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Abstract

Speculative multithreading (SpMT), also known as thread level speculation (TLS), is a

dynamic parallelization technique that relies on out-of-order execution, dependence buffer-

ing, and misspeculation rollback to achieve speedup of sequential programs on multipro-

cessors. A large number of hardware studies have shown good results for irregular pro-

grams, as have a smaller number of software studies in the context of loop level speculation

for unmanaged languages.

In this thesis we explore software method level speculationfor Java. A software envi-

ronment means that speculation will run on existing multiprocessors, at the cost of extra

overhead. Method level speculation (MLS) is a kind of SpMT / TLS that creates threads on

method invocation, executing the continuation speculatively. Although MLS can subsume

loop level speculation, it is still a relatively unexploredparadigm. The Java programming

language and virtual machine environment are rich and complex, posing many implemen-

tation challenges, but also supporting a compelling variety of object-oriented programs.

We first describe the design and implementation of a prototype system in a Java byte-

code interpreter. This includes support for various MLS components, such as return value

prediction and dependence buffering, as well as various interactions with features of the

Java virtual machine, for example bytecode interpretation, exception handling, and the

Java memory model. Experimentally we found that although high thread overheads pre-

clude speedup, we could extract significant parallelism if overheads were excluded. Fur-

thermore, profiling revealed three key areas for optimization.

The first key area for optimization was the return value prediction system. In our initial

model, a variety of predictors were all executing naı̈vely on every method invocation, in

order that a hybrid predictor might select the best performing ones. We developed an
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adaptive system wherein hybrid predictors dynamically specialize on a per-callsite basis,

thus dramatically reducing speed and memory costs whilst maintaining high accuracy.

The second area for optimization was the nesting model. Our initial system only

allowed for out-of-order nesting, wherein a single parent thread creates multiple child

threads. Enabling support for in-order nesting exposes significantly more parallelization

opportunities, because now speculative child threads can create their own children that are

even more speculative. This required developing a memory manager for child threads based

on recycling aggregate data structures. We present an operational semantics for our nesting

model derived from our implementation.

Finally, we use this semantics to address the third area for optimization, namely a need

for better fork heuristics. Initial heuristics based on online profiling made it difficult to

identify the best places to create threads due to complex feedback interactions between

speculation decisions at independent speculation points.This problem grew exponentially

worse with the support for in-order nesting. Instead, we chose to clarify the effect of

program structure on runtime parallelism. We did this by systematically exploring the

interaction between speculation and a variety of coding idioms. The patterns we identify

are intended to guide both manual parallelization and static compilation efforts.
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Résum é

L’exécution sṕeculative multifils (SpMT), aussi connue sous le nom de spéculation

au niveau des fils d’ex́ecution (TLS), est une technique de parallélisation dynamique qui

se base sur l’ex́ecution dans le d́esordre, la mise en ḿemoire tampon des dépendances

sṕeculatives, et le refoulement des erreurs de spéculation pour atteindre l’accélération des

programmes śequentiels sur les multiprocesseurs. D’extensivesétudes architecturales ont

révélé de bons ŕesultats dans le cas des programmes irréguliers, tout comme plusieurs

études logiciel dans la spéculation au niveau des boucles dans un langage non géŕe.

Dans ce ḿemoire, nous explorons la spéculation logiciel au niveau des méthodes pour

Java. Un environnement logiciel signifie que la spéculation s’ex́ecute sur les multiproces-

seurs existants, au coût de charge additionnelle. La spéculation au niveau des méthodes

(MLS) est une sorte de SpMT / TLS où des fils d’ex́ecution sont cŕeésà chaque invocation

de ḿethode, ex́ecutant les instructions qui suivent de manière sṕeculative. Malgŕe la possi-

bilit é de subsomption de la spéculation au niveau des boucles par la spéculation au niveau

des ḿethodes, ce paradigme est relativement peu exploré. Le langage de programmation

Java, ainsi que l’environnement de sa machine virtuelle, sont riches et complexes, ce qui

pose plusieurs difficultésà l’implémentation, mais qui a l’avantage de supporter une grande

variét́e de programmes orientés objet.

Nous d́ecrivons d’abord la conception et l’implémentation d’un système prototype dans

un interpŕeteur de code-octet Java. Cette implémentation supporte une variét́e de compo-

santes de la spéculation au niveau des méthodes, telles la prédiction des valeurs de retour,

la mise en ḿemoire tampon des dépendances spéculatives, ainsi qu’une variét́e d’inter-

actions avec des caractéristiques de la machine virtuelle Java (JVM), par exemple,l’in-

terpŕetation du code-octet, le gestion des exceptions et le modèle de la ḿemoire de Java.
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Des exṕeriences nous ont permis de constater d’encourageants résultats quant̀a la pa-

rallélisation des programmes, malgré une charge additionnelle importante dû à l’embran-

chement des fils d’ex́ecution, ce qui emp̂eche d’obtenir une accélération significative. De

plus, le profilage effectúe a ŕevélé trois secteurs d’optimisation importants.

La premìere optimisatiońetudíe est la pŕediction des valeurs de retour. Notre modèle

initial utilisait plusieurs outils de prédiction diff́erents pour chaque invocation de méthode,

afin qu’un outil de pŕediction hybride puisse choisir les plus performants. Nousavons

dévelopṕe un syst̀eme adaptatif òu les outils de pŕediction hybrides se spécialisent dy-

namiquement pour chaque site d’invocation, réduisant drastiquement la charge mémoire

additionnelle et les ralentissements tout en préservant un haut degré de pŕecision.

Le deuxìeme secteur d’optimisatiońetudíe est celui des modèles d’embôıtement. Notre

mod̀ele initial permettait seulement l’emboı̂tement dans le d́esordre, òu un seul fil d’ex́ec-

ution peut en cŕeer plusieurs fils d’ex́ecution sṕeculatifs. L’introduction du support de l’em-

bôıtement en ordre expose un nombre conséquent d’opportunit́es de paralĺelisation, parce

qu’un fil d’exécution sṕeculatif peut maintenant en créer un autre, encore plus spéculatif.

Pour ce faire, nous avons dévelopṕe un gestionnaire de ḿemoire pour les fils d’ex́ecution

sṕeculatifs baśe sur le recyclage des structures de donnée agŕeǵes. Nous pŕesentons une

sémantique des opérations de notre modèle d’embôıtement d́erivée de notre implémentation.

Finalement, nous utilisons cette sémantique des opérations pour optimiser nos heuris-

tiques d’embranchement. Initialement, l’utilisation d’heuristiques baśees sur les données

recueillies au temps d’exécution rendait difficile l’identification des meilleurs points pour

créer de nouveaux fils d’exécution, d̂u à l’interaction entre les d́ecisions sṕeculatives prises

à différents points. Ce problème s’amplifie de façon exponentielle avec le support de l’em-

bôıtement en ordre. Comme alternative, nous avons choisi de clarifier l’effet de la struc-

ture des programmes sur son parallélismeà l’exécution. Pour ce faire, nous avons exploré

syst́ematiquement l’interaction de la spéculation avec une variét́e d’idiomes de program-

mation. Les patrons identifiés sont utiles pour guider les efforts de parallélisation manuelle

ainsi que de compilation statique.
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Onďrej Lhot́ak and Feng Qian; the ones in my cohort were Dayong Gu, Grzegorz Prokop-

ski, and Eric Bodden; and the new ones I’ve only known briefly are Nurudeen Lameed and

Rahul Garg. Zhen Cao is apparently following in my footsteps. . . be careful, Zhen! There

are of course a great number of M.Sc. students that I’ve knownand valued the relationships

with over the years as well. The ones I worked with closely on projects and would like to

thank specifically are F́elix Martineau, Haiying Xu, and Richard Halpert.

I have received truly generous amounts of funding during my degree. I was supported

by the Natural Sciences and Engineering Research Council of Canada (NSERC) with two-

year PGS A, two-year CGS D, and one-year CRD stipends. McGill awarded me a two-

year Richard H. Tomlinson Master’s in Science Fellowship. LeFonds Qúeb́ecois de la

Recherche sur la Nature et les Technologies (FQRNT) provided travel support, as did SIG-

PLAN PAC and SIGSOFT CAPS. Finally, the IBM Toronto Centre for Advanced Studies

(CAS) awarded me a four-year CAS Fellowship, as well as travel and living expenses while

visiting Toronto.

v



I had the opportunity to teach a compiler design course twice, once in 2007 and again

in 2009. Thanks to Laurie and Clark for arranging this, to PengZhang, Jesse Doherty,

and Nurudeen Lameed for being great TA’s, and to my students for getting really excited

and supporting my first teaching experiences. This course was originally Laurie’s creation,

and was the one that motivated me to study compilers, virtualmachines, and programming

languages in the first place after I took it myself as a biochemistry undergraduate.

Thanks also to those people who offered their direct feedback on the written aspects of

this work, whether in the form of informal exchanges or formal reviews. Your comments

and suggestions have greatly shaped the final outcomes. In particular, my internal and ex-

ternal examiners Laurie Hendren and Greg Steffan provided detailed critiques of the thesis.

Similarly, the feedback from the various presentations I’ve given over the years has been

invaluable and a great source of new ideas. In the last stages, Annie Ying was instrumen-

tal in helping me prepare for my thesis defense, and Olivier Savary worked diligently to

translate my thesis abstract into French.

My parents greatly encouraged my academic interests growing up. Roughly speaking,

I’d attribute the science part to my mother and the technology part to my father. My dad’s

work with compilers and virtual machines undoubtedly contributed to my research choices

here. In addition to my parents, many people played important roles in various supportive

capacities. In particular, Jim Robinson has been consistently present during the good and

bad moments of the last three years. I am also grateful to my friends, many of whom I made

in Computer Science, for sticking it out with me through both fair and stormy weather.

Last but not least I would like to thank Emily Leong for her kindness, companionship,

and love. It’s been just great having you by my side throughout all of grad school. I’ve

changed a lot since I started this degree and it’s largely dueto my relationship with you.

Thank-you for sharing your own creative metamorphosis withme, it’s deeply inspiring to

watch you grow each day into an ever more wonderful woman.

vi



To Emily



Table of Contents

Abstract i
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Chapter 1

Introduction

Many computer programs areserial or sequential: there is only one thread of control

and they are designed for, written for, compiled for, and executed on a single processor.

These programs are straightforward to handle at all levels.The disadvantage is that the

execution time of the program is bound by the speed of the processor, and cannot be helped

by adding extra processors to the system. One important optimization is to useparallel,

concurrent, or multithreadedprogramming: now the execution can be spread across multi-

ple processors. This leads to programspeedup, which for parallelization work is calculated

simply as the sequential run time divided by the parallel runtime.

The standard approach to creating parallel programs is to write them by hand, either by

converting an existing sequential application or by targeting multiple processors in the ini-

tial design. This process is known asmanual parallelization, and results in a program con-

tainingexplicit parallelism. Synchronization primitives are required to manage conflicting

data accesses: these can take the form of monitors, semaphores, critical sections, barriers,

volatile variables, threads, processes, and atomic operations. The dominant paradigm in in-

dustry islock-based programming. A program is split into multiplethreads, each of which

has its own flow of control and may execute concurrently on a separate processor. Threads

communicate by first acquiringlocks, which grant mutually exclusive access tocritical

sections, regions of code that modify shared data. Once finished with acritical section, a

thread releases its lock and resumes non-shared parallel processing. There are many books

on concurrent programming that explore these concepts in detail.
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Introduction

A well-written parallel program can perform very well, achieving great scalability to

many processors, depending on the complexity of the application in question. However,

lock-based programming is inherently difficult, with issues of deadlock, livelock, fairness,

and safety being central concerns. It is widely considered atedious and error-prone pro-

cess. Recentlytransactional memoryhas been extensively explored as a viable replacement

for lock-based programming [LR06]. In this programming model, threads acquire access

to atomic sections, rolling back the operations inside if they fail to complete. On the sur-

face, this model is simpler than lock-based programming, and it has the added benefit of

allowing out-of-order, speculativeexecution of the code inside atomic sections. However,

like any parallel programming, it still requires programmers to annotate code with syn-

chronization primitives, and there are efficiency concernswhen compared to a lock-based

approach [CBM+08].

In contrast to these methods that require programmers to modify their software isau-

tomatic parallelizationvia compilers and runtime systems. There are two fundamental

approaches. First, one can automatically convert a sequential program into a parallel pro-

gram. Second, one can take a parallel program and identify sequential regions and paral-

lelize them. In either case, the task is to exposeimplicit parallelismhidden in the program

to obtain speedup. Automatic parallelization is perhaps even more difficult than manual

parallelization due to the requirement for general applicability; the key motivation is that

multithreaded programming is so difficult that it needs as much automation as possible.

Like any program optimization, the structure of the input sequential source code is a

significant contributor to the success of an automatic tool.For instance, regular array-based

computations are much more easily parallelized than irregular pointer-based ones. Beyond

applicability and safety, a primary concern is the amount ofruntime overhead incurred by

parallelization, and whether this is offset by the gains in parallelism to yield a net speedup.

Approaches may be fundamentallystatic, orahead-of-time, decided based on pre-execution

compiler analysis without knowledge of program inputs, or they may bedynamic, or just-

in-time, decided based on runtime analysis of the inputs. Some approaches exploit profiling

information collected at runtime;offline profiling is a static approach that uses this infor-

mation to improve subsequent program runs, whereasonline profilingis dynamic, applying

the information before the program completes execution. Finally, automatic program trans-
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formations, and in particular parallelizing ones, may beconservative, pessimistic, in-order,

or non-speculative: they respect program structure and provide safety guarantees for all in-

puts; or they may beliberal, optimistic, out-of-order, or speculative: they allow for unsafe

program behaviours at runtime, but provide a monitoring mechanism to catch them and roll

back if necesary.

1.1 Speculative Multithreading

In this thesis we explorespeculative multithreading(SpMT), also known asthread level

speculation(TLS). It is a dynamic parallelization technique that relies on out-of-order

speculative execution of sequential programs to achieve speedup on multiprocessors. In

an ideal implementation it is fully automatic, but many proofs-of-concept rely on some

form of manual guidance. The first step is to split ordecomposea sequential region of

code into one non-speculativeparent thread and multiple speculativechild threads, also

referred to as childtasks. This process may be static or dynamic. At runtime, children

are created orforked, and they begin speculative execution on separate processors, buffer-

ing main memory accesses and prohibiting I/O to allow rollback or abortion in the case

of dependence violations, thus executing in a safe and isolated fashion. At some future

point the children are joined, and in the absence of dependence violations their computa-

tions are merged back into the parent. The advantage of SpMT is its ability to parallelize

applications that traditional static compilers cannot handle due to unknown runtime data

dependences. It is typically considered at a hardware level, where proposed systems are

capable of showing good speedups in simulation-based studies; prototype SpMT CPUs

have also been manufactured. However, SpMT and related forms of optimistic execution

have also shown viability in various software models, motivating the specific focus of this

thesis, namely an investigation of software SpMT at the Javavirtual machine level.

The salient runtime features of speculative multithreading systems include: 1) a means

to create speculative threads that execute future code in anout-of-order fashion; 2) support

for either memory accessdependence bufferingor undo logging; 3) some mechanism to

detect violations and either undo or prevent unsafe operations; and 4) a means to either

commit the speculative execution in a manner that preservesoriginal program semantics,
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or abort the execution safely. Our use of the term dependencebuffering includes both

dependence tracking to prevent read-after-write (RAW) ortrue dependence violations as

well as buffering of speculative modifications to prevent write-after-read (WAR) oranti

dependence violations and write-after-write (WAW) oroutputdependence violations. Undo

logging differs from dependence buffering in that it provides a rollback mechanism that

allows for speculative writes to go directly to main memory.Before execution, a basic

parallelization or partitioning or thread decomposition strategy is required: speculation

may occur at any or all of the basic block, loop, or method levels. A compiler and its

accompanying dataflow analysis framework is necessary to partition programs into threads

at the basic block and loop levels. Strictly speaking, static analysis is not necessary to

speculate over method calls, as the runtime system or speculative hardware can detect and

instrument these. Although there exists variance between the parallelization strategies,

there is also considerable commonality. Two issues that must be addressed when preparing

any sequential code for speculative execution are where precisely to fork new speculative

threads, and where to verify the speculative execution and commit the results to memory if

correct. Perhaps most importantly, the parallelization occurs at the thread level as opposed

to the instruction level, and requires two or more CPUs, cores, or virtual cores for speedup.

There is extensive work on SpMT, much of it demonstrating compelling speedups, and

a large number of novel SpMT hardware architectures and compilers that target them have

been evaluated [KN07]. The standard claim is that novel hardware is absolutely necessary

due to high speculation overheads, precluding an efficient software-only implementation.

Most of this prior SpMT research also targets loop parallelization, because many important

applications spend a majority of their computation time inside loops. Finally, the primary

focus has been on imperative, regular, and often scientific programs written in C, C++, and

Fortran, because these are seen as the applications that aremost important to parallelize

and also most scalable.

The problems with the general trends in SpMT research are correspondingly three-

fold. First, new hardware is prohibitively expensive, and commercial uptake of research

ideas can be slow and limited. Furthermore, hardware implementations are necessarily

non-portable and platform-specific. Second, there is a large class of applications that are

significantly more irregular and not loop-based that may well benefit from parallelization,
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particularly with the prevalence of multi-core processorsin modern machines. Third, the

focus on C, C++, and Fortran means that existing studies tend toexclude richer languages

such as Java and C#, with even less attention given to dynamic languages such as Python

and MATLAB, thereby ignoring the impact of higher level language semantics and a vir-

tual machine environment on speculation. The net result is that there are several interesting

areas in SpMT research that remain relatively unexplored.

The prior work that does exist in these relatively unexplored areas shows significant po-

tential. Specifically, speculative execution of Java programs can be effective, particularly

at the method level [CO98, HBJ03, WK05], and there have been a number of advances in

software SpMT research. In summary, overheads are high [PM01], coarser thread gran-

ularities help offset these overheads [DSK+07], manual source code changes are effec-

tive [KL00,KPW+07,OM08,WJH05], loop level speculation in software is viable [CL05],

and functional programs are good candidates for automatic parallelization [HS07]. Related

work is discussed in greater detail in Chapter 5.

1.2 Software Method Level Speculation for Java

Our overall approach is to expand the scope of applicabilityof SpMT by turning to these

unexplored areas. Inspired by hardware designs, we providea relatively complete and self-

contained implementation of SpMT purely in software. Our focus for speculation is the

method level, which allows us to capture the behaviour of irregular and recursive programs.

In particular, object-oriented programs are often method-based rather than loop-based, and

so any parallelization strategy should be adapted accordingly. Finally, we target Java at the

virtual machine level, addressing many of the complexitiescontributed by this language and

development platform. We take a broad perspective and use a methodical approach with the

intent to uncover aspects of speculative execution that areat once peculiar, interesting, and

foundational. This is the first software-only, method level, Java VM based implementation

of SpMT. There is significant room for novel contribution here: to reiterate, most SpMT

research to date has focused on loop level speculation for regular applications written in

unmanaged languages such as C, C++, and Fortran that run on simulated hardware SpMT

architectures.
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There are two main arguments for software-only SpMT. First,it runs on existing multi-

processor machines without the need for specialized hardware. There are considerable time

and money savings if hardware architecture changes can be avoided; not only is hardware

expensive to produce, but at an experimental research levelaccurate hardware simulations

are orders of magnitude slower than those in equivalent software systems. Second, a soft-

ware system is not only more immediately useful, but also more easily modified. The

malleability of software allows for clean design, refactoring, abstraction, extension, and

portability. These qualities in turn are conducive to moving between a practical experimen-

tal system and a formal theoretical one. And, if new hardwaresupport for SpMT emerges,

software systems can be readily adapted to take advantage ofit.

However, a software-only approach now introduces two particular challenges with re-

spect to basic feasibility. First, as a hardware problem, the issues of ensuring correctness

under speculative execution have been well defined; different rollback or synchronization

approaches are sufficient to guarantee correct program behaviour at a low level. Further,

hardware simulations permit simplifying abstractions by eliding portions of the program

instruction stream under consideration, facilitating experimentation. However, software

approaches cannot rely on the low level mechanisms of the underlying hardware to support

speculation, and so must provide high level, intricate support to ensure correct language

semantics. Further, for a non-simulated software system that does not elide instructions to

work with arbitrary programs, it must account for the full source language and complete set

of runtime behaviours. Second, software overheads are a much greater barrier to speedup

than hardware overheads, often orders of magnitude higher,and may require significant

high level optimization, whereas a specialized hardware system can complete many impor-

tant operations in only a few cycles. Software versions of novel hardware circuits such as

thread pools, dependence buffers, and value predictors mayinvolve completely different

approaches because of the inherent serialization. To summarize, any software system is

bound to expose conflicts between the language and speculation, providing an excellent

opportunity to resolve them; and addressing software overheads directly yields insight into

where hardware support would help the most, if at all.

We refer to our choice of basic thread partitioning strategyasmethod level speculation

(MLS). The literature may substitute ‘procedure’, ‘function’, ‘module’, or ‘subroutine’ in
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place of ‘method’, and may also omit ‘level’;speculative method level parallelism(SMLP)

is yet another term, alternatively found with corresponding substitutions for ‘method’. Un-

der MLS, aparent thread forks a speculativechild thread at a method call. The child

executes thecontinuationpast the return point, as if the call has already returned, while the

parent executes the target method. Memory dependences in the child are either logged or

buffered, such that any changes can be rolled back or discarded if necessary. When the par-

ent returns from the call it joins its child, validates its state, and either commits the state to

main memory or aborts the speculative execution accordingly. A successful commit allows

the parent to jump ahead to the furthest point reached by the child. Given low enough over-

heads, the resultant parallelism is then a source of speedupon multiprocessor machines.

Otherwise, the parent simply re-executes the child’s body.

Although the distinction between which thread is the child and which is the parent

varies, MLS can be seen as the most optimistic and most automatic of a number of contin-

uation-based parallelization schemes: futures, safe futures, parallel call, and implicit par-

allelization for functional languages. MLS suits our intended domain of irregular, non-

numeric applications. Further, it is practical for implementation because all fork and join

points already exist as method calls and returns, which means that in the strictest sense a

static compiler analysis is not required to identify them. MLS is also able to subsume loop

level speculation, which is often more suitable for regularapplications, by outlining or ex-

tracting loop bodies into method calls. Extensions to the basic technique can accomodate

unrolled and nested loops. This means that in theory, MLS canexpose at least as much

parallelism as loop level speculation; practical concernssuch as the overhead of method

invocation affect the eventual outcome. We examine this feature of MLS in Chapter 4.

Finally, any implementation of MLS will need to consider processes for creating specula-

tive code, forking and joining child threads, and handling method return values. We will

explore these issues at length.

Figure 1.1 depicts the general MLS execution model. The lefthand side shows the

sequential execution of a method call in Java bytecode before parallelization. First the non-

speculative parent thread T1 executes the pre-invocation instructions; next, it executes an

invoke instruction and enters the target method, executingthe instructions of its body; fi-

nally, T1 returns from the call and executes the post-invocation or continuation instructions
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Figure 1.1: Sequential execution vs. method level speculation.

that follow the return point, located immediately after theinvoke in the calling method.

The right hand side shows the speculative execution of the same Java bytecode after par-

allelization via method level speculation. Upon reaching the invoke, or method callsite,

the non-speculative parent thread T1 forks a speculative child thread T2. If the method

is non-void, a predicted return value is pushed on T2’s Java operand stack. T2 then con-

tinues past the return point, executing the continuation speculatively and in parallel with

T1’s non-speculative execution of the target method body. T2 provides strong isolation by

buffering all reads from and writes to main memory and by stopping execution if any ille-

gal instructions are encountered. When T1 returns from its call it joins T2, first signalling

it and then waiting for it to stop, if it has not already stopped of its own accord. If the

actual return value matches the predicted return value, andthere are no dependence viola-

tions between T2’s buffered reads and post-invoke values inmain memory, T2’s buffered

writes are committed and non-speculative execution jumps ahead to where T2 left off. This

yields parallelism, which in turn yields speedup if overheads are low. If thereare depen-

dence violations or the prediction is incorrect, T2 is simply aborted and the continuation is

re-executed non-speculatively.

Note that in some implementations of method level parallelism, the distribution of work
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in Figure 1.1 is inverted, such that the method body is executed in T2 and the continuation

is executed in T1. This paradigm does offer advantages in terms of data locality if the

memory accessed by the caller method pre-invoke instructions and continuation is rela-

tively disjoint from that accessed by the callee method body. Also, if the execution model

is non-speculative, reversing the roles of parent and childmeans the continuation stack

frame can be used without copying it to a new thread. However,we did not consider this

approach for three reasons. First, it adds significant complexity to our speculative stack

model in terms of representation, clarity, and the mechanism for lazy stack frame buffer-

ing. This model is discussed completely in Chapter 4. Second,our design supports thread

creation even when no free processors are available. Under this alternative paradigm, if no

free processors were available, T1 would need to sleep so that T2 could execute on T1’s

processor. This would quite likely mean a higher fork overhead, even if thread pooling

were used to alleviate the cost of a native thread context switch. Third, for multithreaded

programs, if there are monitor exit or re-entry operations in the target method body, then

using T2 to execute the body would require transferring lockownership from T1 to T2.

In some cases, the parent method under MLS may be too long or too short with respect

to the child continuation. There are several techniques to address this imbalance. One

technique is to move the fork point either forwards into the method or backwards into the

pre-invoke instructions. Another is to push the actual instructions surrounding the callsite

into the target method, or to pull method body instructions out of the method and into the

pre-invoke and/or continuation instructions. Finally, itis possible to filter out imbalanced

fork points and promote balanced ones based on profiling, whether online or offline. The

simple dynamic fork heuristics described in Chapter 2 do thisimplicitly. We use this last

technique because it does not require static analysis and only requires wrapping callsites in

the executing program. This methodology also supports one of our primary goals, which

is to observe the “natural” properties of Java programs executing under MLS. Compiler

techniques are certainly interesting, however, and we include them as part of our future

work in Section 6.2.3.

