predictor, as
well as exposing the potential for several new sub-predictdVe applied our predictors
to the standard SPEC JVM98 Java benchmarks to measuregtwgin wvalue predictability,
as well as the relative accuracy, speed, and memory consumnydtindividual predictor
types.

The core of our design is a hybrid predictor that brings thgetll of the predictors
in our framework. Hybrids work to select the best-perforgngub-predictor for a given
prediction, based on either offline or online profiling. FgwW.1 shows what a typical
implementation of hybrid RVP in hardware might look like.rgtito make a prediction, a
callsite address is hashed to an entry in a primary hashtébis entry contains the hybrid
predictor state, which includes prediction accuraciesrfdividual sub-predictors as well
as stateful information they might need, such as a historgtofn values. The hybrid then
selects the best performing sub-predictor to create a gredi In-place sub-predictors
compute a value based directly on the state, whereas taBkdlsub-predictors hash com-
ponents of the state to a predicted value in a secondarydidshtOn each prediction,
even though only one will be selected, all sub-predictoescate, which in hardware is
easily parallelized. When the function returns from the,lb-predictor correctness be-
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Figure 3.1: Hybrid prediction in hardware (conventional).
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Figure 3.2: Hybrid prediction in software (novel).

comes known, and the hybrid state and all correspondingadded predictor entries get
updated. The most notable feature for our purposes is tleatadardware constraints, all
data structures are fixed-size global singletons. Giventhjlarids necessarily track pre-
dictor accuracy through some kind of confidence measurgjriformation could also be

used as an input to dynamic fork heuristics, as discusseddtidh 2.4.3.

Although hardware hybrid predictors are well-studied [BEOsbftware hybrids are
not. Our hybrid design exploits its software context to @evadaptivity, as shown in
Figure 3.2. The first major kind of adaptivity is that a singhgorid predictor instance
is associated with each callsite, which allows for scalingoading to program size and
client usage. Each hybrid has some private state, and elgbredictor has its own state
as well. Importantly, there is no state sharing betweenpedictors. On prediction and
update, the hybrids execute and update every sub-predithis design can be extended
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through sub-classing, avoids conflicts, achieves highracgu and allows for tables to
grow as necessary. The primary disadvantages are thalizstiaub-predictor execution
leads to high overhead costs and that the memory consumgdiorbe excessive. The
second major kind of adaptivity is an attempt to optimize yatiese costs. After a warmup
period, if the accuracy of an individual sub-predictor nsegetertain threshold, the hybrid
specializes. This frees all other predictor resourced) it prediction and update only
access the individual sub-predictor. If accuracy ever slitoglow a certain threshold, the
hybrid despecializes. Thus we can maintain accuracy whdecing speed and memory
overhead.

3.1.1 Contributions

We make the following specific contributions:

e A unification framework for specifying and relating predics to each other based
on the patterns they capture, their mathematical expmessidunctions of inputs and
value sequences, and their software implementations. Wdrik clarifies the extant
literature, exposes the potential for new predictors, ammhahstrates how object-
oriented predictor composition can simplify understagdind implementation.

e Several new sub-predictors, including a 2-delta last valeslictor, a table-based
memoization predictor that hashes together function aegusy) and memoization
stride and memoization finite context method predictorsvddrfrom it. These
argument-based predictors capture repetition in funatuts that existing value
history-based predictors do not. Further, the table-basedictors in our software
design use dynamically expanding hashtables to consermeongewvhere possible
without affecting accuracy.

e An adaptive software hybrid predictor composed of many galictors that dy-
namically specializes to whichever sub-predictor perfobast. Its object-oriented
design and implementation enables two unique optimizatiéirst, it allocates one
hybrid predictor instance per prediction point to elimaaonflicts and improve ac-
curacy. Second, it identifies ideal sub-predictors at mmatand specializes at a pre-
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diction point granularity, bypassing the execution of wedisub-predictors and ac-
tually freeing their associated data structures. The esdltres dramatic speed and
memory consumption improvements that do not sacrifice highiption accuracy.

e A software library implementation of return value predicti This library is open
source, portable, modular, and supported by unit tests. $&ethis library and its
built-in profiling to obtain a comprehensive set of speedytoey, and accuracy pre-
diction data for both our hybrid and its component sub-pteds, gathered at every
method invocation over SPEC JVM98 at size 100, a signifiaaprovement to ex-
isting data [HBJO3].

In the next section, we present our predictor unificatiomfevork. Section 3.3 de-
scribes our experimental setup, and Section 3.4 providéestal performance evaluation.
We then develop and apply our adaptive hybrid design in &@@i5 to optimize these
results. Finally, we present our conclusions and futurekwBelated work specific to RVP
is described in Chapter 5.

3.2 Predictor Unification Framework

A wide variety of value predictors have been proposed, ntpkitbasic organization and
evaluation essential to our study. Many predictors desdrih the literature are presented
as hardware implementations, often using circuit diagramhis approach clearly ex-
presses the design in terms of feasibility, power and sptiogeacy, but many of these
details can also obscure the intended algorithmic behawitine predictor. In designing a
software solution, we abstracted the simplest implememtapproach for each predictor,
and so discovered many commonalities between predictatath not immediately appar-
ent in hardware designs. Based on this exploration, we de&dla unification framework
for value predictors to clarify their intended behavioud amplementation and relate them
to each other. This framework also suggested several nedicfoes.

Tables 3.1-3.7 give a structured presentation of a varietpmmon predictors. These
tables contain typical history-based predictor desigrgereled predictors that also con-
sume argument state, and composite predictors that canthipredictors. In each case we
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provide an idealized mathematical expression, an exarhplgpropriate, and the stateful
data and pseudo-code used to implement the actual predither mathematical expres-
sions illustrate predictor behaviour by showing how theentr prediction ¢,,) is derived
from a history of actual return values,( 1, v,_»,...), as well as current and past function
argumentsdrgs(n),args(n — 1),...). Implementation details include fields for actual
state and pseudo-code insialeedi ct andupdat e functions that provide a common pre-
dictor interfacepr edi ct optionally takes function arguments and returns a new predli
value, whileupdat e takes the actual return value and updates internal preditite. For
brevity we use several non-standard but self-explanatangtions in these descriptions.
Our unification framework does not include predictors thatunsuitable for return value
prediction, nor those that are substantially equivaletitéoones presented here. However,
extensions are straightforward, and our experience stgyties all predictors benefit from
expression in this form.

In the following subsections we describe our logic in canging Tables 3.1-3.7, and
give further detail on the individual predictors. We follaWwis in Section 3.4 with an
experimental analysis using our software RVP frameworg]aing the relative accuracy
of different predictor designs as well as their memory amnktcosts.

3.2.1 History-Based Predictors

Tables 3.1-3.4 contain predictors based only on the histrgturn values for the associ-
ated function. We used predictor names as reported in #ratiitre, except for last N stride,
which is a local version of the global gDiff predictor [ZFCO3t the top of each table are
predictors that derive their prediction from the value dngtdirectly, whereas at the bottom
are predictors that use the differencestidesbetween values in the history. It is useful to
think of the stride predictors as derivatives of the valugsdobpredictors; the word ‘differ-
ential’ chosen by the creators of the differential finite t'eothmethod predictor in Table 3.4
is expressing this relationship [GVdBO01]. This organizedsion between primary and
derivative forms suggests a new 2-delta last value predgiiown in Table 3.2. We used a
standard value oV = 4 in our experimental analysis of the last N value and last Mestr
predictors in Table 3.3, wher® is the value or stride history length. We used a similarly
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standard value of” = 5 in our analysis of the finite context method, differentiaitén
context method, and memoization finite context method pteds in Tables 3.4 and 3.6,
where(' is again the value or stride history length.

Last Value (LV)

The last value predictor is perhaps the simplest usefuligiad It merely predicts that the
return valuev,, will be the same as the last valug_; returned by the function. It has a
single fieldl ast that gets returned when making a prediction and assignedén the
actual return value is known. In the example, after seeirgsiyuence, 2, 3, a last value
predictor would simply predict as the next output.

Stride (S)

A stride predictor can be seen as a derivative of the lasevatadictor, computing a pre-
diction based on the sum of the last stride between valuethendst value. For instance,
upon seeind, 2, 3, it would predict4 from the last value plus the stride ofl betweer2
and3. While not completely comparable, this captures most of #imeespatterns as the last
value predictor as well as new ones. In particular, many ladjes and other increment-
ing or decrementing sequences are easily recognized. \Ristajes are that it takes an
extra prediction to warm up, the update and predict oparateasze somewhat slower, and
there is an extra field of storage.

2-delta Stride (2DS)

The 2-delta stride predictor is similar to the stride preaticmposing the extra constraint
that the stride must be the same twice in a row before the gdmedipdates the stride used
to make the prediction. In the example, the stridé dietected early in the history is still
used to predict even after seeingtwice, whereas a simple stride predictor would predict
3 based on the last stride. This design reduces mispredschgrbeing able to ignore
single abberations in a sequence, as can occur in the caritegsted loop iterations. In
the hardware literature the 2-delta stride predictor hasxdra “hysteresis” bit to detect
repeats in the stride.
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2-Delta Last Value (2DLV)

The 2-delta last value predictor is a new predictor that waggested by the lack of a
corresponding, non-derivative form of the 2-delta stridedictor. A last value approach
is used, but the value stored is only updated if the last valilbe same twice in a row.
For instance, given a sequence such,ds2, 3, the stored last value is not updated during
periods of change, and the predicted value willlhentil the return value again repeats.

In a general sense, the 2-delta pattern can be generaliagditiaryC-delta predictors,
for arbitrary predictors and constant or bouid IncreasingC’ improves robustness, at a
cost of increased warm-up time and larger state.

Last N Value (LNV)

The last N value predictor maintains ailength history of return values, and uses that list
to search for matches to the most recent return value. A magelits in a prediction of the
next value in the history. This allows the last N value preatito identify short repeating
sequences, capturing simple alternations such, 89, 1,..., or more complex patterns
such asl, 2,3,1,2, 3, ..., neither of which are ideally predicted by the last valuetdds
predictors. Our example illustrates the latter case, wassamingV > 3, a value ofl is
predicted based on the most recent return valueasid a history containing &followed
by al.

Last N value is a generalization of the last value predietbich may also be expressed
as a last 1 value predictor. In their analyses Burtscher amd foaind thatV = 4 was a
reasonable tradeoff of accuracy against predictor contplg&Z99a), and so we use this
configuration in our experiments.

Last N Stride (LNS)

The last N stride predictor is the corresponding strideivarsf the last N value predictor,
recording a history of strides rather than a value histargeheralizes and subsumes the
stride predictor, which can also be considered a last lespiddictor.

The example shows a sequence with strides repeating in ttexrpa 2, 3. Given the
last value of13, the last stride wa8, which historically was followed by a stride af
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Adding 1 to the last value gives a prediction bf. This example is contrived for purposes
of illustration, but repeating stride patterns can occuuraly in several ways, for example
by accessing field addresses that have identical offsetslitiphe objects.

Finite Context Method (FCM)

To capture more complex historical patterns, the finite @mnmethod predictor hashes
together acontext or recent history of return values of length The hashed value is
used as hashtable key to index the corresponding reture.valhis allows for multiple,
different patterns to coexist, trading hashing and storagts for improved accuracy; in
the example the patte?) 3 is detected as recurrent and used for the next predicticpjtde
the existence of other output behaviour before and aftesutrsuggested implementation
the key is stored as a predictor field so that later update®tdoave to recompute the hash
value, improving performance, although also potentiadlyucing accuracy.

Hashtable management is a non-trivial concern here: intiaddio a good hashing
function, table size and growth must be controlled. We uskide’ fast hash [Jen97]
to compute hashtable keys and power-of-2 sized open aduyesbles that use double
hashing for lookup in our implementation. At runtime we allbashtables to dynamically
expand up to a maximum table size by doubling in size when 7H% ¥e experiment
with maximum table size in Section 3.4 to assess how accuagynemory requirements
interact, but otherwise use a maximum siz&%fits, one power-of-2 larger than necessary
for all benchmarks. Finally, we use a context lengtiCof= 5 in our experiments, which
Sazeides and Smith also favoured in their study of finiteexdmhethod predictors [SS97a].

Differential Finite Context Method (DFCM)

Analogous to the finite context method, the differentialténtontext method predictor
hashes together a recent history of strides rather tharesaltihis is used to look up a
stride in a hashtable for adding to the last value in ordera&eara prediction. The example
shows a sequence containing the stride patie2znwhich is recognized and used to predict
the next value oR1. DFCM has the potential to be more space efficient and fasteatm

up than the finite context method predictor.
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3.2.2 Argument-Based Predictors

Return value prediction accuracy can be improved by takit@account function inputs

instead of or as well as function outputs when making a ptiedic Tables 3.5 and 3.6

contain the predictors that exploit this information, agaeparated in terms of normal
and derivative forms. In each of these casegttadi ct function now receives the current
function arguments as input. In our implementation we destiiese predictors for methods
that do not take any arguments.

Memoization (M)

The memoization predictor is a new predictor that behawesthe finite context method
predictor but hashes together method arguments insteacoéat history of return values.
The predictor name comes from the traditional functionalgpamming technique known
as memoization, alternatively function caching, that piskipure function execution when
the arguments match previously recordearguments, return valuetable entries. In our
example, the argument pattern b2, 3 is hashed together and the key found existing in
the hashtable, resulting in a prediction of 4 for the thincbiration of f. A key difference
from traditional approaches is that memoization basedigireds can be incorrect. This
means that only the lookup key needs to be stored in the tal@@osed to the entire set
of arguments. It also makes memoization applicable to akttions that take arguments
instead of only the typically much smaller subset of purdesffect free functions found
in an object-oriented program. The MS predictor is a simpieles derivative, whereas
MFCM incorporates value history.

Memoization Stride (MS)

A similar memoization approach can be applied to strideesliviemoization stride stores
a stride between return values in its hashtable instead aefcaral value, much like the

differential finite context method predictor, and adds trakie to the last value to make a
prediction. The example shows a stride3adssociated with arguments2, 3, resulting in

a new prediction of based on the previous value ©find the stride found for that argu-
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ment pattern. Unlike the differential finite context methweédictor, it is not necessarily
more space efficient than its non-derivative form, sincestteof values used to compute a
hashtable key remains the same.

Memoization Finite Context Method (MFCM)

The memoization finite context method predictor is a dir@chbination of the memoiza-
tion and finite context method predictors. It concatendtesécent history of return values
with the function arguments and uses the result to computesh Yalue for table lookup.
This is significantly more expensive than either memoizatiofinite context method pre-
dictors, but has the potential to capture complicated pegtéhat depend on both historical
output and current input. The example shows a context ottelygrecognizing the out-
put sequenc$, 6 followed by an argument df, which leads to predicting the previously
seen value of. In comparison, a pure memoization predictor would pre@lisere from
the prior <argument, return value pair given byf(3) = 8, and a pure FCM predictor
would return8 due to the preceding output sequencé @f 8. Note that a differential ver-
sion of the memoization finite context method predictor wlouhturally follow from our
framework; instead we investigated the parameter striddigtor, as shown in Table 3.6.

Parameter Stride (PS)

The parameter stride predictor identifies a constant diffee between the return value and
one parameter, and uses this to compute future predictfosisnple example of a function
it captures is one that converts lowercase ASCII charactgsto alphabet positions. Al-
though the parameter stride predictor is in general subddoypéhe memoization predictor,
parameter stride is simpler in implementation, warms upy gerickly, and requires only
constant storage.

3.2.3 Composite Predictors

Table 3.7 contains predictors that are composites of oneoe sub-predictors. The hybrid
predictor uses the other predictors directly, returningedigtion by the best performing
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sub-predictor, whereas composite stride is in fact a génedapattern for creating other
predictors.

Hybrid (H)

The hybrid predictor is composed of one of each kind of sidghotor. To make a pre-
diction, it first obtains a prediction from each sub-preali@nd records this value. It then
returns the prediction of the predictor with the highestaacy, favouring the earliest sub-
predictor in the event of a tie. In our implementation we k&@pk of accuracy over the
lastn values, where: is the number of bits in a word; = 64 on ourx64_64 machines.
This allows sub-predictors with locally good but globallygr accuracies to be chosen by
the hybrid. To update the hybrid, for each such sub-predigidat e is called, the actual
return value is compared against the predicted return yalugthe accuracy histories are
updated accordingly. The accuracy of the hybrid itself cam&ed as an expligiredictor
confidencenput to priority computation and thus dynamic fork heucst as discussed in
Section 2.4.3.

Composite Stride

The composite stride predictor is not an individual premfidiut rather a generalized im-
plementation pattern for constructing stride predictérsomposite stride simply contains
another predictor that it will use to predict a stride valaad adds that to the previous
return value. Each predictor at the bottom of Tables 3.1a8.%vell as the memoization
stride predictor in Table 3.5 can be alternatively consedas a composite stride predictor
containing the corresponding predictor at the top. In oysl@mentation we applied this
pattern to implement all stride predictors except the patanstride predictor, which does
not follow this pattern because it predicts a constant dfiee between the return value and
one parameter. This object-oriented simplification way ogdlized once we expressed the
predictors using this framework.
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Last Value [Gab96] — LV

Un = Un—1
Predicts using the last value.
example: 1,2,3 — 3
fields: | ast
predict() :
return | ast;
update( val uet rv):

|last = rv;

Stride [Gab96] — S

Up = Un—1 + (Uno1 — Up—2)
Predicts using the difference between the last two values.
example:1,2,3 — 4
fields: 1 ast, stride
predict() :
return | ast + stride;

update( val uet rv):
stride =rv - |ast;
| ast = rv;

Table 3.1: History-based predictors I.
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2-Delta Last Value (new) — 2DLV

Up = Un_;, Wherei is the mini s.t.
Un—i = Up—i—1
or v,,_; if no suchi: exists

LV that only updates if the last value is the same twice in a row
example:1,1,2,3 — 1
fields: 1 ast1, |ast2
predict() :
return | ast2;

update(val uet rv):
if (rv!=1lastl) lastl = rv;

else last2 = rv;

2-Delta Stride [SS97b] — 2DS

Up = Up_1 + Un_i — Un_i—1, Wherei is the min: s.t.
Un—i — Un—i—1 = Un—i—1 — Un—i—2
or v,_1 if no suchi exists

S that only updates if the stride is the same twice in a row.
example: 1,2,3,3 — 4
fields: | ast, stridel, stride2
predict() :
return last + stride2;

update(val uet rv):

if (rv - last != stridel) stridel = rv - |ast;
else stride2 =rv - |ast;
| ast = rv;

Table 3.2: History-based predictors 1.
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Last N Value [LS96,BZ99a] — LNV

Uy, = Up—_i, Wherei < N is the min: s.t.

Un—1 = Un—i—1
or v,,_; if no such: exists

Predicts using the value at some position in the Ms@alues.
example:1,2,3,1,2,3 — 1
fields: val ues[ N], | ast _correct _pos
predict() :
return val ues[| ast _correct pos];

update(val ue_t rv):
| ast correct pos = contains (values, rv) ?

i ndex_of (rv, values) : 1;
shift_into (values, rv);

Last N Stride [ZFC03] — LNS

Up =Vn—1 + (Ui — vyn_i_1), Wherei < N is the mini s.t.
Un—1 = Upn—2 = Un—i-1 — Un—i—2
orv,_1 — v,_s if NO suchi exists

Predicts using the stride at some position in the Mstrides.
example: 1,2,4,7,8,10,13 — 14
fields: | ast, strides[N], |ast_correct_pos
predict() :

return last + strides[last_correct _pos];

update( val uet rv):

| ast correct _pos = contains (strides, rv - last) ?
i ndex_of (rv - last, strides) : 1,
shift_.into (values, rv - last);

Table 3.3: History-based predictors Ilicont ai ns (a[], v) returns true if arraya[] contains
valuev, whereas ndex_of (v, a[]) returnsthe positionof ina[].shift_into (a[], V)
addsv to a[ ], shifting all other elements down and removing the oldest element.

86



3.2. Predictor Unification Framework

Finite Context Method [SS97b, SS97a] - FCM

Up = Un—i, Wherei is the mini s.t.
Up—e = Up_i_e, fOralle < C
or 0 if no such: exists
Captures value history patterns of length+ 1.
example: 1,7,2,3,8,4,7,2 — 3 forC' =2
fields: key, context[ (]
predict() :
key = hash (context);
return | ookup (key);

update( val uet rv):
store (key, rv);
shift.into (context, rv);

Differential Finite Context Method [GVdB01] — DFCM

U = Un—1 + (Vi — vn_i_1), Wherei is the min; s.t.
Up—e — Up—ee1 = Un—i—ec — Un—i—c—1, fOralle < C
or 0 if no suchi exists

Captures stride history patterns of lengtht 1.
example: 1,6,9,11,16,19 — 21 forC' =2
fields: | ast, key, context[(]
predict() :

key = hash (context);

return last + | ookup (key);

update( val uet rv):
store (key, rv);
shift.into (context, rv - last);

Table 3.4: History-based predictors IVash (a[]) produces a hashtable key from the values in
a[]; ! ookup (key) returns the hashtable value atindey ; andst ore (key, v) storesvalue
v atindexkey.
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Memoization (new) — M

v, = U,_i, Wherei is the min: s.t.
args(n) = args(n — i), or 0 if no suchi exists
Maps function arguments to return values.
example: f(1,2,3) =4, f(4,5,6) =7, f(1,2,3) — 4
fields: key

predict(val uet args[]):
key = hash (args);
return | ookup (key);

update(val uet rv):

store (key, rv);

Memoization Stride (new) — MS

Up = Up_1 + (Vi — Un_i_1), Wherei is the min: s.t.
args(n) = args(n — i), or 0 if no suchi exists
Maps function arguments to return value strides.
example: f(1,2,3) =4, f(1,2,3) =17, f(1,2,3) — 10
fields: key, | ast

predict(val uet args[]):
key = hash (args);
return [ast + | ookup (key);

update( val uet rv):
store (key, rv);
last = rv;

Table 3.5: Argument-based predictors I.
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Memoization Finite Context Method (hew) — MFCM

v, = Up—;, Wherei is the min: s.t.
Up—c = Un—i—c, foralle < C, and
argg(n) = args(n — ¢), or 0 if no suchi exists
Maps function arguments value history to return values.
example: f(1)=5, f(2)=6, f(3)=T,/(3)=9. f(1)=5,
f(5)=6, f(5)=8, f(1)=5, f(2)=6, f(3) =7 forC =2
fields: key, context[(C]

predict(val uet args[]):
key = hash (concat (args, context));

return | ookup (key);

update(val ue_t rv):
store (key, rv);
shift_.into (context, rv);

Parameter Stride [HBJO3] - PS

v, = args(n)[a] + (v,_; — args(n — i)[a]), wherei is the min; s.t.
Vp—; —argn —i)la] = v,_;_; —argsn —i — 1)[a]
for some argument index or 0 if no such: exists
Identifies a constant offset between one parameter andttive ralue.
example: f(‘r’) =17, f(*v') =21, f(‘'p') — 15
fields:a = A, old.args[A], strides[A]

predict(val uet args[]):
copy.nto (ol d.args, args);

return a < A ? args[a] + strides[a] : O;
update( val ue_t rv):
for (i =A-1;, i >=0; i--)
if (rv - oldargs[i] == strides[i]) a =i;

strides[i] =rv - oldargs[i];

Table 3.6: Argument-based predictors koncat (a[], b[]) returns arraya[] andb[] con-
catenated into a single arrayopy_i nto (a[], b[]) copiesthe contentsdf] intoa[].
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Hybrid [BZ02] (new design) — H

Uy = f(v1,...,0,_1,argsn)),
wheref is the best performing sub-predictor
Combines many different sub-predictors and identifies ttst dee.
fields: predi ctors[], accuracies[], predictions[]
predict(val uet args[]):
for (p =0; p < P; pt+)
predi ctions[p] = predictors[p].predict (args);
return predictions[nmax_i ndex (accuracies)];
update( val uet rv):
for (p =0; p < P; pt++)
predi ctors[p].update (rv);
accuracies[p] = (rv == predictions[p]) ?
m n (accuracies[p] + 1, 64)
max (accuracies[p] - 1, 0);

Composite Stride(new) — CS

Sp—i =Un_i —Un_i_1, V2<1<n
Sp—1 = f(s1,...,Sn_2,args(n — 1)),
wheref is any sub-predictor
Uy = Up—1 + Spn—1

Creates a stride derivative of any other predictor.

fields: | ast, f

predict() :

return last + f.predict ();

update( val uet rv):
f.update (rv - last);

| ast = rv;

Table 3.7: Composite predictorsOur software hybrid design is new, but conceptually similar to

hardware hybrid designs. The composite stride predictor is a generalnrapiation pattern for

converting value predictions into stride predictions, rather than a spexgfiigpor.
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3.3 Experimental Setup

The first step in our experimental approach was to create g@atetriented C implemen-
tation of every predictor described in Section 3.2. For edssperimentation, this work
was done inside libspmt, but it would be reasonably stréagivard to refactor the RVP
code into a separate value prediction library. Like the oé8bspmt, the RVP code is open
source, portable, and modular, and the predictors are gisted by unit tests that check
for expected predictor behaviour. It currently runsx@6_64 andppc64 architectures.
It also includes profiling support, which we used to genetiageraw data for our experi-
mental results. We then modified SableSpMT to communicagety with the RVP code,
bypassing the method level speculation fork and join iamsf Below we describe the
basic system structure and client configuration, followgdniitial analysis of our bench-
marks and overhead costs. Sections 3.4 and 3.5 provide rataided experimentation on
individual and hybrid predictors respectively.

Figure 3.3 gives an overview of the general RVP library dtreee and client—library
communication process. At the library core is a map betwdsssipal callsite addresses
and callsite probe objects. Each probe contains a hybridigioe instance as well as
callsite identification and profiling information. When thé\client allocates a non-void
callsite during method preparation, it sends the callsit@dress, class, method, program
counter, and target method descriptor to the library in arge for a reference to a callsite
probe object. This reference is used for all subsequent eoriation to avoid unnecessary
table lookups.

We modified the VM to calbr edi ct andupdat e RVP functions before and after
non-void callsite execution respectively. The former takeethod arguments, including
any implicitt hi s reference, and returns a predicted value, whereas the takes the
actual return value and updates the predictors associatbdive callsite. In the event
of escaping exceptions, no update occurs. To minimize VMhghs, the library parses
arguments from the VM call stack using the target descrieroing out unused bytes
and arranging the arguments contiguously in memory. latigrihe hybrid and all sub-
predictors subclass a predictor class wifidat e and pr edi ct methods. This design
allows for easy composition and hybrid specialization, escdbed in Section 3.5.
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Figure 3.3: Client-library communication.

3.3.1 Benchmarks

As in Chapter 2, we used the SPEC JVM98 benchmarks with infu$ B0 for experi-
mental evaluation [Sta98]. These benchmarks are not aslerrmpmemory-intensive as
the more recent DaCapo benchmarks [B®@A]. However, they are fast to execute, an
important factor in performing a large number of experirsgahd more than sufficient for
a software RVP study as they use over 800 million non-voidhaettcalls in the absence
of method inlining. Our choice of benchmark suite also dlyeextends previous work
on RVP for Java, which used the same benchmarks but altezhyatan only the tiny S1
dataset in a restricted hardware context that only consttlboolean, int, and reference
return types [HBJO3] or ignored specific predictor behavi@B06]. It also extends the
work in Chapter 2 that focuses on our MLS client applicatiothefresults.
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benchmark| comp db jack | javac | jess | mpeg | mitrt
methods| 670 714 936 | 1.51K | 1.15K 838 863
callsites| 2.48K | 2.79K | 4.56K | 7.20K | 4.32K | 2.94K | 3.71K
invokes ) | 93.4M | 54.4M | 35.0M | 39.9M | 23.3M | 45.2M | 28.4M
invokes (\V) | 133M | 116M | 62.9M | 82.3M | 102M | 65.8M | 259M
escapes\) 0 0| 608K 0 0 0 0
escapesNV) 0 0 68 | 41.5K 0 0 0
returns {) 93.4M | 54.4M | 34.4M | 39.9M | 23.3M | 45.2M | 28.4M
returns W) | 133M | 116M | 62.9M | 82.3M | 102M | 65.8M | 259M
booleanZ | 6.70K | 11.1M | 17.3M | 19.5M | 35.8M | 13.2M | 3.07M

bytesB 0 0| 580K | 39.3K 0 0 0
charsC | 8.85K | 25.2K | 8.53M | 3.80M | 24.4K | 6.96K | 20.8K
shortsS 0 0 0| 73.0K 0| 18.0M 0

intsl | 133M | 48.1M | 17.9M | 35.9M | 20.7M | 34.6M | 4.54M
longsJ 440| 152K | 1.23M | 818K | 100K | 15.7K| 2.07K
floatsF 102 704 | 296K 104 | 1.04K | 7.82K | 162M
doublesD 0 0 0 160 | 1.77M 56 | 214K
referenceR | 17.0K | 56.2M | 17.0M | 22.2M | 43.5M | 24.3K | 89.6M

Table 3.8: Benchmark propertied/: void; NV: non-void; escapes: escaping exceptions.

Table 3.8 presents relevant benchmark properties. Thedicsibon shows the number of
methods and callsites in the dynamic call graph. In priggiple can associate predictors
with methods, callsites, or the invocation edges that joent. We choose here to use
callsites exclusively, mostly to limit the scope of our exatlon. Callsites seem like a
reasonable choice because they capture the calling comitixiut being type sensitive. In
future work, it would be interesting to study how performartiffers when methods or
invocation edges are used instead.

The second section shows dynamic void and non-void invasespes, and returns. An
invoke is a method call, a return is normal method completiord an escape is abnormal
method termination due to an uncaught exception in theeallée exclude void method
calls from our analysis because they do not return value¢qrbsent them here for the sake
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of completeness. We make predictions on all non-void ingpket only send updates on
normal returns, because for escapes there is no return aatlieontrol does not return to
the callsite. We thus report accuracy measures over thientataber of non-void returns.
As the data show, escaping exceptions are relatively raes for supposedly exception-
heavy benchmarks such aack, which means they do not have a large impact in any
case.

The third section classifies non-void returns accordindpéoeight Java primitive types
and also reference types. Return type information is integ$¥ecause some types are
inherently more predictable than other types, suggespegialization and compression
strategies, and because it describes behaviour to somat.ekteour initial return value
prediction study, we found that boolean, byte, and char austhvere highly predictable,
whereas the remaining types had a predictability that rériigem low to high [PV04b].

In other words, the distribution and sequence of valuesarsathore than the type, except
where the type constrains the distribution by nature ohtstswidth or typical value range.
We see thatt rt relies heavily on float methodspegaudi o uses a surprising number
of methods returning shortspnpr ess returns almost exclusively ints, and the remaining
benchmarks use more or less equal mixes of int, boolean ed@ance calls.

3.3.2 Communication Overhead

Our design emphasizes modularity and ease of experimemiater performance. The use
of an external library, multiple calls, portable argumeatging, and so forth has an obvious
performance impact, much of which could be ameliorated bgriporating the RVP code
directly into the VM, interleaving RVP code in generatedeadthe case of a JIT compiler
client, and generally optimizing its performance alongwather VM activities. We thus
performed an initial experiment to isolate and measure Wieen@ad of our framework.
Figure 3.4 shows the slowdown due to communication overhetdthe predictor
module of the library. These data are gathered usmglgpredictor that simply returns zero
for every prediction, and performs no actual update conmjaurtaln future experiments we
control for this overhead by using the null predictor pemfance results as a baseline. The
large slowdown font r t is due to contention in our simple predictor locking strgtagd a
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Figure 3.4: Null predictor slowdowns, relative to vanilla SableVRbove each bar is the vanilla

SableVM non-void invoke density for that benchmark in terms of millions of qgadlssecond.

high call density. Improved lock-based or even lock-fregigies would help, and in general
multithreaded predictor interactions are an interestingction for future work. Overhead
scales primarily with call density, but the cost of argumeaitsing does make some calls
more expensive than others. In practice, performancecatitipplications should tailor
their use of RVP to the locations where it is most useful.

3.4 Initial Performance Evaluation

We used our software library implementation of the predgin Section 3.2 to measure
their accuracy, speed, and memory consumption performavereour benchmark suite.
Knowing the specific performance characteristics of irdiral predictors is useful when
given a constrained resource budget. We expect the morelepmedictors to have better
accuracy but with higher speed and memory costs. Tiertaybrid predictor we study
here does not specialize, visiting every sub-predictorammeall topr edi ct andupdat e.
The next section contains a detailed exploration of hybdijdivity.

It is important to keep in mind while considering these resstilat a prediction is made
for every single invocation in the program and that theredsniining. We chose this
approach to gather the most comprehensive set of data ssid to make our study
generally useful, because different clients of RVP willanably make different decisions
about where to predict. Individual callsite prediction @@cies and overhead costs differ
widely, which means that disabling prediction selectivey significantly affect the results.
The actual runtime speed and memory costs in any practieabsio will scale with usage.
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3.4.1 Accuracy

Figure 3.5 shows basic prediction accuracies for each gmdand for each benchmark.
Accuracy is calculated as the number of correct predictaves the number of non-void
calls that returned to their callsite. The benchmarks arstefted in alphabetical order from
left to right for each predictor. The predictors are arrahigehe top-to-bottom order given
by Tables 3.1-3.7, excluding the final composite stridegpattor constructing predictors.
For comparison we include our baseline null predictor (M} gimply returns 0.

As expected, the hybrid beats individual predictor acaesafor every benchmark
because it allows sub-predictors to complement each otAecuracy otherwise scales
roughly with complexity, at least for the non-memoizatiaedtictors. A basic last value
predictor significantly improves on a null predictor, isumrt improved on by last N predic-
tors, and which themselves are overshadowed by contertdlmessigns. Interestingly the
stride versions of non-context predictors do not show §icamt differences from the last
value predictors, suggesting that extending the predidtmhigher level derivative forms
does not necessarily improve accuracy. Including valumijisontext has a significant
impact. The finite context method and its differential foravé the highest individual pre-
dictor accuracies, and even memoization is noticeably avgnt by adding value history.
Notably, the accuracy of the DFCM predictor is within 5% of thydrid. Argument based
approaches are not as successful as history based apmoacbaation, but as we show
later memoization can complement the FCM and DFCM predict@edynin a hybrid. In
summary, highly predictable computations fall into oneéhwée categories: those where the
return value fits some function of recent inputs and outpiiked-space predictors), those
that exhibit input repetition (memoization-based preati€}, and those that exhibit output
repetition (history-based predictors).

Interesting differences also show up in terms of benchmatikabiour. db, j ack,
javac, andj ess respond well overall, with even simple predictors reachi@g60%
accuracy levelsnpegaudi o andnt rt are more resilient to prediction, due to their use
of irregular short and floating point types respectivelgnpr ess improves dramatically
with table-based prediction, indicating longer term pateexist, even ifpegaudi o and
conpr ess are naturally expected to be less predictable since theyi@anmpressed data.
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3.4.2 Speed

Figure 3.6 shows slowdowns due to predictor overhead fon @aedictor and for each
benchmark. Slowdown is calculated as predictor performaelative to the null predictor,
factoring out any overhead inherent in our experimentalggter the control experiment
in Figure 3.4. The graph is structured similarly to Figurg, &lthough on a logarithmic
scale and without the null predictor. As expected, predispeeds vary with complexity,
with the table-based predictors being considerably sldian the fixed-space predictors.
The table-based predictors are expensive for two reasoirst, Rashing arguments or
return value histories to table lookup keys is an expengpegation. Second, the memory
requirements of the larger tables introduce performannalfies due to memory hierarchy
latencies. The rige hybrid is unsuprisingly very slow, incurring the sumnuat of all
sub-predictors. When compared against thieenaybrid, the DFCM predictor alone is an
obviously better choice: it is at least three times as fés&ccuracy is at most 5% worse
(Figure 3.5), and it typically requires about half as muchmuoey (Table 3.9). However,
per Figures 3.17, 3.18, and Table 3.10 in the next sectiorsubgtituting less expensive
predictors when feasible, adaptive versions of the hylmedligtor can outperform not only
the nave hybrid but also DFCM for speed and memory while maintajsimilar accuracy.

3.4.3 Memory Consumption

The memory consumption of each predictor for each benchiisaskown in Table 3.9.
The memory requirements of the fixed-space predictors doellated by summing the
number of bytes used by each predictor and multiplying byniineaber of callsites. The
table-based predictor memory requirements are calculateé same manner for the fixed-
space fields, and then the actual final sizes of the hashtabledividual callsites upon
program completion are used to calculate the variableddiréds. The main observation
here is that the table-based predictors can consume largerdsnof memory. This effect

is compounded in the hybrid that has five table-based sutliqtoes at each callsite, in the
worst case reaching a huge 6.37G1or t . These data confirm that memory latencies are
likely to contribute to predictor slowdowns for table-bdgeediction.
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16.6M
29.5K
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1.55M
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10.1K
20.2K
40.4K
30.3K
50.5K
51.7K
71.9K
14.6M
10.1M
4.03M
4.05M
13.4M
26.9K
47.1M

6.08K
12.2K
24.3K
18.2K
30.4K
31.2K
43.3K
1.61G
1.60G
25.4M
25.5M
1.72G
16.2K
4.98G

11.0K
21.9K
43.9K
32.9K
54.8K
56.2K
78.2K
2.97G
3.31G
7.19M
7.21IM
80.6M
28.0K
6.37G

Table 3.9: Predictor memory consumption.
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The data in Table 3.9 and Figures 3.5 and 3.6 assume hashiad$eare unbounded,
and so the tables grow as necessary to accommodate new. vEhi®s obviously unreal-
istic, but if the sizes are bounded then new values overwtlitealues once the maximum
size is reached, which reduces overall accuracy if the digevia ever requested. We thus
explored predictor accuracy as a function of maximum taizke, s shown in Figures 3.8—
3.13. Here maximum table sizes are varied frefhto 225 entries, one power of 2 larger
than the largest size any predictor was observed to expamatueally, and accuracy exam-
ined for each table predictor and benchmark combinatiogeheral, accuracy increases as
table size increases, although only up to a point. Afterploisit accuracy remains mostly
constant, indicating no further impact from collisionsgdan some cases may actually de-
crease due to the absence of lucky collisions that returroedract value at smaller sizes.

Figures 3.8-3.13 also indicate that individual predicttais have complex interactions
in a hybrid. For a given benchmark and table size, indiviguedictors often have notice-
ably different performance: memoization (stride) may woekl in some instances whereas
the (differential) finite context method works well in oteeinterestingly, although the con-
text predictors usually have the highest accuracies, gdigior complementation provided
by the hybrid predictor can be seen in the shapes of the ctovasdividual benchmarks.
The hybrid behaviour fotonpr ess, j ack, j avac, andj ess, for example, combines the
better accuracy of M(S) designs at low table sizes with tighér accuracy of (D)FCM at
higher sizes.

3.4.4 Sub-Predictor Comparisons

The nave hybrid predictor in Figures 3.5, 3.6, and Table 3.9 hassrage accuracy of
72%, an average slowdown of 4.6x, and an average memory oqiisun of 2.3G. This
is clearly unusable, but could be made much better by simpiitihg the number of
sub-predictors. Figure 3.7 shows the average accuracyafir sub-predictor over SPEC
JVM98 plotted against its average slowdown. If choicesiangdd, the three clear winners
here are the 2-delta stride (2DS), memoization stride (M89, differential finite context
method (DFCM) predictors, where increased accuracy is dréoleincreased slowdown
and memory consumption. Although 2DS is only slightly warseerms of accuracy than
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Figure 3.8: Finite context method (FCM) accuracy vs. maximum table size.
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Figure 3.9: Differential finite context method (DFCM) accuracy vs. maximum table size
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Figure 3.10: Memoization (M) accuracy vs. maximum table size.
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Figure 3.11: Memoization stride (MS) accuracy vs. maximum table size.
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Figure 3.13: Hybrid (H) accuracy vs. maximum table size.
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MS and significantly better in terms of slowdown and memonystonption, it occupies a
different algorithmic space and will end up complementin§ M a hybrid. These three
predictor types correspond to the three types of highlyiptable computations we previ-
ously highlighted, namely those that fit some function (208)se with input repetition
(MS), and those with output repetition (DFCM). Note that desghis analysis, we still
chose to use all 13 sub-predictors in the adaptive hybriémx@nts that follow. One rea-
son is that we wanted to demonstrate that our adaptive hglestin can accomodate a
large number of sub-predictors, which is true at least intpéecause only one remains in
use after specialization. Another reason is that even ggertibust predictors in Figure 3.7
may contribute uniquely accurate predictions in some 8doa. Nevertheless, a system-
atic exploration of potential hybrid compositions woulkely find that rejecting certain
sub-predictors yields even better performance. We ledgeathan opportunity for future
work.

3.5 Hybrid Adaptivity

The ndve hybrid design in Table 3.7 achieves very high accuracgwever, its speed
suffers because it employs twelve different sub-predsctorseries to make and update
predictions, and its memory consumption suffers becausains the memory for large
table-based predictors even if they are never selectedrémligiion. We would like to
maintain this high accuracy while optimizing for speed arehmry consumption. We do
this by specializing individual hybrid instances to pautar sub-predictors and releasing
the resources required by the other unused sub-prediclbis.optimization relies on an
important hypothesidor a given callsite, there is likely to be an ideal sub-podr.

We first tested this hypothesis with an offline profiling basggeriment to identify
ideal sub-predictors on a per-callsite basis. The idealpsabictor for a callsite is simply
the one that performed best over the entire course of execulf a subsequent run in
which the hybrid immediately specializes to these predscioatches the accuracy of the
naive version, then it indicates that ideal sub-predictoedi&ely to exist. The performance
of this offline hybrid can then provide an oracle for onlindioyzation.
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Figure 3.14: Ideal predictor distributions.

3.5.1 Offline Specialization

We first ran each benchmark to completion using thigenpredictor, and processed the re-
sults to create a profile for offline specialization. Figurg43shows the distribution of ideal
predictors for each benchmark in terms of dynamically redatallsites and the number of
dynamic calls. At the callsite level, most ideal predictars null or last value predictors.
In this analysis, cold callsites with one call are weightgdadly with hot callsites that have
50 million calls, and they tend to specialize to simple pcemiis. Most of these cold call-
sites are found in initialization code, and there is simglychance for sufficient history to
develop such that the more complex predictors outperfomsitmple ones.

At the level of actual calls, the simple predictors still Wovell in many cases, particu-
larly for methods returning constants or accessing statia structures. However, hot call-
sites tend to benefit from complex table-predictors preds;tindicating an important role
for them in maximizing accuracy. This reconfirms the resulFigure 3.13, where a low
cap on table size in the hybrid predictor can suppress acgsignificantly. npegaudi o
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provides a notable exception to the dominance of table gi@di. It decodes an mp3 file,
and so its return values are mostly random. It has very lowadvgredictability, and when
there is repetition it is generally found in the last few \edumeaning that simple predictors
dominate.

3.5.2 Online Specialization

We next attempted to determine ideal sub-predictors dyceini without ahead-of-time
profiling data. Online adaptivity is critical in dynamic ceitation environments, where
ahead-of-time techniques are not well accepted in practioehis case online special-
ization can also accommodate callsites that exhibit plikedsehaviour, where the ideal
sub-predictor is not constant throughout the program run.

There are three basic parameters we considered in comsgroctr online specializing
hybrid. The first is a warmup periody. The hybrid predictor will not specialize until
u > w, whereu is the number of predictor updates. The second is a confideneghold
for specializations. For the number of correct prediction©ver the last: calls, if ¢ >
s A u > w then the hybrid specializes to the best performing subipi@d favouring
cheaper predictors in the event of ties. We use a value-6f64, the number of bits in a
word on our machines. The third parameter is a confidencshhble for despecialization,
d. If ¢ < d and the hybrid has already specialized, then it will desdee again. We
did not experiment with resetting the warmup period uporpdemlization, although this
could be a useful extension.

We performed a parameter sweep owes, d according to Figure 3.15. This generated
405 different experiments. For each, the average accuratglawdown were computed.
The average accuracies were rounded to the nearest iraaegehe minimum running time
for each accuracy identified. These results are shown inr€&ig1l6. From these data, we
selected the point at accuracy 67% with slowdown of 1.35xuf® in future experiments.
This outperforms DFCM which has an accuracy of 69% but a slewwndof 1.65x. Here
{W, S, D} = {4, 2,0}, which corresponds to a warmupwf= 4096 returns, specialization
threshold ofs = 16 correct predictions (25% accuracy), and a despecializ#ti@shold of
d = 0, meaning no despecialization will occur. This choice is 5&se than the optimal
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Figure 3.15: Online hybrid parameter sweep configuration.
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Figure 3.16: Online hybrid parameter sweep.

accuracy at 72% with slowdown of 2.40x. The cheapest cordtgur of {—1,0,0} is
equivalent to the null predictor and only achieves an aayuoé 12%.

The data point at accuracy 61% with slowdown 1.74x also stantl The correspond-
ing configuration{—1, 8,0}, means thatv = 0, s = 64, andd = 0. This predictor has no
warmup, nor does it despecialize, and it is quite slow. It sgscted by the optimization
for that data point for two reasons. First, its high spezalon threshold did ultimately
result in some good sub-predictor choices. Second, there amy four configurations
to choose from at that accuracy level, because the distoibof experiments is not even
along the x-axis and most experiments cluster in the uppmiracy range. Interestingly, in
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all but the top three most accurate and slowest cased). We conclude that although de-
specialization may offer slight accuracy benefits, they eovith sharply increasing costs.

3.5.3 Performance Comparisons

We finally compared the behaviour of our offline and onlinegmita hybrids with the niace
non-adapative hybrid. We show predictor accuracies, sbovnd, and memory consump-
tion for all three in Figures 3.17 and 3.18 and Table 3.10eetyely. We used a maximum
table size of 2 entries in these experiments to prevent memory constrfaortsinterfering
with accuracy results.

In terms of accuracy, we expected théueahybrid to act as an oracle with respect to
the offline hybrid, behaving like the online hybrid but configd with an infinite warmup
period. The data in Figure 3.17 show that offline speciabmais quite effective, for it is
always within 3% accuracy of the iv@ version. In some cases the accuracy is actually
slightly better, because the constant availability of afidictors in the niaze version can
lead to suboptimal choices. The close match between offtidendve accuracies indicates
two things. First, ideal sub-predictors do in fact exist floe vast majority of callsites.
Second, for these benchmarks, significant program phasesitaer rare or non-critical
with respect to adaptive RVP performance, because the efiiyrid uses a fixed set of
sub-predictors over the entire program run. Accuracy issigstificantly compromised in
the online hybrid, dropping by at most 11% when comparedftmefaccuracy.

Predictor slowdowns are dramatically reduced by both aflmd online hybrids, as
shown in Figure 3.18. Online performance is on average atgnv to offline, where of-
fline is worse when it chooses accurate but expensive taseebpredictors, while online
is worse when the cost of warmup is too high. This effect can Bk seen in the memory
consumption data in Table 3.10. Both offline and online hybgdeatly reduce memory
requirements, with the best case for offline being the redacf npegaudi o by over 24
times. Online memory usage tends to be somewhat larger tiflare pwith the excep-
tion of db, an extreme example where the online hybrid is orders of madm cheaper.
The bottom half of Table 3.10 shows the further memory radostthat straightforward
elimination of wasteful memory use in our system would pdevi
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Figure 3.18: Naive vs. offline vs. online slowdowns.

predictor| comp db jack | javac | jess | mpeg | mtrt
nave | 1.31G| 2.80G| 91.0M | 412M | 47.2M | 4.98G | 6.37G
offine | 484M | 771M | 5.83M | 190M | 6.11M | 206M | 417M
online | 486M | 5.19M | 9.16M | 53.8M | 7.43M | 256M | 1.07G
nologs| 324M | 3.62M | 6.41M | 36.4M | 5.25M | 171M | 732M
32-bit keys| 243M | 2.90M | 5.14M | 27.8M | 4.27M | 128M | 549M
type info | 162M | 2.18M | 3.77M | 19.2M | 3.43M | 86.1M | 367M
perfectZ | 162M | 2.14M | 3.70M | 19.1M | 3.40M | 86.0M | 367M

Table 3.10: Naive vs. offline vs. online memory consumptibine four additional rows indicate the
cumulative memory consumption benefits due to removing a backing log fromtakles, using
32-bit table keys instead of 64-bit keys, using VM knowledge about widéhs, and using perfect
hashing for booleans in the context-based predictors. Perfect Indudshing means that an order-5
context-based predictor only requires 5 bytes, 1 byte to hold the 5-tiéxtoand 4 bytes to hold
the 22 = 32 possible values.
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3.6 Conclusions

The ideal choice of return value predictor varies widelypeteding on dynamic bench-
mark and callsite properties. A flexible, software-basesigtefor RVP thus has many
advantages, permitting a wide variety of arbitrarily coexppredictors and an adaptive
mechanism for optimizing their application. The latterspecially important for software
implementations, where a’ive design imposes memory and speed overheads that can eas-
ily outweigh any derived benefit. We found that using a varadtcallsite-bound predictors
that include complex, table-based predictors can reswéemg high accuracy. Our online
adaptive hybrid is effective at maintaining this accuradyle/reducing overhead costs to
reasonable levels. It does so by identifying and specrait ideal sub-predictors, which
we found do generally exist at the callsite level. If the totmtime overhead of ubiquitous
RVP in this study remains a concern, applications can etslty their usage to reduce it.

Our software-only focus played an important role in thiskvdrhe search for a simple
hierarchical design led to the high level specializatiotirojzation in our adaptive hybrid
predictor, which suggests that clean design and objeettaiion stand to benefit software
analogues of hardware components in general. We foundfteanaany years of research,
history-based prediction studies covered the design spdber well, missing only the
2 delta last value predictor. This suggests that early gteno formalize the design of
runtime components may be beneficial. For example, our ceitgostride pattern makes
it easy to create stride based derivatives of any predi€uar.software context allowed us
to consider a large number of sub-predictors at low cost,vemdound that they all had
application at different points. Memoization is partialyeffective when applied to RVP,
and complements existing predictors nicely in a hybrid.