Finally, our focus on Java at the virtual machine level is motivated by a number of

considerations. Java is a widely used language, but the platform is not often considered

for SpMT research or parallelization research in general, due to its complex runtime fea-
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tures and the irregular object-oriented nature of programswritten for it. Java’s complex

runtime features, which include garbage collection, dynamic class loading, bytecode inter-

pretation, and exception handling, imply non-trivial interactions with SpMT and require

any Java-based approach to software SpMT to fully account for them, which in turn im-

plies significant research and development startup costs. On the other hand, the partic-

ular interactions with speculation are interesting in and of themselves, and any practical

workarounds are most likely transferable to other complex languages. The complex run-

time behaviour also makes a software approach particularlyappropriate for Java SpMT, be-

cause there are high level language-specific optimizationsavailable that do not necessarily

translate well to generic hardware SpMT designs. The other main roadblock to paralleliza-

tion, namely the irregular object-oriented programs that tend to be written in Java, arises

from the structure of the core Java grammar and class library. These kinds of programs are

traditionally the most difficult to parallelize, due to unknown boundary conditions within

loops and a structure that is statically difficult to parallelize outside of loops. However, a

part of good Java practice involves writing loosely coupledclasses, which in turn suggests

a rich source of speculative parallelism due to locally contained variable dependences. In

particular, the MLS variant of SpMT accommodates Java’s dense object-oriented method

invocation structure, and has previously been demonstrated as a useful SpMT paradigm for

the language. A further argument for Java MLS is that Java’s structured call and return

semantics imply well-behaved call stacks at runtime, whichprovide a similarly regular

structure to Java-based MLS. Given the arguments in favour of software SpMT for Java,

the Java virtual machine is a natural place to implement the required support, because both

software SpMT and the JVM are a kind of virtual hardware. Our exclusive focus on the

JVM leverages Java’s write-once run-anywhere philosophy,and maximizes SpMT trans-

parency, compatibility, and automation with respect to both existing Java programs and the

underlying hardware. The combination of complex runtime features, object-orientation,

language popularity, and relative lack of research attention when compared to languages

such as C, C++, and Fortran make Java and the Java virtual machine a natural choice of

implementation platform for any software MLS system.

Our methodology for constructing a software MLS system for Java was to start with an

existing Java virtual machine and modify it to support MLS, and then use this as a base for
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further development. We primarily used the SableVM Java bytecode interpreter [Gag02],

an in-house project developed by our research group at McGill. We also used the Soot

Java bytecode compiler framework [VR00], another in-house project, for some convenient

code transformations and as a base for static analysis investigations. Our first goal was

to build a complete prototype system. This would be a workingimplementation that was

able to run the industry-standard SPEC JVM98 benchmarks under MLS that accounted

for language and VM level safety requirements. It included software versions of several

hardware components, including dependence buffers, return value predictors, and thread

management structures, and various novel software components. It also incorporated var-

ious static analyses. The next step was to experiment with and understand this system by

running benchmarks and profiling runtime behaviour. Based onthese results, we identified

where overhead and serialization issues were a significant concern, and determined some

key SpMT-specific areas for optimization. At this point we refactored most of the SpMT

logic into a separate software library, clarifying the design and providing a good context

for developing optimizations. Then, guided by our profiling, we focused our remaining

efforts on providing highly accurate software return valueprediction that is both time and

memory-efficient, supporting arbitrary nested method level speculation, and discovering a

range of fork heuristics based on possible source level patterns. In general, we moved from

concrete, practical concerns to more abstract, formal considerations once they became ap-

parent in our work, with the intention to broaden applicability. We also expressly avoided

manual intervention, wanting to create a fully automatic system that works with existing

programs. We expand upon our primary contributions to the field in Section 1.3, and outline

our research process and the overall structure of this thesis in Section 1.4.

1.3 Contributions

The broad contribution of this thesis is software MLS for Java. We began by designing and

implementing a software MLS system, addressing Java-specific concerns, and developing

an experimental framework. Building on this work, we explored several optimizations

tailored for MLS in depth, namely return value prediction, arbitrary thread nesting, and

method level structural fork heuristics. In each case we created an initial version and then
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later added refinements guided by system profiling or development experience.

1.3.1 Software Method Level Speculation

We describe a software MLS design at the VM level. This designincludes many distinct

components, none of which are strongly tied to the Java language or dependent on our

return value prediction, thread nesting, and fork heuristics optimizations. Indeed, for a

basic MLS system, predictions can be made using any arbitrary value, thread nesting can be

disabled, and threads can be forked with equal priority irrespective of program location or

profiling data. The interaction with the Java language has many fundamental implications,

but these can all be separated from Java-independent concerns.

Our design is inspired by hardware SpMT systems, and so includes software versions

of hardware components. It also includes software-only components that would be diffi-

cult to implement in a hardware context. In general, there are many resources available in

software, and we use these resources to facilitate ease and simplicity of implementation,

rather than aim for maximum efficiency which is typically thefocus of hardware designs.

The resulting high level design allows for internal reuse throughout the system. As an ex-

ample, we use the same hashtable design for dependence buffering, return value prediction,

and callsite and method lookup, differentiated in behaviour by the software hash function

employed.

We include a software VM as part of our design, which grants access to the entire

program at runtime, in contrast with typical hardware SpMT systems that only have access

to short instruction windows. This permits considerable flexibility in the overall design,

and either reduces or eliminates the need for ahead-of-timecompiler transformations. In

practice we depend on an ahead-of-time compiler for some simple code insertions out of

convenience, but our design would readily accomodate completely dynamic approaches

because it works in the absence of static analysis.

The two common concerns of any SpMT system are memory access buffering and

thread management. We describe a software dependence buffer that provides strong iso-

lation of speculative reads and writes to heap and static memory. This is a simple form

of software transactional memory based on layered hashtables. Our focus on high-level
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design meant we were able to express our dependence buffer mechanism in very few lines,

and the modularity of our system means it could be replaced bya wrapper around a highly

refined software transactional memory library. A unique aspect of our software MLS sys-

tem is that we buffer stack frames on entering and exiting methods speculatively. This

stack frame buffering is independent of the heap and static dependence buffering described

above. The result is that during exection local variables accesses do not incur hashtable

lookup costs, and upon joining the speculative child local variables are not subject to re-

dundant validation and can be committed immediately.

With respect to thread management, our design includes processes for forking and join-

ing speculative threads, lightweight signalling between speculative and non-speculative

threads, and hardware barriers and atomic instructions that ensure multiprocessor mem-

ory consistency. We include support for thread pooling and priority queueing based on

speculative thread data structure reuse because OS-level threads and memory allocation

are prohibitively expensive. Actual speculative code execution first requires a mechanism

for transforming regular non-speculative code into speculative code that accesses the de-

pendence buffer and other speculative runtime support components. Our design is based

on creating duplicate speculative versions of method bodies and switching between non-

speculative and speculative code at fork and join points. This kind of code manipulation

is particularly suitable for software MLS, and is akin to themethod body recompilations

performed by an optimizing just-in-time compiler.

1.3.2 Java Language Support

The Java language and virtual machine have many complex behaviours, all of which must

be considered when implementing a technique as pervasive asSpMT. Our MLS imple-

mentation is based on a Java 1.4 bytecode interpreter, as described in Chapter 2. This

necessitated a thorough analysis of safety concerns with respect to VM and language fea-

tures, including class loading, garbage collection, object allocation, synchronization, non-

speculative multithreading, exception handling, native method execution, bytecode veri-

fiability, and the Java memory model. It also includes a complete design for preparing

Java bytecode for MLS and processes for forking and joining threads. Our treatment is
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thorough enough to support speculation on every method invocation for SPECjvm98 and

includes many non-obvious edge cases. Many of these solutions are interesting for their

portability to other runtime environments. We finally present experimental data showing

the impact of various Java language and VM features on whole system performance.

We use the significant amount of high level information available in the JVM in four

different ways. First, we often extend speculation past thepoint where it would be forced

to stop at the machine code level. For example, we can allocate objects speculatively

in non-speculative heap space, acquiring a global VM lock inthe process, because Java

guarantees that they are visible only to threads that have references to them. Second, we

prevent speculation from causing fatal errors. For example, by limiting speculative object

references to the start of objects in VM heap space, the VM will never dereference an

invalid pointer. Third, we optimize our implementation of software speculation support.

For example, by exploiting knowledge of primitive type widths, we can reduce storage

and computation costs in our return value prediction framework. Fourth, we draw on the

wealth of VM information available for profiling and analysis purposes, including symbol

names, types, threads, instructions, callsites, methods,and classes. This supports both

debugging and optimizing the speclative system, as well as analysing the runtime behaviour

of individual benchmarks under speculation.

1.3.3 Experimental Framework and Analysis

To advance the state of the art in SpMT research, we needed notonly to design and imple-

ment novel optimizations, but to evaluate them with an experimental framework. However,

prior to this work, there was no existing software MLS systemfor Java, and accordingly

no experimental framework. Thus in parallel with the development of our optimizations,

which are motivated by the need for performance, we also developed a complete experi-

mental framework, which is motivated by the need for analysis. We use our framework to

profile, analyse, and understand the behaviour of our systemas a whole, individual compo-

nents of this system, and a suite of standard benchmark programs that run on top of it. The

experimental results from our initial implementation in Chapter 2 formed the basis for the

optimizations presented in Chapters 3 and 4, as described in Section 1.4.

14



1.3. Contributions

Our software MLS for Java experimental framework is named SableSpMT. It is an ex-

tension of the SableVM Java virtual machine [Gag02]. SableSpMT provides a convenient

hardware abstraction layer by operating at the bytecode instruction level, takes the full Java

language and VM specification into account, supports staticanalysis through the Soot byte-

code compiler framework [VR00] and parsing of Java classfile attributes [PQVR+01], and

runs on existing multiprocessor systems. SableSpMT provides a full set of MLS support

features, including generic method level speculation and return value prediction. Our work

is designed to facilitate SpMT research, and includes a unique debugging mode, signifi-

cant instrumentation and runtime logging, online and offline profiling, a range of built-in

performance metrics, and portability amongst the featuresthat make it appropriate for ex-

perimentation and prototyping new designs.

After our initial implementation, we separated out the majority of the speculation sup-

port features into a connected library, which we named libspmt. This library is intended to

be VM and language-agnostic, and forms a base for future workon integration with new

systems, including different virtual machines, interpreters, ahead-of-time compilers, just-

in-time compilers, and non-Java source languages. The combination of SableSpMT plus

libspmt is quite flexible, in that the various components canbe swapped out or used in iso-

lation. For example, in related work we used our framework for a non-speculative dynamic

purity analysis [XPV07]. The library support for return value prediction that we describe

in Chapter 3 is generic and could similarly be used easily in a non-speculative context. A

final example is the dependence buffering component that we use; it would again be quite

practical to experiment with various transactional memorylibraries in place of it. A full

description of libspmt can be found in [PVK07]; with respectto this thesis it served mostly

as an intermediate engineering step between the initial SableSpMT implementation and

later optimizations.

A large part of our contribution with SableSpMT and libspmt is providing a common

open source platform for future experimentation with software MLS and SpMT in gen-

eral. SpMT has been investigated through many hardware proposals and simulations and

a smaller but not insignificant number of software implementations. Each of these offers

its own analysis of various implementation and optimization techniques. However, it can

be difficult to evaluate these proposals with respect to and in combination with each other,
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as there are multiple source languages, thread partitioning schemes, SpMT compilers, and

hardware simulators being used. Even if these variables remain fixed, it is highly unlikely

that an identical software architecture or set of simulation parameters will be used. Our

focus on flexibility and analysis is intended to facilitate these kinds of comparisons: there

are many parameters for runtime configuration in our system,it is straightforward to add

new ones, and the same data collection framework provides results, whether the system

changes are as small as adjusting a single integer parameterfor fine-grained control or as

large as changing the client of the library from SableSpMT toanother system.

1.3.4 Return Value Prediction

When speculating on a non-void method it is necessary to predict the return value if it will

later be consumed speculatively. Mispredictions of consumed return values generate depen-

dence violations, and so lead to failed speculation. Thus, in a system that allows speculating

on non-void methods, good support forreturn value prediction(RVP) increases speculation

success rates. In general, RVP is best described as a runtimetechnique for predicting the

results of non-void function, method, or procedure calls. In the case of speculative opti-

mizations, it is useful to know the predicted value before the call returns, but there are other

applications of RVP such as program understanding where execution time is not a factor.

RVP is a specific kind of value prediction, its unique features with respect to predicting the

results of arbitrary value-generating instructions beingthat methods may take arguments,

that methods provide the core building block of modularity and thus exhibit an extremely

broad range of behaviour, and that method calls occur relatively infrequently and so re-

sources available for RVP are less constrained. Generalized value prediction is of course

beneficial to all speculative systems, but in this work we focus on RVP as an MLS-specific

optimization, noting that our design is certainly adaptable to speculative load prediction.

The impact of RVP on MLS is demonstrated in Chapter 2, followedby a detailed account

of our RVP design, implementation, and analysis in Chapter 3.

Consider the example with many complex uses of return values in Figure 1.2. Here

the methodfoo returns a result intor with typeMyObject. Following some delay,r is

stored into another variable; tested for nullness to influence control flow and then if non-
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MyObject r; // variable r with reference type

r = foo (a, b, c); // predict return value if speculating on foo

... // delay before uses of r

s = r; // stores

if (r != null) { // control flow

r.f = r.g; // field access

r.send (m); // virtual dispatch

}

use (r); // arguments

return r; // return values

Figure 1.2: Motivating example for return value prediction.

null, dereferenced to read from and write to its fields and be used as the receiver object for

a virtual call; passed as a parameter; and finally returned from the method. Any misuse

of r will cause speculation to fail. Of course there are other ways to use values, with

the example serving primarily to illustrate the variety; for non-reference types arithmetic

computations are an important class of use. Any time such a use is desired before the call

returns, predicting the return value is important. And evenwithout such a desired use,

prediction data can provide valuable profiling information.

In our basic exploration of RVP we investigate a variety of predictors, both fixed-size

and table-based. We experiment with every kind of value predictor that appeared suit-

able for return value prediction. We investigate a new memoization predictor that hashes

together function arguments to retrieve a prediction from ahashtable. This use of memo-

ization differs in that the result can be incorrect, widening its applicability to all methods

instead of only pure ones. We include all of these predictorsin a hybrid predictor that uses

many different subpredictors and selects the best performing one to make a prediction. A

unique aspect of our software design is that predictors are associated with individual call-

sites. This means that RVP costs scale with program size and that callsites do not interfere

with each other. Overall we find high prediction accuracy andthat memoization is a natural

and useful technique for RVP.
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After MLS system profiling, we found that the RVP execution overhead was so high as

to preclude speculative performance. On this basis we designed a hybrid predictor that dy-

namically adapts by freeing the memory and computation resources associated with unused

sub-predictors after an initial warmup period. This predictor maintains high accuracy while

reducing time and memory costs. As part of our refactoring work to create this new hybrid,

we wrote simplified and independent software versions of hardware circuits to replace our

initial highly optimized and enmeshed predictors. This reworking included basic predictor

logic as well as hash functions and hashtables. Our design led to an abstract unification

framework for classifying and relating return value predictors. This framework facilitates

understanding and can also be used to combine individual features of existing predictors to

synthesize new ones. Our framework is easily extended to support new predictors, and can

also be used as an independent RVP library without SpMT.

Our software RVP design differs from hardware designs in several important ways.

First, we exploit the extra memory resources available in software to ensure a higher pre-

diction accuracy. Second, we use a wide range of predictors,since new predictor logic is

essentially free. However, the cost of executing many predictors in succession is expensive;

whereas in hardware predictors can be effectively parallelized, in software they are serial-

ized. Third, the dynamic reconfigurability displayed by ourfinal adaptive hybrid, which

in essence relies on a strategy design pattern, is particular to our software context; in ex-

isting hardware designs, the memory and hardware circuit costs are essentially fixed. This

reconfigurability of the software context is also what permits instantiating new predictors

for each callsite in the program and specializing callsitesindependently. Finally, we use

high level VM information to facilitate understanding, analysis, and implementation. In

particular, we show how the best predictor for a given callsite often reveals some inter-

esting aspect of localized behaviour, and how whole-systempredictor performance often

correlates with overall program behaviour. We also explorethe predictability differences

between Java’s primitive and reference types, and further exploit type information to reduce

memory usage.
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1.3.5 Nested Speculation

The speculation model presented in Figure 1.1 only depicts the execution of a single child.

However, this view of MLS ignores two important questions. First, what happens when a

parent thread creates a child, executes the target method, and encounters another method

invocation? If it can create a second child, before joining the first, then this isout-of-order

nesting, because the second child is first in sequential program order, and the first child is

second. Second, what happens when a child thread encountersa method invocation? If

it can create a child of its own, then this isin-order nesting. Complete support for these

two kinds of nesting is necessary to expose all of the method level parallelism available in

programs.

void a() {

b(); // can parent create child 2 here?

X; // child 2 might begin execution here

}

void main() {

a(); // parent creates child 1 here

Y; // child 1 begins execution here

c(); // can child 1 create child 3 here?

Z; // child 3 might begin execution here

}

Figure 1.3: Motivating example for nested speculation.

Consider the example of nested MLS in Figure 1.3, in which we assume threads are

created as soon as possible. If the speculation model prohibits nesting and only allows one

child per parent thread at a time, then the parent executesb();X; while child 1 executes

Y;c();Z;. If the model allows out-of-order nesting, under which a parent can have more

than one child at once, then the parent executesb();, child 2 executesX;, and child

1 executesY;c();Z;. If instead in-order nesting is allowed, under which children can
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create children of their own, then the parent executesb();X;, child 1 executesY;c();,

and child 3 executesZ;. If both in-order and out-of-order nesting are permitted, thenb();,

X;, Y;c();, andZ can all execute in parallel. The precise nature of the resulting parallel

behaviour at runtime is not intuitively obvious, and depends on the interaction between

source code, MLS system design, and underlying thread scheduling.

In our initial system we allowed for unlimited out-of-ordernesting with many children

per parent thread, but no in-order nesting. Results obtainedusing this nesting model are

presented in Chapter 2. Profiling revealed that processors were largely idle, and so we

developed support for in-order nesting as well to expose more parallelism. This led to a

speculative stack data type and accompanying algorithms for manipulating it and forking

and joining threads. In Chapter 4 we present an abstract stack-based model of nested spec-

ulation drawn directly from our practical implementation experience. We consider all pos-

sible runtime stack configurations at fork points and group them into nesting models with

varying degrees of flexibility. This is the first comprehensive semantics for nested MLS.

We also address the issue of how to depict speculative threads under MLS by presenting

a stack-based form that reads straightforwardly, mirrors the machine state at runtime, and

scales linearly on a 2D page as more threads are added.

There are also two specific memory management problems that arise for nested spec-

ulation. First, speculative threads require runtime data structures for an execution context,

and these must be allocated quickly to ensure efficient speculative thread creation. A simple

solution is to allocate a fixed number of threads per processor, but a more general solution

must allow for an arbitrary number of threads on a finite number of processors. We solve

this problem by recycling the entire aggregate thread data structure at once. Second, under

in-order nesting memory can be allocated in one thread but freed in another. The simplest

example is when child thread C1 allocates its own child C2, but then later C1’s parent P

joins both C1 and C2, which results in P freeing C2’s memory whichit did not allocate.

We solve this problem by using per-processor freelists and migrating blocks of threads at

once. Thus we contribute a custom, lightweight, single-purpose memory manager that ef-

ficiently recycles entire aggregate data structures at onceon multiprocessor machines, also

described in Chapter 4. This memory manager in turn supports arbitrarily nested MLS.
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1.3.6 Fork Heuristics

Given the ability to fork a thread at any callsite and efficiently predict return values, the final

question is where to actually fork threads. Since the answercan only be approximated, we

refer to the broad class of thread decomposition or program partitioning techniques asfork

heuristics. At a coarse granularity, the use of MLS is a heuristic choiceitself, based on the

assumption that method boundaries are appropriate delimiters of speculative parallelism;

then within MLS, there are medium-grained decisions to be made, such as which callsites

to speculate at; and then given a set of fork points, there arefine-grained decisions, such as

how often to speculate or under what performance conditions.

void a() {

X;

}

void b() {

Y;

}

main () {

a(); // speculation success rate = M

b(); // speculation success rate = N

Z;

}

Figure 1.4: Motivating example for fork heuristics.

Two primary issues in constructing fork heuristics are thread lengths and speculation

success rates. In an ideal situation, threads would only be forked if there was a high proba-

bility of success, if the parent and child threads executed long enough to outweigh overhead

costs, and if the load was fairly balanced between child and parent. Consider the example

in Figure 1.4. Here, a thread could be forked ata(), b(), or both. In the absence of spec-
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ulation, and ignoring function call costs, the parent has lengthX + Y + Z. If a child is

forked ata() but notb() then the parent has lengthX whereas the child’s length is any-

where between 0 andY + Z, depending on how longX takes. If a child is forked atb()

but nota() then the parent has lengthX + Y and the child has length between 0 andZ,

depending on how longX + Y takes. If a child forked ata() creates another child atb(),

then the parent has lengthX, child 1 has length between 0 andY , and child 2 has length

between 0 andZ. With respect to success rates, if children are forked by a parent thread at

a() or b(), then they have probabilityM andN of succeeding respectively. However, if a

child forked ata() forks another child atb(), then the probability of success for the child

forked atb() is M × N because a speculative dependence is created, and the first thread

must succeed in order for the second to.

Tracking all of this data quickly becomes complicated. Not only is thread length and

success rate contingent upon which other threads have been created at fork time, but the

decisionnot to fork a thread can affect the lengths and success rates of other speculative

threads. In an ideal model, thread lengths and success rateswould be tracked according to

precise context. However, for our first approach, we simply consider every callsite to be a

possible fork point and use online profiling and feedback-driven heuristics to filter out the

unprofitable ones, as described in Chapter 2. This is a completely dynamic model. Broad

criteria include expected probability of speculation success, return value predictability, the

number of previous speculation attempts, current speculation nesting depth and height, and

expected lengths of parent and child threads.

We found based on profiling that this approach yields thread lengths that are on average

too short, that there are a large number of factors that influence speculation, and that we

need more insight into runtime behaviour to support the design of better fork heuristics. We

decided on this basis to study the structural features of input programs that determine their

suitability for speculation, as described in Chapter 4. We considered a variety of common

programming idioms in abstract forms, and exhaustively explored the relationship between

speculation decisions and parallel behaviour. The result is a pattern language for method

level speculation that draws on our nesting models as well asexisting examples of method

level parallelism found in manually parallelized benchmarks. Many of our conclusions

apply equally well to non-speculative method level parallelization techniques.
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Figure 1.5: Research process overview.

1.4 Roadmap

At a broad level, this thesis is structured around our research process, as outlined in Fig-

ure 1.5. First, we built an initial SpMT prototype system, SableSpMT. This required several

components: 1) basic support for method level speculation,which creates child threads at

callsites and joins them when the parent invocation returns; 2) return value prediction,

which allows children forked at non-void callsites to proceed past consumption of the re-

turn value, reducing misspeculations; 3) dependence buffering, which allows for specula-
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tive children to read from and write to the Java heap in a strongly isolated fashion; 4) fork

heuristics, for deciding where and with what priority to create child threads; 5) a VM-based

design that allows for dynamic switching between non-speculative and speculative code;

and 6) support for many Java language safety considerations, including garbage collection,

object allocation, native methods, exception handling, bytecode interpretation, dynamic

class loading, and the Java memory model. Although this initial prototype system demon-

strated speedup in a relative sense, it slowed down in an absolute sense due to overhead

costs. We then profiled the system to identify performance bottlenecks. This profiling re-

vealed three things: 1) naı̈ve software return value prediction has high overhead costs; 2)

that spare processors in the system were mostly idle; 3) thatcommitted threads were usually

quite short. We then identified corresponding optimizations to address these bottlenecks: 1)

online adaptive return value prediction that dynamically specializes on a per-callsite basis,

reducing unnecessary computation; 2) arbitrarily nested method level speculation, which

allows for flexible thread creation by both speculative and non-speculative threads, in turn

providing processors with extra work; and 3) improved fork heuristics based on a structural

approach to eliminating the creation of short threads. These optimizations in turn lay the

foundation for future work on making method level speculation feasible.

The remainder of this thesis is organized as follows. In Chapter 2 we present the design,

implementation, and experimental evaluation of a softwaremethod level speculation sys-

tem for Java. In Chapter 3 we explore software return value prediction in detail, optimizing

for speed, memory consumption, and predictor accuracy. In Chapter 4 we describe a stack

model for nested method level speculation, and then use it toanalyse the speculative run-

time behaviour of a range of common programming idioms and derive a set of structural

fork heuristics. Chapter 5 we survey related work on speculative parallelization. Finally, in

Chapter 6 we discuss conclusions and future work.
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Chapter 2

Software Method Level Speculation for Java

Speculative multithreading has shown great promise as a strategy for fine to medium

grain automatic parallelization. In a hardware context, techniques to ensure correct SpMT

behaviour and significant performance gains are now well established. However, hardware

is expensive to produce, and software alternatives are desirable. Further, data acquisi-

tion from and analysis of such systems is difficult and complex, typically being limited

to a specific hardware design and simulation environment. For their part, software and

virtual machine SpMT designs require adherence to high level language semantics and

their performance is limited by increased overhead. These factors can impose many addi-

tional constraints on SpMT behaviour, as well as open up new opportunities to exploit both

language-specific information and software plasticity.

In this chapter we describe SableSpMT, our research SpMT framework based on method

level speculation. We present a detailed design for this Java-specific, software MLS sys-

tem that operates at the bytecode level and fully addresses the problems and requirements

imposed by the Java language and VM environment. We demonstrate its use as a research

framework by including extensive analysis information, including data gathered from the

return value prediction component, results from the integration of static analyses, an anal-

ysis of speculation overhead, parallelism analysis, dynamic analysis based on runtime pro-

filing, runtime speculation behaviour analysis, and speedup analysis.