3.7 Future Work

There are many potential applications for this technolo@y.course, return value pre-
diction was originally conceived to support method levet@gation, which as seen in
Chapters 1 and 2 executes a function continuation speceila@énd in parallel with the
function call. RVP significantly improves method level spkation performance in both
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hardware [CO98, OHL99, HBJ03] and software systems, the ld¢éimonstrated in Chap-
ter 2, by enabling longer thread lengths and thus greatatlpsm. Close to the original
motivation of speculative execution, return value pradicicould also enhancgafe fu-
tures[WJHO5, ZKNO7a], a source level continuation-based pdradldon construct that
supports speculative reads and writes, by allowing for gla¢ion past the consumption
of the return value. Aside from certain predictors that thkection arguments, there is
nothing preventing our design from also being used for mereegal load value prediction,
which has application to both software thread level speituigOMO08] and transactional
memory implementations [PB09, THGO09].

More broadly, any instruction that produces a value can Insidered a function, and
so the technique is readily extended to non-return valudeeyfanalysis in JIT compilers
is value profiling, which enables method body specializaiccording to expected val-
ues [CFE97,SYKO01]. Thus software (return) value prediction could be usegkneralize
value profiling to support multiple concurrent profiles arehbe multiple specializations
of a method. A second use of RVP-based profiling is progranerstanding, wherpost
mortemanalysis of specific predictor behaviours can provide sigto the run-time be-
haviour of individual programs and functions. A third uséxP-based profiling is in soft-
ware self-healing, which seeks to repair damage from néhatiacks [LSC08]. Apart
from profiling and speculative execution, value predictcam be used to prevent stalls
due to memory latencies, both in distributed and multi-gygtems [LG09], and to sup-
port prefetching [ZCO05]. Finally, outside of programmingd@ages, our fast, accurate,
and memory efficient software RVP design could apply to the ¢ machine learning,
where making future predictions based on past behavioutas anportant, for example
in robotics, stock market prediction, competitive gamayplg or multi-agent cooperative
settings.

In terms of design, predictor accuracy could be improveddeyiifying hot but unpre-
dictable callsites and designing new predictors to accodatethem. Generalized soft-
ware value prediction using our framework may benefit froresa additional predictors
not suitable for return values. Attaching predictors tomes and invocation edges instead
of callsites may alternatively improve accuracy or reduggrloead. Various static analyses
and program transformations to support prediction are @ssible, building on previous
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work in this area [BDHO02]. Finally, there are undesirablesrattions between RVP and
MLS that would benefit from mitigating techniques; dual. previously observed that the
hybrid predictor accuracy of their RVP system dropped byuai0% when MLS was en-
abled [HBJO3]. One problem is that MLS changes the executidercuch that predictions
and / or updates may happen out of order. Another is that icdlse of in-order nesting,
MLS introduces speculative predictions and updates thghte later aborted. Finally,
there is the additional question as to whether predictiodd ar updates at a callsite should
always be made even if threads are only sometimes forked.ther

In terms of implementation, a mixture of software and hamdvsapport may be appro-
priate [BSMF08]. Our design could certainly accommodatelare versions of specific
sub-predictors when available. Furthermore, a generggser hardware hash function
could improve the performance of table-based predictoid have broad applicability out-
side of value prediction. We are also interested in refaugothe RVP code from libspmt
into a separate library for general purpose reuse; a disgalya of this approach is that
inter-library whole program optimization is much less commonlpgorted tharintra-
library whole program optimization. A JIT compiler intetjom of RVP which weaves
intermediate representations of predictor code into gaadicode instead of inserting calls
to library functions may be worthwhile in terms of elimiragilibrary overhead; certainly
the baseline cost of the null predictor shown in Figure 3dusthbe much smaller in a
production system. Lock-based or lock-free optimizatifmrsconcurrent predictor access
could also significantly reduce overhead. Finally, we amti@aarly interested in the im-
pact of JIT compiler method inlining on overall predictolagiour, since it will result in
profound changes to benchmark properties.
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Chapter 4
Nested Method Level Speculation &
Structural Fork Heuristics

In Chapter 2 we described an MLS system that allowed for outrdér nesting, wherein
non-speculative parent threads can have multiple sp@aitdtildren, but not in-order nest-
ing, where speculative children can create speculatiMérem of their own. During pro-
filing data analysis, we found that this led to idle processand that support for in-order
nesting was necessary for maximizing processor usage.aja@ucer / consumer mem-
ory allocation problem presented itself: a child thread Mt@llocate the memory for a
new child in one thread but that memory would get freed by #reipt in a different thread.
To this end we designed a custom multiprocessor memoryatiodased on recycling
aggregate thread data structures. In this chapter we fesept our memory allocator as
a practical solution for any software MLS system supportmgrder nesting. Once in-
order nesting was enabled, we found that far too many thre@ds created when using
our dynamic fork heuristics, precluding meaningful anaslyaf even simple benchmarks.
We concluded that the runtime performance of MLS stronglyetiels on the interaction
between program structure and MLS system configurationjngakdifficult to compare
approaches or understand in a general way how programsédehder MLS, particularly
with respect to thread nesting.

Accordingly, in this chapter we seek to establish a basiméwaork for understanding
and describing nested MLS behaviour. We present a staddlasstraction of MLS that
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encompasses major design choices, including in-order atidfeorder nesting. This ab-
straction is drawn directly from our implementation inst8lableSpMT and libspmt. We
then use this abstraction to develop the structural operaitsemantics for a series of pro-
gressively more flexible MLS models. Assuming the most flexguch model, we provide
transition-based visualizations that reveal the speiwelaxecution behaviour for a num-
ber of simple imperative programs. These visualizatiomsvsdimow specific parallelization
patterns can be induced by combining common programmiragmisliwith precise deci-
sions about where to speculate, forming a set of structordl lieuristics. We find that
the runtime parallelization structures are complex andintuitive, and that both in-order
and out-of-order nesting are important for exposing paliath. We also show how the
parallelization patterns used by the Olden suite of bencksnean be expressed in our
framework. Our primary conclusion here is that either pangmer or compiler or profiler
knowledge of how the structure of implicit parallelism diegs at runtime is necessary
to maximize performance. At the language level this coulamiatroducing explicit “try
this in parallel” keywords, or it could mean simply writingggrams to be more amenable
to automatic techniques. At any rate, we believe a balanteees explicit and implicit
approaches is likely to be most useful.

4.1 Introduction

The profiling work in Chapter 2 revealed two performance issiiat are addressed in
this chapter. First, processors are often idle when onlyobuwirder nesting is allowed.
Our solution to that problem was to implement in-order mggsin SableSpMT, along with
support for multiprocessor memory management of childathidata structures. Although
we found that in-order nesting effectively eliminates thetjpem of idle speculative proces-
sors in the system, we also found that arbitrary in-ordetimg#creases the total overhead
to the point that most programs require so much time to caimpkeh our “always fork”
heuristic that systematic experimentation with dynamirk feeuristics is simply not viable.
The second performance issue is that most speculativedthega short-lived. Given that
we want to include in-order nesting in any approach to angatinger threads, a system-
atic experimental investigation based on varying dynamik heuristics is already ruled
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out. Our solution here is to identify positive and negativieractions between code struc-
ture and speculative thread behaviour using an abstraatinnddur various nesting forms.
Thus, a lack of experimental insight into the performanseés and runtime behaviour of
SableSpMT is the primary motivation for the material in tti&pter.

Our initial hope with MLS, as with most work on automatic dhalazation, was that
irregular programs would run faster, exploiting parafieliwith no additional programmer
intervention. However, due to variability in the balancesieen parent and child thread
lengths, value predictability, and the likelihood of degence violations, some fork points
end up being much better than others, and the overhead obldadd decisions can easily
dominate execution time. Naturally, one’s first thoughti€hange the set of fork points
to accomodate. Although this does have an effect on pasaligit does so not only by
eliminating the overhead from unprofitable speculation dtso by changing the dynamic
thread structure and hence enabling parallelism where stpaviously precluded. The
complication is that changing the dynamic thread strucitutern changes the suitability
of fork points. For an online or offline adaptive system thatates threads based on the
suitability of fork points, this creates a feedback loop.end result is that sometimes
parallelism is obtained, sometimes not, but ultimately idifficult to explainwhy things
play out the way they do.

There has been significant work on selecting fork points &edfinal effect on per-
formance. There has been much less focus, at least in theoEd4eS, on studying the
relationship between program structure, choice of forkip@nd the resultant parallel be-
haviour. For this we need an abstract way to describe the@mogtructure and choice of
fork point, and we need a way to “see” the behaviour, whicthia tase is a visualization
of how parallel structures evolve over time. We also need dehof MLS that is flexible
enough to allow for exhaustive exploration. The initial Mltgplementation described in
Chapter 2 allowed parent threads to allocate multiple chitdads, thus providing out-of-
order nesting. However, it did not allow for child threadsteate speculative child threads
of their own; in other words, in-order nesting was prohitité&igures 1.3 and 2.7 clarify
the differences between these two kinds of nesting.

In the first part of this chapter we describe a multithreadedary allocator that makes
in-order nesting practical and efficient. It is a simple dadiased on freelists, and the core
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mechanism is recycling entire child thread data structatesnce. In the next part of
this chapter, we provide an abstract description of MLS vimiied model based on call
stacks that encompasses all possible nesting scenarissafstraction is drawn from our
practical implementation in SableSpMT, and in particutani the refactoring work done
to create libspmt, our library for speculative multithreegd We then provide a series of
sub-models referring to our larger unified one that are eaderthed by their structural
operational semantics, where the structures involvedher@tecise relationships between
call stacks and threads. We then take an abstract view ofgogtructure that isolates
useful work from higher-level organizational concernsaldimg a focus on the effects of
code layout. Finally, we provide and employ a method for aiing runtime parallel
behaviour that relies on showing the state evolution thaearfrom repeated application
of our structural rules in combination with choice of forkipi This forms a series of
speculation patterns, which in turn imply a set of strudtfoek heuristics.

Given such a framework, we can compare the parallelizatiodets used by MLS-
like systems directly, and begin to understand at a non&ojae level why the results
differ between them and between the programs they paealelOur vision is that this
understanding can be used to inform programmers and camyikers trying to structure
or restructure programs for efficient implicit parallelisamd to guide the design of runtime
systems. A final benefit of our approach provides a basis f@niting novel extensions: it
allows for rapid specification and visualization withoug thurden of implementation.

4.1.1 Contributions

We make the following specific contributions:

e We present a multithreaded allocator that provides a sirsplation for two con-
strained memory management problems that arise underaseftMLS. First, it re-
cycles constant-shape child thread aggregate data seachli once, dramatically
reducing the number of calls to the system allocator. Sedbadcounts for a pro-
ducer / consumer problem under in-order nesting where meatoycated in one
thread is freed in another.
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e We propose a stack-based operational semantics as a unibieéel wf MLS. This
model is derived from the working implementation descrilb@Chapter 2. Our
model provides support for lazy stack buffering at the frdewel, a unique opti-
mization designed to improve the speed of local variabless;oother systems have
relied instead on general dependence buffer or transattmemory support. The
semantics of MLS have not been considered by previous worsrizebasic fork and
join matching.

e We provide several MLS sub-models, each of which is desdriiyeits structural
operational semantics, and relate them to our unified staclem These sub-models
are suitable for direct visualization of programs exeaytinder MLS.

¢ We examine the behaviour of a number of common coding idienmslation to our
stack formalism. We show how these idioms map to specifidlparantime struc-
tures depending on code layout and fork point choice. Weréegveral guidelines as
to how parallelism can be exposed, investigate a complexpbathat demonstrates
implicit workload scheduling using recursion, and study @lden benchmarks for
similar patterns.

In Section 4.2, we describe our memory allocator, a presgguior efficient child al-
location and the in-order nesting described in future easti In Section 4.3, we present
our unified stack model, which we use to develop a series of MillSmodels in Sec-
tion 4.4. We explore coding idioms and behaviour in Secti@n dnd finally conclude and
discuss future work. Related work specific to memory allargtnested MLS, irregular
parallelism, and fork heuristics is described in Chapter 5.

4.2 Child Thread Memory Allocation

In this section we describe a simple memory allocator with distinct features that allows
for efficient child thread allocation when using either ofderder or in-order nesting. The
first feature is the use of freelists to manage aggregate thriéad data structures, and the
second is the migration of freelist blocks between proasssod a global runtime pool.
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throwable |« JNIEnv » Java stack
Java virtual machine A
speculation library
timers (2) |« child » item
v
itemsl[] buffer |« virtual » stack
A
A 4 A 4 A 4
log < tables (2) profile frames|]
A
keys[] values[] tagsl] timers (13)

Figure 4.1: Runtime child data structure.

4.2.1 Ownership Based Allocation

The data structure for a single child thread is shown in FEgud. This is the imple-
mentation in libspmt after refactoring the code from SapMS§; it contains 37 separately
allocated sub-objects. On the library side there is memarafdependence buffer, profil-
ing information, and nested MLS stack information, and a\#M side there is memory
for a thread environment and the actual Java call stack. \Wergrented with allocat-
ing a new child instance on every thread fork and freeing tleenory on every commit
or abort, which implied 37 calls toal | oc andf r ee respectively. When combined with
a high frequency of allocation, as permitted by our out4afes nesting model and lib-
eral fork heuristics, this quickly overwhelmed the cap#b#g of the Lea allocator on our
system [Lea00].

We observed that each child instance wa®anership dominator trepvit06] rooted
by thechi | d sub-object. This means that all other sub-objects are eddetonly through
it, at least at allocation and deallocation time. We alseoled that the only differences be-
tween children were the size of the dynamically resizableck andJava st ack nodes.
Since the memory of dead child instances is guaranteed toreachable by the rest of the
system, and since all instances have the same basic shapesrer@ble to use one child
freelist for each parent thread and avoid excessive calsitd oc andfree. The only
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additional need is a new child “reset” operation that getedan allocation and zeroes
out important elements of the child state.

4.2.2 Multithreaded Freelist Allocation

After the initial implementation of out-of-order nestingChapter 2, we profiled the system
and found that processors were mostly idle. For the SPEC B8 chmark suite running
on 4 processors, helper threads were idle on average for T38&iorunning time. Our
conclusion was that not enough parallelism was being explogeut-of-order speculation
alone and that support for in-order speculation was necgfsamaximal parallelism.

However, in-order speculation introduces a memory alloogtroblem when children
are allocated from child freelists. Consider the simple gxanwhere child thread C1
allocates its own child C2. After some time, C1’s parent P j&Xs inheriting C2, and
then later joins C2, resulting in P freeing C2’s memory. Thebfmm here is that P did
not allocate C2’s memory; for out-of-order speculation grisblem does not arise because
children allocated by P are always freed to P’s freelist.sTKind of producer / consumer
pattern can lead to memory pooling up in one thread if theamignbalance between calls
to mal | oc_chi | d andfree _chi | d. Experiments with a version of our system that still
had this problem quickly exhausted all available memory.

Our solution is a custom multithreaded freelist allocatahvhread local and global
blocks of children, as depicted in Figure 4.2. On the left édds freed to a thread local
block of children. If that block becomes full it is exchandged an empty one via global
synchronization at the runtime level. The malloc process&tly the inverse, exchanging
an empty block for a full one if necessary and then produciokila for the current parent
or helper / worker thread. Larger block sizes reduce the faeglobal synchronization,
albeit at the expense of extra memory consumption. Fig@rprbvides an implementation
where the only actual calls teal | oc are insidecr eat e_set andcr eat e_chi | d, which
in turn are insidebl ock_cr eat e. This function allocates an entire block of children at
once, and is only called when no full blocks are locally orglity available.
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Figure 4.2: Multiprocessor child malloc and fre€n the left a child is freed to a local block. The
block becomes full and so it is exchanged for an empty one. On the rightaoation request is
made. However, the local block is empty, and so must first be exchaogedtll one.

\

4.2.3 Discussion

This scheme has the following advantages: 1) functionalitpss a library—VM interface:
our library calls back into a JVM to create an appropriatedhdrcontext; 2) support for
child sub-structure type opacity; 3) minimal initializani costs; 4) implementation sim-
plicity; 5) support for dynamically resizable sub-struess, here the dependence buffer and
call stacks; 6) portability; 7) no external library dependes; 8) no synchronization op-
erations in the common case, namely allocating or freeiniild task from or to a local
thread block; 9) memory consumption proportional to the bernof processors and the
maximum number of live children.

The scheme also has its disadvantages: 1) potential lacicality between child sub-
structures; 2) lack of locality between processors: arviddal child task may visit 3 dif-
ferent cores, the allocating, executing, and freeing oBeBp reclamation of excess child
task memory; 4) lock-based synchronization in the uncompase, namely exchanging
empty and full blocks between a thread and the global poolaifis; 5) lack of automa-
tion and general purpose applicability.

As far as alternative approaches are concerned, a typikalsomight be to rewrite
the child data structure to be contained in one contiguagismeof memory and then man-
age it using an existing SMP malloc replacement such as H&idB\WO00]. However,
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set _t
create_bl ock (void)
{
set _t xblock = create_set ();
while (lis_full (block))
add_child (block, create child ());
return bl ock;

set _t
swap_enpty for full (runtine_t *xruntine,
thread_t *thread, set_t =*enpty)

set t full;
acquire (runtinme->bl ockset | ock, thread);
add_bl ock (runtine->enpty_bl ocks, empty);
full = (is_enpty (runtine->full_blocks)) ?
create_block () : renmove_block (runtinme->full _blocks);
rel ease (runtime->bl ockset | ock, thread);
return full;

set _t
swap_full _for_enpty (runtine_t *runtine,
thread_t *thread, set_t =*full)

set _t xenpty

acquire (runtime->bl ockset | ock, thread);
add_bl ock (runtine->full _blocks, full);

enpty = renove_bl ock (runtine->enpty_ bl ocks);
rel ease (runtime->bl ockset | ock, thread);
return enpty;

Figure 4.3: Source code for child malloc and free.
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child_ t =
mal l oc_child (thread_t =*thread)
{

if (is_enpty (thread->block))
t hr ead- >bl ock =
swap_enpty for full (thread->runtinme, thread, thread->bl ock);
return renove_child (thread->bl ock);

}

voi d
free child (thread t *thread, child t =child)

{
add_child (thread->block, child);

if (is_full (thread->block))
t hr ead- >bl ock =
swap_full _for_enpty (thread->runtinme, thread, thread->block);

Figure 4.3: Source code for child malloc and free (continuedgl | oc_chi | d allocates a child
from a thread-local block if one is available, otherwise exchanges atydngzk for a full one
by callingswap_enpty for full. free_child frees a child to a thread-local block, and if a full
block is created it then callsvap_f ul | _f or _enpt y to exchange it for an empty one.

there are three good reasons for working with the existingcgire. First, some elements
of the structure may be dynamically resizable, in this cheadependence buffers and call
stacks. Second, the data structure to be recycled is acamit across a library—VM in-
terface: when allocating a child, the library calls backitite VM to create an appropriate
thread context for execution. Third, there are softwardregging arguments: modular-
ity, minimizing source changes, and the benefits of type ibpaélthough it would be
straightforward to mergsomeof the sub-structures using inheritance, composition iegmo
straightforward in C.
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4.3 Nested MLS Stack Abstraction

The preceding memory allocation algorithm is a necessaseguisite for efficient child
task allocation that also solves the in-order nesting prediconsumer problem. We now
present a core stack abstraction that directly encodesathstack and thread manipula-
tions central to all MLS designs. This abstraction is flexiahd supports in-order nesting,
out-of-order nesting, in-order speculative commits, amg @mbination thereof. Specific
models that implement these features using our abstraateodeveloped in Section 4.4.

The standard sequential call stack model found in most lages has two simple op-
erations that manipulate stack frame=uysH for entering methods, anelop for exiting
methods. Frames store local variables and other contenireeljfor correct method ex-
ecution, and for well-behaved languages the operation$ beumatched. For languages
that support multithreadinggTART andsToPoperations for creating and destroying non-
speculative threads are also necessary. Our paralleltaak snodel for MLS is simply a
parallel extension of this standard. It introduces three ogerationsFORK, COMMIT, and
ABORT. These new operations manipulate stack frames, but theyhalge the power to
create and destroy speculative threadsrk can now be called instead BUSH, pushing
a frameandcreating a new child thread, and upon retamvmIT or ABORT will be called
to match thecoRK instead ofPOP.

We make several assumptions: 1) well-ordepexsH and POP nesting is provided by
the underlying language, even in the case of exceptiondtadiow; 2) stack operations
complete atomically; 3) non-stack operations, while nqiiexly modelled, may be freely
interleaved with stack operations on running threads; d¢slative accesses to global state
variables, if they exist, are handled externally, for exlama some transactional memory
or dependence buffering system such as that described tlo®$2c¢4.4; 5) register values
are spillable to a frame on demand; and 6) stacks grow upwavesalso say that parent
threads ardess speculativéhan their children because they are either non-specelativ
closer to a non-speculative thread than their childrenilarty, children aremore specula-
tive than their parents.

The model has two unique features that separate it froivergpeculation where all
reads and writes go through a dependence buffer or traosatthemory subsystem. First,
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child threads buffer stack frames from their parents, sbhahall local variable accesses go
directly through a local frame. This is intended to redueeltad on the dependence track-
ing system. Second, stack frames are buffered as lazily ssilge: on forking, only the
frame of the current method is copied to the child. If the al@ber needs lower down
frames from some parent thread, it retrieves and copies tredemand. This lazy copy-
ing introduces significant complexity: tlroPoperation may need to buffer a frame, and
the COMMIT operation needs to copy back only the range of live framem fitee child
thread stack. We include it as a practical measure intermlesbke our abstraction use-
ful: our experience with the SableSpMT software implemiotadescribed in Chapter 2
indicates a steep performance penalty for copying entimeath stacks. If a child needs
to buffer a frame but its parent is itself speculative, it htigot have a copy of the frame
in question. In this case the parent’s ancestors are sehfchéhe frame until the initial
non-speculative thread is reached, which is guaranteedv® & copy. Just as parents are
less speculative than their children, the unbuffered vessof stack frames in those parents
are less speculative than the buffered versions in thelurem.

The main abstraction is described via its operational séogim Figure 4.4. Here op-
erations act like functions, requiring a list of argumeniis.some cases they also return
values, which are separated from arguments @here are seven publicly available oper-
ations, each marked withk|. These in turn use a number of internal operations, for both
clarity and logic reuse. A summary of the public operatioms their observable behaviour
follows:

[*|START(|t): create a new non-speculative threaaiith an empty stack.
[*]STOR(t): destroy non-speculative threadprovided its stack is empty.
[x]PUSH(t, f): add a new frame with unique nanfeo the stack of threatl

[*]FORK(?, f|u): executePUsH(t, f) and then create a new child threadhat starts exe-
cuting the method continuation using a buffered versiorhefgrevious frame from
threadt. Cannot be issued on an empty stack.

[*]POR(t): remove the top frame from the stack of threadror speculative threads there
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must be a frame to pop to, either in the thread itself or songestor. The matching
operation must be BUSH

[x|ABORT(¢): executePOR(t) (internally JO0IN(¢|u)) and abort the child thread attached
to the frame underneath, recursively aborting all of itddren. The matching oper-
ation must be &ORK.

[x]COMMIT (¢): executePORt) (internally JOIN(t|u)) and commit the child thread at-
tached to the frame underneath, copying all of its live stearkes and any associated
child pointers. Committed children with children of their oare kept on a list at-
tached tat until no references to them exist, lest another specul#tingad attempt
to copy a stack frame from freed memory. The matching opEratiust be &ORK.

We now turn to a detailed description of the operations iufagt.4. We model threads
as unique integers, and maintain several thread $@atsthe set of all threadq,, is the set
of non-speculative threads), is the set of speculative threads,is the set of live threads,
T, is the set of dead threads, afdis the set of committed threads that are still reachable
as the ancestor of sontec 7,. Some invariants apply to these sets in between public
operationsT, UT, =T, T, NT, =0,T, #0 - T, #0, 1 UT, =T, T,NT; =0,
andT, C T,. Elements are never removed frdmsuch that each new thread gets a unique
ID based on the current size @f, namely|T’|. There is also a special set varialilg
the current thread pool, which is only used internally andrabto either7,, or T,. Stack
frames are modeled by a set of unique framigsuch that each newly pushed or buffered
frame is not already i". This invariant is maintained by removing frames fréfrwhen
threads are aborted. Given a fraghe F, buffering creates a new franfé by appending
to the name. Given a framg, f is the less-speculative version of the same frame in some
ancestor thread. Note that for notational conveniencand f’ in POR(¢) may belong to
a non-speculative thread, in which case no such ancessiseXariablesgl, e, f and their
primed derivatives represent individual frames, whergas 7 represent lists of frames.
Similarly, variablese, p, t, u represent individual threads, wherea9 represent lists of
threads.

In addition to these sets, there are several functions tlaattain mappings between
them. stack(t € T)) mapst to a thread stack, which is a list of framesfhn child(f € F)
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T,=T,8T, =T,
S T T U= {4}, T, U= {1}, T, U= {1}, stack(t) —

CREATE(T), ot

_tel, L=T8%,=T,
TA\=A{t}, T, \={t}, T, U= {t}

DESTROY(¢

[HlsTART() CREATE(T,, D|t)

teT, stack(t)=10
DESTROY(?)