Our results provide a comprehensive survey of the corresponding costs and benefits

of software MLS for Java. We find that exceptions, GC, and dynamic class loading have
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only a small impact, but that concurrency, native methods, and memory model concerns do

play an important role, as does an appropriate, language-specific runtime SpMT support

system. Profiling results further indicate that return value prediction performance, support

for in-order nested speculation, and improved fork heuristics are areas for future work. Our

experience indicates that full consideration of language and execution semantics is critical

to correct and efficient execution of high level SpMT designs; our work here provides a

baseline for future software implementations with features as complex as those found in

Java and the Java virtual machine.

2.1 Introduction

SpMT and MLS have been investigated through many hardware proposals and simulations,

and a smaller but not insignificant number of software designs, each offering its own anal-

ysis of various implementation and optimization techniques. However, it is difficult to

evaluate these proposals with respect to and in combinationwith each other, as there are

multiple source languages, thread partitioning schemes, SpMT compilers, and hardware

simulators being used. Even if these variables remain fixed,it is highly unlikely that an

identical software architecture and/or set of simulation parameters will be used. Further-

more, as a hardware problem, the issues of ensuring correctness under speculative execu-

tion have been well defined, such that different rollback or synchronization approaches are

sufficient to guarantee overall correct program behaviour.Software approaches to SpMT,

however, need to take into account the full source language semantics and behaviour to

ensure correct and efficient execution, and in general this is not trivially ensured by low

level hardware mechanisms.

We present SableSpMT as a common framework and solution to these problems, as

an extension of the SableVM Java virtual machine [Gag02]. SableSpMT provides a conve-

nient hardware abstraction layer by operating at the bytecode instruction level, takes the full

Java language and VM specification into account, including all bytecode instructions, ob-

ject allocation, garbage collection, synchronization, exceptions, native methods, dynamic

class loading, and the Java memory model, supports static analysis through the Soot byte-

code compiler framework [VR00] and parsing of Java classfile attributes [PQVR+01], and
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works on existing multiprocessor systems. SableSpMT further provides a full set of SpMT

support features, including thread forking and joining based on method level speculation,

dependence buffering, stack buffering, priority queueing, and return value prediction. Our

framework is designed to facilitate SpMT research, and includes a unique debugging mode,

logging, and portability amongst the features that make it appropriate for experimentation

and new designs.

We report on both Java benchmark and framework behaviour to illustrate the forms

of experimental and design analysis we support, and to understand the behaviour of our

system. Through dynamic measurements we show that while speculative coverage, or

the percentage of sequential program execution that occurssuccessfully in parallel, can

be quite high in Java programs, the overhead costs are significant enough in our initial

implementation to preclude actual speedup. However, we areable to perform experiments

to determine upper bounds on speedup in the absence of all overhead. Furthermore, our

execution times are still faster than those offered by hardware simulators providing similar

functionality [KT98].

At a finer level of detail, we also break down the SpMT overheadcosts to determine

performance bottlenecks and set optimization goals. In ourcase overhead is dominated

by verification of speculative threads and the concomitant interprocessor memory traffic,

lock and barrier synchronization, and update costs for return value prediction. We also find

further opportunities suggested by short thread lengths and a lack of available threads to

execute under our precise speculation model, out-of-orderMLS nesting. With regards to

RVP, results gathered within our framework extend previousstudies to include more real-

istic benchmark runs, offer further data on the relative benefits, requirements and costs of

various prediction strategies, and expose the potential benefits of exploiting both static and

runtime feedback optimization information. Finally, language and VM level speculation

also produce design constraints due to efficiency concerns;for instance, Java programs

tend to have frequent heap accesses, object allocations, and method calls. Our runtime

SpMT support system accomodates this behaviour, and we evaluate the relative importance

of dependence buffering, stack buffering, return value prediction, speculative allocation,

and priority queueing.

Hardware simulations have already demonstrated the great potential in speculative mul-
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tithreading. We contend that the same techniques, however,can be investigated more gener-

ally and efficiently at the virtual machine level using commodity multiprocessor hardware,

given an appropriate analysis framework. Virtual machinesallow for exploration of com-

plex design changes, facilitate detailed instrumentation, provide high level information that

is not generally available to hardware approaches, and are able to interact directly with the

underlying architecture. Our work is intended to enable SpMT investigations by providing

an execution and analysis environment as well as real data from a working implementa-

tion. In addition to using SableSpMT to characterize both thread parallelism and overhead

under software speculation, our work here aims to provide a thorough Java SpMT design

and implementation suitable for future work and an understanding of the requirements and

relative impact of high level language semantics.

2.1.1 Contributions

We make the following specific contributions:

• We describe SableSpMT, a complete implementation of MLS-based SpMT for Java

that runs on real multiprocessor hardware, and present its suitability as an analy-

sis framework. This is the first complete such work within a virtual machine. We

include descriptions of all major VM changes necessary, including bytecode modifi-

cations, novel SpMT runtime support components, and the handling of Java language

features.

• We simplify the implementation and analysis of new SpMT designs by providing

a deterministic, single-threaded uniprocessor mode as well as logging facilities and

statistics gathering.

• We demonstrate that high level analysis information can be easily exploited by our

framework. Ahead-of-time results computed by Soot as well as runtime profiling-

based feedback can passed to our execution engine to improveperformance, and we

illustrate the technique using our work on return value prediction.

• We provide detailed data on the speculative execution of SPEC JVM98 at size 100,
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a suite of non-trivial benchmark programs. These data include a breakdown of over-

head costs, the impact of highly accurate RVP, measurementsof dynamic parallelism,

the impact of Java language features and MLS support components, and overall run-

ning times.

In Section 2.2 we give an overview of how our framework is constructed and its main

features. This includes an exposition of the components required for software MLS for

Java, our multithreaded execution and single-threaded debugging modes, system configu-

ration options, and data logging and trace generation features. We then turn to the details of

our Java MLS design. In Section 2.3 we describe how to preparemethod bodies for spec-

ulative execution, in Section 2.4 we survey our speculativeruntime support components,

and in Section 2.5 we discuss the intricacies of the Java language and their interaction with

speculation. In Section 2.6 we analyse actual data, demonstrating the flexibility of our sys-

tem in terms of data gathering and providing a wide variety ofobservations. Finally, we

conclude and discuss future work in Section 2.7. Related workspecific to software MLS

for Java as well as alternative approaches is discussed in Chapter 5.

2.2 Framework

We begin with an overview of our framework, followed by a brief exposition of our multi-

threaded speculative execution model. Then we present someof the features of our frame-

work that help with the implementation, debugging, and analysis of such a complex un-

dertaking, namely a single-threaded execution mode, system configuration options, and

support for logging and trace generation.

2.2.1 Overview

An overview of the SableSpMT analysis framework and Java SpMT execution environ-

ment is shown in Figure 2.1. SableSpMT is an extension of the switch-threaded bytecode

interpreter in SableVM [Gag02], an open source software Java virtual machine. SableVM

adheres to the JVM Specification [LY99], and is capable of running Eclipse and other
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Figure 2.1: The SableSpMT method level speculation execution environment.

large, complex programs. The implementation is completelyPOSIX-compliant and writ-

ten in ANSI C. SableVM ports exist for 13 different architectures, such that porting the

SableSpMT engine to new architectures should relatively straightforward; currently it runs

on multicore or multiprocessorx86 64 machines. Most of the porting complexity derives

from defining the right atomic operations in assembly language.

Soot [VR00] is used to transform, analyse, and attach attributes to Java.class files in

an ahead-of-time step [PQVR+01], although this could also occur at runtime. SableSpMT

reads in these classes during class loading, parsing attributes and preparing method bodies.

These method bodies are implemented internally ascode arrays, contiguous sequences of

word-sized instructions and instruction operands derivedfrom Java bytecode. SableVM

already creates normal non-speculative code arrays at runtime. Rather than include condi-

tional checks in many non-speculative instructions, we chose to have SableSpMT duplicate

and modify the entire non-speculative code array at method preparation time to create an

exclusively speculative one. Sequential execution depends only the non-speculative code
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arrays, and interacts with normal JVM support components. Speculative execution causes

SableSpMT to fork and join child threads at runtime, and these depend on the speculative

code arrays for safe out-of-order execution. The matchingpc offsets of instructions in these

code arrays allows for straightforward switches between non-speculative and speculative

execution. Two execution modes are provided, a single-threaded “simulation” mode and

a true multithreaded mode. The single-threaded mode alternates between non-speculative

and speculative execution in a single thread, whereas the multithreaded mode splits single

Java threads across multiple cores or processors.

Various SpMT runtime support facilities are needed, including priority queueing, return

value prediction, dependence buffering, and stack buffering. SableSpMT also interacts with

SableVM’s own runtime support components, including a semi-space copying garbage col-

lector, object allocation, native method execution, exception handling, synchronization, and

the Java memory model. Outside of thread forking and joining, speculation has negligible

impact on and is largely invisible to normal multithreaded VM execution. Specifically, it

uses what we define aszero-sum speculative threading, such thats = max(n− p, 0) spec-

ulative threads run only on free processors, wheren is the number of processors andp is

the number of non-sleeping non-speculative parent Java threads.

2.2.2 Multithreaded Execution Mode

Many components are needed for MLS to work properly in a JVM, the full details of

which are given in Sections 2.3, 2.4, and 2.5. A high level view of the multithreaded mode

involving multiple threads and method calls that brings together all of these components

is shown in Figure 2.2; the finer details of the execution of a speculative child can be

found in the depiction of our single-threaded simulation mode in Figure 2.3. Adependence

bufferprotects main memory from out-of-order and possibly invalid speculative operations,

and some form ofstack bufferingis necessary to give child threads a protected execution

context. NewSPMT FORK andSPMT JOIN instructions surround every callsite; the fork

instruction enqueues child threads onto anO(1) priority queue, which are dequeued and

executed on separate processors by MLShelper threads, and the join instruction stops and

validates children, either committing or aborting them. Inthe figure, children C1, C2,
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Figure 2.2: Multithreaded execution mode.

and C3 are enqueued, but only C1 is executed and joined, meaningthat C2 and C3 are

deleted from the queue.ARETURN returns a reference andIRETURN returns an integer,

which means that C1 and C2 need some kind of return value prediction to execute safely.

On the other hand,RETURN is used for void methods, and so C3 does not need a predicted

value. While executing speculative code, we needmodified bytecode instructionsto protect

against unsafe control flow; for example,GETFIELD is modified to read from a dependence

buffer, andMONITOREXIT causes speculation to come to an abrupt halt, although it does
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Figure 2.3: Single-threaded execution mode.

not automatically force abortion. Finally, we need to make sure speculation interacts safely

with exception handling, object allocation, garbage collection, native method execution,

synchronization, class loading, and the Java memory model.

We make several different optimizations to these components in SableSpMT, some of

the more notable ones being aggressive return value prediction [PV04a, PV04b], improve-

ments to the dependence buffer, allowing for speculative threads to enter and exit methods,

better enqueueing algorithms, speculative object allocation, and reduction of interproces-
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sor memory traffic. Most of the techniques we have encountered in the literature can be

implemented within our framework; in Section 2.6 we illustrate typical data gathering and

analysis using our work on return value prediction and the speculative engine itself as ex-

amples.

2.2.3 Single-Threaded Execution Mode

One of the unique features of our design is a single-threadedsimulation mode that mimics

the process of speculative execution in a single thread. Early on in the development of Sa-

bleSpMT, we found ourselves wanting some way to test the components we had written in

the context of an executing JVM, without introducing the complexity of actual concurrency

into our debugging process. The resulting deterministic design is shown in Figure 2.3. In

this mode a single thread of Java execution follows the complete speculative control flow.

Upon reaching a fork point, the method call is skipped, and the ensuing continuation code

is executed speculatively; when a terminating condition isreached, the same thread jumps

back to the non-speculative execution of the method call, and upon returning from the call,

it attempts to join with its own speculative result.

There are three primary advantages to having this single-threaded simulation mode.

First, it allows for testing of SpMT components in an incomplete system, most importantly

one without multiprocessor support. It does so by providingstate saving and restoral, and

interleaving the execution of speculative and non-speculative code. Second, by not running

multiple threads it prevents race conditions, deadlocks, and memory traffic from interfering

with development, helping to minimize the search space whenfaced with debugging. We

were able to alternate coding with designing support for MLSaccording to the full JVM

Specification, and only after we had completed a requirements analysis in this manner did

we develop the multithreaded execution mode. Third, it means we have the foundations

for Java checkpointing and rollback within a virtual machine. This has utility for Java out-

side of SpMT, for example in traditional debugging [Coo02], database transactions such as

java.sql.Connection, formal verification [Eug03], fault-tolerance [FK03], andsoft-

ware transactional memory [LR06].
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2.2.4 System Configuration

In our framework, system properties specified on the commandline are used to select dif-

ferent SpMT algorithms and data structures, which facilitates experimental analysis by

eliminating the need for multiple VM builds. As changes to SableSpMT are introduced,

rather than outright replace old control flow or adjust constants to optimal values, sys-

tem properties are used wherever possible, and thus it is straightforward to make controlled

comparisons with old configurations and revert if necessary. In finalized builds, these prop-

erties can be automatically converted to constants via preprocessor directives and a single

Autoconfconfigure option, so that the added runtime overhead of conditionals testing

them will be optimized away. There are over 50 such properties in SableSpMT, controlling

everything from maximum RVP hashtable sizes to the number ofexecuting MLS helper

threads, and it is easy to introduce new ones. The only other significant compile-time

configure options in SableSpMT allow the user to 1) enable MLS in the first place, 2)

enable debugging and assertions, and 3) enable statistics gathering for post-execution anal-

ysis.

2.2.5 Logging and Trace Generation

Finally, SableSpMT provides a comprehensive logging and trace generation system that can

present Java SpMT events by themselves, or interleave them with existing execution traces

of class loading, method invocation, garbage collection, synchronization, and bytecode ex-

ecution. An example trace with interleaved method invocation, bytecode, and SpMT events

is shown in Figure 2.4. Here a speculative child executes three instructions of the continua-

tion past a non-speculative call toObject.<init> before being successfully committed.

These traces are primarily useful for debugging purposes when implementing new tech-

niques. SableVM supports only the JVMDI and JDWP for integration with debuggers at

this time, and although we do not provide trace compression or an implementation and

extension of the related JVMPI or JVMTI profiling interfaces, these facilities could be in-

corporated to permit detailed analysis of SpMT execution traces, using a dynamic metrics

tool such as *J [Duf04].
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Thread pthread type code address bytecode instruction or internal event

T1 P16384 N @0x2a976bad68 ALOAD 0

T1 P16384 N @0x2a976bad70 SPMT FORK

T1 P16384 N <internal> enqueue spmt child @0x5ed850

T1 P16384 N @0x2a976bad88 INVOKESPECIAL

T1 P49156 S <internal> dequeue spmt child @0x5ed850

T1 P49156 S <internal> start spmt

T1 P16384 N <internal> entering java/lang/Object.<init>()V

T1 P49156 S @0x2a976baf38 ALOAD 0

T1 P16384 N @0x2a976baf90 RETURN

T1 P49156 S @0x2a976baf40 ALOAD 1

T1 P16384 N <internal> exiting java/lang/Object.<init>()V

T1 P16384 N @0x2a976badb0 SPMT JOIN

T1 P49156 S @0x2a976baf48 SPMT PUTFIELD

T1 P16384 N <internal> signalling spmt thread halt @0x5ed850

T1 P49156 S <internal> stop spmt - signalled by parent

T1 P16384 N <internal> spmt passed @0x5ed850

Figure 2.4: SpMT execution trace.Type N means non-speculative and type S means speculative.

2.3 Speculative Method Preparation

Before speculative execution can begin, method bodies must be preparedfor MLS. This

process entails parsing classfile attributes for static analysis info, inserting fork and join

points, and modifying bytecode instructions. The actual generation of a parallel specula-

tive code array occurs when a given method is invoked for the first time. Once primed for

speculation, a child thread can be forked at any callsite within the method body. Further-

more, speculation can continue across method boundaries aslong as the methods being

invoked or returned to have been similarly prepared.

2.3.1 Static Analysis and Attribute Parsing

An advantage to language level SpMT is the ability to use highlevel program informa-

tion. In our case, we use the Soot bytecode compiler framework [VR00], a convenient tool
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Figure 2.5: Static analysis integration.

for ahead-of-time static analysis and transformation in the absence of the runtime static

analysis support typically found in JIT compilers. In Figure 2.5 we show the use of Soot

to transform the base input Java classfiles in order to insertSPMT FORK andSPMT JOIN

instructions. The same process can also be used to append static analysis information as

classfile attributes [PQVR+01], which are then interpreted by the SpMT engine during class

loading. We use attributes to encode the results of two analyses for improved RVP using

Soot [PV04a]. During method preparation, the analysis dataare associated with callsites

for use by the RVP component; a summary of results is given in Section 2.6.2.

2.3.2 Fork and Join Insertion

The SableSpMT engine needs the ability to fork and join childthreads. TheSPMT FORK

and SPMT JOIN instructions provide this functionality. Under MLS threads are forked
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and joined immediately before and after method invocations, and so these instructions are

inserted around everyINVOKE<X> instruction. This design is callsite-oriented; a target-

oriented design would insert the fork and join instructionsat method entry and exit instead.

The actual insertion by Soot involves placing calls to dummystatic voidSpmt.fork

andSpmt.join methods around every callsite, and then during runtime method prepara-

tion replacing these with the appropriateSPMT FORK andSPMT JOIN instructions. This ap-

proach has several advantages: first, transformed classfiles will run in the absence of SpMT

support, the dummy methods being trivially inlined; second, integration with a static analy-

sis to determine good fork points is facilitated; and third,bytecode offsets are automatically

adjusted.

2.3.3 Bytecode Instruction Modification

The majority of Java’s 201 bytecode instructions can be usedverbatim for speculative ex-

ecution; however, roughly 25% need modification to protect against potentially dangerous

behaviours, as shown in Table 2.1. If these instructions were modified in place, the over-

head of extra runtime conditionals would impact on the speedof non-speculative execution.

Instead, modification takes place in a duplicate copy of the code array created especially

for speculative execution. Indeed, the only significant change to non-speculative bytecode

is the insertion of fork and join points. Problematic operations include:

• Global memory access. Reads from and writes to main memory require buffering,

and so the<X>A(LOAD|STORE) and(GET|PUT)(FIELD|STATIC) instructions are

modified to read and write their data using a dependence buffer, as described in Sec-

tion 2.4. If final or volatile field access flags are set, these instructions may also

require a memory barrier to correctly order memory accesses, as described in Sec-

tion 2.5, in which case speculation must also stop.

• Exceptions. In unsafe situations, many instructions must throw exceptions to ensure

the safety of bytecode execution, including(I|L)(DIV|REM) that throw anArith-

meticException upon division by zero, and others that may throw aNullPoin-

terException, ArrayIndexOutOfBoundsException, or ClassCastExcep-
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instruction reads writes locks unlocksallocates throws enters loads orders forces

global global object object object exceptionnative codeclass(es)memory stop

GETFIELD yes maybe once maybe maybe

GETSTATIC yes once maybe maybe

<X>ALOAD yes maybe maybe

PUTFIELD yes maybe once maybe maybe

PUTSTATIC yes once maybe maybe

<X>ASTORE yes maybe maybe

(I|L)(DIV|REM) maybe maybe

ARRAYLENGTH maybe maybe

CHECKCAST maybe once maybe

ATHROW yes yes

INSTANCEOF once maybe

RET maybe

MONITORENTER yes yes yes maybe yes yes

MONITOREXIT yes yes yes maybe yes yes

INVOKE<X> maybemaybemaybe maybe maybe once maybe maybe

<X>RETURN maybemaybe maybe maybe maybe once maybe maybe

NEW yes yes maybe once maybe

NEWARRAY yes yes maybe maybe

ANEWARRAY yes yes maybe once maybe

MULTIANEWARRAY yes yes maybe once maybe

LDC STRING once once

Table 2.1: Java bytecode instructions modified to support speculation.Each instruction is marked

according to its behaviours that require special attention during speculative execution. These be-

haviours are marked ‘once’, ‘maybe’, or ‘yes’ according to their probabilities of occurring within

the instruction. ‘Forces stop’ indicates whether the instruction may force termination of a spec-

ulative child thread, but does not necessarily imply abortion and failure. Not shown are branch

instructions; these are trivially fixed to support jumping to the rightpc.

39



Software Method Level Speculation for Java

tion. Application or library code may also throw explicit exceptions usingATHROW.

In both implicit and explicit cases, speculation rolls backto the beginning of the in-

struction and stops immediately; however, the decision to abort or commit is deferred

until the parent joins the child. Exceptions must also be handled safely if thrown by

non-speculative parent threads with speculative children, as discussed in Section 2.5.

• Detecting object references.TheINSTANCEOF instruction computes type assigna-

bility between a pre-specified class and an object referenceon the stack. Normally,

bytecode verification promises that the stack value is always a valid reference to the

start of an object instance on the heap, but speculative execution cannot depend on

this guarantee. Accordingly, speculation must stop if the reference does not lie within

heap bounds, or if it does not point to an object header. Currently we insert a magic

word into all object headers, although a bitmap of heap wordsto object headers would

be more accurate and space-efficient.

• Subroutines.JSR (jump to subroutine) is always safe to execute because the tar-

get address is hardcoded into the code array. However, the return address used by

its partnerRET is read from a local variable, and must point to a valid instruction.

Furthermore, for a given subroutine, if theJSR occurs speculatively and theRET

non-speculatively, or vice versa, the return address must be adjusted to use the right

code array. Thus a modifiednon-speculativeRET is also needed.

• Synchronization.The INVOKE<X> and<X>RETURN instructions may lock and un-

lock object monitors, andMONITOR(ENTER|EXIT) will always lock or unlock ob-

ject monitors; they furthermore require memory barriers and are strongly ordering.

These instructions are also marked as reading from and writing to global variables,

as lockwords are stored in object headers. In our design, non-speculative threads

that encounter a locked object monitor must block and cannotbecome speculative

instead. Similarly, speculative threads that encounter lock or unlock operations are

always forced to stop. We discuss related work on speculative locking in Section 5.7

and future work on speculative locking in Section 6.2.1.
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• Method entry.Speculatively,INVOKE<X> are prevented from entering unprepared

methods and triggering class loading and method preparation. Furthermore, at non-

static callsites, the receiver is checked to be a valid object instance, the target is

checked to have the right stack effect, and the type of the target’s class is checked for

assignability to the receiver’s type. Invokes are also prevented from entering native

code or attempting to execute abstract methods.

• Method exit.After the synchronization check, the<X>RETURN instructions require

three additional safety operations: 1) potential buffering of the non-speculative stack

frame from the parent thread, as described in Section 2.4; 2)verifying that the caller

is not executing apreparation sequence, a special group of instructions used in

SableVM to replace slow instructions with faster versions;and 3) ensuring that spec-

ulation does not leave bytecode execution entirely, which would mean Java thread

death, VM death, or a return to native code.

• Object allocation. Barring an exception being thrown or GC being triggered, theNEW

and((MULTI|)A|)NEWARRAY instructions are safe to execute. TheLDC STRING

specialization ofLDC allocates a constantString object upon its first execution, the

address of which is patched into both non-speculative and speculative code arrays,

and forces speculation to stop only once. Allocation and GC are discussed in greater

detail in Section 2.5.

2.3.4 Parallel Code Array Generation

The goal of this extensive bytecode modification is to prepare parallel code arrays for spec-

ulative execution, as shown in Figure 2.6. The non-speculative array is duplicated, branch

targets are adjusted, and modified instructions replace ordinary non-speculative versions

where necessary. Additionally,SPMT FORK andSPMT JOIN surround everyINVOKE<X> in

both code arrays, enabling both non-speculative and speculative threads to create and join

children. Transitions between non-speculative and speculative execution are facilitated by

identical instruction offsets in each array.
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Figure 2.6: Parallel code arrays.(a) non-speculative code array prepared for methodbar; (b)

speculative version of the same code array with modified instructions.

2.4 Speculative Runtime Support

Following the preparation of method bodies for speculativeexecution, the speculation en-

gine makes use of various runtime support components that interact with bytecode and

allow for child thread forking, queueing, execution, and joining to take place while ensur-

ing correct and efficient execution through appropriate return value prediction, dependence

buffering, and stack buffering.

2.4.1 Thread Forking

Speculative child threads are forked by non-speculative parents and also by speculative

children atSPMT FORK instructions. Speculating at every fork point is not necessarily opti-

mal, and in the context of MLS various heuristics for optimizing fork decisions have been

investigated [WK05]. SableSpMT permits relatively arbitrary fork heuristics based on run-

time profiling information; however, we limit ourselves to asimple “always fork” strategy

in this chapter as a more generally useful baseline measurement. In Chapter 4 we consider

structural fork heuristics for MLS.

Having made the decision to fork a child, several steps are required. First, those vari-

ables of the parent thread environment that can be accessed speculatively are copied to a

child thread environment. The parent environment is aJNIEnv struct, and so each child
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thread needs aJNIEnv struct of its own. In this fashion, the child assumes the identity of

its parent. Second, a child stack buffer is initialized and the parent stack frame is copied

to the child, giving it an execution context. Third, a dependence buffer is initialized; this

protects main memory from speculative execution, and allows for child validation upon

joining. Fourth, the operand stack height of the child is adjusted to account for the stack

effect of the invoke following the fork point, and thepc of the child is set to the first

instruction past the invoke. Fifth, a return value is predicted for non-void methods; tech-

nically, any arbitrary value can be used as a prediction, although the chance of speculation

success is greatly reduced by doing so. Speculation in the child then begins, continuing

until some stopping condition is reached: either unsafe control flow, a predefined sequence

length limit, or the parent signalling the child from a join point. The complete join process

is discussed in Section 2.4.6.

In the above steps, memory reuse is critical in reducing the overhead of thread environ-

ment, dependence buffer, and stack buffer allocation. We describe our child thread memory

allocator fully in Section 4.2. Further, to reduce the forking overhead on non-speculative

parent threads, the child is enqueued on the priority queue after the first step and the re-

maining steps occur in a separate helper thread after the child is removed from the queue

for execution.

2.4.2 Priority Queueing

In the default multithreaded speculative execution mode, children are enqueued at fork

points on a globalO(1) concurrent priority queue. As discussed, a minimal amount of

initialization is done prior to enqueueing to limit the impact of fork overhead on non-

speculative threads. Priorities 0–10 are computed asmin(l × r/1000, 10), wherel is the

average bytecode sequence length andr is the success rate; higher priority threads are

those that are expected to do more useful work.l is computed asis/f , wheref is the total

number of speculative threads forked at the current callsite andis is the total number of

speculative instructions executed by these threads. Similarly, r is computed asc/f , where

c is the total number of successful commits.is itself is computed asic + ia, whereic and

ia are the number of instructions executed by committed and aborted threads respectively.
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Internally,ic, ia, c, andf are runtime statistics gathered at each callsite. Further,we strength

reducel × r = (ic + ia/f) × (c/f) to ((ic + ia) × c)/(f × f), replacing one out of two

divide operations with a multiply. This formula implies that we consider long threads with

low success rates and short threads with high success rates to be as good as each other.

A more sophisticated priority computation might include the various sources of overhead

identified in Section 2.6.3. Although the “always fork” heuristic used in our experiments

forks threads independent of priority, it is straightforward to use a heuristic that forks only

above a certain priority.

The queue consists of an array of doubly-linked lists, one for each priority, and supports

enqueue, dequeue, anddelete operations.enqueue inserts a thread into the beginning

of a list with a specified priority,dequeue removes a thread from the end of the highest pri-

ority non-empty list, anddelete unlinks the specified thread. Helper OS threads compete

to dequeue and run children on separate processors; our zero-sum speculative threading

model ensures that one helper thread is active per free processor in the system. If a parent

thread joins a child that it previously enqueued, and that child did not get dequeued by a

helper OS thread, the child is deleted by simply unlinking itfrom the list for that priority,

and its memory is recycled. Otherwise, the child has startedspeculative execution, and so

the parent signals it to stop before beginning validation. The queue is globally synchronized

using spinlocks, which works well for a small number of priorities and processors [SZ99].

Although commits always occur in correct program order, thepriorities we use do im-

ply an ordering to thebeginningof speculative thread execution. This ordering can invert

or maintain the dependence ordering between threads. For two threads with different pri-

orities both waiting on the priority queue, the higher priority threadH will begin execution

before the lower priority threadL, even if in sequential program orderL comes beforeH.

The only exception is ifH is deleted from the queue by its parent. For two threads of the

same priorityA andB attached to a parent threadP , whereA occurs earlier in sequen-

tial program order thanB, either in-order or out-of-order nesting is possible, as shown in

Figure 2.7, each of which has different implications for execution ordering.

Under in-order nesting, whereP forksA and thenA forksB, there is only one possible

ordering of queue operations:A is enqueued,A is dequeued,B is enqueued, and finally

B is either dequeued or deleted. This is true even whenA andB have different priorities.
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Figure 2.7: In-order nesting vs. out-of-order nesting.

Under out-of-order nesting, where the same parent threadP forksA in a higher stack frame

thanB (assuming call stacks grow upwards),B will be enqueued beforeA. In our design,

dequeueing threads removes them from the end of the prioritylist, such thatB will also

begin execution beforeA, maintaining the out-of-order relationship between the threads.

It would be straightforward to conduct alternative experiments in which dequeueing

threads removed them from the beginning of the priority list, correcting the execution or-

dering betweenA andB to be in-order in the case of out-of-order nesting. We chose to

prioritize B over A under out-of-order nesting to allow for a longer parent execution in

the event thatP returns toA’s fork point before it has been dequeued, thereby deleting

it from the queue instead of joining it. Although our final implementation of SableSpMT

supports both in-order and out-of-order nesting, the experiments in this chapter are based

on an initial version that only supports out-of-order nesting; it was the profiling work here

that motivated the later in-order nesting support. Both kinds of thread nesting are explored

in detail in Chapter 4.

45



Software Method Level Speculation for Java

2.4.3 Return Value Prediction

Speculative children forked at non-void callsites need their operand stack height adjusted

to account for the return value, and must be aborted if an incorrect value is used. Accurate

return value prediction can significantly improve the performance of Java MLS, particu-

larly because return values are on average consumed within 10 instructions after a method

call [HBJ03]. We previously reported on our initial return value prediction implementation

in SableSpMT [PV04b] and the use of two static compiler analyses [PV04a]. The attributes

generated by the RVP compiler analyses are parsed during method preparation, and can be

used to relax predictor correctness requirements and reduce memory consumption. We

discuss these analyses in Section 2.6.2.

We depend on a variety of well-known predictors in the initial implementation of Sable-

SpMT used for the experiments in this chapter. Fixed-space designs include last value and

stride predictors (Table 3.1), a two-delta stride predictor (Table 3.2), and a parameter stride

predictor (Table 3.6). The table-based designs we use are shown in Figure 2.8. They in-

clude a finite context method predictor that hashes togethera history of the last five return

values (Table 3.4), and a new memoization predictor that hashes together method argu-

ments (Table 3.5). These six predictors are unified by a hybrid predictor that executes and

updates them all on every method invocation, selecting the best performing one to make

a prediction (Table 3.7). Hybrid predictors are associatedwith individual callsites, along

with other dynamic per-callsite information. In Chapter 3 weexplore the RVP subsystem, a

wider variety of sub-predictors, and adaptive optimizations to the hybrid predictor in detail.

The hybrid predictor we use maintains a dynamic measure of predictor accuracy per

callsite, as discussed in Chapter 3. The accuracy of a given hybrid predictor instance can

be used as a measure ofpredictor confidencefor that callsite. We did not include predictor

confidence as a separate input to the priority computation discussed in Section 2.4.2, for

the success rate measure used already includes return valuepredictor confidence implicitly.

This is because return value prediction failure induces speculation failure. Nevertheless,

it would be straightforward to modify SableSpMT to include return value predictor confi-

dence explicitly in the priority computation and thus dynamic fork heuristics.
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Figure 2.8: Table-based return value prediction.

2.4.4 Dependence Buffering

Many SpMT designs propose a mechanism to track speculative reads from main memory

and buffer speculative writes to main memory to protect against dependence violations; if

not, they propose an alternativeundo loggingmechanism to reverse speculative writes. We

focus on tracking reads and buffering writes, which we referto collectively asdependence

buffering. In hardware, dependence buffers can be built as table basedstructures similar to

caches [SCZM05]. We propose a similar design for software SpMT, as shown in Figure 2.9.

In Java, main memory consists of object instances and arrayson the garbage-collected

heap, and static fields in class loader memory. As discussed in Section 2.3.3, one set of

bytecodes writes to class static, object field, and array element locations, and a matching

set reads from these locations. We modified the speculative versions of these bytecodes to

access the dependence buffer instead of main memory.

At a high level, the dependence buffer maps addresses to values using a write hashtable

layered on top of a read hashtable, which in turn is layered ontop of main memory. A

speculative write to the buffer goes directly to the write hashtable, overwriting any previous

value for that address, such that the buffer always containsthe latest speculative writes.
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Figure 2.9: Dependence buffering.When a speculative global read instruction is executed, first the

write buffer is searched, and if it does not contain the address of the desired value then the read

buffer is searched. If the value address is still not found, the value atthat address is loaded from

main memory. When a speculative global write instruction is executed, the write buffer is searched,

and if no entry is found a new mapping is created.

A speculative read from the buffer first searches the write hashtable. If the value is not

found, it searches the read hashtable. If the value is still not found, it is retrieved from

main memory and stored in the read hashtable, such that the buffer always contains the

earliest speculative reads. Thus the read hashtable tracksRAW dependences and the write

hashtable buffers WAR and WAW dependences. Note that our design does not support

forwarding values between buffers in different speculative threads. This is an optimization

that can reduce misspeculations, and we include it as part ofour future work in Section 6.2.

At a low level, buffers are attached to speculative thread objects and implemented as

pairs of hashtables. For a given read or write hashtable, thevalues are stored and retrieved

using the value address as a key. We use open addressing hashtables with double hashing

for fast lookup [CLRS01]. The algorithm to find the index of a given key (address) is

provided by the functionsearch table for key shown in Figure 2.10. It requires that

the table size be a power of two. For a particular key and hashtable, this algorithm will

search until one of the following three cases is true: eitherthe key is found, the key is not

found and there is an empty slot for a new key, or the key is not found and there are no empty
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word_t

search_table_for_key (table_t *table, word_t key)

{

boolean_t new_key = FALSE;

boolean_t found = FALSE;

word_t index = 0;

word_t hash_1 = key & (table->size - 1);

word_t hash_2 = hash_1 | 1;

for (word_t i = 0; i < table->size && !new_key && !found; i++)

{

index = (hash_1 + i * hash_2) & (table->size - 1);

if (table->keys[index] == 0)

new_key = TRUE;

if (table->keys[index] == key)

found = TRUE;

}

if (new_key)

{

table->keys[index] = key;

table->entries[table->load++] = index;

}

else if (!found)

table->overflow = TRUE;

return index;

}

Figure 2.10: Source code for hashtable key index lookup based on double hashing.

slots, which means that the table is overflowing. In the eventof a new key being added, its

index is appended to an array-based list of entries. This list is later used for fast iteration

over hashtable elements during validation, committal, andreset operations. The key index

retrieved by this function is used as an index into an array ofvalues to implement buffer

read and write operations. Note that we also use open addressing hashtables with double
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hashing to implement the table-based return value predictors described in Section 2.4.3 and

Chapter 3, except that there the input keys are computed as message digests.

For the experiments in this chapter, each child thread has nine pairs of read and write

hashtables associated with it: one pair for each of the eightJava primitive types and another

pair for reference types. These tables each have a fixed capacity of 128 entries. When we

later refactored SableSpMT into the implementation in libspmt [PVK07], we used a single

pair of read and write hashtables for the entire thread and tagged values according to their

widths to differentiate between types. Further, although these new tables are also created

with an initial 128 entry capacity, they can expand dynamically.

2.4.5 Stack Buffering

In addition to heap and static data, speculative threads mayalso access local variables and

data stored on the Java operand stack. It follows that stack accesses must be buffered

to protect the parent stack in the event of failure, as shown in Figure 2.11. The simplest

mechanism for doing so is to copy stack frames from parent threads to separate child stacks

both on forking children and on exiting methods speculatively. Additionally, children must

create new stack frames for any methods they enter.

Pointers to child threads are stored one per stack frame. This allows for convenient

out-of-order thread nesting [RTL+05], such that each parent can have multiple immediate

children. This in turn exposes significant additional parallelism. When in-order speculation

is combined with out-of-order nesting it can lead to a tree ofchildren for a single fork point.

In this chapter we consider only out-of-order nesting; fullsupport for in-order nesting is

described in Chapter 4.

2.4.6 Thread Joining

Upon reaching some termination condition, a speculative child will stop execution and

leave its entire state ready for joining by its parent. The child may stop of its own accord if

it attempts some illegal behaviour as summarized in Table 2.1, if it reaches anelder sibling,

that is, a speculative child forked earlier on by the same parent at a lower stack frame, or if

it reaches a pre-defined speculative sequence length limit.The parent may also signal the
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Figure 2.11: Stack buffering. f1throughf6 are stack frames corresponding to Java methods. A

speculative child is forked atf4 in the parent, and in turn a second-generation grandchild thread is

forked atf5 in the child. Note that this constitutes in-order nesting. Stack frames are buffered on

forking, and additionally when children return from methods;f2 in the grandchild is buffered from

the non-speculative parent, as its immediate ancestor never descended below f3.

child to stop if it reaches the join point associated with thechild’s fork point, in which case

it will attempt to join the child, or if it reaches the child’sforking frame at the top of the

VM exception handler loop, in which case it will unconditionally abort it.

The join process involves verifying the safety of child execution and committing results.

First, a full memory barrier is issued, and the child is then validated according to four tests:

1) the predicted return value is checked against the actual return value for non-void meth-

ods, according to the safety constraints of static analyses[PV04a]; 2) the parent is checked

for not having had its root set garbage-collected since forking the child; 3) the dependence

buffers are checked for overflow or corruption; and 4) valuesin the read dependence buffer

are checked against main memory for violations.

If the child passes all four tests, then the speculation is safe; all values in the write buffer

are flushed to main memory, buffered stack frames entered by the child are copied to the

parent, and non-speculative execution resumes with thepc and operand stack size set as

the child left them. Otherwise, execution continues non-speculatively at the first instruction

past theSPMT JOIN. Regardless of success or failure, the child’s memory is recycled for
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use at future fork points, as described in Section 4.2. Note that buffer commits may result

in a reordering of the speculative thread’s write operations, which must in turn respect the

requirements imposed by the Java memory model, as discussedin Section 2.5.

2.5 Java Language Considerations

Several traps await the unsuspecting implementor that tries to enhance a JVM to support

method level speculation. These traps are actually core features of the Java language —

class loading, object allocation, garbage collection, native method execution, exception

handling, synchronization, and the Java memory model — and aJava SpMT implemen-

tation must handle them all safely in order to be considered fully general. The impact of

these features is measured in Section 2.6.6.

2.5.1 Class Loading

All methods in Java belong to some class, such that each containing class must be linked,

loaded, and initialized before its methods can execute. Some classes are loaded as part of

a VM bootstrap process, whereas others are loaded when the first reference to them is en-

countered. In our design speculative class loading is unsafe and simply forces speculation

to stop. The cost is small for most programs since classes areonly loaded once.

2.5.2 Object Allocation

Object allocation occurs frequently in many Java programs,such that permitting speculative

allocation significantly increases maximum child thread lengths. A benefit of speculative

allocation is that it becomes unnecessary to buffer accesses to objects allocated specula-

tively. Speculative threads can either allocate without synchronization from a thread-local

heap, or compete with non-speculative threads to acquire a global heap mutex. Specula-

tion must stop if the object to be allocated has a non-trivialfinalizer, i.e. not Object.-

finalize, for it would be incorrect to finalize objects allocated by aborted children. Al-

location also forces speculation to stop if either GC or anOutOfMemoryError would be

triggered as a result. Object references only become visible to non-speculative Java threads

52



2.5. Java Language Considerations

upon successful thread validation and committal; aborted children will have their allocated

objects reclaimed in the next collection. Although this does increase collector pressure,

we did not observe any difference in GC counts at the default heap size when speculative

allocation was enabled.

2.5.3 Garbage Collection

All objects in Java are allocated on the garbage-collected Java heap. This is one of the

main attractions of the language, and as such, any serious proposal to extend it must con-

sider this feature; indeed, many Java programs will simply run out of memory without

GC. SableVM uses a stop-the-world semi-space copying collector by default, meaning that

every object reference changes upon every collection; thus, any speculative thread started

before GC must be invalidated after GC. Speculative threads are invisible to the rest of the

VM and are not stopped or traced during collection. However,because heap accesses are

buffered, speculation can safely continue during GC, even ifultimately the computation is

wasteful. The mechanism for invalidation is simple: threads are aborted if the collection

count of the parent thread increases between the fork and join points. The default collector

in SableVM is invoked relatively infrequently, and we find that GC is responsible for a

negligible amount of speculative invalidations. Other GC algorithms are trickier to nego-

tiate with, and may require either pinning of speculativelyaccessed objects or updating of

dependence buffer entries.

2.5.4 Native Methods

Java provides access to native code through the Java Native Interface (JNI) [Lia99]. Native

methods are used in class libraries, application code, and the VM itself for low-level oper-

ations such as thread management, timing, and I/O. Althoughtiming-dependent execution

cannot always be sped up, speculation can still be useful; for instance, consider higher

quality processing of video playback buffers by speculative threads. Speculation must stop

upon encountering native methods, as these cannot be executed in a buffered environment

without significant further analysis. However, non-speculative threads can safely execute

native code while their speculative children execute pure bytecode continuations.

53



Software Method Level Speculation for Java

2.5.5 Exceptions

Implicit or explicit exceptions simply force speculation to stop. Speculative exception han-

dling is not supported in SableSpMT for three reasons: 1) exceptions are rarely encoun-

tered, even for “exception-heavy” applications such asjack (refer to Table 3.8); 2) writing

a speculative exception handler is somewhat complicated; and 3) exceptions in speculative

threads are often the result of incorrect computation, and thus further progress is likely to

be wasted effort.

Non-speculatively, if exceptions are thrown out of a methodin search of an appropriate

exception handler, any speculative children encountered as stack frames are popped must

be aborted. In order to guarantee a maximum of one child per stack frame, children must

be aborted at the top of the VM exception handler loop, beforejumping to the handler

pc. This prevents speculative children from being forked inside eithercatch or finally

blocks while another speculative child is executing in the same stack frame.

2.5.6 Synchronization

Object access is synchronized either explicitly by theMONITORENTER andMONITOREXIT

instructions, or implicitly via synchronized method entryand exit. Speculative synchro-

nization is unsafe without explicit support [MT02], and must force children to stop; some-

what surprisingly, synchronization has been unsafely ignored by past Java SpMT stud-

ies [CO03a, HBJ03]. Non-speculatively, synchronization always remains safe, and it is

even possible to fork and join speculative threads inside critical sections.

2.5.7 The Java Memory Model

The Java memory model [MPA05] imposes constraints on multithreaded execution; these

constraints can be satisfied by inserting appropriate memory barriers [Lea05b]. Speculative

execution can only continue past a memory barrier if the dependence buffer records an exact

interleaving of memory accesses and the relevant barrier operations; that we reuse entries

for value addresses already in the buffer and do not record memory barriers precludes doing

so in our current implementation.
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The orderings required for various API calls, including non-speculative thread creation

and joining, are provided by our design due to their implementations as native methods,

which already force speculation to stop. For object synchronization several rules apply;

most critically, a memory barrier is required before unlockoperations to guarantee that

writes in the critical section are visible to future threadsentering the same monitor. By

disabling speculative locking entirely we provide a much stronger guarantee than required;

future work on speculative locking will need a finer grained approach.

Loads and stores of volatile fields also require memory barriers, to ensure interprocessor

visibility between operations. Java also provides afinal keyword which can be used to

annotate fields. A non-static final field can only be written toonce in the constructor method

of the class that defines it. Loads and stores of final fields require barriers, except that on

x86 andx86 64 these are no-ops [Lea05b]. However, speculatively, we muststop on final

field stores, which appear only in constructors, to ensure that a final field is not used before

the object reference has been made visible, a situation thatis made possible by reordering

writes during commit operations. Our conservative solution is to stop speculation on all

volatile loads and stores and also all final stores.

2.6 Experimental Analysis

In this section we present various kinds of analysis available using SableSpMT, which

themselves form an analysis of the MLS engine itself. These analyses include analysis of

our return value prediction framework, static analyses forimproved return value prediction,

speculation overhead analysis, parallelism analysis, online profiling, Java language feature

and MLS support component analysis, and speedup analysis. We provide experimental

results that demonstrate how these analyses give insight into the properties of individual

benchmarks, components of the framework, and the frameworkas a whole. We also show

how the results suggest interesting areas for future investigation and optimization research.

Our codebase consisted of SableSpMT revision 4320, an extension of the SableVM

1.1.9 switch interpreter. SableSpMT also includes variousstatic analyses that depend on

slight modifications to Soot found in Soot revision 1704. Forthe JDK class libraries,

SableVM Classpath revision 3311 was required, itself a derivative of GNU Classpath 0.13.
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For benchmarks we used the SPEC JVM98 benchmark suite at size100 (S100) [Sta98].

Althoughraytrace is technically not part of SPEC JVM98 and therefore excludedfrom

geometric means, we include results for purposes of comparison; it is the single-threaded

equivalent ofmtrt. All runtime results were performed on a 1.8 GHz 4-way SMP AMD

Opteron machine running Linux 2.6.7 using native 64-bit binaries. Children were forked at

every callsite reached non-speculatively, which meant that in-order nested speculation was

disabled but out-of-order nesting was enabled. These two forms of nesting are discussed in

Section 2.4.2 and illustrated in Figure 2.7. All free processors were occupied by speculative

helper threads, and an optimally accurate return value prediction configuration was used,

unless otherwise stated.

2.6.1 Return Value Prediction

We first performed an initial RVP study without speculation in which we instrumented the

RVP component of our system to obtain a wealth of profiling information [PV04b]. When

a variety of existing predictors from the literature were combined in a hybrid we achieved

an average return value prediction accuracy of 72% over SPECJVM98. The inclusion

of our new memoization predictor increased this average to 81%. Exploiting VM level

knowledge about the width of primitive types then allowed usto reduce hashtable memory

by 35%. One of the more interesting results obtained was how the finite context method

and memoization predictors exhibited dramatically different accuracy depending on bench-

mark. Another was how we were able to identify a small percentage of callsites as being

responsible for either the production or consumption of highly variable data, according to

final finite context method or memoization predictor sizes respectively. We build on this

study and explore RVP exhaustively in Chapter 3.

Given our success with predicting return values, the RVP system became a key part of

SableSpMT. The predictors used in our initial study are alsoused in every experiment in

this chapter, except where explicitly disabled. Specific details on the individual predictors

are given in Section 2.4.3. Note that one important difference that ends up affecting speed,

accuracy, and memory consumption is that our initial results were based on a 32-bit ar-

chitecture, whereas the version of SableSpMT we analyse here and in Chapter 3 is 64-bit.
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The RVP system is easily extendable to support new types of return value predictors, and

could even be used for general purpose load value predictionby speculative threads. In

general, as far as using SableSpMT as an experimental framework is concerned, any MLS

support component could be instrumented for similar analysis purposes, for example the

dependence buffer or priority queue.

2.6.2 Static Analysis Integration

Following our initial RVP study, we next used side effect andcallgraph information de-

rived from Soot’s points-to analysis in two compiler analyses for improved RVP [PV04a].

We could then study the effect on runtime predictor behaviour using SableSpMT. The first

analysis is areturn value useanalysis that determines how return values are used after

returning from a method call. We found statically that an average 10% of non-void call-

sites generateunconsumedreturn values that are never used, and 21% of callsites generate

inaccuratereturn values, which we define as those that are used only inside boolean or

branch expressions. Unconsumed return values do not need any prediction, whereas inac-

curate return values have relaxed predictor accuracy constraints that must nevertheless be

checked at validation time. Actual runtime measurements show less improvement: only 3%

of dynamic method invocations return unconsumed values, whereas 14% return inaccurate

values. This analysis does reduce hashtable collisions, saving 3% of predictor memory and

increasing accuracy by up to 7%.

The second analysis computesparameter dependence, a form of slicing that determines

which parameters affect the return value. Statically, we observed that 25% of consumed

callsites with one or more parameters have zero parameter dependences, and 23% have

partial dependences, such that the return value does not depend on one or more parameters.

At runtime, however, we found that 7% of dynamic method invocations have zero depen-

dences and only 3% have partial dependences. The results of this analysis are exploited to

eliminate inputs to the memoization predictor, and the accuracy of memoization alone for

jack, javac, andjess increases by up to 13%, with overall memory requirements being

reduced by a further 2%. Although these analyses yield only incremental improvements,

at least in their current form, they do demonstrate how new static analyses can be easily
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incorporated into SableSpMT and both validated and employed at runtime. Although their

contribution is minor, we nevertheless make use of these analyses for the subsequent results

in this chapter.

2.6.3 Speculation Overhead

The overhead of thread operations in any SpMT system is a major concern [WS01], and this

is especially true in a pure software environment. As shown in Figure 2.12, parent threads

suffer overhead when forking, enqueueing, joining, and validating child threads, and child

threads suffer on startup and when they reach some stopping condition. We introduced

profiling support based on hardware timestamp counters intoour framework in order to

provide a complete breakdown of SpMT overhead incurred by both non-speculative parent

and speculative helper threads; the results are shown in Tables 2.2 and 2.3 respectively.