[x]STOR(t)

teT, f¢F o=stack(t)
stack(t) = o : f, F U= {f}

[+]PUSH(, )

teTyUT, ec¢€ stack(t) ee€ F child(e) ¢ Ty
¢ =e FU={e}

BUFFER(t, e|e’)

PUSH(Z, f)
o:e: f=stack(t), BUFFER(t, e|e/) CREATE(Ty, € |u)
parent(u) = t, child(e) = u

[¥|FORK(t, f|u)

teT, o:e:f =stack(t) f € F child(e) ¢ T,
teT, t el
!/ !/ @ / /
deFd®o:e=0" ¢ ¢cF®vp.BUFFER(p,ecle¢)
stack(t) = o : €

[+|POR(t)

Figure 4.4: Stack operationsExternally available operations are marked with START andsTopP
create and destroy non-speculative thre@issH POP, FORK, COMMIT, and ABORT operate on
existing threads, and all other operations are internal.
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tel, o:e:f=stack(t) e, feF child(e)eT

t
JOIN(t]u) stack(t) = o : e,u = child(e)

d : p = stack(u)
d € stack(t) d ¢ stack(t)
o:d:m:e=stack(t) o=10
stack(t) =o:d : p

MERGE_STACKS(t, u)

v = commits(t) § = commits(u)

MERGE COMMITS(t, ,
(f) commits(t) =~ :u:0,T. U= {u}

v 0 = commits(t) . d =vd . Ye e V[ € stack(c),child(f) ¢ T;
commits(t) = v, T. \= {d}

PURGE.COMMITS(t)

DESTROY(u)

CLEANUP(t, u)
PURGE.COMMITS(t)

JOIN(t|u) MERGE.STACKS(t,u) MERGE.COMMITS(¢,u)
CLEANUP(, u)

[x]coMMIT(t)

Vf € stack(t) . u = child(f) € T,
ABORT_ALL (u)
2 F \= {stack(t)}, CLEANUP(t, u)

ABORT_ALL (

JOIN(t|u) ABORT_ALL (u)

[+]ABORT(t) CLEANUP(Z, )

Figure 4.4: Stack operations (continued).
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mapsf to a speculative child threade T, UT,, parent(u € T UT,) mapsu tothet € T
that forked it, andommits(t € T;) mapst to a list of threads ifT.. Initially all mappings
and sets are empty.

Our rules make use of a few specific operators and conventidms use of exclusive
or (&) indicates a choice between one rule and another or one geenfises and an-
other. We us& U= {s} andS \= {s} to indicate set additions and removals respectively.
We use a period.) to indicate “such that”. Finally, we define a maximizatiopeoatorv
that searches either for the greatest natural number ootigest list with a given prop-
erty. Formally,vyR(y) means the greatest or longessuch that predicat®&(y) is true,
if Jy such thatR(y); otherwise0 (for natural numbers) off (for lists). This definition
is inspired by theu or minimization operator from primitive recursive funai®in com-
putability theory [Kle52] and the or greatest fixed point operator from thecalculus in
model checking [CGP99].

Lastly, we give a brief description of each ruleREATE takes a thread podl, and
a stacks, checking thatZ}, is bound to eithefl;, or 7. It then initializes a new threat
with ID |T'|. Next, it addst to 7', 7;, andT,,, and initializes the stack afto . Finally, it
returnst. DESTROY conversely takes a thread: 7, and bindsI), to eitherT;, or T, based
on whethert € T, ort € T. It then removes from 7; and7),, and adds it td;. START
callsCREATE to make a new non-speculative thread T,, with an empty stack, and then
returns it.sTorPtakes a thread, checks that is non-speculative and that its stack is empty,
and then call®ESTROY to remove it. Note that hereeEsTROY will bind 7, to 7;, since
tel,.

PUSHtakes a frestf and appends it tetack(t), wheret is live, also addingf to F'.
BUFFER takes either a live or committed thread, the name of a franmeits stack, and
provided there is no child attacheddareates’ for use by its caller, which is eith&oRK
or POP. FORK first callspusH, bufferse’ from e, creates:, and setg asu’s parent and: as
e’s child.

PoPtakes the stack of and checks that the top franféis valid and there is no child
attached to the frame& underneath. There is now a set of nested choices leadingetofon
four possible outcomes. ifis non-speculative, then eitheris a valid frame or the stack
below f’ is empty. Ift is speculative, then eithef exists and can be found ktack(t),
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or ¢’ needs to be retrieved and buffered lazily from the most dpéee parent threag
that containg. After one of these four cases is chosghis popped by simply adjusting
stack(t) to exclude it. Note that this rule will prevent a speculatireead from popping
the last frame on the stack, because in this eagestack(p) and the call tBUFFER will
not complete. Similarly, it prevents a speculative threadhfbuffering and returning to a
parent frame that has a child attached tadIN has similar conditions teoOpr, except that
heree must both exist and have a speculative child.

The expressionp . BUFFER(p, ele’) in POPsays to find the greatest or most speculative
thread ancestqr that has a copy of the required stack framand then use it to creaté
Threads are numbered in increasing ordeCB¥ATE, such that a parent thread always has
a lower ID than its child. Thus by searching for the maximale find the parent closest to
the child that has, stopping whem = 0. The first thread in the system is non-speculative
and created with 1. We have a guarantee that€ stack(0) if it is not found in any other
thread, because a continuation will never attempt to retivia stack frame that was not
previously entered by either itself or some ancestor.

MERGE_STACKS is called bycommIT. It copies the live range of stack framé's: p
from the childu to the parent. There is now a choice between two cases, tthe less-
speculative version of the child’s bottom framfeexists instack(t), then the range of stack
framesd : 7 : ein t is replaced with the child stacK : p. Otherwised ¢ stack(t) and the
entire parent stack is replaced with: p. Note thatd will always be found ift € T,,, since
non-speculative threads must have complete statisll only not be found ift € T, and
u has returned to some frame beyond the bottom of

MERGE_.COMMITS, as called bycommIT, takes the commit listy from the parent,
appends the child and the child commit list, and adds: to 7.. PURGE.COMMITS is
called every timecLEANUP is called. It removes threads without child dependences fro
the most speculative end of a commit list until either all coitted threads have been
purged or it encounters a dependency. The expression= commits(t) . § = vd . Ve €
I Vf € stack(c), child(f) ¢ T, in PURGE.COMMITS says to dividecommits(t) into two
parts,y andd, whered is the longest sub-list at the end @immits(t) such that for every
thread ind, there are no live children attached to any of its stack fame

CLEANUP simply destroysu and then purges. It is called after thecommIT and
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ABORT operations, and internally fromBORT_ALL. WhereasIOIN contains the common
logic that precedes commits and abodsEANUP contains the common logic that follows
them.COMMIT is a composite operation that joihsmerges stacks and commit lists using
u from JOIN, and then cleans upABORT has a similar structure, callingBORT_ALL
internally, which performs a depth-first search looking lige children, and destroying
them post-order. In any real-world implementation thatsuses stack abstraction, child
threads must be stopped before they can be committed oreabort

4.4 |Individual MLS Models

Using the stack abstraction from Figure 4.4 we now developrees of concentric and
progressively more flexible MLS models, each described ley thtructural operational
semantics. The models are shown individually in Figures-4.EBL. Each consists of a
group of rules, and each of these rules maps to a specificaseéet a public[k]) operation
in Figure 4.4. The primary motivation for the rules is thepstese depiction of stack and
thread graph evolution in 2D. The primary motivation forithgrouping into models is
to specify the different types of MLS design available. Iserxce, these models provide
an exhaustive visual reference to the MLS design considasaimplicit in our unified
abstraction by exposing the core state evolution pattérasdefine execution. A valid
speculation for a given program at the call stack level isngefiby a sequence of rule
applications, each of which acts atomically. This sequeacebe used straightforwardly
to construct the thread and stack interleavings. In Seectiénwe use these models to
explore, visualize, and understand the behaviour of varomae idioms under speculation.
Before describing the models, we will first explain the stowetof the rules. With
the exception oSTART and STOR, each rule is named using a combination of abbrevia-
tions. First there is a qualifier for the operation, which nmay-speculativeN), specula-
tive (S), in-order (), or out-of-order ¢). In some cases these may be combined, such that
SI means “speculative in-order” and indicates an in-orderatpm performed by a spec-
ulative threadjo means “in-order out-of-order” and indicates a nestingcstme where
an out-of-order fork follows an in-order fork, am@l is the inverse ofo. Next there is a
symbol for the operation itself, which may b&sH(|), POP(T), FORK (<), COMMIT (>),
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or ABORT (). Some of theeoP (1) rules have a stack bottom J suffix, which means
that the thread is performing a pop operation on the bottamdrof its stack. Th®IERGE
suffix for I-MERGE indicates that two lists of committed threads created byrarer forks
are being merged via the privateeRGE_.COMMITS operation in Figure 4.4. Finally, square
brackets [(]) surrounding a rule name mean that its behaviour is actpatlyided by an-
other rule, as indicated in the figure captions; their puepedo illustrate specific details
of stack evolution.

Each rule also consists of two parts. Above the inference iBnthe corresponding
[x] command from Figure 4.4, followed by model-specific refirits on behaviour and lo-
cal variable mappings. For a mapping-= y, x is a value found in the transitive expansion
of the [«] command from Figure 4.4 angis the local value. Below the line is a visual
depiction of the transition from one stack state to the n€ir each stack state, threads
appear horizontally along the bottom and are named in isgrgaorder byr, «, 3, v, 9,
such thatr € 7, and{«,... ¢} C Ty, with a single exception in rulg L from Figure 4.9
wherer may be in7,. Shown above each threads the value ofstack(t), which grows
upwards. Ifcommits(t) is non-empty, it grows from left to right starting gatwith hor-
izontal lines joining its elements. Finally, for eaghe stack(t), a horizontal line joins
it to the initial stack frame of its child thread ifhild(f) € 1;. Thus the figures consist
of threads, stacks, links between stacks at fork points)iaks between threads and their
committed children. The lengths of the horizontal linesn®stn stacks are not fixed, and
adjust to accomodate other threads. For example, in Fig8re dnda are linked together
via r andr’ both before and after the< transition, but afterwards the line grows to acco-
modate the new threaél which is nested more closely to This growth could be avoided
by changing the horizontal order afand /3. However,5 must appear before to prevent
stack frames from crossing horizontal lines: consider tatesepresentation if appeared
aftera, anda subsequently pushed some new fragram its stack.

As in Figure 4.4, variableg, e, f and their primed derivatives are given to individual
frames, whereas, ¢, 7, w, v and their primed derivatives represent lists of frames.eNot
thatp also appears, but only in the left side of the mappings frogufé 4.4 to these rules
and never below the inference line for reasons of clarity@nmsistency. The rationale for
the choice of different Greek letters varies. For threads,simply ‘t’ for ‘thread’, anda
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througho are the first four letters of the Greek alphabet that map téinstfour speculative
threads. The letters representing lists of stack frames wleosen primarily because they
are suitably compact for 2D stack depictions, but theress abme intention here.is ‘s’

for ‘stack’, and appears in order befaseandr as stacks grow upwards. Any of these three
may be used at the stack bottom provided this ordering istaiagd.w is the last letter in
the alphabet and so represents the top end of the stacks klready in use for a different
thread theny can be used instead.

We now describe the actual models. Figure 4.5 contains alsistpuctured non-
speculative stack model common to many languages, ingdud@iva. Non-speculative
threads carsTART and STOPR, delimiting the computation. Im|, a new frame can be
pushed, where C F and so may b@. N1 andNT_L matche € stack(r) ande ¢ stack(r)
respectively to the two casese F ando : ¢/ = () of PORt) in Figure 4.4. Note thati| L
is the penultimate operation on a thread, followedspr.

Figure 4.6 contains the simplest MLS stack model, one thanels Figure 4.5 to allow
non-speculative threads to fork and join a single child atn&1 In this model, speculative
threads cannot perform any operations, including simpléhateentry and exit. FoK <,
there is a restriction on children being attached to priacistrames, which prevents out-of-
order speculationN:- is the simplestcoMMmIT () possible, with the child stack containing
only one frame, andi# is similarly simple with no recursion required ABORT(7). Fi-
nally, the restrictionr € T,, in N| andN= is sufficient to prevent speculative child threads
from doing anything other than local computation in the brdfl framee’: N> and N¥#
must match withN<, NT must matchN |, andNT_L is precluded for speculative threads
becausesUFFER(T, ele’) will not complete. This model is simplest to implement, k&t i
only useful if the speculative work remains in the initiahti@auation frame.

The model in Figure 4.7 extends Figure 4.6 to allow speadathildren to enter and
exit methods. A speculative pust) simply creates a new frame far, specifying thatr’
is linked tor via some frame’ at the bottom ofr’ to the corresponding € . S| takes
the left-hand case irORt) wheree’ € F, whereass| L takes the right-hand case and
so bufferse’ from its parent. Finally, this model updates- andN to handle situations
where the child may have ledt via sT_L or s|, now representing the child thread stack by
¢’ instead ofe’. This model permits a variety of computations that contagthud calls
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in the continuation and use only a single speculative threadmple patterns involving
straight-line code (Figure 4.12d) and if-then branchingyFes 4.13d and 4.13e) are given
in the next section.

The next model in Figure 4.8 simply adds one operation tanadiat-of-order nesting
in non-speculative threads<. This rule specifies that if there is some lower stack frame
d in = with a child attached, a new thread can be forked frgmaomplementingu< in
Figure 4.6 which prohibits this. All other existing opeaats continue to work as expected
in this model. As seen in Chapter 2, this model is relativetgightforward to express
in software, but does not expose maximal parallelism, asgasors executing speculative
threads are for the most part idle. Nevertheless, scalailefeorder speculation involving
head recursion (Figure 4.16d) and a mixture of head ancetailrsion (Figure 4.17) is now
possible.

After out-of-order nesting comes in-order nesting in F&4r9.1< allows speculative
threada to creates independently of its parentny will recursively abort these threads
without modification, but- is required to allow a parent thread to commit child thread
« with a grandchild3, maintaining the link tg5 and mergingx onto the commit list of
the parent. Afters gets committed via>-, « will be freed, assuming there are no more
children. 17 L is yet more complex, specifying that in order to buffer frameparent
threads will be searched backwards starting from the graeap untile is found. Here-»
indicates that there is a path of buffered frames frérbackwards tar, and... similarly
indicates the possibility of intermediate threads betweand«. This rule is an extended
version ofsT L, which only handles buffering from the immediate parexitworks nicely
as is with in-order speculation, arsd L works not only in the simple case above but also
when the buffered frame is in some committed thread 7.. This model works well
for any speculation pattern that depends on in-order rggsimcluding ones for iteration
(Figure 4.14c), tail recursion (Figure 4.15d), and headnson (Figure 4.16e).

In Figure 4.10, speculative commits are now permitted. &lae two simple rules,
s> andsi>, which complement~ andi> respectively. In the formes is purged from
commits(a), whereas in the latter it is kept because of dependencyi-MERGE is
implied by 1>, and so adds nothing, but is shown to illustrate the full psscof merging
committed thread lists, where and~ were already committed angigets added between
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START STO PUS T,
STARTﬂ smpﬁ N T f) 7€
= = f
- - oc=o0
T T
PORT) e € stack(T) PORT) e & stack(r)
d=c f'=f d=c f=f
N NTL
7 ! [
e ¢ T T
o=0
T T

Figure 4.5: Adults-only modelNo speculation.

COMMIT(T)
FORK(T, fla) T €T, p=10
Vd € o,child(d) ¢ T; — [ ABORT
L Vd € o child(d) ¢ T, Ld=c d=c vy ABORT(T)
/ f f
e e—é e—e ¢ e—e e
O=0 g =0 g =0
T T « T « T T « T

Figure 4.6: Totalitarian model. One speculative child allowed, but only non-speculative threads

can perform stack operations.

PUSHa, f) PORa) f'=f
o= w#D oc:e=71" w#D
¢ =car(n').een d=car(n').den
sl st
w w f wf w
r—7'= 77’ m—7'= 7’
T a T « T a T «
PORa) f'=n COMMIT(T)
o =0 w#0 d:p=¢ ABORT(T)
= car d:m:e= re=o0:
stL f (m) o dimie=e N%O' e=0:¢
b W o r
T T S A S A2
e e e o =0 o =o0
vo=v T o T T o T
T a T «

Figure 4.7: Kid-friendly model.Allows pusHandpPoPactions on speculative threads, overriding
N> andN} to accomodate. Thewr function returns the first element of a list.
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FORK(T, f|B) T1€T,
d' = car(n’) . d = car(r)
f

(&

0=

/ 6,
T

7_{_/

08 «

Figure 4.8: Catholic model.Provides out-of-order nesting va< to allow an arbitrary number of

&

T— Tr-
g =0
T T

speculative children for non-speculative threads.

FORK(av, f|53) commit(r) T€T,
o= w#0 w#D d:ip=¢:w
d=car(n'). denr d:m:e=¢

1< 1>
f f w/ 1 w/ 1
we we—e et @ %

—n'= 7’ o =0
Ta T apf Tapf T-ap

PORB) fl=7" oc:e=0 w,o#0
f = car(n’) car(n") ~
Vpp>0 - BUFFER(p, ele) =7

ITL
wuv o w o
’7'['..-’7'['7’7'[' 7T...7T7
e e e’
2 =
T apf T apf

Figure 4.9: One big happy modeProvides in-order nesting via to allow speculative children of
speculative threads. Note thatiinL, - may be speculative.

/COMMIT/ga) w#D / /COMMIT”(a) w,v £ ,
s>d:’0:? d:m:e=¢ SI}d:pfz(p:U d:m:e=¢
IR R R
Za52>:a :aﬁ’yj:%ﬁ’y
COMMIT(T w0
[|>MERGE]de:p;SO”I:w j:w:e:g)'
()0/ (p/// S0//// S0/// S0////
o =0

T—a (=7 § T—a—[3—7 §

Figure 4.10: Nuclear model. Allows speculative threads to commit their own children.

[I-MERGE's behaviour is provided by-.

135



Nested Method Level Speculation & Structural Fork Heurssti

FORK(S, 1)
FORK(a, fly) w#0 ABORT(T) w # 0 o= w0
d = "N.od= te=o0: d = de
o car(m') car(m) 10%] cie=0:¢p o1<] car(n') . s
f w f
w e, w e—€ I w e w e—e
m—nln" m—nl—n" P —n  , 7 ,
(o) =0 o =0 =@ ¥
T apf T avp T o pf T T B a T BT

Figure 4.11: Libertarian model.Allows both in-order and out-of-order nestingo] and [01<]
are provided by andi< respectively.

them. This model is good because it allows parallel comnetatons, reducing the burden
on the non-speculative parent thread. The disadvantadmtghtere is an increased risk
of failure, because an otherwise valid speculation canrbecovalid by merging with a
dependent invalid speculation.

Finally, in Figure 4.11, the last restrictions are removedlsat all of the features in
the main abstraction in Figure 4.4 are available. In thigcassuffices to provideo—,
which allows speculative threads to create child threadsotorder. This was formerly
prohibited byo~, which only applied to non-speculative threads. The otwerrules are
again shown only for purposes of illustrationoy] shows a recursive abort on a thread
with both in- and out-of-order nesting, afwl<| shows in-order nesting after out-of-order
nesting has taken place, as already allowed®yfollowed by1<. This model is useful for
more complex computations that depend on both in-order atidfeorder nesting, for ex-
ample binary tree traversals (Figure 4.18) and divide amdjger algorithms (Figure 4.19).

The above models illustrate the core behaviour patternsmhton speculation strate-
gies. In the next section, we explore a series of stack evolsithat assume support for the
final combined stack model in Figure 4.11, although in sonses@ane of the less flexible
models will suffice.

4.5 Speculation Patterns

Simple changes in the structure of input programs and cladiéerk points can dramati-
cally affect the dynamic structure of the speculative ctk. In this section we explore
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several common code idioms and their behaviour under ML&gutie full stack abstrac-

tion. This exploration is done with a view towards discomgridiomatic code structures
and speculation decisions that yield interesting parabelcution behaviours. These id-
ioms, forking decisions, and runtime behaviour combin@taifspeculation patterns, from
which we can identify structural fork heuristics. We firsaexne the simplest constructs in
imperative programs, namely straight-line code, if-thenditionals, iteration, head recur-
sion, and tail recursion. We then examine more complicatacheles, including a mixture

of head and tail recursion, binary tree traversals, andldigind conquer algorithms. We
present a series of linear state evolutions to visualize¢kalts, each of which is auto-
matically generated from a list of operations given to an Aekpt implementation of our

model. We also examine the source code of the Olden benchso#ekfor instances of

these patterns.

In the examples that follow, we assume that useful compmrtatan be represented
by calls to awor k function whose running time is both constant and far in exadghe
running time of all non-work computation. Thus we can reabaiif a thread is executing
awor k function, it will not return from that function until all o#r non-work computations
in other threads possible before its return have compléibis. reasoning guides the stack
evolutions in cases where more than one operation is pesdibese simplistic execution
timing assumptions yield surprisingly complex behaviauinjch indicates that our work
here is a good basis for attempting to understand the balravianore complex programs
with variable lengthwor k functions.

4.5.1 Straight-Line

The simplest code idiom in imperative programs is stralgtg-code, where one statement
executes after the next without branching, as in Figure.4ri2.12a, two sequential calls
towor k are shown, with the non-speculative stack evolution in .12 future evolutions
we omit the initialN | and finaINT_L. In 4.12c, speculation occurs on all callsaar k : the
parent thread- executeswor k(1) , o executeswor k(2), and/ executes a continuation
which does nothing usefulr returns from wl and commits, then returns from w2 and
commits/3, and finally pops s” to exit the program. We label this exemuasinefficient
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straightline () {

work (1); wl w2
work (2); =S=>S=S=S=8S=
} T T T T T T T
(b) Do not speculate.
(a) Code.
wl wlw?2 w2
S =>S—-S=S-s-s"=s-—¢5"= g

T T a T o fpf T—0 B T
(c) Speculate omor k(1) andwor k(2) (inefficient).

wl wlw2 w2 wl w2

S=5-S=sS-S=5=¢ S=S=S5S=5-8=¢
T T « T « T T T T T T « T
(d) Speculate omor k(1) (good). (e) Speculate omor k( 2) (bad).
barrier () {

work (1); wil W2

stop; /+« unsafe x/ S=5_-5=6=¢8=2¢5

work (2); T T « T T T

(9) Speculation barrier: speculate omor k( 1) .
(f) Speculation barrier code.

Figure 4.12: Straight-line.

because of the wasteful thregdin 4.12d, wl and w2 are effectively parallelized, without
the wastefulp from 4.12c, and so we label the executiorgasd Conversely, the execution
in 4.12e isbadbecause w1l and w2 are serialized.

Even in this simple example, the choices betweesHandFORK clearly affect which
threads execute which regions of code, and whether theyussfal work to do. In 4.12f,
the keywordst op is introduced which acts as a speculation barrier. This kegvis a
catch-all for any unsafe instruction and can be implemeateduch. The result in 4.12g
is that w2 is not executed speculatively. Again, althoughpde, the impact of unsafe
instructions on speculative parallelism is important tasider; in some cases, speculation
barriers might even be useful for inducing desired paralietime behaviours.

45.2 |If-Then

Another simple code idiom is if-then conditional branchiag shown in Figure 4.13, with
example code in 4.13a. 4.13b and 4.13c show the non-speeutaecution depending on
whethemor k(1) returns true or false respectively. If the value of the cbodal is spec-
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if _then () {
if (work (1)) wil w2 w3
work (2); i=i=i=i=>i=i=i
work (3); T T T T T T T
} (b) Do not speculateyor k( 1) returns true.
(a) Code.
wil w3 wl wilw2 w2 w3
i =i =i =i=i i >i—il=i—-il="="=0=1
T T T T T T T « T « T T T T
(c) Do not speculatepor k(1) returns false. (d) Speculate omor k(1) , predict true
correctly (good).
wl wilw3 w3 wl wlw?2 w3
i =i-0=0=1 =i =i—-0"=i=Ii=I
T T T T T T T O T O T T T
(e) Speculate onwor k( 1), predict false correctly (f) Speculate omor k(1) , predict true
(good). incorrectly (bad).
wl wlw3 w2 w3
=i =i—"=i=i=1=I1=I

T T « T « T T T T T
(9) Speculate omor k( 1) , predict false incorrectly (bad).

Figure 4.13: If-then.

ulative, then the particular code paths followed dependimthe value themselves become
speculative. In Figure 4.13, when speculating on the calotok( 1) it is necessary to
predict a boolean return value. If the speculation is coyeesin 4.13d and 4.13e, then the
speculative work w2 or w3 respectively is committed. Othseythat work is aborted, as
in 4.13f and 4.13g.

For this speculation idiom to be useful, the function pradgaehe return value should
take a long time to execute. Nested ifs have similar behavmthis example, although
the prediction for the outer test will be more important thha inner test in terms of
limiting wasted computation, since the inner speculat®nnder its control. Extensions
to our speculation model could allow for multiple predicteturn values, associating one
speculative thread with each. This would provide a kind @csyative hedging, and may
be worthwhile given excess resources.
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4.5.3 lteration

The most common code idiom considered for speculation i3 i@pation. Chen & Oluko-
tun demonstrated that if a loop body is extracted into a neettall, then method level
speculation can subsume loop level speculation [CO98]. \WWbexan example loop un-
der different speculation assumptions in Figure 4.14 téebeinderstand the behaviour.
Outlining or extracting a loop body to convert it to the exdenform in 4.14a makes the
loop amenable to method level speculation, with 4.14b shgwasic non-speculative ex-
ecution; conversely, inlining some or all of the code franr k can be used to limit the
amount of parallelism. Speculating on all callswor k in 4.14c, the loop is quickly di-
vided up into one iteration per thread for as many threadseas tare iterations.