The striking result in Table 2.2 is that the parent spends so much of its time forking and

joining speculative threads that its opportunities for making progress through normal Java

bytecode and native code execution are reduced by up to 5-fold. This overhead on the non-

speculative thread is in the critical path of the program, which means that any optimizations

here will improve performance. We see that joining threads is significantly more expensive

than forking threads, and that within the join process, predictor updates and waiting for the

speculative child to halt execution are the most costly sub-categories. We choose to focus

on return value prediction overhead for its unique relevance to method level speculation,

and describe optimizations to predictor updates and validation in Chapter 3. Of course, the

other overhead sub-categories are not insignificant, and wehave several suggestions for

future work in this area. The cost of buffer validation and child committal would perhaps

be best addressed by using one of several highly optimized software transactional memory

packages, as discussed in Section 5.6. The cost of deleting forked but unstarted children

could be minimized by a less aggressive or adaptive forking strategy, perhaps following

the guidelines in Chapter 4. Finally, the cost of signalling and waiting could be addressed

by an AOT or JIT compiler that modified the parent method to signal the child some num-

ber of instructions before returning from the call. The costof profiling itself is high, but

disappears in a final production build.
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Figure 2.12: Speculation overhead.Both non-speculative parent and speculative child threads

suffer wasted cycles due to overhead at fork at join points.

parent execution comp db jack javac jess mpeg mtrt rt

USEFUL WORK 39% 24% 29% 30% 21% 59% 49% 58%

initialize child 2% 5% 3% 4% 4% 2% 1% 2%

enqueue child 4% 10% 10% 9% 7% 3% 2% 2%

TOTAL FORK 6% 15% 13% 13% 11% 5% 3% 4%

update predictor 7% 13% 12% 11% 12% 6% 7% 7%

delete child 5% 5% 5% 4% 5% 2% 2% 2%

signal and wait 15% 14% 11% 11% 19% 8% 26% 11%

validate prediction 4% 4% 4% 5% 7% 3% 2% 3%

validate buffer 4% 6% 6% 5% 5% 3% 1% 2%

commit child 5% 5% 7% 6% 6% 3% 2% 3%

abort child <1% <1% <1% <1% <1% <1% <1% <1%

clean up child <1% <1% <1% <1% <1% <1% <1% <1%

profiling 11% 10% 10% 12% 11% 7% 5% 6%

TOTAL JOIN 53% 59% 57% 56% 67% 34% 47% 36%

PROFILING 2% 2% 1% 1% 1% 2% 1% 2%

Table 2.2: Non-speculative thread overhead breakdown.Parent execution consists of useful work,

fork overhead, and join overhead, and also the profiling overhead inherent in delineating these three

broad tasks. Profiling in the join process includes the cost of gathering overhead info for the other

eight sub-tasks, and of updating various SpMT statistics.
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helper execution comp db jack javac jess mpeg mtrt rt

IDLE 86% 82% 78% 78% 78% 55% 53% 71%

INITIALIZE CHILD 3% 4% 4% 4% 4% 2% 5% 4%

startup <1% <1% <1% <1% <1% <1% 1% <1%

query predictor 3% 5% 4% 4% 6% 5% 15% 8%

useful work 5% 6% 10% 10% 10% 34% 20% 13%

shutdown <1% <1% <1% <1% <1% <1% <1% <1%

profiling <1% <1% <1% <1% <1% 1% 2% 1%

EXECUTE CHILD 9% 12% 16% 16% 17% 41% 40% 24%

CLEAN UP CHILD <1% <1% <1% <1% <1% <1% <1% <1%

PROFILING 1% 1% 1% 1% <1% 1% 1% <1%

Table 2.3: Speculative thread overhead breakdown.Helper SpMT threads execute in a loop, idling

for an opportunity to dequeue children from the priority queue, and then initialize them, execute

them, and clean them up. The child execution process itself consists of startup, querying the return

value predictor, useful work (i.e. bytecode execution), and shutdown, induced by reaching some

termination condition. There is profiling overhead both when executing speculative code, and when

switching between tasks in the helper loop.

In Table 2.3, we can make several observations about the execution of speculative chil-

dren. First, the SpMT helper threads spend the majority of their time being idle, waiting to

dequeue tasks from the priority queue, the implication being that the queue is often empty.

In these experiments, we allow for out-of-order nesting [RTL+05], in which multipleimme-

diatechildren are attached to a non-speculative parent, one per Java stack frame. However,

we do not allow for in-order nesting, wherein speculative children can fork speculative

children of their own, which greatly limits the available parallelism. We extend our system

to support in-order nesting in Chapter 4.

When the helper threadsarerunning speculative children, they spend a majority of their

time doing useful work, which is all bytecode execution for speculative threads. In fact, if

idle times are ignored, the ratio of useful work to overhead is higher speculatively than non-

speculatively, due to higher non-speculative overheads. Outside of bytecode execution, we

see that predictor lookup is quite expensive, due mostly to our näıve hybrid design.
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2.6.4 Speculative Parallelism

SableSpMT allows for investigation into runtime speculative parallelism at a fairly fine

granularity. Speculative thread lengths are recorded on a per-callsite basis and can be anal-

ysed in both the single-threaded simulation and multithreaded modes. Thread length in-

formation, particularly when associated with specific callsites, can be quite instructive as

to the effect of SpMT optimizations on the system. In the single-threaded mode, chil-

dren run until either an unsafe operation occurs or an arbitrary limit on sequence length is

reached. Using a sequence length limit of 1000 instructions, we found that over all specu-

lative children, 30% are successful and in the 0–10 bytecodeinstructions range, with very

few failures, and 15% are successful and run for 90+ instructions. On the other hand, 25%

of all threads are accounted for by failures at 90+, which derives from the correspondence

between thread length and risk of dependence violation or unsafe execution.

In the multithreaded mode, child threads are additionally stopped when parents return

to fork points or pop frames in the exception handler. Here 80% of speculative threads are

accounted for by success in the 0–10 instruction range, withonly 1–2% found in subsequent

10 instruction buckets. As we reduce overhead costs, we expect children to run longer, and

for parallelism to increase. An interesting point to note isthat in hardware simulations,

thread lengths of 40machineinstructions are considered impressive [JEV04], and although

uncommon, some children in our multithreaded mode can run for hundreds ofbytecode

instructions. Our fork heuristic that speculates on every non-speculative method call is a

large contributor to short thread lengths. We explore improved fork heuristics based on

program structure in Chapter 4.

In Figure 2.13, we examinespeculative coverage, the percentage of sequential program

execution that occurs successfully in parallel. We computethis asic/(ic + in), whereic is

the number of instructions executed by committed speculative threads, andin is the num-

ber of instructions executed by non-speculative threads. Adding processors to the system

has an effect on all benchmarks, and with just 4 processors and no support for in-order

nesting, the amount of parallel execution is quite high, an average of 33%. Disabling the

RVP component by always predicting zero brings the average speculative coverage on four

processors from 33% down to 19%. Thus we can confirm the resultpreviously obtained
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Figure 2.13: Speculative coverage with and without RVP.The SPEC JVM98 benchmarks are shown

running with 2, 3, and 4 processors, and the dark regions indicate the improvement as return value

prediction is enabled.

by Hu et al., namely that RVP plays an important role in MLS [HBJ03]. Note that to truly

disable return value prediction, we would need to either disable forking at non-void call-

sites or force all speculations at non-void callsites to fail, because predicting zero is still

correct in some instances; for details, refer to the accuracy of the null predictor (N) in Fig-

ure 3.5. This means that the value of RVP is actually somewhathigher than indicated by

these results.

2.6.5 Runtime Profiling

SableSpMT provides a facility for runtime profiling and feedback-directed optimization.

This is often crucial to performance in runtime systems; forexample, JIT compilers typi-

cally depend on interpreter profiling to determine hot execution paths [AFG+05]. We make

various measurements of the dynamic performance of our system available to optimizations

by associating data with the fork and join points surrounding invokes. Currently our opti-

mizations are written to exploit per-callsite informationand thus calling context-sensitivity,

although the data does generally remain available on a per-target basis.

In the context of return value prediction, our hybrid predictor selects the best sub-

predictor over the last 32 return values, predictor hashtables expand according to load

factors and performance, and future work in Chapter 3 addresses disabling sub-optimal

predictors after a warmup period. In the context of choosingoptimal fork points, we can
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assign child thread priorities or disable speculation completely according to various dy-

namic profiling data, including transitive target method size, speculation success and fail-

ure and the corresponding reasons, speculative sequence lengths, predictor confidence, and

premature child termination due to various stopping reasons.

Despite the extent of online profiling information, we have not discovered optimal fork

heuristics, although others have had success with offline profiling for Java programs [WK05].

As we disable speculation at undesirable fork points, our system does exhibit speedup, but

its source is both better opportunity for speculation as well as reduced overhead. Given

that significant reductions in overhead are likely possiblewithout reducing the number of

dynamic forks, we defer investigations based on dynamically restricting fork points until

no further speedup can be made on that front. However, we do explore the relationship

between program structure, choice of fork point, and resulting parallelism in Chapter 4.

2.6.6 Speculation Behaviour

We now employ the SableSpMT framework to analyse the impact of both speculation sup-

port components and Java language features on MLS runtime behaviour. In Table 2.4, total

counts are given for all child thread termination reasons. In all cases, the majority of chil-

dren are signalled by their parent thread to stop speculation. Significant numbers of child

threads are deleted from the queue, and elder siblings are frequently reached. We examined

the average thread lengths for speculative children and found them to be quite short, typi-

cally in the 0–10 instruction range. These data all indicatethat threads are being forked too

frequently, and are consistent with the general understanding of Java application behaviour:

there are many short leaf method calls and the call graph is very dense [DDHV03]. Further

experiments with dynamic fork heuristics were hampered by alack of insight into whole-

system behaviour. We chose instead to explore the impact of coding idioms and fork point

choice on speculation behaviour to create a set of structural fork heuristics, as detailed in

Chapter 4. Method inlining is another vector for optimization. Inlining changes the call

graph structure, often by eliminating calls to short leaf methods, which are naturally un-

desirable fork points. Huet al. previously argued that the coarser method granularity of

inlined execution in a JIT compiler benefits Java MLS in particular [HBJ03]. Introducing
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termination reasoncomp db jack javac jess mpeg mtrt rt

class resolution and loading2.14K 1.76K 94.8K 487K 3.80K 14.7K 4.79K 5.64K

failed object allocation 1 3 23 17 39 0 28 40

invalid object reference 563 553K 342K 280K 431K 485 407K 278K

finals and volatiles 842 1.45M 2.17M 1.11M 1.95M 888 115K 68.8K

synchronization 4.30K 26.8M 6.95M 17.0M 4.89M 10.4K 658K 351K

unsafe method entry or exit2.66K 1.55K 16.0K 622K 2.62K 1.65K 3.60K 3.00K

implicit non-ATHROW exception 989K 828K 9.57K 572K 78.6K 2.00K 31.2K 20.8K

explicit ATHROW exception 0 0 187K 82 0 0 0 0

native code entry 332 28.2K 1.02M 1.02M 2.63M 527K 259K 260K

elder sibling reached1.24M 3.81M 5.06M 16.1M 5.62M 14.1M 4.03M 4.23M

deleted from queue 348K 686 559K 3.13M 2.55M 4.48M 34.2M 1.57M

signalled by parent202M 92.6M 20.1M 42.1M 56.3M 80.8M 122M 124M

TOTAL CHILD COUNT 204M 127M 36.5M 82.4M 74.5M 99.9M 162M 131M

Table 2.4: Child thread termination.

inlining into our system is part of our future work, as discussed in Section 6.2.5.

Outside of these categories, it is clear that synchronization and the memory barrier re-

quirements for finals and volatiles are important; enablingspeculative locking and record-

ing barrier operations would allow threads to progress further. Native methods can also be

important, but are much harder to treat speculatively. The other safety considerations of

the Java language do not impact significantly on speculativeexecution; even speculative

exceptions are responsible for a minority of thread terminations.

Data on the number of speculative thread successes and failures, as well as a breakdown

of failure reasons, are given in Table 2.5. Failures due to GC,buffer overflows and excep-

tions are quite rare, and the majority of failures typicallycome from incorrect return value

prediction. This again emphasizes the importance of accurate RVP in Java MLS, and the

weak impact of exceptions and GC. Dependence violation counts are not insignificant, and

reusing predictors from the RVP framework for generalized load value prediction should

help to lower them. In general, failures are much less commonthan successes, the geo-

metric mean failure rate being 12% of all speculations. Whilethis is encouraging, many
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join status comp db jack javac jess mpeg mtrt rt

exception in parent 0 0 386K 23.4K 0 0 0 0

incorrect prediction 18.0M 22.7M 2.80M 11.3M 5.80M 7.73M 4.85M 3.72M

garbage collection 4 20 119 206 470 0 90 68

buffer overflow 0 0 0 10 0 0 0 0

dependence violation 1.60M 1.44K 160K 1.53M 342K 14.7M 4.14M 4.00M

TOTAL FAILED 19.6M 22.7M 3.34M 12.9M 6.14M 22.4M 9.00M 7.72M

TOTAL PASSED 184M 103M 32.6M 66.4M 65.8M 73.0M 119M 122M

Table 2.5: Child thread success and failure.

threads are quite short due to an abundance of method calls and therefore forked children,

and the high overheads imposed by thread startup. Thus it is likely the case that had they

progressed a lot further, more violations would have occurred.

2.6.7 Speedup

The ultimate goal of any speculative system is measurable program speedup. Speedup can

be calculated simply as the sequential run time divided by the parallel run time. Parallelism

contributes positively to speedup whereas overhead contributes negatively; thus, there may

be positive parallelism effects that are masked by excessive overheads, leading to system

slowdown. Slowdown itself is simply the inverse of speedup.In order to factor out the

effects of speculation overhead, we compute arelative speedup. Here the sequential run

time is replaced by a new baseline execution time from experiments in which speculation

occurs as normal but failure is automatically induced at every join point. This provides an

upper bound on performance.

We provide overall performance data in Table 2.6. Currently,thread overheads pre-

clude actual speedup, and run times with speculation enabled are within one order of mag-

nitude of sequential execution. Over the entire SPEC JVM98 suite, which does not include

raytrace, there is a geometric mean slowdown of 4.49x. This is competitive with hard-

ware simulations providing full architectural and programexecution detail, which can be

slower by up to three orders of magnitude [KT98]. Slowdowns increase as parallelism in-
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experiment comp db jack javac jess mpeg mtrt rt mean

vanilla SableVM 368s 144s 43s 108s 77s 347s 55s 67s 120s

MLS must fail 1297s 931s 293s 641s 665s 669s 1017s 1530s 722s

MLS may pass 1224s 733s 211s 468s 405s 662s 559s 736s 539s

slowdown 3.33x 5.09x 4.91x 4.33x 5.26x 1.91x 10.16x 10.99x 4.49x

relative speedup 1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

Table 2.6: Execution times, slowdown, and relative speedup.The first row is the sequential vanilla

SableVM run time. The second row is an experiment in which MLS occurs butfailure is forced

at every join point, thereby incurring speculation overhead but eliminating parallelism. The third

row is the parallel run time of regular MLS execution. The fourth row is the system slowdown,

computed as row3 / row 1. The fifth row is relative speedup, computed as row2 / row 3.

creases, due to the concomitant increase in overhead, consistent with our observation that

eliminating even good speculation opportunities can lead to speedup. From an analysis per-

spective, experiments run in acceptable times, well suitable for normal, interactive usage.

This demonstrates the utility of SableSpMT as a research andanalysis framework.

When overhead is factored out, the geometric mean relative speedup over SPEC JVM98

is 1.34x, again excludingraytrace. This means that at least for these benchmarks, out-

of-order nesting alone provides only limited speedup. Although this amount of speedup

would be useful on a 2-way machine, these results are for a 4-way machine, which trans-

lates to at best 36% processor utilization forraytrace. This relatively low upper bound

motivates any work on increasing it, such as the complementary support for in-order nest-

ing described in Chapter 4, under which speculative threads become able to fork their own

children. Although our approach here is not perfectly accurate for obvious reasons, our

results do lean towards being somewhat pessimistic in termsof calculated speedup: Ta-

ble 2.2 shows that MLS failure is slightly less expensive than success, and the fact that

we compute a relative speedup of only 1.01x formpegaudio despite a speculative cover-

age of 9% derives from this. In general, loop-based applications that produce or consume

random compressed data exhibit the least speedup (compress andmpegaudio), numeric

and embarrassingly parallel applications exhibit the greatest (mtrt andraytrace), and

object-oriented applications fall somewhere in-between (db, jack, javac, andjess).
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experiment comp db jack javac jess mpeg mtrt rt mean

no method entry and exit0.94x 1.02x 0.97x 0.98x 1.02x 0.95x 0.79x 0.91x 0.95x

no dependence buffering1.04x 1.22x 1.12x 1.05x 1.16x 1.02x 0.95x 0.97x 1.08x

no object allocation 0.95x 1.30x 1.39x 1.26x 1.55x 0.98x 1.13x 1.23x 1.21x

no return value prediction1.03x 1.17x 1.28x 1.24x 1.44x 1.03x 1.72x 1.70x 1.25x

no priority queueing 0.94x 1.22x 1.35x 1.32x 1.58x 0.97x 1.68x 2.05x 1.27x

full runtime MLS support 1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

Table 2.7: Impact of MLS support components on application speedup.The priority queue was

disabled by only enqueueing threads if a processor was free, return value prediction was disabled

by always predicting zero, and the remaining components were disabled byforcing premature thread

termination upon attempting to use them. As discussed in Section 2.6.4, truly disablingreturn value

prediction would require either disabling forking at non-void callsites or forcing all speculations

at non-void callsites to fail. This means that these results actually understate the value of RVP

somewhat.

Clearly there are significant improvements required in orderto achieve actual speedup

with our MLS design. Our overhead analysis suggests a numberof potential optimizations

to reduce overhead and increase the relative amounts of speculative execution. Designing

and implementing these further improvements is part of our future work. In Chapter 3 we

describe optimizations to the RVP system, eliminating almost all of the overhead incurred

by it. In Chapter 4 we describe support for in-order nesting, which significantly increases

the amount of available parallelism, and we also describe fork heuristics that operate at the

level of program structure to provide longer thread lengths.

We can use a similar kind of speedup analysis to examine the importance of various

contributors to parallelism in the system. Table 2.7 shows the impact of individual support

components on Java MLS speedups. Speedups are given relative to the baseline experiment

in Table 2.6 where speculation occurs as normal but failure is forced at every join point, thus

factoring out overhead costs. The performance of the systemwith all components enabled

and also with individual components disabled is shown to provide an understanding of their

relative importance.

We note first of all thatcompress andmpegaudio are resilient to parallelization, likely
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due to a combination of our current, naı̈ve thread forking strategies and their use of highly

variable compressed data. In some cases, disabling components can even lead to slight

speedup. This phenomenon occurs if overhead costs outweighcomponent benefits; for

example, disabling return value prediction can mitigate the cost of committing many short

threads. In general, we can order the support components by importance: the priority queue

is least important; method entry and exit, or stack buffering, and dependence buffering are

most important; return value prediction and speculative object allocation lie somewhere

in-between. However, it is important to remember that theseconclusions pertain not only

to the benchmarks in question but also the overall system configuration.

2.7 Conclusions and Future Work

Investigation of any sophisticated, general optimizationstrategy requires significant design,

implementation and experimental flexibility, as well as a common ground for investigation.

Further, analysis of speculative execution in Java has mostly been confined to data gathered

from hardware simulation studies. Such work validates specific hardware designs, but is

not typically targetted at general analysis of SpMT and associated program behaviour.

Our design focuses on defining correct Java semantics in the presence of software MLS

and demonstrating the associated cost. Our main goal here isto provide a complete, correct

system and basic analysis useful to further Java MLS or SpMT investigations. Our system

provides a robust framework for Java MLS exploration that simplifies the implementation

effort and allows for easy data gathering and analysis. ThatSableSpMT does not depend

on a hardware simulator means that empirical measurements of MLS behaviour are made

using a cycle and timing accurate implementation, that experimentation with different, ex-

isting multiprocessors is possible through porting to new architectures, and that a variety

of MLS or even more general SpMT designs are available due to the general plasiticity of

software components.

We include detailed collection of dynamic data and also allow for application of internal

feedback at runtime. To evaluate high level program information we include an interface

to Soot-generated Java attributes, and can thus incorporate static information as well. We

have demonstrated the use of all these features through realistic optimization and perfor-

68



2.7. Conclusions and Future Work

mance analyses. Measurements of speculative sequence length, speculative coverage, and

relative speedup all indicate that significant parallelismdoes exist in the sequential threads

of Java programs, and our analysis of speculative overhead indicates where to focus opti-

mization efforts. We are relatively optimistic as to improving the efficiency of our initial

MLS implementation.

Language and software based thread level speculation requires non-trivial consideration

of the language semantics, and Java in particular imposes some strong design constraints.

Here we have also defined a complete system for Java MLS in particular, taking into ac-

count various aspects of high level language and virtual machine behavioural requirements.

Our implementation work and experimental analysis of Java-specific behaviour show that

while most of these concerns do not result in a significant impact on performance, con-

servatively correct treatment of certain aspects can reduce potential speedup, most notably

synchronization. Part of our future work is thus to investigate different forms of speculative

locking [RG01,MT02,RS03] within a Java-specific context.

As with any speculative system, performance and SpMT overhead are major concerns,

and efforts to improve speedup in many fashions are worthwhile, as suggested by our profil-

ing results. We address the problem of RVP overhead in Chapter3 with support for adaptive

hybrid prediction, and the problems of idle processors and short threads in Chapter 4 with

support for in-order nesting and structural fork heuristics respectively. In fact, when we

developed the support for in-order nesting as described in Chapter 4, we found that when

combined with out-of-order nesting it exposed somuchparallelism that a straightforward

experimental comparison with the results in this chapter was impractical.

We are confident that other sources of overhead can be greatlyreduced in our prototype

implementation, through optimization of individual components, greater use of high level

program information, and employment of general and Java-specific heuristics for making

forking decisions and assigning thread priorities. Further speedup can also be provided

by reusing parts of the RVP subsystem for generalized load value prediction. Significant

further work is required, but providing JIT compiler support for software MLS is another

major challenge. The presence of a JIT offers both positive and negative opportunities for

MLS analysis and execution, and will certainly be interesting to examine. There are two key

techniques directly related to MLS that are enabled by either AOT or JIT compiler support.
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First, method inlining should reduce the overhead due to forking threads on very short leaf

methods that almost immediately return and join their children. Second, methodoutlining

or extraction of key loop bodies into their own methods couldexpose more parallelism in

certain loop-centric applications. Disabling fork pointsinside library code could also have a

strong positive effect. Soot would be a useful experimentalframework for prototyping these

transformations. We describe opportunities for future work in greater detail in Section 6.2.

Continued improvements to our framework will also provide for new research opportu-

nities. We have implemented method level speculation, but other researchers have also had

success with loop level [RS01], lock level [MT02,RG01], and arbitrary speculation [BF04]

strategies. These approaches have largely common internalrequirements, and side-by-side

implementations within our framework will make direct and meaningful comparisons of

the various techniques feasible, and furthermore enable their composition.
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Chapter 3

Adaptive Software Return Value Prediction

In the preceding chapter, return value prediction (RVP) wasused by speculative chil-

dren to predict the return values of method calls before theyactually completed, exposing

additional parallelism under method level speculation by allowing speculation to proceed

past the consumption of return values in non-void method continuations. In addition to

improving MLS performance, RVP can also enable a number of other program optimiza-

tions and analyses. However, despite the apparent usefulness, RVP and value prediction

in general have seen limited uptake in practice. Hardware proposals have been successful

in terms of speed and prediction accuracy, but the cost of dedicated circuitry is high, the

available memory for prediction is low, and the flexibility is negligible. Software solutions

are inherently much more flexible, but a naı̈ve approach can only achieve high accuracies in

exchange for significantly reduced speed and increased memory consumption. In this chap-

ter we first express many different existing prediction strategies in a unification framework,

using it as the basis for a software implementation. We then explore an adaptive software

RVP design that relies on simple object-orientation in a hybrid predictor. It allocates pre-

dictors on a per-callsite basis instead of globally, and frees the resources associated with

unused hybrid sub-predictors after an initial warmup period. We find that these techniques

dramatically improve speed and reduce memory consumption while maintaining high pre-

diction accuracy. The framework we present here is modular enough for general purpose

reuse in a variety of applications, which we discuss.
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3.1 Introduction

Return value prediction (RVP) is a runtime technique for guessing the result of a function,

method, or procedure call. It is a specific case of value prediction in general, differentiated

by the fact that functions may take arguments, and also by thefact that as the core build-

ing block of modularity, functions provide an extremely broad range of behaviour. Value

prediction enables a variety of speculative optimizations, with their success and practical

value depending on the accuracy and relative overhead of theprediction system.

Following our initial results in Chapter 2, we knew that RVP was beneficial to MLS

execution, per Figure 2.13 and Table 2.7. However, it was also a source of significant per-

formance overhead: on average, predictor execution accounted for 14% of non-speculative

execution and 44% of speculative execution, per Tables 2.2 and 2.3 respectively. To address

this, we first refactored our JVM-based implementation of RVP into libspmt, a software li-

brary with much cleaner, object-oriented code, as described in Chapter 2. This included

removing the overlap between sub-predictor state, which inturn enabled an optimization

based on adaptively specializing hybrid predictors. We describe these new hybrids in this

chapter and demonstrate their comparable accuracy and improved performance. We also

increase the number of predictors under consideration fromsix to twelve, making this study

much broader than our initial efforts.

Value prediction is typically investigated in a hardware context, where the focus is on

providing high accuracy with minimal circuit and cycle costs on a novel architecture. Soft-

ware designs are much less common, but can be supported on existing and off-the-shelf

machines. The primary implementation advantages of software prediction are relatively

unbounded memory resources, cheap development costs, and high level runtime informa-

tion. In terms of applications, software prediction allowsgreater and more portable use of

value prediction data in optimization and analysis, but it also requires careful optimization

and understanding of predictor performance in order to ensure practical efficiency. Previ-

ous work in software value prediction has concentrated on mimicking hardware designs in

software. We believe that software value prediction can be more generally useful and is

worth exploring in its own right, its relationship to hardware value prediction being analo-

gous to that between software transactional memory and hardware transactional memory.
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In this chapter we seek to establish a software state of the art in value prediction by pro-

viding a fast, accurate, and memory efficient design and implementation for return value

prediction. Note that although in this chapter we focus on making accurate predictions, ac-

curacy requirements can be relaxed somewhat by areturn value useanalysis, as discussed

in Section 2.6.2.

Our approach was to implement several known predictors, including both simple fixed-

space designs that need only limited resources and more complex table-based predictors

that have significant resource requirements. A significant problem we encountered in

reviewing the hardware literature was understanding exactly how the existing predictors

worked, and how they were related to each other. To this end wedeveloped a unifica-

tion framework for organizing the various predictors and created straightforward software

implementations of them. We included both space-efficient computational predictors and

space-inefficient table-based predictors in our design. The higher level of abstraction pro-

vided by a software approach simplified the design of easily composable, modular predic-

tors, and this was in fact essential to designing an effective software hybrid predictor, as

well as exposing the potential for several new sub-predictors. We applied our predictors

to the standard SPEC JVM98 Java benchmarks to measure their return value predictability,

as well as the relative accuracy, speed, and memory consumption of individual predictor

types.

The core of our design is a hybrid predictor that brings together all of the predictors

in our framework. Hybrids work to select the best-performing sub-predictor for a given

prediction, based on either offline or online profiling. Figure 3.1 shows what a typical

implementation of hybrid RVP in hardware might look like. First to make a prediction, a

callsite address is hashed to an entry in a primary hashtable. This entry contains the hybrid

predictor state, which includes prediction accuracies forindividual sub-predictors as well

as stateful information they might need, such as a history ofreturn values. The hybrid then

selects the best performing sub-predictor to create a prediction. In-place sub-predictors

compute a value based directly on the state, whereas table-based sub-predictors hash com-

ponents of the state to a predicted value in a secondary hashtable. On each prediction,

even though only one will be selected, all sub-predictors execute, which in hardware is

easily parallelized. When the function returns from the call, sub-predictor correctness be-
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Figure 3.1: Hybrid prediction in hardware (conventional).

Figure 3.2: Hybrid prediction in software (novel).

comes known, and the hybrid state and all corresponding table-based predictor entries get

updated. The most notable feature for our purposes is that due to hardware constraints, all

data structures are fixed-size global singletons. Given that hybrids necessarily track pre-

dictor accuracy through some kind of confidence measure, this information could also be

used as an input to dynamic fork heuristics, as discussed in Section 2.4.3.

Although hardware hybrid predictors are well-studied [BZ02], software hybrids are

not. Our hybrid design exploits its software context to provide adaptivity, as shown in

Figure 3.2. The first major kind of adaptivity is that a singlehybrid predictor instance

is associated with each callsite, which allows for scaling according to program size and

client usage. Each hybrid has some private state, and each sub-predictor has its own state

as well. Importantly, there is no state sharing between sub-predictors. On prediction and

update, the hybrids execute and update every sub-predictor. This design can be extended
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through sub-classing, avoids conflicts, achieves high accuracy, and allows for tables to

grow as necessary. The primary disadvantages are that serialized sub-predictor execution

leads to high overhead costs and that the memory consumptioncan be excessive. The

second major kind of adaptivity is an attempt to optimize away these costs. After a warmup

period, if the accuracy of an individual sub-predictor meets a certain threshold, the hybrid

specializes. This frees all other predictor resources, such that prediction and update only

access the individual sub-predictor. If accuracy ever drops below a certain threshold, the

hybrid despecializes. Thus we can maintain accuracy while reducing speed and memory

overhead.

3.1.1 Contributions

We make the following specific contributions:

• A unification framework for specifying and relating predictors to each other based

on the patterns they capture, their mathematical expression as functions of inputs and

value sequences, and their software implementations. Thiswork clarifies the extant

literature, exposes the potential for new predictors, and demonstrates how object-

oriented predictor composition can simplify understanding and implementation.

• Several new sub-predictors, including a 2-delta last valuepredictor, a table-based

memoization predictor that hashes together function arguments, and memoization

stride and memoization finite context method predictors derived from it. These

argument-based predictors capture repetition in functioninputs that existing value

history-based predictors do not. Further, the table-basedpredictors in our software

design use dynamically expanding hashtables to conserve memory where possible

without affecting accuracy.

• An adaptive software hybrid predictor composed of many sub-predictors that dy-

namically specializes to whichever sub-predictor performs best. Its object-oriented

design and implementation enables two unique optimizations. First, it allocates one

hybrid predictor instance per prediction point to eliminate conflicts and improve ac-

curacy. Second, it identifies ideal sub-predictors at runtime and specializes at a pre-
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diction point granularity, bypassing the execution of unused sub-predictors and ac-

tually freeing their associated data structures. The end result is dramatic speed and

memory consumption improvements that do not sacrifice high prediction accuracy.

• A software library implementation of return value prediction. This library is open

source, portable, modular, and supported by unit tests. We use this library and its

built-in profiling to obtain a comprehensive set of speed, memory, and accuracy pre-

diction data for both our hybrid and its component sub-predictors, gathered at every

method invocation over SPEC JVM98 at size 100, a significant improvement to ex-

isting data [HBJ03].

In the next section, we present our predictor unification framework. Section 3.3 de-

scribes our experimental setup, and Section 3.4 provides aninitial performance evaluation.

We then develop and apply our adaptive hybrid design in Section 3.5 to optimize these

results. Finally, we present our conclusions and future work. Related work specific to RVP

is described in Chapter 5.

3.2 Predictor Unification Framework

A wide variety of value predictors have been proposed, making a basic organization and

evaluation essential to our study. Many predictors described in the literature are presented

as hardware implementations, often using circuit diagrams. This approach clearly ex-

presses the design in terms of feasibility, power and space efficiency, but many of these

details can also obscure the intended algorithmic behaviour of the predictor. In designing a

software solution, we abstracted the simplest implementation approach for each predictor,

and so discovered many commonalities between predictors that are not immediately appar-

ent in hardware designs. Based on this exploration, we developed a unification framework

for value predictors to clarify their intended behaviour and implementation and relate them

to each other. This framework also suggested several new predictors.

Tables 3.1–3.7 give a structured presentation of a variety of common predictors. These

tables contain typical history-based predictor designs, extended predictors that also con-

sume argument state, and composite predictors that containsub-predictors. In each case we
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provide an idealized mathematical expression, an example if appropriate, and the stateful

data and pseudo-code used to implement the actual predictor. The mathematical expres-

sions illustrate predictor behaviour by showing how the current prediction (vn) is derived

from a history of actual return values (vn−1, vn−2, . . .), as well as current and past function

arguments (args(n), args(n − 1), . . .). Implementation details include fields for actual

state and pseudo-code insidepredict andupdate functions that provide a common pre-

dictor interface.predict optionally takes function arguments and returns a new predicted

value, whileupdate takes the actual return value and updates internal predictor state. For

brevity we use several non-standard but self-explanatory functions in these descriptions.

Our unification framework does not include predictors that are unsuitable for return value

prediction, nor those that are substantially equivalent tothe ones presented here. However,

extensions are straightforward, and our experience suggests that all predictors benefit from

expression in this form.

In the following subsections we describe our logic in constructing Tables 3.1–3.7, and

give further detail on the individual predictors. We followthis in Section 3.4 with an

experimental analysis using our software RVP framework, exploring the relative accuracy

of different predictor designs as well as their memory and time costs.

3.2.1 History-Based Predictors

Tables 3.1–3.4 contain predictors based only on the historyof return values for the associ-

ated function. We used predictor names as reported in the literature, except for last N stride,

which is a local version of the global gDiff predictor [ZFC03]. At the top of each table are

predictors that derive their prediction from the value history directly, whereas at the bottom

are predictors that use the differences orstridesbetween values in the history. It is useful to

think of the stride predictors as derivatives of the value based predictors; the word ‘differ-

ential’ chosen by the creators of the differential finite context method predictor in Table 3.4

is expressing this relationship [GVdB01]. This organized division between primary and

derivative forms suggests a new 2-delta last value predictor, shown in Table 3.2. We used a

standard value ofN = 4 in our experimental analysis of the last N value and last N stride

predictors in Table 3.3, whereN is the value or stride history length. We used a similarly
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standard value ofC = 5 in our analysis of the finite context method, differential finite

context method, and memoization finite context method predictors in Tables 3.4 and 3.6,

whereC is again the value or stride history length.

Last Value (LV)

The last value predictor is perhaps the simplest useful predictor. It merely predicts that the

return valuevn will be the same as the last valuevn−1 returned by the function. It has a

single fieldlast that gets returned when making a prediction and assigned to when the

actual return value is known. In the example, after seeing the sequence1, 2, 3, a last value

predictor would simply predict3 as the next output.

Stride (S)

A stride predictor can be seen as a derivative of the last value predictor, computing a pre-

diction based on the sum of the last stride between values andthe last value. For instance,

upon seeing1, 2, 3, it would predict4 from the last value3 plus the stride of1 between2

and3. While not completely comparable, this captures most of the same patterns as the last

value predictor as well as new ones. In particular, many loopindices and other increment-

ing or decrementing sequences are easily recognized. Disadvantages are that it takes an

extra prediction to warm up, the update and predict operations are somewhat slower, and

there is an extra field of storage.

2-delta Stride (2DS)

The 2-delta stride predictor is similar to the stride predictor, imposing the extra constraint

that the stride must be the same twice in a row before the predictor updates the stride used

to make the prediction. In the example, the stride of1 detected early in the history is still

used to predict4 even after seeing3 twice, whereas a simple stride predictor would predict

3 based on the last stride. This design reduces mispredictions by being able to ignore

single abberations in a sequence, as can occur in the contextof nested loop iterations. In

the hardware literature the 2-delta stride predictor has anextra “hysteresis” bit to detect

repeats in the stride.
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2-Delta Last Value (2DLV)

The 2-delta last value predictor is a new predictor that was suggested by the lack of a

corresponding, non-derivative form of the 2-delta stride predictor. A last value approach

is used, but the value stored is only updated if the last valueis the same twice in a row.

For instance, given a sequence such as1, 1, 2, 3, the stored last value is not updated during

periods of change, and the predicted value will be1 until the return value again repeats.

In a general sense, the 2-delta pattern can be generalized toarbitraryC-delta predictors,

for arbitrary predictors and constant or boundC. IncreasingC improves robustness, at a

cost of increased warm-up time and larger state.

Last N Value (LNV)

The last N value predictor maintains anN -length history of return values, and uses that list

to search for matches to the most recent return value. A matchresults in a prediction of the

next value in the history. This allows the last N value predictor to identify short repeating

sequences, capturing simple alternations such as0, 1, 0, 1, . . ., or more complex patterns

such as1, 2, 3, 1, 2, 3, . . ., neither of which are ideally predicted by the last value or stride

predictors. Our example illustrates the latter case, whereassumingN ≥ 3, a value of1 is

predicted based on the most recent return value of3 and a history containing a3 followed

by a1.

Last N value is a generalization of the last value predictor,which may also be expressed

as a last 1 value predictor. In their analyses Burtscher and Zorn found thatN = 4 was a

reasonable tradeoff of accuracy against predictor complexity [BZ99a], and so we use this

configuration in our experiments.

Last N Stride (LNS)

The last N stride predictor is the corresponding stride version of the last N value predictor,

recording a history of strides rather than a value history. It generalizes and subsumes the

stride predictor, which can also be considered a last 1 stride predictor.

The example shows a sequence with strides repeating in the pattern1, 2, 3. Given the

last value of13, the last stride was3, which historically was followed by a stride of1.
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Adding1 to the last value gives a prediction of14. This example is contrived for purposes

of illustration, but repeating stride patterns can occur naturally in several ways, for example

by accessing field addresses that have identical offsets in multiple objects.

Finite Context Method (FCM)

To capture more complex historical patterns, the finite context method predictor hashes

together acontext, or recent history of return values of lengthC. The hashed value is

used as hashtable key to index the corresponding return value. This allows for multiple,

different patterns to coexist, trading hashing and storagecosts for improved accuracy; in

the example the pattern2, 3 is detected as recurrent and used for the next prediction, despite

the existence of other output behaviour before and after. Inour suggested implementation

the key is stored as a predictor field so that later updates do not have to recompute the hash

value, improving performance, although also potentially reducing accuracy.

Hashtable management is a non-trivial concern here: in addition to a good hashing

function, table size and growth must be controlled. We use Jenkins’ fast hash [Jen97]

to compute hashtable keys and power-of-2 sized open addressing tables that use double

hashing for lookup in our implementation. At runtime we allow hashtables to dynamically

expand up to a maximum table size by doubling in size when 75% full. We experiment

with maximum table size in Section 3.4 to assess how accuracyand memory requirements

interact, but otherwise use a maximum size of225 bits, one power-of-2 larger than necessary

for all benchmarks. Finally, we use a context length ofC = 5 in our experiments, which

Sazeides and Smith also favoured in their study of finite context method predictors [SS97a].

Differential Finite Context Method (DFCM)

Analogous to the finite context method, the differential finite context method predictor

hashes together a recent history of strides rather than values. This is used to look up a

stride in a hashtable for adding to the last value in order to make a prediction. The example

shows a sequence containing the stride pattern3, 2, which is recognized and used to predict

the next value of21. DFCM has the potential to be more space efficient and faster towarm

up than the finite context method predictor.
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3.2.2 Argument-Based Predictors

Return value prediction accuracy can be improved by taking into account function inputs

instead of or as well as function outputs when making a prediction. Tables 3.5 and 3.6

contain the predictors that exploit this information, again separated in terms of normal

and derivative forms. In each of these cases thepredict function now receives the current

function arguments as input. In our implementation we disable these predictors for methods

that do not take any arguments.

Memoization (M)

The memoization predictor is a new predictor that behaves like the finite context method

predictor but hashes together method arguments instead of arecent history of return values.

The predictor name comes from the traditional functional programming technique known

as memoization, alternatively function caching, that “skips” pure function execution when

the arguments match previously recorded<arguments, return value> table entries. In our

example, the argument pattern of1, 2, 3 is hashed together and the key found existing in

the hashtable, resulting in a prediction of 4 for the third invocation off . A key difference

from traditional approaches is that memoization based predictions can be incorrect. This

means that only the lookup key needs to be stored in the table as opposed to the entire set

of arguments. It also makes memoization applicable to all functions that take arguments

instead of only the typically much smaller subset of pure, side-effect free functions found

in an object-oriented program. The MS predictor is a simple stride derivative, whereas

MFCM incorporates value history.

Memoization Stride (MS)

A similar memoization approach can be applied to stride values. Memoization stride stores

a stride between return values in its hashtable instead of anactual value, much like the

differential finite context method predictor, and adds thisvalue to the last value to make a

prediction. The example shows a stride of3 associated with arguments1, 2, 3, resulting in

a new prediction of7 based on the previous value of4 and the stride found for that argu-
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ment pattern. Unlike the differential finite context methodpredictor, it is not necessarily

more space efficient than its non-derivative form, since theset of values used to compute a

hashtable key remains the same.

Memoization Finite Context Method (MFCM)

The memoization finite context method predictor is a direct combination of the memoiza-

tion and finite context method predictors. It concatenates the recent history of return values

with the function arguments and uses the result to compute a hash value for table lookup.

This is significantly more expensive than either memoization or finite context method pre-

dictors, but has the potential to capture complicated patterns that depend on both historical

output and current input. The example shows a context of length 2, recognizing the out-

put sequence5, 6 followed by an argument of3, which leads to predicting the previously

seen value of7. In comparison, a pure memoization predictor would predict9 here from

the prior<argument, return value> pair given byf(3) = 8, and a pure FCM predictor

would return8 due to the preceding output sequence of5, 6, 8. Note that a differential ver-

sion of the memoization finite context method predictor would naturally follow from our

framework; instead we investigated the parameter stride predictor, as shown in Table 3.6.

Parameter Stride (PS)

The parameter stride predictor identifies a constant difference between the return value and

one parameter, and uses this to compute future predictions.A simple example of a function

it captures is one that converts lowercase ASCII character codes to alphabet positions. Al-

though the parameter stride predictor is in general subsumed by the memoization predictor,

parameter stride is simpler in implementation, warms up very quickly, and requires only

constant storage.

3.2.3 Composite Predictors

Table 3.7 contains predictors that are composites of one or more sub-predictors. The hybrid

predictor uses the other predictors directly, returning a prediction by the best performing
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sub-predictor, whereas composite stride is in fact a generalized pattern for creating other

predictors.

Hybrid (H)

The hybrid predictor is composed of one of each kind of sub-predictor. To make a pre-

diction, it first obtains a prediction from each sub-predictor and records this value. It then

returns the prediction of the predictor with the highest accuracy, favouring the earliest sub-

predictor in the event of a tie. In our implementation we keeptrack of accuracy over the

lastn values, wheren is the number of bits in a word;n = 64 on ourx64 64 machines.

This allows sub-predictors with locally good but globally poor accuracies to be chosen by

the hybrid. To update the hybrid, for each such sub-predictor update is called, the actual

return value is compared against the predicted return value, and the accuracy histories are

updated accordingly. The accuracy of the hybrid itself can be used as an explicitpredictor

confidenceinput to priority computation and thus dynamic fork heuristics, as discussed in

Section 2.4.3.

Composite Stride

The composite stride predictor is not an individual predictor but rather a generalized im-

plementation pattern for constructing stride predictors.A composite stride simply contains

another predictor that it will use to predict a stride value,and adds that to the previous

return value. Each predictor at the bottom of Tables 3.1–3.4as well as the memoization

stride predictor in Table 3.5 can be alternatively constructed as a composite stride predictor

containing the corresponding predictor at the top. In our implementation we applied this

pattern to implement all stride predictors except the parameter stride predictor, which does

not follow this pattern because it predicts a constant difference between the return value and

one parameter. This object-oriented simplification was only realized once we expressed the

predictors using this framework.
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Last Value [Gab96] – LV

vn = vn−1

Predicts using the last value.

example:1, 2, 3→ 3

fields: last

predict():

return last;

update(value t rv):

last = rv;

Stride [Gab96] – S

vn = vn−1 + (vn−1 − vn−2)

Predicts using the difference between the last two values.

example:1, 2, 3→ 4

fields: last, stride

predict():

return last + stride;

update(value t rv):

stride = rv - last;

last = rv;

Table 3.1: History-based predictors I.
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2-Delta Last Value(new) – 2DLV

vn = vn−i, wherei is the mini s.t.
vn−i = vn−i−1

or vn−1 if no suchi exists

LV that only updates if the last value is the same twice in a row.

example:1, 1, 2, 3→ 1

fields: last1, last2

predict():

return last2;

update(value t rv):

if (rv != last1) last1 = rv;

else last2 = rv;

2-Delta Stride [SS97b] – 2DS

vn = vn−1 + vn−i − vn−i−1, wherei is the mini s.t.
vn−i − vn−i−1 = vn−i−1 − vn−i−2

or vn−1 if no suchi exists

S that only updates if the stride is the same twice in a row.

example:1, 2, 3, 3→ 4

fields: last, stride1, stride2

predict():

return last + stride2;

update(value t rv):

if (rv - last != stride1) stride1 = rv - last;

else stride2 = rv - last;

last = rv;

Table 3.2: History-based predictors II.

85



Adaptive Software Return Value Prediction

Last N Value [LS96,BZ99a] – LNV

vn = vn−i, wherei ≤ N is the mini s.t.
vn−1 = vn−i−1

or vn−1 if no suchi exists

Predicts using the value at some position in the lastN values.

example:1, 2, 3, 1, 2, 3→ 1

fields: values[N], last correct pos

predict():

return values[last correct pos];

update(value t rv):

last correct pos = contains (values, rv) ?

index of (rv, values) : 1;

shift into (values, rv);

Last N Stride [ZFC03] – LNS

vn = vn−1 + (vn−i − vn−i−1), wherei ≤ N is the mini s.t.
vn−1 − vn−2 = vn−i−1 − vn−i−2

or vn−1 − vn−2 if no suchi exists

Predicts using the stride at some position in the lastN strides.

example:1, 2, 4, 7, 8, 10, 13→ 14

fields: last, strides[N], last correct pos

predict():

return last + strides[last correct pos];

update(value t rv):

last correct pos = contains (strides, rv - last) ?

index of (rv - last, strides) : 1;

shift into (values, rv - last);

Table 3.3: History-based predictors III.contains (a[], v) returns true if arraya[] contains

valuev, whereasindex of (v, a[]) returns the position ofv in a[]. shift into (a[], v)

addsv to a[], shifting all other elements down and removing the oldest element.
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Finite Context Method [SS97b,SS97a] – FCM

vn = vn−i, wherei is the mini s.t.
vn−c = vn−i−c, for all c ≤ C

or 0 if no suchi exists

Captures value history patterns of lengthC + 1.

example:1, 7, 2, 3, 8, 4, 7, 2→ 3 for C = 2

fields: key, context[C]

predict():
key = hash (context);

return lookup (key);

update(value t rv):

store (key, rv);

shift into (context, rv);

Differential Finite Context Method [GVdB01] – DFCM

vn = vn−1 + (vn−i − vn−i−1), wherei is the mini s.t.
vn−c − vn−c−1 = vn−i−c − vn−i−c−1, for all c ≤ C

or 0 if no suchi exists

Captures stride history patterns of lengthC + 1.

example:1, 6, 9, 11, 16, 19→ 21 for C = 2

fields: last, key, context[C]

predict():
key = hash (context);

return last + lookup (key);

update(value t rv):

store (key, rv);

shift into (context, rv - last);

Table 3.4: History-based predictors IV.hash (a[]) produces a hashtable key from the values in

a[]; lookup (key) returns the hashtable value at indexkey; andstore (key, v) stores value

v at indexkey.
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Memoization (new) – M

vn = vn−i, wherei is the mini s.t.
args(n) = args(n− i), or 0 if no suchi exists

Maps function arguments to return values.

example:f(1, 2, 3) = 4, f(4, 5, 6) = 7, f(1, 2, 3)→ 4

fields: key

predict(value t args[]):

key = hash (args);

return lookup (key);

update(value t rv):

store (key, rv);

Memoization Stride (new) – MS

vn = vn−1 + (vn−i − vn−i−1), wherei is the mini s.t.
args(n) = args(n− i), or 0 if no suchi exists

Maps function arguments to return value strides.

example:f(1, 2, 3) = 4, f(1, 2, 3) = 7, f(1, 2, 3)→ 10

fields: key, last

predict(value t args[]):

key = hash (args);

return last + lookup (key);

update(value t rv):

store (key, rv);

last = rv;

Table 3.5: Argument-based predictors I.
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Memoization Finite Context Method (new) – MFCM

vn = vn−i, wherei is the mini s.t.
vn−C = vn−i−C , for all c ≤ C, and
args(n) = args(n− i), or 0 if no suchi exists

Maps function arguments× value history to return values.

example:f(1)=5, f(2)=6, f(3)=7, f(3)=9, f(1)=5,

f(5)=6, f(5)=8, f(1)=5, f(2)=6, f(3)→ 7 for C = 2

fields: key, context[C]

predict(value t args[]):

key = hash (concat (args, context));

return lookup (key);

update(value t rv):

store (key, rv);

shift into (context, rv);

Parameter Stride [HBJ03] – PS

vn = args(n)[a] + (vn−i − args(n− i)[a]), wherei is the mini s.t.
vn−i − args(n− i)[a] = vn−i−1 − args(n− i− 1)[a]

for some argument indexa, or 0 if no suchi exists

Identifies a constant offset between one parameter and the return value.

example:f(‘r’) = 17, f(‘v’) = 21, f(‘p’)→ 15

fields: a = A, old args[A], strides[A]

predict(value t args[]):

copy into (old args, args);

return a < A ? args[a] + strides[a] : 0;

update(value t rv):

for (i = A - 1; i >= 0; i--)

if (rv - old args[i] == strides[i]) a = i;

strides[i] = rv - old args[i];

Table 3.6: Argument-based predictors II.concat (a[], b[]) returns arraysa[] andb[] con-

catenated into a single array.copy into (a[], b[]) copies the contents ofb[] into a[].
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Hybrid [BZ02] (new design) – H

vn = f(v1, . . . , vn−1, args(n)),

wheref is the best performing sub-predictor

Combines many different sub-predictors and identifies the best one.

fields: predictors[], accuracies[], predictions[]

predict(value t args[]):

for (p = 0; p < P; p++)

predictions[p] = predictors[p].predict (args);

return predictions[max index (accuracies)];

update(value t rv):

for (p = 0; p < P; p++)

predictors[p].update (rv);

accuracies[p] = (rv == predictions[p]) ?

min (accuracies[p] + 1, 64) :

max (accuracies[p] - 1, 0);

Composite Stride(new) – CS

sn−i = vn−i − vn−i−1, ∀ 2 ≤ i < n

sn−1 = f(s1, . . . , sn−2, args(n− 1)),

wheref is any sub-predictor
vn = vn−1 + sn−1

Creates a stride derivative of any other predictor.

fields: last, f

predict():

return last + f.predict ();

update(value t rv):

f.update (rv - last);

last = rv;

Table 3.7: Composite predictors.Our software hybrid design is new, but conceptually similar to

hardware hybrid designs. The composite stride predictor is a general implementation pattern for

converting value predictions into stride predictions, rather than a specific predictor.
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3.3 Experimental Setup

The first step in our experimental approach was to create an object-oriented C implemen-

tation of every predictor described in Section 3.2. For easeof experimentation, this work

was done inside libspmt, but it would be reasonably straightforward to refactor the RVP

code into a separate value prediction library. Like the restof libspmt, the RVP code is open

source, portable, and modular, and the predictors are all supported by unit tests that check

for expected predictor behaviour. It currently runs onx86 64 andppc64 architectures.

It also includes profiling support, which we used to generatethe raw data for our experi-

mental results. We then modified SableSpMT to communicate directly with the RVP code,

bypassing the method level speculation fork and join interface. Below we describe the

basic system structure and client configuration, followed by initial analysis of our bench-

marks and overhead costs. Sections 3.4 and 3.5 provide more detailed experimentation on

individual and hybrid predictors respectively.

Figure 3.3 gives an overview of the general RVP library structure and client–library

communication process. At the library core is a map between physical callsite addresses

and callsite probe objects. Each probe contains a hybrid predictor instance as well as

callsite identification and profiling information. When the VM client allocates a non-void

callsite during method preparation, it sends the callsite address, class, method, program

counter, and target method descriptor to the library in exchange for a reference to a callsite

probe object. This reference is used for all subsequent communication to avoid unnecessary

table lookups.

We modified the VM to callpredict andupdate RVP functions before and after

non-void callsite execution respectively. The former takes method arguments, including

any implicit this reference, and returns a predicted value, whereas the latter takes the

actual return value and updates the predictors associated with the callsite. In the event

of escaping exceptions, no update occurs. To minimize VM changes, the library parses

arguments from the VM call stack using the target descriptor, zeroing out unused bytes

and arranging the arguments contiguously in memory. Internally, the hybrid and all sub-

predictors subclass a predictor class withupdate andpredict methods. This design

allows for easy composition and hybrid specialization, as described in Section 3.5.
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Figure 3.3: Client–library communication.