To limit this aggressive parallelization, we explored spating on everyn in n calls.
In 4.14d, a child is forked every 1 in 2 calls. The stack evslie®a point where both w1l
and w2 are executing concurrently and no other stack opesasire possible. Once wl and
w2 complete, a number of intermediate evolutions open upthay all lead to the same
state with w3 and w4 executing concurrently. Effectivehg toop is parallelized across
two threads, each executing one iteration at a time. In 4 dgeculating on every 1in 3
calls, a similar pattern emerges, except that a non-phexiéeution of w3 is interjected. In
4.14f, speculating on every 2 in 3 calls, wl, w2, and w3 exeauparallel, and once they
complete the stack evolves until w4, w5, and w6 execute iallghr

A general rule for iteration under MLS then is that specalatn everyh — 1 in n calls
to wor k will parallelize the loop across threads, each executing one iteration. To support
multiple subsequent iterations executing in the same thrsere are two options. First,
the parent thread could pass+ j to the child thread when speculating, wheres the
number of iterations per thread; however, our model wouttren explicit mechanism for
modifying specific local stack frame variables to suppoid.ttsecond, the loop could be
unrolled such that multiple iterations were pushed intogaeent method body, as shown
in 4.14q.
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iterate (n) {

for (i =1; i <= n; i++)
work (i);
(a) Code.
wl wlw2 wlw2w3
i :> |*|, :> i*i’*i” :> i7i17i117i111:> .
T T « T a f3 T a B

(c) Speculate on all calls taor K.

wl wiliw2 w2 w3 w3 w4
=i =2i-0 === —=0"=1=0
T T « T « T T T f T 0

(d) Speculate on 1 in 2 calls teor k.

wl wlw?2 wiw2w3 w2 w3
i si—ir=>i—--"=i—-il—="=1rr—1
T apf T apf T

w3 w4 w4 w5 w4 w5 w6

T T @

>1"=0"="-1"=i"-""1"=1"-"-"= ...

T T T 7 T 7 9 T 7 0

(f) Speculate on 2 in 3 calls teor k.

. wl w2 w3
=i =il =i =i =
T T T T T T

(b) Do not speculate.

wl wilw2 w2 w3 w4
i=i—ii=i—-ilr="r=r==>i=iI=1
T T « T « T T T T T 0
w4 w5
=0V—"= ...
T B

(e) Speculate on 1 in 3 calls teor k.
unrolled (i) {

work (i);

work (i + 1);
}

iterate (n) {
i = 1;
while (i <= n)
unrolled (i += 2);

}

(9) Unrolled iteration coderf must be even).

Figure 4.14: Iteration.

45.4 Tail Recursion

Tail recursion is explored in Figure 4.15, with example catiewn in 4.15a and non-

speculative execution shown in 4.15b. It is well known tladtrecursion can be efficiently

converted to iteration, and we see why in these examplesonhedifference in stack

behaviour is the interleavingecur se frames. Speculating on botlecur se andwor k

in 4.15c usefully populates the stack with successive taligor k. However, this also

creates just as many wasteful threads that only ever falboile recursion, although they

stop almost immediately as they encounter elder siblingsec&lating on justwor k in

4.15d is good, and yields a stack structure identical toghaduced by speculating on all
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recurse (i, n) {
work (i);

w2
if (i <n) wl r2 r2
recurse (i + 1, n): Mn=rl=rl=rl=rl= ...
} T T T T T
(b) Do not speculate.
(a) Code.
w2
wl wlr2 wlr2-r2’
M= rkrl= rl—rrl1= rl-rl—rl= ...
T T a T af T a7 g
(c) Speculate on all calls (inefficient).
w2 w2
wl wlr2 wilr2-r2’ wl r2 r2
rl= rk-rl= rk-rl= rk-r1’ = ... ri=rl= rl= rk-rl= rl-rl= ...
T T « T « T a T T T T « T «
(d) Speculate on all calls taor k (good). (e) Speculate on all calls toecur se (bad).
w4
w3 w3r4 w3r4
w2 w2 r3 r3-r3 r3-r3 r3-r3
wl wilr2 wlr2 2 2 r2 r2 r2 r2

M= rirl= rl-r1= rl-rl=rl=rl=rl1=r1’ =r1' =11" = ...

T T « T « T « T T T T T f T f
(f) Speculate on 1 in 2 calls teor k (good).

w4
w3 w3r4 w3r4
w2 w2 r3 r3 r3-r3’' r3-r3’ r3-r3’

wl wlr2 wlr2 2 r2 r2-r2' r2- r2—— r2—— r2——
1= ri-rl= ri-rl= rl-rl= rl= rl1=rl’ = r1'r1=rl’ ri= rl’ 1= rl’ = ...

T T « T « T o T T T f T 0 T v 0 T v 0 T v 0
(g) Speculate on 1in 2 calls twor k andr ecur se (inefficient).

w4
w3 w3 r4 r4 r4
w2 r3 r3 r3 r3 r3 r3 r3
wl 2 r2 r2 r2-r2 r2-r2° r2- r2- r2- r2- r2-

Mn=rl=rl=rl=rl=rl=1rl =11l =rl1rl=rlrl=rlrl=rl rl=rl r1’
T T T T T T T « T « T « T « T « T T

w5 w5
r5 r5 r5
r4-r4’ r4-r4’ r4—
r3 r3 r3 r3

r2—— r2—— r2——
=rl r1=rl ri1= rl ri’= ...

T [ « T [ « T [ «
(h) Speculate on 1 in 2 calls toecur se (bad).

Figure 4.15: Tail recursion.
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calls in iteration, as in 4.14c, modulo the interleaviregur se frames. On the contrary,
speculating on justecur se in 4.15e is bad, because calls#or k are never parallelized.

Speculating on 1 in 2 calls t@or k in 4.15f yields another structure directly comparable
to iteration, this time mirroring 4.14d, where wl and w2 axedn parallel before the stack
evolves to w3 and w4. Speculating on 1 in 2 calls#o k andr ecur se in 4.15g is similar
but introduces inefficiency. Speculating on 1 in 2 calls ézur se in 4.15h is bad, but
yields interesting behaviour which sees speculative cdrldinwind the stack by one frame
before stopping.

455 Head Recursion

Head recursion is considered in Figure 4.16. Comparing tde sbhown in 4.16a with tail
recursion, the call towr k now comes after the call toecur se instead of before. This
means that in the non-speculative execution shown in 4.6k is not executed until
there aren r ecur se frames on the stack. Speculating on all callséour se andwor k in
4.16c is inefficient, just as for tail recursion, whereassieging on just ecur se in 4.16d

is good, allowing for calls tawor k to be executed out-of-order. This is expected given
that head recursion is seen as dual to tail recursion. Simgly, however, speculating on
justwor k in 4.16e is also good: the stack gets unwound in-order. Fad Inecursion, the
support for both out-of-order and in-order nesting in oacktmodel, needed by 4.16d and
4.16e respectively, ensures that all available parattelssobtained.

Speculatingon 1in 2 calls teecur se andwor k in 4.16f yields unbounded parallelism,
where pairs of two calls are unwound in-order within a paitg @ut-of-order between
pairs. Speculating on 1 in 2 calls wor k in 4.169 yields a bounded parallelism structure
comparable to the iteration in 4.14d and the tail recursmoh.15f, where first wn and wm
execute in parallel, and then the stack evolves to a stateemii@nd wk execute in parallel.

We were again surprised by speculating on 1 in 2 calietaur se in 4.16h:« executes
w2, and after returning the stack evolves until it executésThis pattern is strikingly sim-
ilar to the loop unrolling in 4.14g, where two successivdscakecute in the same thread.
This particular example is unbounded, however, becausengoprevents the growth of
up the stack, such that every two callsstor k start all together and are then unrolled all to-
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recurse (i,

n {

wn
if (i <n) r rm wm
recurse (i + 1, n); _ rm rm m rm rm rm
work (1) 1= i’lé i’lé i’lé f1:> f1:> f1:> 'r1:>
T T T T T T T T
(a) Code. (b) Do not speculate.
r3
r2 r2 wl r2-r2’ wl
rl= ri-rl1= rl-rtrl= rk——ri-rl” r3 r3 w2
r2 r2 wl r2-r2’wl r2-r2’wl
T Ta Taf 77 alfp M= rirl=s rirl=ri— rl=ri— ri= ...
r3 w2 T T « T « T [ « T [ «
r2-r2-r2”" wl

= r1t—rlrl= ...

T Y 6 a

(d) Speculate on all calls toecur se (good).

(c) Speculate on all calls (inefficient).

3 w2

wn wn wn r3 r3 w2
m r-rn’ rn- rm—wm 2  r2-r2'" r2-r2-r2" r2-r2-r2”
rm rm rm rmrm’ rmrm'rm’” Mn=rl=r1 =rl =rl

ri= .rl:> fl:> .rl:> 'rl = 'rl = 'rl T T T T of T af
T T T T T « T « T o f i’3 w2 i’3 W2

= ... r2-r2- r2-r2-wl

=rl = rl = ...
T a T a

(e) Speculate on all calls taor k (good).

(f) Speculate on 1 in 2 calls toecur se and

wor k (unbounded parallelism).

wn wn

wn wn wn wn wn
m rm-rn’  rn- rm-wm rn- rm- m- -
m rm rmm rmrm’  rmrm’ rmrm’ rm rm wi rm wi
rl rl rl rl rl rl rl rlorl” rlorl=rl” o=
rk rk rk rk rk rk rk rk rk rk rk rk’
Mn=rl=rl=rl=srlsri=srl =11 =11 =11 =1 =rl =1
T T T T T T T « T « T « T « T « T a T a
wn
rn-
rm wi wl
rl rl—wk rl——wk
rk rk’  rk rk’
=1 =1 = ...
T o f T f
(g) Speculate on 1 in 2 calls teor k (compare with Figures 4.14d and 4.15f).
r3 r3w2 r3 w2 r3 r3 r3 r3
2 r2-r2'" r2-r2° r2-r2'" r2-r2" r2- r2-wl rz2-
rn=rl=rl =rl =rl =11l =rlrl=rlrl=rl rl= ...
T T T T T « T « T « T « T «

(h) Speculate on 1 in 2 calls toecur se (comparable to loop unrolling in Figure 4.14g).

Figure 4.16: Head recursion.
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gether. In general, calls to work can be divided into batdisszeb and distributed evenly
acrosg threads, wheré = n/t, by choosing to speculate on every bicalls tor ecur se.
The unrolling within a given batch is in-order, but the creatof batches themselves is
out-of-order.

45.6 Mixed Head and Tail Recursion

We next experimented with a mix of head and tail recursionstesvn in Figure 4.17.
Given the interesting behaviours seen for these kinds afrsgmn in isolation, it seemed
reasonable that a combination might yield even more intiegesesults. Tail recursion has
two distinguishing properties under speculation: it pded in-order distribution across
threads, and it prevents the forking thread from proceenfimgediately to the top of the
stack because useful work must complete first. On the othmet, liead recursion is able to
provide behaviour comparable to loop unrolling in a singkeéad. However, head recursion
is uncapped and will always proceed immediately to the tapestack.

The code in 4.17a constitutes a minimal example that uses fieeairsion to provide
batch processing and tail recursion to limit stack growth.4117b, the non-speculative
evolution skips past the work in the head recursive calls staps to execute w3 and w4
tail recursively. In 4.17c, the repeating pattern is agaio head recursive calls followed
by two tail recursive calls, additionally speculating oai | 1 insidehead2, the first tail
recursive call. This creates a threathat executes the first two callswor k out-of-order,
while the parent thread executes the second two callswor k in-order. Except during
brief periods of stack state evolution, there will only ekertwo threads actively executing
code, and the pattern established in the first four cal®tk will repeat itself.

We can use this pattern to schedule batches oftsimeoss threads when the depth of
the recursion is unknown or when orily ¢ calls should be scheduled at once. We need a
pattern ofb x (¢ — 1) head recursive calls followed liyail recursive calls, speculating on
every(cb + 1) head recursive call in the pattern fore N, and on the first tail recursive
call in the pattern. A generalizececur se function that provides this behaviour is given
in 4.17d; note that we have introducedec keyword here to indicate speculation points.
As an example, to distribute work in batches of size 3 acrabsetds, use a pattern of 9
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3 B 2
. W 2 t2 t
headl (i, n) { ot ot ot L (L
head2 (i + 1, n); h2 h2 h2 h2 h2 h2 h2
work (i); hi= hil= hl= hl= hl= hl= hl= hl= ...
} T T T T T T T T
, (b) Two head then two tail: do not speculate.
head2 (i, n) { W3 W3
tai/ 1 (1« 1om; ot w2 tLw2
work (i); h2 h2h2 h2h2" h2h2' h2h2

hl= hl=hl =hl =hl = hl
T T T O T O T T

taill (i, n) {

work (i); w4 w4 w4 w4
; ) _ t2 t2 t2 t2 t2

tail2 (i + 1, n); tT w2 tl w2 tl t1 t1

} h2h2" h2h2' h2h2 h2 h2 wil
=hl =hl =hl = hlhl> hlhl> ...

tail2 (i, n) { T a T a T o T o T

work (i); .

headl (i + 1, n): (c) Two head then two tail: calheadl (1, n) and
} speculate ontail 1 in head2. This creates two

(a) Two head then two tail code; calleadl (1, n). batches of two calls each.

recurse (i, n, b, t)
if (i <n& (i - 1) %(b=x*x1t) <b=x (t - 1))
if (i %b==18&% i % (b * t) > Db)
spec recurse (i + 1, n, b, t);
el se
recurse (i + 1, n, b, t);
work (i);
if (i <n & (i - 1) %(b=x*x1t) >b * (t - 1))
if (i %b==18&% i %(b * t) > b)
spec recurse (i + 1, n, b, t);
el se
recurse (i + 1, n, b, t);

}

(d) Mixed head and tail recursion code. To split work into muéighreads, calr ecurse (1,n,b,t),
wheren is the number of calls taor k, b is the batch size, and is the number of threads. Speculation points
are indicated by thepec keyword.

head recursion tail recursion head recursion
thread 1 thread 2 thread 3 thread 4 thread 1 thread 2
[1T72T3]T4T5]6]l718T9J10J1aJ12]J13J14J15]16 1718 - - -

speculate speculate speculate speculate
first instance of pattern pattern repeats

(e) Mixed recursion example, whebe= 3 andt = 4.

Figure 4.17: Mixed head and tail recursion.
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head recursive calls followed by 3 tail recursive calls, apeculate on th¢" and7" head
recursive calls and the first tail recursive call, repeatimg pattern for the next 12 calls.
This example is illustrated in Figure 4.17e.

45.7 Olden Benchmark Suite

At this point we decided to examine the Olden benchmark $0&€e96] for speculation pat-
terns. These are well-known parallelizable benchmarkgemrin C that manipulate irreg-
ular data structures. They were originally intended foapalization with non-speculative
futures. The differences between futures and MLS are thatda do not allow for any
unsafe operations in the method continuation, such as oungua predicted return value,
futures do not typically allow the continuation code to rattrom the calling function, fu-
tures are an annotation based programming model that escuprogrammer to insert them
into the code, and the programmer must ensure the safety lnéab accesses. However,
these differences are not irreconcilable, and there are mnamnsferable results between fu-
tures and MLS. Manual parallelization of the Olden benclkmaising SableSpMT is part
of our future work, as described in Section 6.2.2.

The results of a manual source code analysis are shown ia #dblWe analysed Olden
version 1.01, the last published version of the suite. Fohé@nchmark, we identified the
parallel data structures being constructed, the functibasbuild the data structures, and
the functions that traverse the data structures. We theketbtor patterns in the parallel,
future-based traversals, and mapped them to the specufaiterns outlined in this sec-
tion. There were five different kinds of traversal in totalragght-line code speculation,
iteration, head recursion, tree traversal, and divide amjger. The first three kinds of
traversal have already been considered in Figures 4.12, drid 4.16 respectively. We
now consider tree traversal and divide and conquer algosth

45.8 Tree Traversals

An important consideration in parallelization is the tneag of irregular data structures. In
Figure 4.18 we consider binary tree traversals. Here tertsals can be either preorder or
postorder, and either fully parallel or only parallelizemkaree level at a time. In 4.18a—
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benchmark data structure| parallel construction parallel traversal| traversal pattern
bh array of lists | uniform.testdata()| computegrav() forall iteration
stepsystem()
octtree hackcofm() freetree() level-based postorder
bisort binary tree RandTree() BiMerge() level-based preorder
Bisort() level-based postorder
SwapTree() 1
node none SwapTree() 2 straight-line
em3d array of lists do_all() do_all_compute() | divide and conquer
health | quadtree of lists alloc_tree() getresults() level-based postorder
mst array of lists AddEdges() ComputeMst() forall iteration
Do_all_BlueRule()| divide and conquer
perimeter quadtree MakeTree() perimeter() level-based postorder
power array of lists build_lateral() ComputeTree() forall iteration
nested lists build_lateral() ComputeLateral() head recursion
build_branch() | ComputeBranch()
treeadd binary tree TreeAlloc() TreeAdd() level-based postorder
tsp binary tree build_tree() tsp() level-based postorder
union quadtree MakeTree() copy() level-based preorder
TreeUnion()
VOronoi binary tree none build_delaunay() | level-based postorder

Table 4.1: Parallel traversal patterns in the Olden benchmarks.

4.18d, we again usespec keyword to indicate speculation points. These functiores us
speculation over straight-line code to split the traveataach node into two threads. In
4.18e-4.18h the results of traversing a three-node tree twib leaves are shown. The
pre-order traversals executer k before descending into the tree, whereas the post-order
traversals executeor k on ascending out of the tree. w1l is the work done by the parent
node, whereas w2 and w3 represent the work done by the twa rebdles. Although only
binary trees are shown, these patterns are straightfolyvaxtended to trees with arbitrary
arity.
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tree (node *n) {
if (leaf (n))
work (n);
el se {
spec work (n);
spec tree (n->left);
tree (n->right);
}
}

(a) Pre-order binary tree traversal, fully parallel.

tree (node *n) {
if (!leaf (n)) {
spec tree (n->left);
spec tree (n->right);

work (n);

(c) Post-order binary tree traversal, fully parallel.

w2 w2
wl wlt2 wilt2 wlt2 t3

1= t1-t1'= tE-t-t1= t1-t1-t1= t1-t1-t1=

T T « T a T a T a f

tree (node *n) {
work (n);
if ('leaf (n)) {
spec tree (n->left);
tree (n->right);
}
}

(b) Pre-order binary tree traversal, one level at a time.

tree (node *n) ({
if ('leaf (n)) {
spec tree (n->left);
tree (n->right);
pause;

work (n);

(d) Post-order binary tree traversal, one level at a time.

w2 w3
wlt2 t3
t-t1-t1"

T a f

(e) Pre-order binary tree traversal with 2 leaves, fully pagll

w2 w2 w2 w3

wl t2 t2 t2 t3 2 t3
tl=tl= tl= t-tl'= t-t1= t1-t1'= t1-t1’
T T T T T O T O T O

(f) Pre-order binary tree traversal with 2 leaves, one level &inze.

w2 w2 w2 w3 w2 w3
2 t2 t2 t3 t2 t3 2 t3 wl
1= t-t1'=s t-t1= t1-t1-t1=> t-t1-t1'= t1-t1-t1”

T T « T « T a T o B 0T

a f

(g) Post-order binary tree traversal with 2 leaves, fully paehl
w2 w2 w2 w3 w3 w3

t2 t2 t2 3 t2t3 213

t3 3 wl

tl= t:-tl'= t:-tl's t-tl'= t-tl1= t1-t1'= t1'= t1'= t1'= t1’

T T « T « T « T « T «

T T T

(h) Post-order binary tree traversal with 2 leaves, one leval &te.

Figure 4.18: Tree traversals.
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The difference between the fully parallel traversal in 4 48d the level-based traversal
in 4.18b is that in 4.18a the call t@or k only stops stack evolution if it occurs at a leaf
node, whereas in 4.18b evolution stops on every calldok. The difference between
the fully parallel traversal in 4.18c and the level-baseddrsal in 4.18d is that in 4.18c
both sub-trees are traversed whiler k is executed speculatively, whereas in 4.18d the
call towor k is not executed until both sub-trees have finished evaluaiio enforce this,
we introduce a newause keyword in 4.18d that ensures both the left and right sides of
the tree have completed before beginning work on the pawte.nThis keyword can be
implemented simply by stopping speculation until the moshediate ancestor thread has
committed the current child. There is a subtle differences véith stopping speculation
altogether, which would necessitate waiting for a non-sfaive parent to commit the
state, and would in turn serialize otherwise independeraligéism. pause is equivalent
to “touch” in future-based systems. Adding this keyword to system would allow for
MLS to subsume futures.

The tree traversals in the Olden suite are the most cometiaaitthe patterns we iden-
tified. In many cases there are additional conditions cdimgothe traversals, such as
whether the node in question is a leaf or non-leaf node, oergenerally what its rela-
tionship to other nodes is. In all cases level-based traleese done. For the postorder
traversals, this is presumably due to a lack of support fturés returning from the stack
frame in which they were created; this would require a stadfebing mechanism like we
describe for MLS. For the preorder traversals, it appeaneraanatter of convention not
to speculate on theor k parts.

4.5.9 Divide and Conquer

The divide and conquer pattern used by the Olden benchmsudsown in Figure 4.19.
In 4.19a, the work is divided among the number of processpwsith one call towor k
for each processor. The speculative stack in 4.19c evotvésrtn a tree structure, such
that w0, wl, w2, and w3 execute in parallel. This code asswanesray of lengtim, such
that the work could just as easily be parallelized using talfiteration in Figure 4.14c;
it is unclear why the authors chose a divide and conquer apfprbere. A more general
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function that allows for per-processor batch sibethat can be larger than 1 is shown in
4.19b. Here the batch size is most appropriately calculasethie array length divided by
the number of processors.

divide (i, n, b) {

divide (i, n) { if (n>h) {
if (n>1) { spec divide (i + n/2, n/2, b);
spec divide (i + n/2, n/2); divide (i, n/2, b);
divide (i, n/2); } else
} else for (j =1i; jJ <i + b; j++)
work (i); work (j);
}
(a) Divide and conquer code from Olden. (b) Generalized divide and conquer code.
w3
31 , 31 , 1 , 31 21 11 , 31 21 11 01, 31 21 11 01,
22 22 02, 22—22 02' 22—22 02'—02 22—22 021—02 22—22 021—02 22—22 02,—02

04=> 04—04=> 04—04=> 04— 04=> 04——04 => 04—04 = 04——04 = 04——04
T T « T « T [ « T 08 a v T 8 a v T B a v T B a v

w3 w2 w3w2wl w3w2wlw0

31 21,11 01 31 21 11 01 31 21 11 0L

22-22 02-02  22-22 02-02  22-22 02-02
= 04——04 = 04——04 = 04——04

T ay T B avy T aY
(c) Divide and conquer called witHi vi de (0, 4). Non-leaf stack frames are named after arguments
andn, concatenated in order to form two-digit strings.

Figure 4.19: Divide and conquer.

45.10 Discussion

We can see from these examples that the dynamic paraliehzaehaviour induced by
MLS is not obvious, and that there are surely more interggtatterns to be found. The
key lesson here is that we cannot take ordinary programsaaitrand return semantics,
provide a set of parallelization operations that signifiyaperturbs the normal execution
order, and expect to obtain dramatic performance resudfgaally if we do not under-
stand the underlying behaviour. We can however use inagiigs of sequential program
behaviour under our stack model to derive generalizatidomaitaprogram structure and
the correlation with performance or lack thereof. We cao &ok at successful manual
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parallelization, such as that found in the Olden benchmaite sand use it to both vali-
date patterns discovered through exploratory analysisvand for new patterns that have
applicability to both non-speculative and speculativeecod

Method level speculation is a powerful system for automadi@llelization, particularly
when relatively arbitrary speculation choices are pegaditiThe challenge is to restructure
sequential code so that any inherent parallelism can bedwjploited. In general, parallel
programming is an optimization, and thus cannot be divoficed knowledge of what dif-
ferent code structures imply for the runtime system if perfance is to be maximized. Just
as tail-recursion is favoured in sequential programs ®efticient conversion to iteration,
so should other idioms in sequential programs be favouneth&r efficient conversion to
parallel code. Of course, the end goal is for a compiler toonearthis optimization burden
from the programmer wherever possible.

4.6 Conclusions and Future Work

Empirical studies of language implementation strategegsanly provide so much under-
standing. For a strategy such as MLS, there is obviouslyifgignt performance potential,
but the results can be confusing and moreover mired in syspauific performance de-
tails. At some point, formalizing the model and explorindgné@eiour in abstract terms can
provide a fresh perspective.