3.3.1 Benchmarks

As in Chapter 2, we used the SPEC JVM98 benchmarks with input set S100 for experi-

mental evaluation [Sta98]. These benchmarks are not as complex or memory-intensive as

the more recent DaCapo benchmarks [BGH+06]. However, they are fast to execute, an

important factor in performing a large number of experiments, and more than sufficient for

a software RVP study as they use over 800 million non-void method calls in the absence

of method inlining. Our choice of benchmark suite also directly extends previous work

on RVP for Java, which used the same benchmarks but alternatively ran only the tiny S1

dataset in a restricted hardware context that only considered boolean, int, and reference

return types [HBJ03] or ignored specific predictor behaviour[SB06]. It also extends the

work in Chapter 2 that focuses on our MLS client application ofthe results.
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benchmark comp db jack javac jess mpeg mtrt

methods 670 714 936 1.51K 1.15K 838 863

callsites 2.48K 2.79K 4.56K 7.20K 4.32K 2.94K 3.71K

invokes (V) 93.4M 54.4M 35.0M 39.9M 23.3M 45.2M 28.4M

invokes (NV) 133M 116M 62.9M 82.3M 102M 65.8M 259M

escapes (V) 0 0 608K 0 0 0 0

escapes (NV) 0 0 68 41.5K 0 0 0

returns (V) 93.4M 54.4M 34.4M 39.9M 23.3M 45.2M 28.4M

returns (NV) 133M 116M 62.9M 82.3M 102M 65.8M 259M

booleansZ 6.70K 11.1M 17.3M 19.5M 35.8M 13.2M 3.07M

bytesB 0 0 580K 39.3K 0 0 0

charsC 8.85K 25.2K 8.53M 3.80M 24.4K 6.96K 20.8K

shortsS 0 0 0 73.0K 0 18.0M 0

intsI 133M 48.1M 17.9M 35.9M 20.7M 34.6M 4.54M

longsJ 440 152K 1.23M 818K 100K 15.7K 2.07K

floatsF 102 704 296K 104 1.04K 7.82K 162M

doublesD 0 0 0 160 1.77M 56 214K

referencesR 17.0K 56.2M 17.0M 22.2M 43.5M 24.3K 89.6M

Table 3.8: Benchmark properties.V: void; NV: non-void; escapes: escaping exceptions.

Table 3.8 presents relevant benchmark properties. The firstsection shows the number of

methods and callsites in the dynamic call graph. In principle, we can associate predictors

with methods, callsites, or the invocation edges that join them. We choose here to use

callsites exclusively, mostly to limit the scope of our evaluation. Callsites seem like a

reasonable choice because they capture the calling contextwithout being type sensitive. In

future work, it would be interesting to study how performance differs when methods or

invocation edges are used instead.

The second section shows dynamic void and non-void invokes,escapes, and returns. An

invoke is a method call, a return is normal method completion, and an escape is abnormal

method termination due to an uncaught exception in the callee. We exclude void method

calls from our analysis because they do not return values, but present them here for the sake
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of completeness. We make predictions on all non-void invokes, but only send updates on

normal returns, because for escapes there is no return valueand control does not return to

the callsite. We thus report accuracy measures over the total number of non-void returns.

As the data show, escaping exceptions are relatively rare, even for supposedly exception-

heavy benchmarks such asjack, which means they do not have a large impact in any

case.

The third section classifies non-void returns according to the eight Java primitive types

and also reference types. Return type information is interesting because some types are

inherently more predictable than other types, suggesting specialization and compression

strategies, and because it describes behaviour to some extent. In our initial return value

prediction study, we found that boolean, byte, and char methods were highly predictable,

whereas the remaining types had a predictability that ranged from low to high [PV04b].

In other words, the distribution and sequence of values matters more than the type, except

where the type constrains the distribution by nature of its short width or typical value range.

We see thatmtrt relies heavily on float methods,mpegaudio uses a surprising number

of methods returning shorts,compress returns almost exclusively ints, and the remaining

benchmarks use more or less equal mixes of int, boolean, and reference calls.

3.3.2 Communication Overhead

Our design emphasizes modularity and ease of experimentation over performance. The use

of an external library, multiple calls, portable argument parsing, and so forth has an obvious

performance impact, much of which could be ameliorated by incorporating the RVP code

directly into the VM, interleaving RVP code in generated code in the case of a JIT compiler

client, and generally optimizing its performance along with other VM activities. We thus

performed an initial experiment to isolate and measure the overhead of our framework.

Figure 3.4 shows the slowdown due to communication overheadwith the predictor

module of the library. These data are gathered using anull predictor that simply returns zero

for every prediction, and performs no actual update computation. In future experiments we

control for this overhead by using the null predictor performance results as a baseline. The

large slowdown formtrt is due to contention in our simple predictor locking strategy and a
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Figure 3.4: Null predictor slowdowns, relative to vanilla SableVM.Above each bar is the vanilla

SableVM non-void invoke density for that benchmark in terms of millions of callsper second.

high call density. Improved lock-based or even lock-free designs would help, and in general

multithreaded predictor interactions are an interesting direction for future work. Overhead

scales primarily with call density, but the cost of argumentparsing does make some calls

more expensive than others. In practice, performance critical applications should tailor

their use of RVP to the locations where it is most useful.

3.4 Initial Performance Evaluation

We used our software library implementation of the predictors in Section 3.2 to measure

their accuracy, speed, and memory consumption performanceover our benchmark suite.

Knowing the specific performance characteristics of individual predictors is useful when

given a constrained resource budget. We expect the more complex predictors to have better

accuracy but with higher speed and memory costs. The naı̈ve hybrid predictor we study

here does not specialize, visiting every sub-predictor on each call topredict andupdate.

The next section contains a detailed exploration of hybrid adaptivity.

It is important to keep in mind while considering these results that a prediction is made

for every single invocation in the program and that there is no inlining. We chose this

approach to gather the most comprehensive set of data possible and to make our study

generally useful, because different clients of RVP will invariably make different decisions

about where to predict. Individual callsite prediction accuracies and overhead costs differ

widely, which means that disabling prediction selectivelycan significantly affect the results.

The actual runtime speed and memory costs in any practical scenario will scale with usage.
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3.4.1 Accuracy

Figure 3.5 shows basic prediction accuracies for each predictor and for each benchmark.

Accuracy is calculated as the number of correct predictionsover the number of non-void

calls that returned to their callsite. The benchmarks are clustered in alphabetical order from

left to right for each predictor. The predictors are arranged in the top-to-bottom order given

by Tables 3.1–3.7, excluding the final composite stride pattern for constructing predictors.

For comparison we include our baseline null predictor (N) that simply returns 0.

As expected, the hybrid beats individual predictor accuracies for every benchmark

because it allows sub-predictors to complement each other.Accuracy otherwise scales

roughly with complexity, at least for the non-memoization predictors. A basic last value

predictor significantly improves on a null predictor, is in turn improved on by last N predic-

tors, and which themselves are overshadowed by context-based designs. Interestingly the

stride versions of non-context predictors do not show significant differences from the last

value predictors, suggesting that extending the predictors to higher level derivative forms

does not necessarily improve accuracy. Including value history context has a significant

impact. The finite context method and its differential form have the highest individual pre-

dictor accuracies, and even memoization is noticeably improved by adding value history.

Notably, the accuracy of the DFCM predictor is within 5% of thehybrid. Argument based

approaches are not as successful as history based approaches in isolation, but as we show

later memoization can complement the FCM and DFCM predictors nicely in a hybrid. In

summary, highly predictable computations fall into one of three categories: those where the

return value fits some function of recent inputs and outputs (fixed-space predictors), those

that exhibit input repetition (memoization-based predictors), and those that exhibit output

repetition (history-based predictors).

Interesting differences also show up in terms of benchmark behaviour. db, jack,

javac, andjess respond well overall, with even simple predictors reaching40–60%

accuracy levels.mpegaudio andmtrt are more resilient to prediction, due to their use

of irregular short and floating point types respectively.compress improves dramatically

with table-based prediction, indicating longer term patterns exist, even ifmpegaudio and

compress are naturally expected to be less predictable since they handle compressed data.
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3.4.2 Speed

Figure 3.6 shows slowdowns due to predictor overhead for each predictor and for each

benchmark. Slowdown is calculated as predictor performance relative to the null predictor,

factoring out any overhead inherent in our experimental setup, per the control experiment

in Figure 3.4. The graph is structured similarly to Figure 3.5, although on a logarithmic

scale and without the null predictor. As expected, predictor speeds vary with complexity,

with the table-based predictors being considerably slowerthan the fixed-space predictors.

The table-based predictors are expensive for two reasons. First, hashing arguments or

return value histories to table lookup keys is an expensive operation. Second, the memory

requirements of the larger tables introduce performance penalties due to memory hierarchy

latencies. The naı̈ve hybrid is unsuprisingly very slow, incurring the summedcost of all

sub-predictors. When compared against the naı̈ve hybrid, the DFCM predictor alone is an

obviously better choice: it is at least three times as fast, its accuracy is at most 5% worse

(Figure 3.5), and it typically requires about half as much memory (Table 3.9). However,

per Figures 3.17, 3.18, and Table 3.10 in the next section, bysubstituting less expensive

predictors when feasible, adaptive versions of the hybrid predictor can outperform not only

the näıve hybrid but also DFCM for speed and memory while maintaining similar accuracy.

3.4.3 Memory Consumption

The memory consumption of each predictor for each benchmarkis shown in Table 3.9.

The memory requirements of the fixed-space predictors are calculated by summing the

number of bytes used by each predictor and multiplying by thenumber of callsites. The

table-based predictor memory requirements are calculatedin the same manner for the fixed-

space fields, and then the actual final sizes of the hashtablesat individual callsites upon

program completion are used to calculate the variable-sized fields. The main observation

here is that the table-based predictors can consume large amounts of memory. This effect

is compounded in the hybrid that has five table-based sub-predictors at each callsite, in the

worst case reaching a huge 6.37G formtrt. These data confirm that memory latencies are

likely to contribute to predictor slowdowns for table-based prediction.
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Figure 3.5: Predictor accuracies for a null predictor (N) and all predictors in Tables3.1–3.7.
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Figure 3.6: Predictor slowdowns for a null predictor (N) and all predictors in Tables 3.1–3.7, relative to N.
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predictor comp db jack javac jess mpeg mtrt

N 4.67K 5.23K 10.5K 20.9K 10.1K 6.08K 11.0K

LV 9.34K 10.5K 21.0K 41.7K 20.2K 12.2K 21.9K

S 18.7K 20.9K 42.0K 83.4K 40.4K 24.3K 43.9K

2DLV 14.0K 15.7K 31.5K 62.6K 30.3K 18.2K 32.9K

2DS 23.4K 26.1K 52.5K 104K 50.5K 30.4K 54.8K

LNV 23.9K 26.8K 53.8K 107K 51.7K 31.2K 56.2K

LNS 33.3K 37.2K 74.8K 149K 71.9K 43.3K 78.2K

FCM 625M 0.97G 50.7M 205M 14.6M 1.61G 2.97G

DFCM 673M 784M 7.26M 197M 10.1M 1.60G 3.31G

M 6.81M 99M 7.75M 1.51M 4.03M 25.4M 7.19M

MS 6.82M 99M 7.77M 1.55M 4.05M 25.5M 7.21M

MFCM 31.1M 893M 16.6M 4.79M 13.4M 1.72G 80.6M

PS 12.4K 13.8K 29.5K 59.6K 26.9K 16.2K 28.0K

H 1.31G 2.80G 90.9M 411M 47.1M 4.98G 6.37G

Table 3.9: Predictor memory consumption.
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The data in Table 3.9 and Figures 3.5 and 3.6 assume hashtablesizes are unbounded,

and so the tables grow as necessary to accommodate new values. This is obviously unreal-

istic, but if the sizes are bounded then new values overwriteold values once the maximum

size is reached, which reduces overall accuracy if the old value is ever requested. We thus

explored predictor accuracy as a function of maximum table size, as shown in Figures 3.8–

3.13. Here maximum table sizes are varied from20 to 225 entries, one power of 2 larger

than the largest size any predictor was observed to expand tonaturally, and accuracy exam-

ined for each table predictor and benchmark combination. Ingeneral, accuracy increases as

table size increases, although only up to a point. After thispoint accuracy remains mostly

constant, indicating no further impact from collisions, and in some cases may actually de-

crease due to the absence of lucky collisions that returned acorrect value at smaller sizes.

Figures 3.8–3.13 also indicate that individual predictorscan have complex interactions

in a hybrid. For a given benchmark and table size, individualpredictors often have notice-

ably different performance: memoization (stride) may workwell in some instances whereas

the (differential) finite context method works well in others. Interestingly, although the con-

text predictors usually have the highest accuracies, the predictor complementation provided

by the hybrid predictor can be seen in the shapes of the curvesfor individual benchmarks.

The hybrid behaviour forcompress, jack, javac, andjess, for example, combines the

better accuracy of M(S) designs at low table sizes with the higher accuracy of (D)FCM at

higher sizes.

3.4.4 Sub-Predictor Comparisons

The näıve hybrid predictor in Figures 3.5, 3.6, and Table 3.9 has anaverage accuracy of

72%, an average slowdown of 4.6x, and an average memory consumption of 2.3G. This

is clearly unusable, but could be made much better by simply limiting the number of

sub-predictors. Figure 3.7 shows the average accuracy for each sub-predictor over SPEC

JVM98 plotted against its average slowdown. If choices are limited, the three clear winners

here are the 2-delta stride (2DS), memoization stride (MS),and differential finite context

method (DFCM) predictors, where increased accuracy is traded for increased slowdown

and memory consumption. Although 2DS is only slightly worsein terms of accuracy than
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Figure 3.8: Finite context method (FCM) accuracy vs. maximum table size.
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Figure 3.9: Differential finite context method (DFCM) accuracy vs. maximum table size.
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Figure 3.10: Memoization (M) accuracy vs. maximum table size.
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Figure 3.11: Memoization stride (MS) accuracy vs. maximum table size.
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Figure 3.12: Memoization finite context method (MFCM) accuracy vs. maximum table size.
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Figure 3.13: Hybrid (H) accuracy vs. maximum table size.
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MS and significantly better in terms of slowdown and memory consumption, it occupies a

different algorithmic space and will end up complementing MS in a hybrid. These three

predictor types correspond to the three types of highly predictable computations we previ-

ously highlighted, namely those that fit some function (2DS), those with input repetition

(MS), and those with output repetition (DFCM). Note that despite this analysis, we still

chose to use all 13 sub-predictors in the adaptive hybrid experiments that follow. One rea-

son is that we wanted to demonstrate that our adaptive hybriddesign can accomodate a

large number of sub-predictors, which is true at least in theory because only one remains in

use after specialization. Another reason is that even the less robust predictors in Figure 3.7

may contribute uniquely accurate predictions in some situations. Nevertheless, a system-

atic exploration of potential hybrid compositions would likely find that rejecting certain

sub-predictors yields even better performance. We leave this as an opportunity for future

work.

3.5 Hybrid Adaptivity

The näıve hybrid design in Table 3.7 achieves very high accuracy. However, its speed

suffers because it employs twelve different sub-predictors in series to make and update

predictions, and its memory consumption suffers because itretains the memory for large

table-based predictors even if they are never selected for prediction. We would like to

maintain this high accuracy while optimizing for speed and memory consumption. We do

this by specializing individual hybrid instances to particular sub-predictors and releasing

the resources required by the other unused sub-predictors.This optimization relies on an

important hypothesis:for a given callsite, there is likely to be an ideal sub-predictor.

We first tested this hypothesis with an offline profiling basedexperiment to identify

ideal sub-predictors on a per-callsite basis. The ideal sub-predictor for a callsite is simply

the one that performed best over the entire course of execution. If a subsequent run in

which the hybrid immediately specializes to these predictors matches the accuracy of the

näıve version, then it indicates that ideal sub-predictors are likely to exist. The performance

of this offline hybrid can then provide an oracle for online optimization.
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Figure 3.14: Ideal predictor distributions.

3.5.1 Offline Specialization

We first ran each benchmark to completion using the naı̈ve predictor, and processed the re-

sults to create a profile for offline specialization. Figure 3.14 shows the distribution of ideal

predictors for each benchmark in terms of dynamically reached callsites and the number of

dynamic calls. At the callsite level, most ideal predictorsare null or last value predictors.

In this analysis, cold callsites with one call are weighted equally with hot callsites that have

50 million calls, and they tend to specialize to simple predictors. Most of these cold call-

sites are found in initialization code, and there is simply no chance for sufficient history to

develop such that the more complex predictors outperform the simple ones.

At the level of actual calls, the simple predictors still work well in many cases, particu-

larly for methods returning constants or accessing static data structures. However, hot call-

sites tend to benefit from complex table-predictors predictors, indicating an important role

for them in maximizing accuracy. This reconfirms the result in Figure 3.13, where a low

cap on table size in the hybrid predictor can suppress accuracy significantly.mpegaudio
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provides a notable exception to the dominance of table predictors. It decodes an mp3 file,

and so its return values are mostly random. It has very low overall predictability, and when

there is repetition it is generally found in the last few values, meaning that simple predictors

dominate.

3.5.2 Online Specialization

We next attempted to determine ideal sub-predictors dynamically, without ahead-of-time

profiling data. Online adaptivity is critical in dynamic compilation environments, where

ahead-of-time techniques are not well accepted in practice. In this case online special-

ization can also accommodate callsites that exhibit phase-like behaviour, where the ideal

sub-predictor is not constant throughout the program run.

There are three basic parameters we considered in constructing our online specializing

hybrid. The first is a warmup period,w. The hybrid predictor will not specialize until

u ≥ w, whereu is the number of predictor updates. The second is a confidencethreshold

for specialization,s. For the number of correct predictionsc over the lastn calls, if c ≥

s ∧ u ≥ w then the hybrid specializes to the best performing sub-predictor, favouring

cheaper predictors in the event of ties. We use a value ofn = 64, the number of bits in a

word on our machines. The third parameter is a confidence threshold for despecialization,

d. If c < d and the hybrid has already specialized, then it will despecialize again. We

did not experiment with resetting the warmup period upon despecialization, although this

could be a useful extension.

We performed a parameter sweep overw, s, d according to Figure 3.15. This generated

405 different experiments. For each, the average accuracy and slowdown were computed.

The average accuracies were rounded to the nearest integer,and the minimum running time

for each accuracy identified. These results are shown in Figure 3.16. From these data, we

selected the point at accuracy 67% with slowdown of 1.35x foruse in future experiments.

This outperforms DFCM which has an accuracy of 69% but a slowdown of 1.65x. Here

{W,S,D} = {4, 2, 0}, which corresponds to a warmup ofw = 4096 returns, specialization

threshold ofs = 16 correct predictions (25% accuracy), and a despecialization threshold of

d = 0, meaning no despecialization will occur. This choice is 5% worse than the optimal

106



3.5. Hybrid Adaptivity

for W ← −1 to 7 do

for S ← 0 to 8 do

for D ← 0 to S do

if W = −1 then w ← 0 elsew ← 23W

s← 8S

d← 8D

measure (w, s, d)

Figure 3.15: Online hybrid parameter sweep configuration.
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Figure 3.16: Online hybrid parameter sweep.

accuracy at 72% with slowdown of 2.40x. The cheapest configuration of {−1, 0, 0} is

equivalent to the null predictor and only achieves an accuracy of 12%.

The data point at accuracy 61% with slowdown 1.74x also stands out. The correspond-

ing configuration,{−1, 8, 0}, means thatw = 0, s = 64, andd = 0. This predictor has no

warmup, nor does it despecialize, and it is quite slow. It wasselected by the optimization

for that data point for two reasons. First, its high specialization threshold did ultimately

result in some good sub-predictor choices. Second, there were only four configurations

to choose from at that accuracy level, because the distribution of experiments is not even

along the x-axis and most experiments cluster in the upper accuracy range. Interestingly, in
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all but the top three most accurate and slowest cases,d = 0. We conclude that although de-

specialization may offer slight accuracy benefits, they come with sharply increasing costs.

3.5.3 Performance Comparisons

We finally compared the behaviour of our offline and online adaptive hybrids with the näıve

non-adapative hybrid. We show predictor accuracies, slowdowns, and memory consump-

tion for all three in Figures 3.17 and 3.18 and Table 3.10 respectively. We used a maximum

table size of 225 entries in these experiments to prevent memory constraintsfrom interfering

with accuracy results.

In terms of accuracy, we expected the naı̈ve hybrid to act as an oracle with respect to

the offline hybrid, behaving like the online hybrid but configured with an infinite warmup

period. The data in Figure 3.17 show that offline specialization is quite effective, for it is

always within 3% accuracy of the naı̈ve version. In some cases the accuracy is actually

slightly better, because the constant availability of all predictors in the näıve version can

lead to suboptimal choices. The close match between offline and näıve accuracies indicates

two things. First, ideal sub-predictors do in fact exist forthe vast majority of callsites.

Second, for these benchmarks, significant program phases are either rare or non-critical

with respect to adaptive RVP performance, because the offline hybrid uses a fixed set of

sub-predictors over the entire program run. Accuracy is notsignificantly compromised in

the online hybrid, dropping by at most 11% when compared to offline accuracy.

Predictor slowdowns are dramatically reduced by both offline and online hybrids, as

shown in Figure 3.18. Online performance is on average equivalent to offline, where of-

fline is worse when it chooses accurate but expensive table-based predictors, while online

is worse when the cost of warmup is too high. This effect can also be seen in the memory

consumption data in Table 3.10. Both offline and online hybrids greatly reduce memory

requirements, with the best case for offline being the reduction of mpegaudio by over 24

times. Online memory usage tends to be somewhat larger than offline, with the excep-

tion of db, an extreme example where the online hybrid is orders of magnitude cheaper.

The bottom half of Table 3.10 shows the further memory reductions that straightforward

elimination of wasteful memory use in our system would provide.
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Figure 3.18: Näıve vs. offline vs. online slowdowns.

predictor comp db jack javac jess mpeg mtrt

näıve 1.31G 2.80G 91.0M 412M 47.2M 4.98G 6.37G

offline 484M 771M 5.83M 190M 6.11M 206M 417M

online 486M 5.19M 9.16M 53.8M 7.43M 256M 1.07G

no logs 324M 3.62M 6.41M 36.4M 5.25M 171M 732M

32-bit keys 243M 2.90M 5.14M 27.8M 4.27M 128M 549M

type info 162M 2.18M 3.77M 19.2M 3.43M 86.1M 367M

perfectZ 162M 2.14M 3.70M 19.1M 3.40M 86.0M 367M

Table 3.10:Näıve vs. offline vs. online memory consumption.The four additional rows indicate the

cumulative memory consumption benefits due to removing a backing log from hash tables, using

32-bit table keys instead of 64-bit keys, using VM knowledge about typewidths, and using perfect

hashing for booleans in the context-based predictors. Perfect boolean hashing means that an order-5

context-based predictor only requires 5 bytes, 1 byte to hold the 5-bit context and 4 bytes to hold

the 25 = 32 possible values.
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3.6 Conclusions

The ideal choice of return value predictor varies widely, depending on dynamic bench-

mark and callsite properties. A flexible, software-based design for RVP thus has many

advantages, permitting a wide variety of arbitrarily complex predictors and an adaptive

mechanism for optimizing their application. The latter is especially important for software

implementations, where a naı̈ve design imposes memory and speed overheads that can eas-

ily outweigh any derived benefit. We found that using a variety of callsite-bound predictors

that include complex, table-based predictors can result invery high accuracy. Our online

adaptive hybrid is effective at maintaining this accuracy while reducing overhead costs to

reasonable levels. It does so by identifying and specializing to ideal sub-predictors, which

we found do generally exist at the callsite level. If the total runtime overhead of ubiquitous

RVP in this study remains a concern, applications can easilytailor their usage to reduce it.

Our software-only focus played an important role in this work. The search for a simple

hierarchical design led to the high level specialization optimization in our adaptive hybrid

predictor, which suggests that clean design and object-orientation stand to benefit software

analogues of hardware components in general. We found that after many years of research,

history-based prediction studies covered the design spacerather well, missing only the

2 delta last value predictor. This suggests that early attempts to formalize the design of

runtime components may be beneficial. For example, our composite stride pattern makes

it easy to create stride based derivatives of any predictor.Our software context allowed us

to consider a large number of sub-predictors at low cost, andwe found that they all had

application at different points. Memoization is particularly effective when applied to RVP,

and complements existing predictors nicely in a hybrid.

3.7 Future Work

There are many potential applications for this technology.Of course, return value pre-

diction was originally conceived to support method level speculation, which as seen in

Chapters 1 and 2 executes a function continuation speculatively and in parallel with the

function call. RVP significantly improves method level speculation performance in both
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hardware [CO98, OHL99, HBJ03] and software systems, the latter demonstrated in Chap-

ter 2, by enabling longer thread lengths and thus greater parallelism. Close to the original

motivation of speculative execution, return value prediction could also enhancesafe fu-

tures [WJH05, ZKN07a], a source level continuation-based parallelization construct that

supports speculative reads and writes, by allowing for speculation past the consumption

of the return value. Aside from certain predictors that takefunction arguments, there is

nothing preventing our design from also being used for more general load value prediction,

which has application to both software thread level speculation [OM08] and transactional

memory implementations [PB09,THG09].

More broadly, any instruction that produces a value can be considered a function, and

so the technique is readily extended to non-return values. Akey analysis in JIT compilers

is value profiling, which enables method body specialization according to expected val-

ues [CFE97,SYK+01]. Thus software (return) value prediction could be used to generalize

value profiling to support multiple concurrent profiles and hence multiple specializations

of a method. A second use of RVP-based profiling is program understanding, wherepost

mortemanalysis of specific predictor behaviours can provide insight into the run-time be-

haviour of individual programs and functions. A third use ofRVP-based profiling is in soft-

ware self-healing, which seeks to repair damage from network attacks [LSC+08]. Apart

from profiling and speculative execution, value predictioncan be used to prevent stalls

due to memory latencies, both in distributed and multi-coresystems [LG09], and to sup-

port prefetching [ZC05]. Finally, outside of programming languages, our fast, accurate,

and memory efficient software RVP design could apply to the field of machine learning,

where making future predictions based on past behaviour is often important, for example

in robotics, stock market prediction, competitive game-playing or multi-agent cooperative

settings.