As an enabling step for arbitrary child nesting, we presgatesimple multithreaded
custom allocator for child thread data structures thaésatin knowledge about ownership
dominator trees. It eliminates a major performance battt&nn our system involving re-
peated allocation across a library interface of child tretauctures each having 37 nodes.
It also solves a producer / consumer problem where memaryattd from a freelist in one
thread is freed to a freelist in another, which came to lighttur attempt to support in-order
nesting. The synchronization overhead and memory loceliur scheme are probably
sub-optimal, and it would be interesting to see how wellesti#tthe-art general purpose
multithreaded allocators could compete with the 37-foltliction in calls taral | oc and
f r ee that our solution provides. We would be quite excited to ssgaling of aggregate
data structures evolve into a general purpose memory mareagearadigm.
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In the next major part of this chapter we developed a unifiedehof MLS that ac-
counts for the major design variations involved in buildswgh a system. The individual
sub-models run from completely sequential to highly spetoed, and exhaustively cover
the core patterns of behaviour encoded in the unified modes$ Model is valuable purely
from a specification standpoint, facilitating system coem@nsion, comparison, testing,
and implementation. Preliminary work suggests our modalge suitable for a proof of
MLS correctness. Once obtained, showing equivalence whtbraontinuation-based par-
allelization systems could then be used to transfer praaflte Our model finally lends
itself to rapid design prototyping of future extensions jethmight normally require sig-
nificant implementation effort to explore. One such extenss support for out-of-order
speculative commits. These would work like in-order spatvd commits, but instead al-
low for a speculative thread to merge with a child of some astwehat it encountered upon
returning from a call and attempting to buffer a stack frame.

The last part of this chapter details an exploration of ML&&dwour using our stack
model as a tool for insight. We identified some key relatigpstetween program struc-
ture, choice of fork point, and resultant speculation be&hav In some cases we labelled
them as good, bad, or inefficient in terms of exposing pdrsile and in others we used
them to synthesize desirable higher level behaviours. & Begeriments demonstrated that
all features of the speculation model are useful for crggtiwrallelism, including both in-
order and out-of-order nesting, and that robustness anitiflgxin an MLS system are
important. Our experience here is that accurately predjctiow the parallel state will
evolve without actually trying scenarios out on paper isravelmingly impractical. In
the future, automated explorations of this nature may Vietther insights. In general,
we found that MLS behaviour is fragile, but that if understabcan be beneficially con-
trolled. This is best demonstrated by our analysis of thee@ldenchmark suite whose
source code contains much domain-specific programming letge with respect to fu-
tures, a non-speculative parallelization construct ¢josdated to MLS. It would be inter-
esting to apply the speculation patterns identified so fanfmarallelized benchmarks. We
believe that maximizing parallelism will require a comtioa of programmer awareness,
compiler transformation, profile information, and judiggostatic and/or dynamic forking
decisions.
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Finally, our visualization methods could be equally welpkgd to output from actual
MLS implementations, including our own Java-based Sal€Spresented in Chapter 2.
Our stack diagrams are unique for their compactness, liseagability, uniform symbol
density, lack of overlapping lines, and relation to actwdbdstructures. The state evolutions
require only a simple event trace along with unique threatifeame identifiers as inputs.
This avenue could be useful for empirical studies of realldvprograms.
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Chapter 5
Related Work

Automatic parallelization has been a primary focus of redean parallel computing,
compilers, and programming languages for many years [EB8F Existing approaches
have been most successful when analysing loop based, tsghistured scientific appli-
cations, typically C or Fortran based [CLS96, GPZ00], thodigya experiments have also
been done [AGMMO0O0]. Wolfe gives a comprehensive surveyaidard techniques [Wol96].
Various studies have also examined analysis methods mggetkbetter understand the ap-
plicability and performance of parallelization approazifiglcK94, PW94, SMH98]. De-
signs and results for arbitrary, irregular, object-orgghprograms remain less common, as
even simple unknown information such as loop bounds caruzteparallelization.

Speculative multithreading (SpMT), also known as threadllepeculation (TLS), is an
optimistic technique that seeks to overcome the limitatioihnon-speculative parallelizing
compilers, exposing parallelism in a broader class of appbins. Kejariwal and Nicolau
maintain an extensive bibliography of publications redatespeculative execution [KNO7].
Although work on SpMT dates back to the early 1990s and mgstr@xental results are
positive, there are still no production SpMT systems inegitardware or software.

At a high level, there are various granularities availablecfeating speculative threads.
The coarsest model is method level speculation (MLS), fangxe [CO98] and of course
this thesis, under which speculative method continuatexesute in parallel with a non-
speculative method body. Next is loop level speculationefample [SCZMO05], under
which a parent thread will typically execute iteratibnon-speculatively while iterations
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1+ 1,7+ 2,... execute in successively more speculative child threadsaAckd schemes
can handle nested loops and partition iterations moreyfteetiveen threads. Basic block
level speculation is the finest model, for example [BF04], selrespeculative threads begin
and end on basic block boundaries, and can also be starteultedry points.

In addition to choice of speculation granularity, there@reices about whether to use a
hardware or software architecture and which languagesrtdl@aFrom the perspective of
hardware loop level speculation for C, C++, and Fortran, SpsAfiuch more well-studied
than software method level speculation for Java or comparaih languages. Our initial
software MLS for Java system is described in Chapter 2. Onnleehand our choice of
research topic is motivated by convincing prior work thatfirles one or two of the same
high level choices, and on the other it is motivated by therdds broaden the scope of
SpMT applicability. Although most software studies haveused on loops in C programs,
the viability of software loop level speculation for Javashaeen demonstrated [KLOO].
Further, MLS has been identified as particularly approefiat Java, given both the object-
oriented method based structure of Java programs and tipdifgiations available due to
explicit knowledge about stack, local, and heap operatj@@98]. Our choice of the
Java language presents many challenges, which most r@lat&dreats as orthogonal and
neglects to some degree. MLS can also subsume loop levellafien, as demonstrated in
Chapter 4, albeit with extra invocation overhead. We distiasdware SpMT approaches
in Section 5.1, Java language issues in Section 5.2, sa@tagroaches in Section 5.3, and
method level speculation in Section 5.4.

All SpMT implementations include some mechanism for harglllependence viola-
tions. We use a cache-like dependence buffer, sending lspigeueads and writes through
thread-local storage, as described in Chapter 2, althodgdr eystems use undo logging,
writing directly to main memory. The dependence bufferingchanism from SpMT sys-
tems is highly similar to transactional memory, a form of@pative storage that is typ-
ically used to create atomic sections in parallel programs alternative approach is
speculative locking, which executes the critical sectimnexisting lock-based programs
speculatively. We discuss dependence buffering in Se&ibntransactional memory in
Section 5.6, and speculative locking in Section 5.7.

A naive implementation of software or VM-based SpMT can resultelatively high
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overhead costs, and so while SpMT itself is an optimizat@eond order optimization of
the different SpMT operations involved is also criticalfhban terms of final performance
and suitability as a research tool. In this thesis the prynogtimizations we propose are
adaptive return value prediction, nested speculation augporting memory allocator, and
structural fork heuristics based on observations of in@garogram behaviour under spec-
ulation. In Section 5.8 we discuss related work on returme/grediction, in Section 5.9
memory management, in Section 5.10 nested speculationpadection 5.11 high level
strategies for handling irregular parallelism. More gahg&euristics for deciding where to
fork threads are discussed in Section 5.12, and techniguesducing misspeculations are
discussed in Section 5.13.

Finally, there are several areas that are closely relatettbod level speculation, with-
out falling under the general SpMT umbrella. In Section 5aBidiscuss non-speculative
method level parallelism for imperative languages, whidierims much of the design of
our system. In Section 5.15 we discuss speculation for foimak languages, which is ac-
tually non-speculative with respect to the potential fopeledence violations. Lastly, we
briefly consider other uses of speculative techniques iti@eb.16.

5.1 Hardware Architectures

Speculative multithreading approaches have been dewklppmarily in the context of
novel hardware environments. A number of general purposeutgtive architectures have
been proposed, including the Multiscalar architectura9Bi, the Superthreaded architec-
ture [THA199], trace processors [Rot99], MAJC [TC€Q0], Hydra [HHS 00], and sev-
eral other designs [KT99,SCZMO00, FF01,OKI]. Hardware simulations have in general
shown good potential speedups, given suitable timing agsans; for example, Krishnan
and Torrellas demonstrate that interprocessor commumicapeeds are a strong contrib-
utor to overall performance [KTO1], and thread creationrbead is typically quite low,
on the order of 10 cycles. Steffa al. provide a more recent loop based implementation
with STAMPede. They also give a good overview of the statehefart [SCZMO05], as
does Warg [War06]. Our choice to implement SpMT at the Jastaalimachine level was
motivated by hardware designs. In general, virtual machame good platforms for explor-
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ing software virtualizations of hardware techniques, esfly considering that interpreter
bytecode is often based on hardware instruction sets. éugh an experimental platform,
full hardware simulations often incur a 1000-fold slowdoi98], whereas we found a
modified JVM to incur a 5-fold slowdown.

Only a few hardware studies consider Java programs exyligitthe speculative hard-
ware level, an executing Java virtual machine does not extigiinguished performance
in comparison with other applications [WS01]. However, agwerpreted language, com-
piled Java programs can provide higher level abstractiowsiaformation than generic
machine code, which has contributed to an interest in JagaHic studies. Chen & Oluko-
tun pioneered work on method level speculation for Javagusimodified Kaffe JVM and
JIT running on the Hydra architecure [CO98]. They later depetl TEST, which uses
hardware speculative trace generation and analysis mothde cooperate with an online
feedback-directed JIT compiler to improve runtime perfante [CO03b]. Unlike their
previous work on MLS, TEST focuses only on identifying catades for loop level spec-
ulation. It is essentially a hardware profiling system thlanitifies speculative loop candi-
dates for dynamic recompilation by a JIT compiler. The culation of their work is Jrpm,
an overall software / hardware hybrid design for dynamycp#irallelizing Java programs
that uses the TEST hardware internally and runs on Hydra [@D0J3ey found speedups
of 2-4x for a wide range of integer, floating point, and muéuoia benchmarks using loop
level speculation, observing only minor overhead for tipairticular hardware configura-
tion. This work is for the most part comparable to other SpMmpilation efforts, with
the biggest advantage of the JIT environment apparenthygbgynamic recompilation in
response to online profiling. It is also the most robust destration that the JVM is a
viable platform for speculation. As with their work on MLSsdussed in Section 5.4, they
identified a number of manual changes that helped speculatie examine their treatment
of Java language features in Section 5.2. Traces of Javagmnsghave also been applied to
simulated architectures, by Hai al. in their study of the impact of return value prediction
on MLS performance [HBJO03], and by Whaley & Kozyrakis and Warghieir studies of
heuristics for method level speculation [WKO05, War06]. Hiyahe cancelled MAJC pro-
cessor was designed primarily for Java programs, and iedl&bpMT support [TCCOQ].

Most current hardware designs could in fact be classifie¢/bgdhardware / software
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approaches since they rely to various extents on softwasistasce. Most commonly,

compiler or runtime processing is required to help identifyeads and insert appropri-
ate SpMT directives for the hardware; in some cases softwaltee prediction is used

to reduce hardware costs. We discuss software support fdwhee architectures as far
as value prediction, fork heuristics, and misspeculatedtuction are concerned in Sec-
tions 5.8, 5.12 and 5.13 respectively.

5.2 Language Semantics

Hardware speculation support, even with cooperating soétvsupport, largely obviates
the consideration of high level language semantics: comachine code execution im-
plies correct program behaviour. Further, software-omi3$ architectures based on C or
Fortran have relatively straightforward mappings to maetgode. Accordingly, designs
such as Softspec [BDAOO], thread pipelining for C [Kaz00, Kl,Gand those by Rundberg
et al. [RS01] and Cintreet al. [CLO3] do not require a deep consideration of language
semantics.

Supporting the Java language and virtual machine envirahreguires stronger guar-
antees and entails a much finer set of considerations. Coaldswad many similar seman-
ticissues in the context of supporting JVM rollback for dggung purposes [Co002]. How-
ever, they have not been fully addressed by any prior JavalSpilementation, including
the details published by Sun for the cancelled Java-inditAJC processor [TCCO0O0].
Largely this is because non-software or non-VM designs terslide treatment of com-
plicated language safety issues to achieve results expgbdag the (reasonable) cost of
generality, whereas a software-only VM-only study preserd real choice. As part of
their JIT compiler thread partitioning strategy in Jrpm, €&eOlukotun do discuss Java
exceptions, mark-and-sweep GC, and synchronization geints [CO03a]. Jrpm allows
speculative threads to throw and catch exceptions, wh&ahleSpMT stops speculation
on all exceptions. Jrpm also provides thread-local frde fier speculative object alloca-
tion, whereas SableSpMT synchronizes on a global heap Brially, Jrpm ignores the
constraints imposed by synchronization in speculativedtis, a simplifying relaxation that
is unsound for multithreaded applications, whereas SaidSs conservative in this re-
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gard. The studies by Het al.[HBJO3] and Whaley & Kozyrakis [WKO05] benefit from the
same relaxation. Yoshizast al. describe a JVM with limited support for software-only
loop speculation, but the short execution traces and ldvetevironment under considera-
tion preclude interactions with Java language issues [YBJHBazi provides a pure Java
source implementation and discusses exceptions, polynisonp and GC, albeit without
analysing them, but avoids the issue of dynamic class lgdoynassuming ahead-of-time
whole program availability [Kaz00].

These are noa priori clearly insignificant differences; the effect of dynamiasd
loading in Java, for instance, has spawned a large numbepmfrivial optimization
considerations [AR02], and despite Kazi and Lilja’s disraissf GC as unimportant for
applications with small footprints, many Java applicasioio have large memory require-
ments [DH99, DDHVO03, BGHO06]. Differences and omissions such as the ones we have
highlighted can make it difficult to compare Java studies] Eave important practical
implementation questions open; our work here is meant {o freetify this situation.

5.3 Software SpMT

Whether applied to Java or not, hardware SpMT requires thersiye step of hard-
ware construction and deployment, making an all-softwgstesn desirable. In practice,
software-only approaches to SpMT are relatively uncomni®auchwerger & Padua de-
veloped the LRPD test, a first attempt at software-only lowpllspeculation, finding good
results for previously unparallelizable loops in Fortrangrams [RP95]. Gupta and Nim
later improved on their work with a new set of runtime test®df8]. Papadimitriou and
Mowry describe a system for C programs based on a virtual mgpage protection mech-
anism [PMO1]. Conflicting memory accesses between threadsaarght and memory is
synchronized using standard page trapping and signal ingndiowever, the high over-
heads encountered at this coarse granularity interferethv viability of the approach.
Other approaches follow hardware designs more closelymnstef tracking individual

memory access conflicts. Rundberg and Sténstdescribe a software approach to loop
level speculation in C [RS01]. Their prototype implememtatshows good speedup, but is
verified only through hand done transformations and limresal world testing. Kazi and
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Lilja describe a software model foparse-grained thread pipelinirand validate it through
manual parallelization of loops in C programs [KLO1], relgion their software library
implementation of the SuperThreaded architecture by &isal. [THA 799]. Softspec is a
compiler and runtime system that parallelizes loops in @rms with stride-predictable
memory references [BDAOO]. The approach depends on machbihe level offline pro-
filing to identify independent loop bodies suitable for gdative execution. Cintra and
Llanos describe a Fortran-based system that also spexuatéoop bodies, exploiting
both compiler analysis and runtime testing to identify sidarariables and handle individ-
ual dependence violations [CLO3]. They later explore theghespace of software loop
speculation more completely [CLO5]. Finally, Frank desesilbhe SUDS system for loop
based parallelization that is a software-only system baigted for the specialized Raw
processor [Fra03]. These approaches generally achiewkmptormance results, but none
are based on Java or designed as experimental frameworks.

Only very limited studies on software-only speculationJava have been done previ-
ously. Yoshizoeet al. give results from a partially hand-done loop level spedoitestrategy
implemented in a rudimentary prototype VM missing coredead such as garbage collec-
tion [YMH98]. They show good speedup for simple situatidng, a lack of heap analysis
limits their results. A more convincing analysis is givenKgzi and Lilja through manual
Java source transformations of loops in Java programs [KK&200]. Although source
level transformations such as these are not ideal when aeahpacompiler or VM-based
transformations, these studies showed that specializeldvage is not an absolute require-
ment, and that Java programs are viable candidates forlgpieou The most interesting
result of the study by Kazi and Lilja is that scalable spetoitais even possible with na-
tive Java threads, provided thread granularities are eaarsugh. Opposingly, Warg and
Stenstom argue that Java-based SpMT has inherently high overtuesasl which can only
be addressed through hardware support [WS01]. Howevecdhdusion is based on data
from Java programs translated to C and subsequently exkentsimulated hardware, not
on an actual software system. Our data and analysis ardisagrily more comprehensive
than prior studies. They indicate that while overheads @guite high, there is sufficient
potential parallelism to offset the cost. At the same timgosing this parallelism is a
challenge. Based on our experience, we believe high qualikytfeuristics are more im-
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portant than the performance of the underlying runtimeesysbut that key optimizations
such as adaptive return value prediction and support fondawation of both in-order and
out-of-order nesting are also important.

Our initial work on software MLS for Java directly inspiregid M.Sc. theses. Costanza
implemented a speculative system in Jikes RVM that uses staalysis to identify single-
entry single-exit regions in leaf methods and execute thpetdatively [Cos07]. The
significant complexity of implementation is identified assadlvantage of this model when
compared with method level speculation. 8tthlater partially implemented a method
level speculation system called HotSpec in the Sun HotSgigt [5ch08]. The significant
complexities of extending a production JVM ended up lingtdevelopment progress. On
the basis of these two experience reports, we chose to porsieegenerically applicable
investigations into return value prediction, nested ML&J #ork heuristics rather than a
complex JIT compiler implementation.

Libraries are a key mechanism for providing reusability aftware development. As
discussed briefly in this thesis, we have extracted the Viigpendent speculation logic
in SableSpMT into a separate library, libspmt [PVKQ7]. Tdhare many software trans-
actional memory libraries for a variety of languages thatld@rovide efficient depen-
dence buffer implementations; transactional memory isudised more fully in Section 5.6.
With respect to SpMT specifically, Oancea and Mycroft désciPolyLIbTLS, a config-
urable library for loop level SpMT [OMO08]. It provides contigable dependence buffer,
thread behaviour, and thread management support throeglsthof C++ template meta-
programming. They later use this library to evaluateplace support for SpMT in the
context of software loop level speculation for C++, showihgttdirect updates to main
memory combined with an undo log can be more efficient thamadittonal dependence
buffer [OMHO09].

There have been various approaches to software speculatibrely on programmer
intervention. Dinget al. exploit offline profiles and manual source code changes tuifgle
and exposdehaviour oriented parallelisiBOP) by markingpossibly parallel regions
achieving significant speedups using very coarse threatlgndties [DSK 07]. Prauret
al. describe a system for manual parallelization drawn from $@vd transactions, also
showing how profiling feedback is important in determinipgesulation points [vPCCO07].
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Welc et al. proposedsafe futuregor Java, making the non-speculative futures model spec-
ulative by allowing continuations to execute speculatea&ds and writes [WJHO05]. These
are an implementation of the Java 1.5 future construct timettion similarly to MLS except
that the programmer specifies where to create threads andlapen past consumption of
the return value is not possible. They found good speedula®p$ in easily parallelizable
benchmarks. Zhanet al. considered safe exception handling for Java futures [ZKl07
and Navabgt al. later presented a formal semantics for a higher-order iomaklanguage
with first-class exceptions [NJ09]. The similarities at YHd level in terms of dependence
buffering, stack buffering, exception handling, bytecexecution, scheduling, and roll-
back between MLS and safe futures mean that many of the aglsamad results are in turn
transferable between them.

5.4 Method Level Speculation

There is significantly less work on method level speculati@n loop level or basic block
level speculation. According to Chen & Olukotun [CO98], Ogknet al. were the first
to propose the concept of MLS in a limit study for C progranmet gought to identify the
maximum amounts of loop and method level parallelism akBIOHL99]. Similar limit
studies of both loop and method level parallelism were dgri@&arg & Stenstom [WSO01]
and Kreaseclet al. [KTC00]. Hammond, Willey, and Olukotun later designed thedky
chip multiprocessor for SpMT that included MLS support [H@&). They later described
techniques to improve performance via overhead reductmascompiler-assisted code
restructuring [OHW99].

Chen & Olukotun concurrently described a more realistic metkvel speculation sys-
tem for Java, which combined a modified version of the Kafféldhnd JIT compiler run-
ning on the Hydra architecture [CO98]. They found encoumggmounts of speculative
method level parallelism in JIT-compiled code, particiyldor data parallel applications,
with simulated speedups comparable to ours on a four-wayhimac They also identi-
fied three types of manual source code changes that couldvwegpeedups, sometimes
dramatically. The first change was outlining or extractiogd bodies, effectively demon-
strating how method level speculation can subsume loop &pexculation, albeit at the
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cost of extra invocation overhead. The second change wasatforwarding path reduc-
tion, which involves moving dependent reads down and theesponding stores up, as
discussed in Section 5.13. The third change was elimindgilsg dependences by moving
writes from loop bodies into methods called by the loop. Aitation of their approach
is that they did not consider call or operand stack deperegeimctheir simulation; pre-
sumably this implies that speculative continuations caneturn from their initial frame,
which requires stack buffering. Further, although theiaraples include support for in-
order nesting, out-of-order nesting is not discussed.lkirthe only benchmark they con-
sidered from SPEC JVM98 wagsavac, although they did also examineyt r ace, the
single-threaded versionaf rt .

Since its initial development, support for method levelcgpation has been included
in a number of SpMT systems, but has only been the primarysfofa few studies. Hu
et al. considered the impact of return value prediction on metlevellspeculation in a
JVM [HBJO03]. Whaley & Kozyrakis considered a range of inputrees and fork heuris-
tics for a Java-based method level speculation system [WKW®alg explored techniques
for reducing overhead costs in hardware method level spgonlfor C and Java programs
that depends on a similar set of heuristics, specificallgipteg thread lengths, success
rates, and balances between parents and children [War@&lly- although not method
level speculation in the sense of speculative continuati@tution, Balakrishnan and Sohi
describe a unique method based approach called programtge#exing, in which meth-
ods are executed speculatively when their inputs becomtablg following a data-flow
approach to parallelization [BS06].

Kejariwal et al. have performed various limit studies on the profitabilityspeculation
which ultimately suggest that broader forms of speculgpagallelism such as MLS are
necessary to maximize performance. They showed that imo@rdpeculation for SPEC
CPU2006 yields a 6% performance improvement for a threadioreaverhead of 10 cy-
cles, and only 1% if the overhead is 1000 cycles [KTZ]. Results for loop speculation
in SPEC CPU2000 were similarly pessimistic [KT06]. More recently they performed
an MLS limit study using the SPEC CPU2006 benchmarks that waewhat more op-
timistic [KGT"10b]. Here they exclude call graph cycles from their analysiprevent
unbounded dependence buffer growth. They found an uppeardootionly 20% specu-

164



5.5. Dependence Buffering

lative coverage for all benchmarks excdpd. h264r ef which had a coverage of 50%.
This suggests that speculative recursion may in fact be itapbfor MLS peformance.
Kejariwal et al. later analysed the impact of in-order nesting depth on dpgon suc-
cess [KGT10a]. They considered that when a speculative thread sreagpeculative
thread, the doubly-speculative thread’s success ratgmndkent on its speculative parent’s
success rate. They observe that the success rates expilpetdcrease with increased
nesting depth. Of course, long dependence chains may beialile if there is a high
success rate for each participant thread.

5.5 Dependence Buffering

All SpMT systems rely on some kind of dependence bufferimgtsgy to prevent out-
of-order speculative execution from corrupting non-spegote execution. These strategies
involve tracking both reads and writes and invalidatindne ¢ase of read-after-write, write-
after-read, and write-after-write dependence violatiofike specifics of our dependence
buffering model are described in Chapter 2.

Garzararet al. reviewed the extant literature and proposed a taxonomytde buffer-
ing mechanisms in thread level speculation [GBR]. According to that taxonomy, our
model supports Eager Architectural Main Memory (Eager AMEY speculative threads
write variables to a dependence buffer and not directly tonmeemory, and the buffer is
committed immediately at join time along with the child $tadt also supports multiple
tasks and multiple versions of variables per processort{WV&MV): per-processor helper
threads begin execution of speculative children as soontasathelper and child are avail-
able, and each child has its own dependence buffer. Thigrnlésirecommended as the
most effective in terms of benefits gained for the compleaitynplementation.

With respect to software buffering approaches, Papadouiand Mowry described a
software SpMT system based on a virtual memory page proteatiechanism [PMO1].
Conflicting memory accesses between threads are caught andrgnis synchronized us-
ing standard page trapping and signal handling. Oancea amdoM reviewed software
SpMT buffering mechanisms and provided configurable sugdpoithree kinds of buffer
in PolyLibTLS, their software SpMT library [OMOQ8]. First,r@ad-only buffer, where any
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writes invalidate the speculation. Second, a lightweighitad commit buffer that exploits
loop iteration behaviour to reduce dependency trackingscdsird, a buffer that updates
memory in-place and allows for parallel commits.

5.6 Transactional Memory

Transactional memory (TM) is another kind of optimistic carrency that is complemen-
tary to SpMT, relying on a similar core mechanism of spedodatode isolation based
on dependence buffering and rollback. However, TM seekstallelize the critical sec-
tions in already multithreaded programs, whereas SpMTllpézas single-threaded pro-
grams. Thus SpMT incurs the additional overheads of spieslthread management
when compared to a TM system. Under TM, instead of using léackseate critical sec-
tions, programmers writatomic sectionsvithout specifying any particular monitor object.
Larus & Rajwar reviewed the extensive research on both soét@ad hardware TM sys-
tems [LRO6], many of which could be used to provide an altéradb the SpMT depen-
dence buffering discussed in Section 5.5. For example, Malet al. and Ramaret al.
explore the use of software TM to parallelize loops in C paogs [MHHM09, RKM'10].
Many of the same Java language considerations we consideriara TM environment,
although the solutions differ because the underlying paizdtion paradigm is different.
In Chapter 4 we provide a precise semantics for our MLS catkstaodel. There have
been similar formalization efforts with TM, given widespteexperience that although the
transactional programming model appears simple, impléatiens vary considerably in
terms of when concurrent operations may be performed, whethd how transactions
may be nested inside each other, what visibility of interiadcalculations have, and
how to ensure correctness with respect to underlying memadgels. MLS and SpMT of
course differ fundamentally from TM in that speculative @x&on is not user-specified and
is also potentially unbounded. However the nesting mod®le some similarity, meaning
that the correspondence between different MLS nestintegliess and transactional nesting
could be interesting to explore. Although we have not fofynaitoven safety and liveness
properties, the stack abstraction we use is drawn from armsly tested implementation,
and could form the basis for future proofs. Previously weellgyed an initial proof of
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MLS correctness based on a simpler list-based abstrad®gK(9]. The correctness of
SpMT systems in general appears more straightforward te@dstrate than correctness of
TM systems; Kimet al. provide a simple proof of correctness of both hardware-aniy
compiler-assisted SpMT in the context of reference ideepot analysis [KIOEO01].

In terms of specific formal approaches, Jaganna#taal. useTransactional Feather-
weight Javato show serializability of both versioning and two-phasekiog approaches
to transaction control [JVWHO5]. In another early effort,o8aqives a sequential speci-
fication of TM semantics [Sco06]. Other major differencesii terms of transaction
nesting and hence available parallelism. Haetial. provide a composable abstraction for
Haskell, including support for one form of nested transadj although with limited par-
allelism [HMPJHO5]. Moore & Grossman also use a small-stegrational semantics to
investigate different nesting forms, showing equivalebetveen weaker models that en-
able greater parallelism, and using a type system to veoifsectness in terms of progress
of transactional substeps [MGO08]. Abagtial. have a similar goal, also building a type-
based approach to prove correctness. They develop a spediahlculus of automatic
mutual exclusion, and use it to examine the impact of weakiity models. Guerraoui
and Kapalka argue thapacityis a fundamental serialization criterion, and use that tmsh
correctness, as well as complexity bounds [GKO08].

5.7 Speculative Locking

Lock synchronization poses a potential problem for speivalaxecution: lock acquire
and release operations affect the program globally, andeswatively require speculative
threads to stop. However, locking itself is quite amenabpeculation, and optimizations
are indeed possible. Speculative locking is closely rdlaetransactional memory, the
primary difference being that the locks are not written asseactions, but rather executed
speculatively without programmer changes.

Martinez and Torrellas show how speculative locking can redhedarpact of con-
tention on coarse-grained locking structures in a hardsgseem [MT02]. Rundberg and
Stenstom extended this model to allopost factospeculative lock acquisition reordering,
which minimizes dependences to extract as much concurapgssible [RS03]. In a re-
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lated hardware context Rajwar and Goodman define a micrdectinie-based speculative
lock elision system [RGO1]. Welet al. later demonstrated a software implementation in a
Java virtual machine [WJHO6].

Our current implementation causes speculative threadspospeculating on synchro-
nization. Under traditional speculative locking, non-sative threads become specula-
tive upon entering a critical section. However, a differgmproach becomes available when
combined with an SpMT system, namely allowing already s|a¢ie threads to enter and
exit critical sections. The profiling data in Chapter 2 revisait even in single-threaded
Java programs this second kind of speculative locking cbald useful optimization. We
include both variants of speculative locking as potentiéife work in Section 6.2.1.

5.8 Return Value Prediction

Return value prediction is a kind of value prediction, a vikelbwn technique for allowing
speculative execution of various forms to proceed beyomthabexecution limits. Value
prediction has been researched for well over a decade, pignvathe context of novel
hardware designs and constraints. A wide variety of valegliptors have been proposed
and examined, including simple computational predictorste complex table-based pre-
dictors, machine learning based predictors, and hybridempntations. Our work here ex-
tends previous investigations of RVP in a Java context [CBB303,PV04b,PV04a,SB06]
with practical explorations of accuracy, speed, and mensonsumption in an adaptive,
dynamic software-only environment. Further, our unificatframework brings together
many known value predictors that are suitable for RVP.

Burtscheret al. provide a good overview of basic value prediction technsd@OHO02].
As a general rule, accommodating more patterns and using historical information
can improve prediction accuracy, and generalizationsropka predictors, such as last
value prediction, have been studied by a number of groups9BAYF97,LS96]. Laslv
value prediction allows for short, repetitive sequencesa@aptured, and can yield good
results; Burtscher and Zorn, for example, show a spaceesifitastd value predictor can
outperform other more complex designs [BZ99a]. Zleiwal. later provided the gDiff
predictor, which is a global version of our last stride predictor [ZFCO03]. Yongt al.s
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revised stride data value predictor [YYXO05] is essentia@llast 2 stride predictor, such

that its patterns are also captured by the [sistalue predictor. Most predictors can be
further improved by incorporating statistical measurehsas formal confidence estimates,
although this does add extra complexity [BZ99b]. Limits oa possible success of value
prediction strategies have also been analysed [WSO01].

Gabbay introduced the stride predictor and last value prelias well as several more
specialized predictors, such as the sign-exponent-fira¢®EF) and register-file predic-
tors [Gab96]. Specialized predictor designs provide frrtliays to exploit value predic-
tion where more general approaches work poorly. The SERqtoedfor instance, predicts
the sign, exponent, and fraction parts of a floating point Ibeinseparately. Although the
sign and exponent are often highly predictable, the fracgonot, which usually results
in poor prediction accuracy for floating point data. Tullsemd Seng extended Gabbay’s
register-file predictor to a more general register valuealipter. It predicts whether the
value to be loaded by an instruction into a register is alygmdsent in that register [TS99].
It may be worth considering a stack top predictor that is $mapregister value predictor
specialized for return values.

Pointer-specific prediction is also possible, an exampiegothe address-value delta
(AVD) prediction introduced by Mutlwet al. that predicts whether the difference be-
tween an address and the value at that address for a giveteplmad instruction is sta-
ble [MKP06]. Marcuelloet al. propose an increment-based value predictor [MTG99,
MGTO04] for value prediction within a speculative multitluging architecture. This predic-
tor is like the 2-delta stride load value predictor, but iglier differentiated by computing
the storage location value stride between two differerituiction address contexts.

Sazeides and Smith examine the predictability of data gghweduced by different in-
structions. They consider hardware implementations ofise, stride, and finite context
method (FCM) predictors, showing the limits of predicapifind the relative performance
of context and computational predictors [SS97b]. Subsatgwerk considers the prac-
tical impact of hardware resource (table size) constrantpredictability [SS97a]. The
original idea for the finite context method predictor conresif the field of text compres-
sion [BCW90]. Goemast al. proposed theifferentialFCM (DFCM) predictor [GVdBO01]
as a way of further improving prediction accuracy. Burtsdater suggested an improved
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DFCM index or hash function that makes better use of the tabletsres [Bur02]. We
use Jenkins’ fast hash to compute hash values because firigpajate for a software con-
text [Jen97].

Hybrid designs allow predictors to be combined, compleingnand in some cases
reinforcing the behaviour of individual sub-predictors.avg and Franklin show that a
hybrid value predictor achieves higher accuracy than itspmment sub-predictors in iso-
lation [WF97]. To improve performance, Caldetral. studied techniques for filtering out
instructions not worth predicting [CRT99] in the context ohybrid predictor. The in-
teraction of sub-predictors can be complex, and BurtscheérZamn show that resource
sharing as well as the impact of how the hybrid selects thé fdspredictor can sig-
nificantly affect performance [BZ02]. Designs have thus beeposed to reduce hybrid
storage requirements [BZ00], and to use selection mechartisat reduce inappropriate
bias, such as cycling between sub-predictors [SBO5b], ousieeof improved confidence
estimators [JB06]. Sam and Burtscher argue that complex \@iedictors are not al-
ways necessary in optimal hybrid designs that maximize tha&ency of client applica-
tions [SB0O5a]. Examples of generic, non-hybrid predictacdude those based on percep-
trons from machine-learning [TK04, SHO4].

Software value prediction, while less common, has also ln@estigated, usually in
conjunction with a hardware design. For instanceetal. use static program analysis to
identify value dependencies that may affect speculatiee@tion of loop bodies, and apply
selective profiling to monitor the behaviour of these vdealat runtime [LDZNO3]. The
resulting profile is used to customize predictor code gdrmerdor an optimized, subse-
guent execution [DLEEO4, LYDNO5]. Liu et al. incorporated software value prediction in
their POSH compiler for speculative multithreading andnida beneficial impact on per-
formance [LTC 06]. The predictors are similar to those used bytal.[LDZNO03], and
handle return values, loop induction variables, and some Variables. Hybrid approaches
have also been proposed, which combine software with Sieglhardware components in
order to reduce hardware costs [BSMF08, Fu01, RVRAOQS].

Performance can also be improved through static compilatysis. For example,
Burtscheret al. analyse program traces to divide load instructions clésseswith dif-
ferent groupings having logically distinct predictalyiliproperties [BDHO02]. Quiones
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et al. developed the Mitosis compiler for speculative multitltieg that relies on pre-
computation slices for child threads, predicting threguliis in software but performing the
speculation in hardware [QM®5]. Duet al. use a software loop unrolling transformation
to improve speculation efficiency, but also evaluate likekgdiction candidates from trace
data using a software cost estimation [D1Q4]. Code scheduling approaches that iden-
tify and move interthread dependencies so as to minimizehlace of a misprediction
have been developed by Zhetial. [ZCSM02]. A more general consideration of compiler
optimization is given by Satet al., who analysed the effect of unrelated optimizations on
predictability and found that typical compiler optimizats do not in general limit pre-
dictability [SHSAOQ1]. Finally, in related work of our own,exdeveloped gturn value use
analysis that determines if and how return values will beluaed gparameter dependence
analysis that determines which parameters affect therrealue of a method [PV04a].

Return value prediction is a basic component of MLS systerhgrgveven simple last
value and stride predictors can have a large impact on speailperformance [CO98,
OHL99]. Huet al. extend this early work by analysing data from Java trace$uae sim-
ulated hardware to make a strong case for return value pidio MLS systems [HBJ03].
In particular, they find that return values are typically somed between 10 and 100 ma-
chine instructions after a call, which means that accuretiem value prediction can con-
tribute significantly to increased thread lengths. Theyp atsroduce the parameter stride
predictor we examine and give prediction results for SPEMII¥. Singer and Brown con-
sider theoretical limits on RVP by using information thetwydetermine the predictability
of return values in Java programs, independent of any spgu#édictor design [SBO6].
Our work builds on prior efforts by including new predictplyy extending the data col-
lected, and by providing an optimized software implemeatatin Chapter 2 we provide a
software implementation of MLS that shows RVP has a benéfiaact on performance
in a relative sense, but contributes to overall system stovng in an absolute sense. In
Chapter 3, we provide optimizations to this base system tlaataltically reduce overhead.
In our system predictions are made by the speculative chileht in order to relieve the
non-speculative parent thread of prediction overheadn kevan more aggressive approach
to overhead reduction, Tuck and Tullsen explore multitieshvalue prediction, which
uses separate cores to predict the values for a single tfréa8).
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Finally, several of our new predictor designs are based omaigtion, particularly
suitable for RVP. Although our work is the first to address rogation in a value pre-
diction setting, memoization is obviously a well known tejue, one that has even been
used to speed up speculative hardware simulations [SLY8}ctive memoization based
compiler and runtime optimizations have also been destfibe04]. Note that unlike tra-
ditional memoization approaches, limitations due to corege/e correctness are not neces-
sary in our speculative environment. In a related investigave developed a dynamic pu-
rity analysis for Java programs and used our memoizationdveork to non-speculatively
memoize statically impure but dynamically pure methods\[RP].

Type information is another vector for optimizing performsa. Sato and Arita show
that data value widths can be exploited to reduce predicer By focusing on only smaller
bit-width values accuracy is preserved at less cost [SAOGH. demonstrates both memory
and power savings by using data width information [LohOBh@ugh the hardware context
requires heuristic discovery of high level type knowled§am and Burtscher later show
that hardware type information can be efficiently used taicedpredictor size [SBO4].
They also demonstrate that more complex and hence moreadequedictors have a worse
energy-performance tradeoff than simpler predictors amedtfaus unlikely to be imple-
mented in hardware [SB05a].

5.9 Memory Management

In Section 4.2, we describe a simple custom memory allodatarbitrarily nested MLS.
It uses per-thread and global freelists to recycle aggeeghild thread data structures,
allowing for memory to be allocated in one thread and freeaniather without causing a
producer / consumer problem.

Multiprocessor memory management is in general well-stidBergeet al. designed
Hoard, the first scalable malloc that uses per-processogladl heaps to bound mem-
ory consumption and avoid false sharing [BMBWO0O]. Dice and aaite provided a
mostly lock-free malloc that is 10 times faster than Hoardréginally published in some
cases [DGO02]. Michael later provided a completely loclefadlocator based on Hoard that
offers further improvement [Mic04]. Schneidet al. demonstrated yet another scalable
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multiprocessor malloc implementation [SANO06]. Hudstl. described a scalable malloc
for transactional memory [HSATHO6]. Evans implemenitedal | oc, the state-of-the-art
multiprocessor malloc in FreeBSD [Eva06]. Larson and Krashobserved that for server
applications, only 2—3% of memory is allocated and freediffent threads [rLK98],
which indicates that the producer / consumer allocatioblera that arises under in-order
MLS nesting is likely an outlier.

Freelists have also long been used in custom memory allscddata structure pooling
and allocation-based ownership have been studied morathgcélirzel et al. examine
the connectivity of heap structures, finding that objectsneated via pointers usually have
similar lifetimes [HHDHOZ2]. Boyapatet al. combine user-specified ownership types with
region-based memory management [BSWBRO03]. Lattner and Adee pabvide a sys-
tem for automatic pool or region allocation that segregétesmemory required by an
individual data structure into its own pool [LAO5]. Mitchedubsequently examines the
runtime structure of object ownership for many large reatd applications, identifying
many dominator trees [Mit06].

Bergeret al. found that custom memory allocation offered no improvenuwetr the
widely available Lea allocator for 6 out of 8 benchmarks imevey, and that region-based
allocation explained the performance improvement of theiotwo [BZMO02]. Indeed, our
solution to the producer / consumer allocation problem gessd by in-order nesting is
directly inspired by Hoard, and its multiprocessor behaviis likely quite similar. Our
model does present a specialization of the general purplosat@rs in that it always uses
one heap per thread and one thread per processor. This isamtage in the common case
of allocating from the local thread heap instead of the dlbbap because synchronization
operations can be eliminated altogether. However, thepedbrmance advantage comes
from recycling the aggregate child thread data structurasform ownership dominator
trees, because it reduces the number of allocator calls bgtarfof the number of sub-
objects in each tree. This eliminates a significant perfoicedottleneck in our system. If
we were to use an existing general purpose allocator, wedveaéd to rewrite the applica-
tion to allocate much larger regions of memory and dividertli manually to accomodate
sub-objects in order to achieve the same effect. Thus thiersadtware engineering bene-
fits in that a straightforward object-oriented applicatstructure can be used. Further, the
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allocator we describe is itself extremely simple to implaine

In future work, it would be interesting to generalize our nmgynmanagement system
by combining it with the different ideas from these works teate a general purpose mul-
tiprocessor allocator that returns usable pre-assemibliedstiuctures. One case where the
data structure recycling might be immediately applicaldmes from Suganumet al’s
experience translating COBOL programs to Java [SYONO08]. Toegd that in the initial
automatic translation step, large classes containing ragmys of inner classes with mul-
tiple levels of nesting get generated to hold the originagpam data. If these classes are
instantiated, used, and discarded frequently, for exampde for each execution of a hot
transaction, this can cause unacceptably frequent gadmigetion. Their solution is to
instantiate inner array elements lazily, since not all @nthare necessary. An alternative
approach mirroring our solution would be to maintain frsislof these frequently allocated,
short-lifetime, large objects with unchanging structund aero out fields as necessary.

5.10 Nested Speculation

There is prior work on both in-order and out-of-order neselculation. Loop level spec-
ulation models almost always provide in-order nestinghdhat one speculative loop iter-
ation can spawn the next, whereas method level speculaften allows for out-of-order
nesting. Renaet al. extend a model with unlimited in-order nesting to allow umted
out-of-order nesting, for both methods and nested loop4 {RIB]. This contrasts with
our work that began in Chapter 2 with unlimited out-of-ordesting and was extended
in Chapter 4 to support unlimited in-order nesting. They ps#pa hardware architecture
based on timestamps that is complex and does not transkilg teesoftware. Our model,
while not directly suitable for a hardware implementatia do its abstract nature, is quite
suitable for software MLS and exploits the call stack to eeswrrectly ordered commits,
a nearly universal program structure.

Our stack abstraction also provides a simple framework fateustanding, clarifying,
and unifying method level speculation approaches. In gentre precise operations al-
lowed on call stacks in most related work are somewhat obs¢wrhich in turn makes
performance comparisons difficult. For example, in thealeation of fork heuristics for
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Java MLS, Whaley and Kozyrakis claim to allow speculativee#iuls to create specula-
tive threads, which meets the definition of in-order nesfifi{05]. However, all of their
examples actually demonstrate out-of-order nesting. Bhafly describes stack manage-
ment for speculation [Zha05], but does not provide detailshe complexities of entering
and exiting stack frames speculatively. Zahran and Frardgdamine return address pre-
diction in a speculative multithreading environment [ZE@hd later consider entire trees
of child tasks [ZF03], but do not provide a precise semariticthe return address stack
they describe.

A key consideration in all of the work on SpMT and MLS that oppeoach in Chap-
ter 4 elides is the impact of speculative data dependencescaonsider the problem of
managing data dependences not unimportant but orthogwita fproblem of creating ef-
ficient stack and thread interleavings. This makes our warthcead nesting applicable to
non-speculative method level parallelism approaches dswith a possible optimization
being the elimination of unnecessary stack frame bufferifige most direct example of
this is that many of our speculation patterns are found imtrespeculative Olden bench-
marks, as discussed in Section 4.5.7. In general, the sisofaion properties assumed
by speculative threads require some kind of dependencerimgfor transactional memory
subsystem, as described in Sections 5.5 and 5.6.

5.11 Irregular Parallelism

Method and continuation based parallelism can be partiguégopropriate for programs
based on recursive, dynamic data structures. However,afuilkt al. argue that this is a
problem for speculative approaches, because many sucrapre@mploy worklist or fixed
point iteration designs, where shared meta data strucpaates can easily result in fre-
guent conflicts or rollbacks [KPWO07]. As a solution they describe the Galois approach,
which provides both ordered and unordered optimistic, ameat iterators for special-
ized and high-level concurrency control. Mendszal. extend this design with further
optimizations to reduce rollbacks and workload processwgjs [MLNP"10]. As an al-
ternative, we argue it is possible to rewrite traditionailefoop worklist and fixed point
algorithms to use head recursion, which in turn enables hsadsive speculation via the

175



Related Work

techniques described in Section 4.5, such that the metsulatiaure manipulations can oc-
cur non-speculatively while the actual work on the undedydata structure is parallelized
speculatively.

Data parallel solutions to the worklist problem have alserbproposed. Lublinerman
et al. describe a data parallel language wherein computationrierpeed locally and
concurrently onobject assembliesvhich are disjoint pieces of the main data structure,
following a strong data ownership model [ﬁDQ]. Assemblies are active objects, merging
to acquire ownership of data required for computation afittigg to increase concurrency.
This applies nicely to algorithms where data locality mapsdmputational locality, as in
much of the Lonestar suite provided by Kulkaeatial.[KBPCQ09].

We have been unable to find a detaiddorithmic exploration of how irregular paral-
lelism evolves at runtime that compares to our analysis oti@e4.5. Kulkarniet al. do
provide a tool called ParaMeter for visualizing how avdigtarallelism evolves over time
from a performance perspective, but there is no consiaerafi the actual dynamic thread
structures [KB109]. Since for any real program these thread structuresbwilincred-
ibly complex, we consider our basic on-paper exploratidnsimple examples essential
for an intuitive understanding of how to expose irregularaialism. In terms of regu-
lar speculative parallelism, Prahbu and Olukotun dematestiow TLS hardware support
can simplify manual source level parallelization of loop<i programs, identifying some
programming strategies [POO03], and later focus more afiglian loop level speculation
patterns [POO05].

High level knowledge of the underlying use of data strugymevides an obvious ad-
vantage to any parallelization strategy. Cahoon and McKidéscribed compiler analyses
to detect linked data structures in Java programs, and bgetbtimprove the performance
of JOIden through automatic prefetching [CMO01]. Ghetal. also detected the use of par-
allelizable data structure traversals automatically [GBZ They showed how to convert
foreach to forall by traversing the data structure first aadrgy the nodes in a temporary
array. Our suggestion above to convert while loop algorihonrhead recursive algorithms
is comparable, in that it saves the traversal informatiaiéncall stack.

Parallel program development and optimization can beifat by exploiting more
general observations or patterns. For instance, RaghavacitbRogers discuss properties
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of several irregular benchmarks including Barnes-Hut tirggethem to different language
and algorithmic abstractions [RR95]. Specific pattern setsdacurrency have also been
described; these extend from relatively simple paradigmh as master / worker, pipeline,
and divide and conquer [CG90], to more complex designs basegecific synchroniza-
tion constructs. Schmidit al. provide an overview of many common designs [SSRBO0O].
Explicit high-level concurrency patterns provided by laages or their aspect-oriented ex-
tensions [CSMO06] and by standardized libraries [LeaO5dpkerdirect concurrency control
where it can be easily and appropriately applied. Our workmterstanding and exposing
implicit, speculative parallelism via a consideration edbgramming idioms and specu-
lation points complements these explicit patterns, anddcbeanefit from a more formal
pattern-based approach, following Wilkins’ general meiiogy for constructing pattern
languages [Wil03].

5.12 Fork Heuristics

A program partitioning or thread decomposition strate@t thooses speculation points is
necessary for all speculative parallelization. We refdh&se strategies &srk heuristics

In Chapter 2 we experimented with a dynamic profile-baseasy#hat assigned priorities
to speculative threads based on success rates and thrgttle@iven a lack of insight into
the behaviour of this system, particularly when in-ordestimg) is enabled, we developed
severalstructural fork heuristics in Chapter 4. These are essentially speonlgiatterns
that recommend fork points based on program structure arghpar knowledge of how
the speculation will evolve at runtime.

Marcuello & Gonalez observe that at a coarse granularity, even the chogpetulate
on loops or methods is a form of heuristic [MGO02]. Eual. later observe that the method
inlining performed by a JIT will change the set of fork poiatsilable under method level
speculation [HBJO3]. They suggest that for this reason Hysitem is able to extract thread
lengths significantly longer than those observed by Warg Stethstom [WS01]. Our
choice of interpreter-based MLS is thus a fork heuristic af.w

Several static techniques based on ahead-of-time complesformations for SpMT
architectures have been suggested. Kim and Eigenmannlmkesccompiler that allows
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for both explicit non-speculative multithreading as walliaplicit inner loop-based spec-
ulative multithreading [KEO1]. Bhowmik and Franklin deszia general compiler sup-
port framework including both loop-based and basic bloakdu thread partitioning that
also supports out-of-order thread creation [BF04]. Johretoal. transform and solve
the partitioning problem using a weighted, min-cut cost geiddEVO04]. Dou and Cin-
tra developed another static approach based on estimagedgp that they claim could
be parameterized by profiling data [DCO7]. Indeed, variowsigs have investigated of-
fline profile-based approaches to fork heuristics. MarougliGonzalez depend on a basic
block profile to create speculative threads [MGO02]. kiual. developed the GCC-based
POSH compiler for C programs that again uses profiling daenable loop and method
level speculation [LTC06]. Quiioneset al. developed the Mitosis compiler that relies on
pre-computation slices to compute child thread inputs lioedds partitioned at the basic
block, loop, or method level, also using a profiler to idgntiépendences and model con-
trol flow [QMS*05]. Steffanet al. also use profiling support to identify suitable loops in
STAMPede [SCZMO05]. Finally, Det al. use a misspeculation cost model, transforming
loops to reduce dependence violations, with loop unrolliadue prediction, and profiling
as enabling techniques.

Dynamic thread partitioning strategies have also beeniderexd. These reduce pre-
processing needs at the expense of runtime overhead. CodrescWills describe a
simple hardware algorithm based on dynamically partitigrthe instruction stream into
threads [CWO00]. Gaet al. considered a model for dynamically creating threads inrrecu
sive programs, again targeting a hardware architectureX[@19]. They initially predict
the structure of the recursion tree to create threads amchithept the speculation to match
actual outcomes. It could be interesting to combine thig@ggh with our structural fork
heuristics given their shared focus on irregular and ofesursive programs. Finally, as
discussed in Section 5.1, Chen & Olukotun’s Jrpm uses TESar@dware tracing system,
in combination with a JIT compiler to partition threads dgmeally. Jrpm also transforms
speculative code to reduce variable dependencies [CO03a].

Warg describes various MLS fork heuristics based on dyngmidile information
gathered in a hardware environment [War06]. The firstuis-length prediction which
measures parent thread lengths and disables forking ifdbayot meet some minimum
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threshold. The secondarallel overlap predictionwhich measures the time a parent and
child spend executing in parallel, and again disables fgrki it does not meet a certain
minimum threshold. The third isisspeculation predictigrwhich unlike the techniques
described in Section 5.13 that attempt to gracefully hamikspeculations, simply dis-
ables thread creation altogether once a misspeculatidemified. Whaley and Kozyrakis
also studied MLS fork heuristics, and in particular how thejpave when applied to Java
programs [WKO5]. They consider various sources of profilerimfation in a systematic
comparison. They use parent method execution time (anasogowWarg’s run-length pre-
diction), parent method store count, expected speedupnebitdy executing parent and
child in parallel as opposed to sequentially, and expecgtelbs saved by executing parent
and child in parallel as inputs (analogous to Warg’s paralerlap prediction). The key
result is that simple heuristics are actually more effectihan multipass heuristics that take
the program call graph into consideration, because thegnare permissive and eliminate
fewer threads.

All of the approaches described here target SpMT hardwarehws designed support
relatively short thread lengths due to low overhead cosisekample, an average of 11-43
machine instructions per thread are obtained when the mekbgy in [JEV04] is applied
to the SPEC INT2000 benchmarks. As such, these techniqaékely too low-level and
fine-grained to be directly translated to a pure softwaregrenment, although the higher
level concepts should be transferable to some degree. \@4ftect to software systems
based on dynamic profiling, such as our initial attempt ak feeuristics, Arnoldet al.
provide a comprehensive literature review of adaptiveroggtion in response to online
feedback, a technique that is widely used in productioruglrinachines and dynamic
compilation systems, particularly for languages such es \ddere ahead-of-time profiling
and analysis is impractical [AF@®5].

5.13 Misspeculation Reduction

High thread overheads and limited CPU resources have mediwatrious attempts at re-
ducing misspeculation rates. Steffahal. demonstrated that when a speculative thread
encounters a memory read that may violate a data dependetihceome parent specula-
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tive or non-speculative thread, it may be more beneficiaterthread to: 1) speculate as
usual by simply loading the current value from the parergdldrinto a dependence buffer;
2) predict the value using a load value predictor; or 3) dyieafty synchronize, by stalling
and waiting for the dependence to be resolved [SCZMO02]. Inralai study, Cintra and
Torrellas employed a finite state machine for each depemdinat begins by speculating,
switches to value prediction if the number of misspecutaics high enough, and from
value prediction switches to dynamic synchronization & tdonfidence of the predictor is
low [CTOZ2]. Each group found that for some benchmarks, a coatlin of optimizations
outperformed any one technique in isolation.

Specific compiler optimizations have also been developidi &t al. define and evalu-
ate instruction scheduling optimizations based on thetteofthecritical forwarding path
or time between a definition in one thread and a dependentigpige use of the same
variable in another [ZCSMO02]. This can be quite effectiveattucing stalls when vari-
able dependencies between threads are enforced througtrsgization. A flow analysis
described in [KIOE 01] depends on a compiler to label memory referencedeampotent
if they need not be tracked in speculative storage and cdeadsaccess main memory
directly. This reduces the overhead in terms of space aral dinbuffering the reads and
writes of a speculative thread. For Java MLS no local vaeisldre visible from other
threads, and so can easily be designated idempotent witmplementing an analysis.
This means that values on a thread’s stack need not be trackied speculative storage,
an observation that we exploit throughout this thesis. €aal. develop further opti-
mizations that limit the size of speculative threads to fithvm hardware buffering con-
straints [OKP 01]. Finally, aprobabilistic points-to analysis can be used to predict the
likelihood of violation in a speculative thread [CHA3, SS06].

5.14 Non-Speculative Method Level Parallelism

Various software systems have been designed to suppolitegb@seecution in imperative

languages at the method level without speculation. In ggnirese implementations ex-
change the complexity of speculative execution designghcomplexity of ensuring con-
servatively correct memory access orderings. We have éotcaa specifying and under-

180



5.14. Non-Speculative Method Level Parallelism

standing the behaviour of MLS in terms of its interactionhattie program call stack. Con-
current stack management is an important practical designern, with many common
aspects between various forms of method level parallelgartjcularly for continuation-
based approaches. Efficient models have been explored @naj¢HDB90], and also with
respect to specific parallelization strategies.

The Cilk language is based on a sophisticated runtime envieahfor non-speculative
method level parallelization with dynamic load balancimgl acheduling, and is guided
by explicit programmer specifications [FLR98]. The pure cmmtion passing style of
Cilk simplifies implementation by ensuring stacks are empiyrumethod completion and
hence do not overlap [BJ¥95]. The zJava compiler and runtime system is a more recent
and VM-related example. zJava depends on symbolic accéiss pamputed at compile
time to parallelize a program dynamically, without usinggmammer directives [CA04].
Method calls are executed in separate child threads, wialgparent executes the method
continuation until either a return value is consumed or gluzda dependence is encoun-
tered, at which point it blocks. A registry of running threadthethods, and heap regions
is maintained to enforce sequential execution semanticanbdther compiler-based study,
Rul et al. parallelizedbzi p2 at the function level by using profile-based knowledge of
data dependences, a call graph, and an interprocedurdlaatgraph to identify function
clusters operating on shared data structures and partitem into using pipeline-based
parallelism [RVBO7].

Goldsteinet al. provide an efficient implementation gfrallel call that also uses a
thread creation model dual to ours, wherein the child tagicates the method and the
parent thread executes the continuation [GSC96]. They septehe concurrent stack by
a coarsely linked structure of individually allocatethcklets which are regions of con-
tiguous memory that can store several frames. This elim#tdie need to collect garbage
frames, at the cost of occasionally allocating and linkiew/rstacklets. Pillar is a new lan-
guage that supports this abstraction [AGIZ]. Although parallel call was not designed to
be speculative, a translation of the speculation rules antime behaviour patterns of our
system could be used to extend it. Carlisle and Rogers uselarsapproach in Olden, mi-
grating futures to different processors and leaving themtiouations on the stack [CRO1].
The resulting concurrent stack management is minimizesutiv the use of a simplified
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spaghetti stacka sequential interleaving of thread frames with potelytimbn-contiguous
live stack segments [RCRH95]. Goldstein reviews the multétiesl stack design space
for systems where the forking thread executes the contonu@Gol97], discussing the
advantages and disadvantages of both stacklets and spatgeis. Carlisle and Rogers
also provide a detailed review of many non-speculative giragive, parallel programming
languages and runtime environments [CRO1].

We compared our model to ones in which the parent thread es®the continuation
in Section 1.2 in reference to Figure 1.1. The most significhallenge in adapting any of
these models for speculation is in the support for stackdraaffering. Our understanding
is that in non-speculative systems, a primary reason toutgdbe continuation in the
forking thread is that the continuation stack frame doesnea&d to be copied to a new
thread. As such, none of these models have been designed wittchanism for stack
frame buffering in mind, and in fact are optimized for theeaghere it is unnecessary.
Another concern that speculation presents is that nonuggae work must have a higher
priority than speculative work, which is best supported hyihg the parent execute the
method body, whereas in non-speculative systems it cansbaguefficient to execute the
continuation in the current thread and delay execution efgarent. We also feel that
irrespective of buffering and speculation issues, ouraggntation is easier to depict and
understand visually, because each thread has its own stddkscales cleanly to arbitrary
numbers of threads and stack frames in 2D space. Nevershel@sstack model is closest
to Goldstein’s stacklets in terms of implementation, aneréhmay be specific low level
optimizations therein that are transferable to ours.

As discussed in Section 4.5, futures often use a “get” orctdumethod that blocks the
continuation before using the return value from the futukihough return value predic-
tion would always allow MLS to proceed safely, in some cas#d ¢puch is also used to
control runtime parallelism, as in the case of level by lexes traversals that we illustrate.
To provide this functionality, we suggest a “pause” keywdrdt only stops speculation
until the immediate and possibly speculative parent haspteted, rather than stopping
continuation execution altogether until the non-spearggiarent has committed the child.
This appears sufficient to allow MLS to subsume futures, dsagesafe futures, which are
discussed in Section 5.3.
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5.15 Functional Language Speculation

The focus on method calls as a means to achieve parallelisth$suggests an affinity for
functional language contexts, where the relative lack awedtgr control of method side-
effects reduces implementation complexity and suggegtsfsiant available parallelism.
In fact, there has been much work on speculative evaluatifumictional languages. How-
ever, due to a difference in nomenclature, speculationimetfonal language context does
not imply interaction with a dependence buffer or transaal memory subsystem as it
does with MLS, but rather simply that function bodies can in parallel with func-
tion arguments. Thus data dependences require blockitigpuglh parallel computation
can resume once they are resolved.

Osborne developed speculative computation for Multilisherein speculative evala-
tion can be aborted, but again this differs from abortionasrndLS: instead of aborting
speculative computations because they are incorrectpthpuatations are aborted because
they are unnecessary, and the abortion is a way to reclaimppuiation resources [Osb90].
Greiner and Blelloch attempt to unify existing work by defmia parallel speculativa-
calculus that helps model the performance and prove thedffitéency of lazy languages
using speculative evaluation [GB99], including those sufipg futures [Hal85, GG89],
lenient languages wherein all subexpressions can evadpatailatively [Tra88], and spec-
ulative approaches to parallel lazy graph reduction [TG®aker-Finchet al. [BFKTOO]
subsequently showed that parallel lazy evaluation wasvelguit to sequential. Finally,
Sarkar and Hennessy argue that much parallelization wadoiéne-grained, and describe
a coarse-grained compiler based approach for partitigoémgllel Lisp programs into sub-
graphs for macro dataflow [SH86].

In more practical work, Mattson, Jr. found that speculagivaluation in Haskell can be
supported with low overhead [Mat93]. Ennals and Peytongdpnesent a similar optimistic
execution system that works together with the lazy evatmathodel in Haskell [EJO3].
They provide an operational semantics, but do not modeltdek £xplicitly nor use their
semantics to visualize behaviour. Harris & Singh later edé&zl this model to work with
the Haskell thunk structure allocated in optimized proggdfS07]. In their feedback
directed system, they use an offline profiling phase and guies¢ work stealing at runtime
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to extract implicit parallelism, obtaining significant gakip in pure software.

Given that these speculation models are inherently staskdyahe stack abstraction
in Section 4.3 could be modified to support them, clarifyihgit semantics in terms of
low-level implementation behaviour, and then subsequeargkd as a tool for visualizing
program behaviour. There is also the question of whether Milysports lazy or eager
evaluation. The uses of return values and heap and staiabies under MLS are beyond
eager, in that they are predicted or read and then used spigelyl before even becoming
available. However, the overall structure for parallelizgimethod calls and their continua-
tions is quite similar to lazy evaluation. Considdrg()) : lazy evaluation allows calling
f () without knowing the result o§( ) , whereas method level speculation exectifgsas
if g() has already returned.

5.16 Other Uses of Speculation

Technigues developed for speculation have also been erwlayarious other contexts.
Eugster demonstrated a debugging environment for comdysregrams that is also based
on the core idea of thread rollback [Eug03]. Here, savingesaad rolling back execu-
tion allows for different scheduling choices to be replkxhin debugging or exhaustively
considered in testing. Persistent designs also require pasgram state checkpointing
to restore the system to a previous, interrupted execu@d0p, Tja99]. Concepts such
as rollback and checkpointing are important to fault-taterschemes in general, allowing
correctness to be ensured by saving state and replayingeanten if failure is detected.
They also provides the basic mechanism for transactioredwgion, which can be used to
give Java codelets ACID properties [RW02]. Finally, Oplinged Lam show that spec-
ulation is particularly effective in the context of parditeng monitoring functions in a
monitor-and-recover design for software reliability [(1]0
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Chapter 6
Conclusions & Future Work

This thesis presents the first comprehensive study of scétm&thod level speculation
for Java. Our work was broken into three major milestonegdimg a working prototype,
designing an advanced return value prediction system, anelaping a model of nested
speculation that could be used to identify structural fogkistics. Our work ranges from
the concrete to the abstract and can support many futurarcgsdirections.

6.1 Conclusions

The first major milestone of this work was to design and imm@etra working prototype
system. We introduced the SableSpMT framework as an exiemsithe SableVM Java
bytecode interpreter. Supporting method level specuiatia language as rich as Java is
non-trivial, particularly in a non-simulated software @omment where problematic oper-
ations can neither be trivially elided by the simulation deferred to a speculative hard-
ware subsystem, meaning that correctness is of paramounntco We detailed all of
the significant modifications and considerations relatetiéa]VM environment, including
mechanisms for preparing speculative methods for exatuictual steps in the execution
process, and high level language concerns. We also desigpiddSpMT to be suitable
as an analysis framework. It is highly instrumented for aenignge of analyses, and eas-
ily extendable to include new approaches. It supports luggnd trace generation, has a
unique single-threaded debugging mode, and its sourceisdieely available. Although
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we have focused on Java, we believe that our designs hereaasdetrable to other lan-
guages, in particular to virtual machine environments, @wad method level speculation
can benefit well-structured but irregular programs in gaher

Experimentally, we found that most language level concdosot impact significantly
on speculative performance, with notable exceptions bspegulative object allocation,
heap access, return value prediction, method entry and axit synchronization. Al-
though we could show significant parallelism and thus netasipeedup, actual speedup
was precluded due to excessive speculation overheads. aiefield three main sources
of overhead during profiling and these informed our subseietorts: expensive return
value prediction due to non-adaptivity, idle speculativegessors due to a shortage of
speculative threads, and an abundance of short threads dd@e fork heuristics.

The second major milestone was to expand and optimize oumrgtalue prediction
subsystem. We first introduced a new unification frameworlsfecifying predictors, and
brought together many known predictors from the hardwdeediure under it. We also
introduced several predictors based on memoization, etygsuitable for return value
prediction. We then described a design for a novel hybridlipter that identifies ideal
sub-predictors on a per-callsite basis at runtime and ajiees to them, eliminating calls to
unused sub-predictors. Our framework is implemented spiibt, a library for speculative
multithreading that was created by refactoring the origBableSpMT implementation.
New predictors are simple to add, and the RVP code is instnteddor easy data analysis.

Experimentally, we reconfirmed our result from the first siitae that while a nae
hybrid prediction strategy yields high accuracy, it alstiess from high speed and mem-
ory overhead, essentially incurring the summed cost otidlredictors. Our first adaptive
hybrid was an offline predictor that required an initial gio§j run to determine ideal pre-
dictors. A subsequent run that used these ideal predictsgdup achieved the same
accuracy as the inae design at a fraction of the overhead cost. This resultatds that
ideal per-callsite predictors do in fact exist, at leastdar benchmarks. We then devel-
oped an online hybrid predictor that uses a warmup periodedsas specialization and
despecialization thresholds to find ideal predictors atime This predictor performed
acceptably close to the performance of thevaand offline strategies in terms of accuracy,
and dramatically better than theima strategy in terms of overhead. We thus considered
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our first optimization objective complete.

The third major milestone was composed of three steps. WedBscribed a memory
allocator for child threads. The first feature of this allmcavas already presentin the initial
milestone, namely recycling of aggregate data structuresder to prevent excessive calls
to mal | oc andfree. The second feature, migrating blocks of child tasks betweeal
and global heaps, was novel and was required to prevent aggodonsumer problem that
arises under in-order nesting, namely one where memorgaé#id in one thread is freed
in another. Following development of our allocator, we tlescribed an abstract model
of arbitrarily nested speculation, which included pregigunissing support for in-order
nesting. This model was based on stack operations and drawrthie implementation of
speculative call stacks in libspmt, which was again refacttdrom the original SableSpMT
implementation. Finally, we used this model to explore sfg®n behaviour via visual-
ization of stack state evolutions. Our allocator is simpledimplement, our stack model
can be used for both abstract reasoning and concrete imptatioa, and our visualizations
are straightforward to understand.

Experimentally, we found that the memory allocator was ditarally faster than the
system allocator, and that it also solved a memory leak prohinder in-order nesting.
We also found that enabling in-order nesting had the desgiffedt of providing idle pro-
cessors with extra work, satisfying our second optimizagoal, but that now the work
available using our initial “always fork” strategy was so chuthat meaningful analysis
was precluded. Thus the real experimental analysis in tlapter was a search for better
fork heuristics, in turn satisfying our third optimizatigal. This search consisted of nu-
merous on-paper explorations of speculation behavicantjisg from simple programming
idioms and observing how the stack state evolved as speeuthteads were forked ac-
cording to various conditions. We were able to identify sqratterns as better than others,
thus deriving a form of structural fork heuristic. We alsaramstrated how they could be
combined with each other to yield higher level patterns. Wivenexamined the source
code for a set of benchmarks parallelized with futures, tviie closely related to method
level speculation, we found many instances of our pattesivgedl as several new ones.
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6.2 Future Work

Over the course of this thesis research, many interestieguss for future exploration
appeared, as discussed at the end of Chapters 2, 3, and 4. A& @4 T framework we
developed provides a good scaffolding for such work. We nomsier a variety of such
projects immediately possible within our system.

6.2.1 Speculative Locking

As discussed in Section 5.7, speculative locking is an SpMe&nsion that allows for
speculative execution of critical sections. Implementpgculative locking requires two
main extensions to our system. The first allows non-speaealtireads to enter contended
critical sections without holding the locks protectingrthand thus become speculative.
This is similar to typical transactional memory systems [BR0 he second allows threads
that are already speculative to enter and exit criticalieest This can be achieved by
recording lock and unlock operations and not sharing bu#fgries across these barriers.
In both cases, accounting for the constraints and idioggnes of the Java memory model
is a significant challenge. Given support for the first kingpéculative locking, it would
be interesting to combine it with our previous work on loclkoeahtion that decides which
objects should protect the critical sections in a prograf@\yA7]. We could first allocate
the locks statically and then apply speculative lockingiipriove performance. The result
would be an efficient implementation of optimistic atomictsans.

6.2.2 Manual Parallelization

SableSpMT works safely with both in-order and out-of-ongesting for arbitrary Java pro-
grams with efficient return value prediction. The major l&rto speedup is that the sys-
tem does not know where to create speculative threads. Howeanualparallelization
of certain benchmarks following the patterns identified @ct®n 4.5 should yield actual
speedup. Although a focus on manual parallelization doéslinectly support the goal of
automatic MLS, this work would have several benefits. Fitstould demonstrate the ac-
tual viability of our system. Second, it would likely expcsgditional system optimization
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opportunities. Third, it would serve as an oracle for autternapplication of speculation
patterns based on static analysis. Fourth, it would prozitéenguage level mechanism for
experimentation with MLS.

Initially, we would expect synthetic micro-benchmarksdxhsn the examples in Sec-
tion 4.5 to asymptotically approach the performance ptediby our speculation patterns
as thewor k functions increased in running time. In terms of methodgldlgese bench-
marks could be manually annotated with our suggesped, pause, andst op keywords,
and then read in by a modified version of Soot’s Java source frodt end. Soot could
then communicate the annotations to SableSpMT via a cortibmaf classfile attributes
and the current method for inserting forks and joins. Thd s&ep would be to parallelize
JOlden, a sequential version of the Olden benchmarks wiittdava [CMO01]. Given that
Olden is known to be parallelizable without speculation ataddependences or return
values, we would also expect an explicit manual annotatfdor& points for speculation
to yield actual speedup. Following this, it should be pdssib manually parallelize the
Java Grande and OO7 benchmarks used for safe futures [WJ&l68]with comparable
speedup. Finally, the Lonestar suite of benchmarks [KBPGO&)own to be parallelizable
using the Galois approach to speculation [KP@V]. Many of these benchmarks depend
on a loop-based worklist algorithm for computing fixed psirit would be most interesting
to convert these benchmarks to use head recursive fixedgdgorithms for parallelization
with out-of-order method level speculation.

6.2.3 Static Analysis

Static analyses for SpMT have the potential to provide &icamt information to the run-
time system. In particular, a set of static fork heuristiosld complement or at least prime
our dynamic fork heuristic system. These would be basedatit stimations of method
invocation and continuation length, method invocation emdtinuation purity, and return
value use and predictability. They could also search fossflexulation patterns identified
in Chapter 4. Static analyses can also be used to restructtedar more efficient specula-
tion. First, by advancing non-speculative writes and deggependent speculative reads,
the chances of dependence violations in child threads carceed. This technique is
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known as critical forwarding path minimization [ZCSMO04]. c®ad, by extracting loop

bodies into methods, method level speculation can subsoomelével speculation, albeit
with extra method call overhead [CO98]. A good name for thifiteque is outlining, the

opposite of the well-known inlining optimization technguThird, generalized code re-
structuring to fit known speculation patterns combined \picise marking of speculation
points could make the results in Chapter 4 applicable in rmneais situations. Fourth,
moving fork points forwards into the method or backwards iifie pre-invoke instruction

can change the balance between parent and child threadh¢engifth, this rebalancing

can also be achieved by moving the instructions surroundiegllsite into the method
body, or by moving instructions from the method body into pine-invoke or continuation

instructions.

6.2.4 Dynamic Purity Analysis for Speculation

The side effects of a pure method are either invisible or mesavay contained. We previ-
ously developed a dynamic purity analysis for Java progifaR¥07]. Integrating online
purity information with our SpMT system would provide twortsdits. First, entirely pure
methods could be simply memoized, thus eliminating unresogsspeculation overhead.
Second, quantifying the extent of dynamic purity on a forkinpbasis could provide an-
other input to our fork heuristics module.

6.2.5 JIT Compiler Speculation

SableSpMT was initially implemented around SableVM, a Jatacode interpreter. After
refactoring, the code specific to SableVM became a clientbspmt, a general purpose
SpMT library. Other clients of libspmt would afford diffareresearch challenges and op-
portunities, chief among them a just-in-time (JIT) compikss part of this thesis research,
we implemented initial support for speculation inside BB&ITestarossa JIT compiler for
the IBM J9 VM, and this was the primary motivation for creatlimgpmt. A JIT compiler
runs approximately 10x faster than SableVM, so relative'lovads could reasonably be
estimated to be 10x higher. However, the presence of metilodnig changes the call
graph significantly, in turn changing the behaviour of spetbon, possibly for the better;

190



6.2. Future Work

Hu et al. attributed the positive difference between their resit8J03] and those of Warg
& Stenstbm [WSO01] to the presence of inlining. A direct comparisontd effect of in-
lining alone could be made by exporting the inlined call gréqom a JIT compiler client
of libspmt and importing it into SableSpMT. A JIT compilerutd also take advantage of
specific hardware support for speculation, whether siradlat actually existing, by gen-
erating code for the target architecture, much like the Bpstem [CO03a]. Finally, there
are interesting engineering problems, such as unsafengliof known generic C library
code into generated JIT code, switching between specelatid hon-speculative code in
the presence of register usage, and deciding which metbamtsripile for speculation.

6.2.6 New Systems

It would perhaps be the most interesting to build new systemsew languages based on
this thesis. In our review of related work, loop level spation was a prominent feature
of many designs. Our work here was focused primarily on neections, but including
explicit support for loops is an important optimization inyareal system. It may or may
not be possible to provide this support efficiently with MINbn-speculative paralleliza-
tion is similarly important and will often expose a signiftaamount of parallelism, at
least for regular, numerical programs. As far as method lgweculation proper is con-
cerned, it seems reasonable to implement our stack modehambry manager to provide
both in-order and out-of-order nesting. Our examinatioséculation patterns showed
that both are necessary to maximize parallelization oppdrés. The dependence buffer-
ing subsystem would best be provided by 3rd-party transaatimemory, whether in the
form of a software library, compiler, or hardware implenain. Forwarding dependence
buffer values from a sequentially earlier speculativeddreo a sequentially later one is a
useful technique for reducing misspeculations. Adaptatarn value prediction is useful
for method level speculation, and can be implemented s$tifaigvardly and efficiently.
Reusing the simpler predictors for software load value ptexh is an obvious optimiza-
tion. In truth, many of these components are provided bylfitsand are not tied explicitly
to SableSpMT. Rather than rewrite MLS from scratch and caheéth a host of new bugs,
it might make the most sense to adapt libspmt to a new langeag®iler, or VM environ-
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ment, even if it involves aggressive refactoring. Giveroitgect-oriented nature, it might
make sense to convert libspmt from C to C++.

At the VM level, safety is a primary concern, and it is impaoitéo get the language
semantics correct. In our experience, the best stresotddtfS was to attempt speculation
at every method call for an industry standard benchmark s@i far as optimizations are
concerned, speculative object allocation and synchrtinizare key areas. Related work
has demonstrated that it is possible build a JIT compilesperculation without supporting
speculation at the interpreter level. The most aggressimamic recompilations in a JIT
compiler focus on frequently executed or “hot” methods,ibuhe case of MLS, it is also
important to optimize continuation code for speculatiohef is a great body of work on
compiler analysis for speculation. It would be sensibleaioy new system to include either
an AOT or JIT compiler that implements existing techniquBsofiling support, whether
online or offline, is extremely valuable. As suggested aldovepecific enhancements to
SableSpMT, simple language level keywords for controlimgthod level speculation and
a compiler analysis that can insert them based on strudarkaheuristics would be useful.
As long as parallelizing compilers are not sufficiently attved, there will be value in safe
and simple manual parallelization constructs that mitnerdafety and simplicity of atomic
sections for transactional memory.
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