In terms of design, predictor accuracy could be improved by identifying hot but unpre-

dictable callsites and designing new predictors to accommodate them. Generalized soft-

ware value prediction using our framework may benefit from several additional predictors

not suitable for return values. Attaching predictors to methods and invocation edges instead

of callsites may alternatively improve accuracy or reduce overhead. Various static analyses

and program transformations to support prediction are alsopossible, building on previous
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work in this area [BDH02]. Finally, there are undesirable interactions between RVP and

MLS that would benefit from mitigating techniques; Huet al. previously observed that the

hybrid predictor accuracy of their RVP system dropped by about 10% when MLS was en-

abled [HBJ03]. One problem is that MLS changes the execution order such that predictions

and / or updates may happen out of order. Another is that in thecase of in-order nesting,

MLS introduces speculative predictions and updates that might be later aborted. Finally,

there is the additional question as to whether predictions and / or updates at a callsite should

always be made even if threads are only sometimes forked there.

In terms of implementation, a mixture of software and hardware support may be appro-

priate [BSMF08]. Our design could certainly accommodate hardware versions of specific

sub-predictors when available. Furthermore, a general purpose hardware hash function

could improve the performance of table-based predictors, and have broad applicability out-

side of value prediction. We are also interested in refactoring the RVP code from libspmt

into a separate library for general purpose reuse; a disadvantage of this approach is that

inter-library whole program optimization is much less commonly supported thanintra-

library whole program optimization. A JIT compiler integration of RVP which weaves

intermediate representations of predictor code into generated code instead of inserting calls

to library functions may be worthwhile in terms of eliminating library overhead; certainly

the baseline cost of the null predictor shown in Figure 3.4 should be much smaller in a

production system. Lock-based or lock-free optimizationsfor concurrent predictor access

could also significantly reduce overhead. Finally, we are particularly interested in the im-

pact of JIT compiler method inlining on overall predictor behaviour, since it will result in

profound changes to benchmark properties.
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Chapter 4

Nested Method Level Speculation &

Structural Fork Heuristics

In Chapter 2 we described an MLS system that allowed for out-of-order nesting, wherein

non-speculative parent threads can have multiple speculative children, but not in-order nest-

ing, where speculative children can create speculative children of their own. During pro-

filing data analysis, we found that this led to idle processors, and that support for in-order

nesting was necessary for maximizing processor usage. Herea producer / consumer mem-

ory allocation problem presented itself: a child thread would allocate the memory for a

new child in one thread but that memory would get freed by the parent in a different thread.

To this end we designed a custom multiprocessor memory allocator based on recycling

aggregate thread data structures. In this chapter we first present our memory allocator as

a practical solution for any software MLS system supportingin-order nesting. Once in-

order nesting was enabled, we found that far too many threadswere created when using

our dynamic fork heuristics, precluding meaningful analysis of even simple benchmarks.

We concluded that the runtime performance of MLS strongly depends on the interaction

between program structure and MLS system configuration, making it difficult to compare

approaches or understand in a general way how programs behave under MLS, particularly

with respect to thread nesting.

Accordingly, in this chapter we seek to establish a basic framework for understanding

and describing nested MLS behaviour. We present a stack-based abstraction of MLS that
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encompasses major design choices, including in-order and out-of-order nesting. This ab-

straction is drawn directly from our implementation insideSableSpMT and libspmt. We

then use this abstraction to develop the structural operational semantics for a series of pro-

gressively more flexible MLS models. Assuming the most flexible such model, we provide

transition-based visualizations that reveal the speculative execution behaviour for a num-

ber of simple imperative programs. These visualizations show how specific parallelization

patterns can be induced by combining common programming idioms with precise deci-

sions about where to speculate, forming a set of structural fork heuristics. We find that

the runtime parallelization structures are complex and non-intuitive, and that both in-order

and out-of-order nesting are important for exposing parallelism. We also show how the

parallelization patterns used by the Olden suite of benchmarks can be expressed in our

framework. Our primary conclusion here is that either programmer or compiler or profiler

knowledge of how the structure of implicit parallelism develops at runtime is necessary

to maximize performance. At the language level this could mean introducing explicit “try

this in parallel” keywords, or it could mean simply writing programs to be more amenable

to automatic techniques. At any rate, we believe a balance between explicit and implicit

approaches is likely to be most useful.

4.1 Introduction

The profiling work in Chapter 2 revealed two performance issues that are addressed in

this chapter. First, processors are often idle when only out-of-order nesting is allowed.

Our solution to that problem was to implement in-order nesting in SableSpMT, along with

support for multiprocessor memory management of child thread data structures. Although

we found that in-order nesting effectively eliminates the problem of idle speculative proces-

sors in the system, we also found that arbitrary in-order nesting increases the total overhead

to the point that most programs require so much time to complete with our “always fork”

heuristic that systematic experimentation with dynamic fork heuristics is simply not viable.

The second performance issue is that most speculative threads are short-lived. Given that

we want to include in-order nesting in any approach to creating longer threads, a system-

atic experimental investigation based on varying dynamic fork heuristics is already ruled
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out. Our solution here is to identify positive and negative interactions between code struc-

ture and speculative thread behaviour using an abstract model of our various nesting forms.

Thus, a lack of experimental insight into the performance issues and runtime behaviour of

SableSpMT is the primary motivation for the material in thischapter.

Our initial hope with MLS, as with most work on automatic parallelization, was that

irregular programs would run faster, exploiting parallelism with no additional programmer

intervention. However, due to variability in the balances between parent and child thread

lengths, value predictability, and the likelihood of dependence violations, some fork points

end up being much better than others, and the overhead of bad forking decisions can easily

dominate execution time. Naturally, one’s first thought is to change the set of fork points

to accomodate. Although this does have an effect on parallelism, it does so not only by

eliminating the overhead from unprofitable speculation, but also by changing the dynamic

thread structure and hence enabling parallelism where it was previously precluded. The

complication is that changing the dynamic thread structurein turn changes the suitability

of fork points. For an online or offline adaptive system that creates threads based on the

suitability of fork points, this creates a feedback loop. The end result is that sometimes

parallelism is obtained, sometimes not, but ultimately it is difficult to explainwhy things

play out the way they do.

There has been significant work on selecting fork points and the final effect on per-

formance. There has been much less focus, at least in the caseof MLS, on studying the

relationship between program structure, choice of fork point, and the resultant parallel be-

haviour. For this we need an abstract way to describe the program structure and choice of

fork point, and we need a way to “see” the behaviour, which in this case is a visualization

of how parallel structures evolve over time. We also need a model of MLS that is flexible

enough to allow for exhaustive exploration. The initial MLSimplementation described in

Chapter 2 allowed parent threads to allocate multiple child threads, thus providing out-of-

order nesting. However, it did not allow for child threads tocreate speculative child threads

of their own; in other words, in-order nesting was prohibited. Figures 1.3 and 2.7 clarify

the differences between these two kinds of nesting.

In the first part of this chapter we describe a multithreaded memory allocator that makes

in-order nesting practical and efficient. It is a simple design based on freelists, and the core
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mechanism is recycling entire child thread data structuresat once. In the next part of

this chapter, we provide an abstract description of MLS via aunified model based on call

stacks that encompasses all possible nesting scenarios. This abstraction is drawn from our

practical implementation in SableSpMT, and in particular from the refactoring work done

to create libspmt, our library for speculative multithreading. We then provide a series of

sub-models referring to our larger unified one that are each described by their structural

operational semantics, where the structures involved are the precise relationships between

call stacks and threads. We then take an abstract view of program structure that isolates

useful work from higher-level organizational concerns, enabling a focus on the effects of

code layout. Finally, we provide and employ a method for visualizing runtime parallel

behaviour that relies on showing the state evolution that arises from repeated application

of our structural rules in combination with choice of fork point. This forms a series of

speculation patterns, which in turn imply a set of structural fork heuristics.

Given such a framework, we can compare the parallelization models used by MLS-

like systems directly, and begin to understand at a non-superficial level why the results

differ between them and between the programs they parallelize. Our vision is that this

understanding can be used to inform programmers and compiler writers trying to structure

or restructure programs for efficient implicit parallelism, and to guide the design of runtime

systems. A final benefit of our approach provides a basis for inventing novel extensions: it

allows for rapid specification and visualization without the burden of implementation.

4.1.1 Contributions

We make the following specific contributions:

• We present a multithreaded allocator that provides a simplesolution for two con-

strained memory management problems that arise under software MLS. First, it re-

cycles constant-shape child thread aggregate data structures at once, dramatically

reducing the number of calls to the system allocator. Second, it accounts for a pro-

ducer / consumer problem under in-order nesting where memory allocated in one

thread is freed in another.
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• We propose a stack-based operational semantics as a unified model of MLS. This

model is derived from the working implementation describedin Chapter 2. Our

model provides support for lazy stack buffering at the framelevel, a unique opti-

mization designed to improve the speed of local variable access; other systems have

relied instead on general dependence buffer or transactional memory support. The

semantics of MLS have not been considered by previous work beyond basic fork and

join matching.

• We provide several MLS sub-models, each of which is described by its structural

operational semantics, and relate them to our unified stack model. These sub-models

are suitable for direct visualization of programs executing under MLS.

• We examine the behaviour of a number of common coding idioms in relation to our

stack formalism. We show how these idioms map to specific parallel runtime struc-

tures depending on code layout and fork point choice. We derive several guidelines as

to how parallelism can be exposed, investigate a complex example that demonstrates

implicit workload scheduling using recursion, and study the Olden benchmarks for

similar patterns.

In Section 4.2, we describe our memory allocator, a prerequisite for efficient child al-

location and the in-order nesting described in future sections. In Section 4.3, we present

our unified stack model, which we use to develop a series of MLSsub-models in Sec-

tion 4.4. We explore coding idioms and behaviour in Section 4.5, and finally conclude and

discuss future work. Related work specific to memory allocation, nested MLS, irregular

parallelism, and fork heuristics is described in Chapter 5.

4.2 Child Thread Memory Allocation

In this section we describe a simple memory allocator with two distinct features that allows

for efficient child thread allocation when using either out-of-order or in-order nesting. The

first feature is the use of freelists to manage aggregate child thread data structures, and the

second is the migration of freelist blocks between processors and a global runtime pool.
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Figure 4.1: Runtime child data structure.

4.2.1 Ownership Based Allocation

The data structure for a single child thread is shown in Figure 4.1. This is the imple-

mentation in libspmt after refactoring the code from SableSpMT; it contains 37 separately

allocated sub-objects. On the library side there is memory for a dependence buffer, profil-

ing information, and nested MLS stack information, and on the VM side there is memory

for a thread environment and the actual Java call stack. We experimented with allocat-

ing a new child instance on every thread fork and freeing the memory on every commit

or abort, which implied 37 calls tomalloc andfree respectively. When combined with

a high frequency of allocation, as permitted by our out-of-order nesting model and lib-

eral fork heuristics, this quickly overwhelmed the capabilities of the Lea allocator on our

system [Lea00].

We observed that each child instance was anownership dominator tree[Mit06] rooted

by thechild sub-object. This means that all other sub-objects are reachable only through

it, at least at allocation and deallocation time. We also observed that the only differences be-

tween children were the size of the dynamically resizablestack andJava stack nodes.

Since the memory of dead child instances is guaranteed to be unreachable by the rest of the

system, and since all instances have the same basic shape, wewere able to use one child

freelist for each parent thread and avoid excessive calls tomalloc andfree. The only
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additional need is a new child “reset” operation that gets called on allocation and zeroes

out important elements of the child state.

4.2.2 Multithreaded Freelist Allocation

After the initial implementation of out-of-order nesting in Chapter 2, we profiled the system

and found that processors were mostly idle. For the SPEC JVM98 benchmark suite running

on 4 processors, helper threads were idle on average for 73% of their running time. Our

conclusion was that not enough parallelism was being exposed by out-of-order speculation

alone and that support for in-order speculation was necessary for maximal parallelism.

However, in-order speculation introduces a memory allocation problem when children

are allocated from child freelists. Consider the simple example where child thread C1

allocates its own child C2. After some time, C1’s parent P joinsC1, inheriting C2, and

then later joins C2, resulting in P freeing C2’s memory. The problem here is that P did

not allocate C2’s memory; for out-of-order speculation thisproblem does not arise because

children allocated by P are always freed to P’s freelist. This kind of producer / consumer

pattern can lead to memory pooling up in one thread if there isan imbalance between calls

to malloc child andfree child. Experiments with a version of our system that still

had this problem quickly exhausted all available memory.

Our solution is a custom multithreaded freelist allocator with thread local and global

blocks of children, as depicted in Figure 4.2. On the left a child is freed to a thread local

block of children. If that block becomes full it is exchangedfor an empty one via global

synchronization at the runtime level. The malloc process isexactly the inverse, exchanging

an empty block for a full one if necessary and then producing achild for the current parent

or helper / worker thread. Larger block sizes reduce the needfor global synchronization,

albeit at the expense of extra memory consumption. Figure 4.3 provides an implementation

where the only actual calls tomalloc are insidecreate set andcreate child, which

in turn are insideblock create. This function allocates an entire block of children at

once, and is only called when no full blocks are locally or globally available.
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Figure 4.2: Multiprocessor child malloc and free.On the left a child is freed to a local block. The

block becomes full and so it is exchanged for an empty one. On the right anallocation request is

made. However, the local block is empty, and so must first be exchanged for a full one.

4.2.3 Discussion

This scheme has the following advantages: 1) functionalityacross a library–VM interface:

our library calls back into a JVM to create an appropriate thread context; 2) support for

child sub-structure type opacity; 3) minimal initialization costs; 4) implementation sim-

plicity; 5) support for dynamically resizable sub-structures, here the dependence buffer and

call stacks; 6) portability; 7) no external library dependences; 8) no synchronization op-

erations in the common case, namely allocating or freeing a child task from or to a local

thread block; 9) memory consumption proportional to the number of processors and the

maximum number of live children.

The scheme also has its disadvantages: 1) potential lack of locality between child sub-

structures; 2) lack of locality between processors: an individual child task may visit 3 dif-

ferent cores, the allocating, executing, and freeing ones;3) no reclamation of excess child

task memory; 4) lock-based synchronization in the uncommoncase, namely exchanging

empty and full blocks between a thread and the global pool of blocks; 5) lack of automa-

tion and general purpose applicability.

As far as alternative approaches are concerned, a typical solution might be to rewrite

the child data structure to be contained in one contiguous region of memory and then man-

age it using an existing SMP malloc replacement such as Hoard[BMBW00]. However,

120



4.2. Child Thread Memory Allocation

set_t *

create_block (void)

{

set_t *block = create_set ();

while (!is_full (block))

add_child (block, create_child ());

return block;

}

set_t *

swap_empty_for_full (runtime_t *runtime,

thread_t *thread, set_t *empty)

{

set_t *full;

acquire (runtime->blockset_lock, thread);

add_block (runtime->empty_blocks, empty);

full = (is_empty (runtime->full_blocks)) ?

create_block () : remove_block (runtime->full_blocks);

release (runtime->blockset_lock, thread);

return full;

}

set_t *

swap_full_for_empty (runtime_t *runtime,

thread_t *thread, set_t *full)

{

set_t *empty;

acquire (runtime->blockset_lock, thread);

add_block (runtime->full_blocks, full);

empty = remove_block (runtime->empty_blocks);

release (runtime->blockset_lock, thread);

return empty;

}

Figure 4.3: Source code for child malloc and free.
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child_t *

malloc_child (thread_t *thread)

{

if (is_empty (thread->block))

thread->block =

swap_empty_for_full (thread->runtime, thread, thread->block);

return remove_child (thread->block);

}

void

free_child (thread_t *thread, child_t *child)

{

add_child (thread->block, child);

if (is_full (thread->block))

thread->block =

swap_full_for_empty (thread->runtime, thread, thread->block);

}

Figure 4.3: Source code for child malloc and free (continued).malloc child allocates a child

from a thread-local block if one is available, otherwise exchanges an empty block for a full one

by callingswap empty for full. free child frees a child to a thread-local block, and if a full

block is created it then callsswap full for empty to exchange it for an empty one.

there are three good reasons for working with the existing structure. First, some elements

of the structure may be dynamically resizable, in this case the dependence buffers and call

stacks. Second, the data structure to be recycled is actually split across a library–VM in-

terface: when allocating a child, the library calls back into the VM to create an appropriate

thread context for execution. Third, there are software engineering arguments: modular-

ity, minimizing source changes, and the benefits of type opacity. Although it would be

straightforward to mergesomeof the sub-structures using inheritance, composition is more

straightforward in C.
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4.3 Nested MLS Stack Abstraction

The preceding memory allocation algorithm is a necessary prerequisite for efficient child

task allocation that also solves the in-order nesting producer / consumer problem. We now

present a core stack abstraction that directly encodes the call stack and thread manipula-

tions central to all MLS designs. This abstraction is flexible and supports in-order nesting,

out-of-order nesting, in-order speculative commits, and any combination thereof. Specific

models that implement these features using our abstractionare developed in Section 4.4.

The standard sequential call stack model found in most languages has two simple op-

erations that manipulate stack frames:PUSH for entering methods, andPOP for exiting

methods. Frames store local variables and other context required for correct method ex-

ecution, and for well-behaved languages the operations must be matched. For languages

that support multithreading,START andSTOPoperations for creating and destroying non-

speculative threads are also necessary. Our parallel call stack model for MLS is simply a

parallel extension of this standard. It introduces three new operations,FORK, COMMIT, and

ABORT. These new operations manipulate stack frames, but they also have the power to

create and destroy speculative threads.FORK can now be called instead ofPUSH, pushing

a frameandcreating a new child thread, and upon returnCOMMIT or ABORT will be called

to match theFORK instead ofPOP.

We make several assumptions: 1) well-orderedPUSH andPOPnesting is provided by

the underlying language, even in the case of exceptional control flow; 2) stack operations

complete atomically; 3) non-stack operations, while not explicitly modelled, may be freely

interleaved with stack operations on running threads; 4) speculative accesses to global state

variables, if they exist, are handled externally, for example via some transactional memory

or dependence buffering system such as that described in Section 2.4.4; 5) register values

are spillable to a frame on demand; and 6) stacks grow upwards. We also say that parent

threads areless speculativethan their children because they are either non-speculative or

closer to a non-speculative thread than their children; similarly, children aremore specula-

tive than their parents.

The model has two unique features that separate it from naı̈ve speculation where all

reads and writes go through a dependence buffer or transactional memory subsystem. First,
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child threads buffer stack frames from their parents, such that all local variable accesses go

directly through a local frame. This is intended to reduce the load on the dependence track-

ing system. Second, stack frames are buffered as lazily as possible: on forking, only the

frame of the current method is copied to the child. If the child ever needs lower down

frames from some parent thread, it retrieves and copies themon demand. This lazy copy-

ing introduces significant complexity: thePOPoperation may need to buffer a frame, and

the COMMIT operation needs to copy back only the range of live frames from the child

thread stack. We include it as a practical measure intended to make our abstraction use-

ful: our experience with the SableSpMT software implementation described in Chapter 2

indicates a steep performance penalty for copying entire thread stacks. If a child needs

to buffer a frame but its parent is itself speculative, it might not have a copy of the frame

in question. In this case the parent’s ancestors are searched for the frame until the initial

non-speculative thread is reached, which is guaranteed to have a copy. Just as parents are

less speculative than their children, the unbuffered versions of stack frames in those parents

are less speculative than the buffered versions in their children.

The main abstraction is described via its operational semantics in Figure 4.4. Here op-

erations act like functions, requiring a list of arguments.In some cases they also return

values, which are separated from arguments by|. There are seven publicly available oper-

ations, each marked with[∗]. These in turn use a number of internal operations, for both

clarity and logic reuse. A summary of the public operations and their observable behaviour

follows:

[∗]START(|t): create a new non-speculative threadt with an empty stack.

[∗]STOP(t): destroy non-speculative threadt, provided its stack is empty.

[∗]PUSH(t, f): add a new frame with unique namef to the stack of threadt.

[∗]FORK(t, f |u): executePUSH(t, f) and then create a new child threadu that starts exe-

cuting the method continuation using a buffered version of the previous frame from

threadt. Cannot be issued on an empty stack.

[∗]POP(t): remove the top frame from the stack of threadt. For speculative threads there
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must be a frame to pop to, either in the thread itself or some ancestor. The matching

operation must be aPUSH.

[∗]ABORT(t): executePOP(t) (internally JOIN(t|u)) and abort the child threadu attached

to the frame underneath, recursively aborting all of its children. The matching oper-

ation must be aFORK.

[∗]COMMIT(t): executePOP(t) (internally JOIN(t|u)) and commit the child threadu at-

tached to the frame underneath, copying all of its live stackframes and any associated

child pointers. Committed children with children of their own are kept on a list at-

tached tot until no references to them exist, lest another speculativethread attempt

to copy a stack frame from freed memory. The matching operation must be aFORK.

We now turn to a detailed description of the operations in Figure 4.4. We model threads

as unique integers, and maintain several thread sets:T is the set of all threads,Tn is the set

of non-speculative threads,Ts is the set of speculative threads,Tl is the set of live threads,

Td is the set of dead threads, andTc is the set of committed threads that are still reachable

as the ancestor of somet ∈ Ts. Some invariants apply to these sets in between public

operations:Tn ∪ Ts = Tl, Tn ∩ Ts = ∅, Tl 6= ∅ → Tn 6= ∅, Tl ∪ Td = T , Tl ∩ Td = ∅,

andTc ⊆ Td. Elements are never removed fromT , such that each new thread gets a unique

ID based on the current size ofT , namely|T |. There is also a special set variableTp,

the current thread pool, which is only used internally and bound to eitherTn or Ts. Stack

frames are modeled by a set of unique framesF , such that each newly pushed or buffered

frame is not already inF . This invariant is maintained by removing frames fromF when

threads are aborted. Given a framef ∈ F , buffering creates a new framef ′ by appending′

to the name. Given a framef ′, f is the less-speculative version of the same frame in some

ancestor thread. Note that for notational convenience,e′ andf ′ in POP(t) may belong to

a non-speculative thread, in which case no such ancestor exists. Variablesd, e, f and their

primed derivatives represent individual frames, whereasσ, ρ, π represent lists of frames.

Similarly, variablesc, p, t, u represent individual threads, whereasγ, δ represent lists of

threads.

In addition to these sets, there are several functions that maintain mappings between

them.stack(t ∈ T ) mapst to a thread stack, which is a list of frames inF , child(f ∈ F )
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CREATE(Tp, σ|t)
Tp = Tn ⊕ Tp = Ts

t = |T |, T ∪= {t}, Tl ∪= {t}, Tp ∪= {t}, stack(t) = σ

DESTROY(t)
t ∈ Tp Tp = Tn ⊕ Tp = Ts

Tl \= {t}, Tp \= {t}, Td ∪= {t}

[∗]START(|t)
CREATE(Tn, ∅|t)

[∗]STOP(t)
t ∈ Tn stack(t) = ∅

DESTROY(t)

[∗]PUSH(t, f)
t ∈ Tl f /∈ F σ = stack(t)

stack(t) = σ : f, F ∪= {f}

BUFFER(t, e|e′)
t ∈ Tl ∪ Tc e ∈ stack(t) e ∈ F child(e) /∈ Ts

e′ = e, F ∪= {e′}

[∗]FORK(t, f |u)

PUSH(t, f)

σ : e : f = stack(t), BUFFER(t, e|e′) CREATE(Ts, e
′|u)

parent(u) = t, child(e) = u

[∗]POP(t)

t ∈ Tl σ : e′ : f ′ = stack(t) f ′ ∈ F child(e′) /∈ Tl

t ∈ Tn

e′ ∈ F ⊕ σ : e′ = ∅
⊕

t ∈ Ts

e′ ∈ F ⊕ νp . BUFFER(p, e|e′)

stack(t) = σ : e′

Figure 4.4: Stack operations.Externally available operations are marked with[∗]. START andSTOP

create and destroy non-speculative threads,PUSH, POP, FORK, COMMIT, andABORT operate on

existing threads, and all other operations are internal.
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JOIN(t|u)
t ∈ Tl σ : e : f = stack(t) e, f ∈ F child(e) ∈ Tl

stack(t) = σ : e, u = child(e)

MERGE STACKS(t, u)

d′ : ρ = stack(u)

d ∈ stack(t)

σ : d : π : e = stack(t)
⊕

d /∈ stack(t)

σ = ∅

stack(t) = σ : d′ : ρ

MERGE COMMITS(t, u)
γ = commits(t) δ = commits(u)

commits(t) = γ : u : δ, Tc ∪= {u}

PURGE COMMITS(t)
γ : δ = commits(t) . δ = νδ . ∀c ∈ δ ∀f ∈ stack(c), child(f) /∈ Tl

commits(t) = γ, Tc \= {δ}

CLEANUP(t, u)
DESTROY(u)

PURGE COMMITS(t)

[∗]COMMIT(t)
JOIN(t|u) MERGE STACKS(t, u) MERGE COMMITS(t, u)

CLEANUP(t, u)

ABORT ALL (t)

∀f ∈ stack(t) . u = child(f) ∈ Tl

ABORT ALL (u)

F \= {stack(t)}, CLEANUP(t, u)

[∗]ABORT(t)
JOIN(t|u) ABORT ALL (u)

CLEANUP(t, u)

Figure 4.4: Stack operations (continued).
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mapsf to a speculative child threadu ∈ Ts ∪ Tc, parent(u ∈ Ts ∪ Tc) mapsu to thet ∈ T

that forked it, andcommits(t ∈ Tl) mapst to a list of threads inTc. Initially all mappings

and sets are empty.

Our rules make use of a few specific operators and conventions. The use of exclusive

or (⊕) indicates a choice between one rule and another or one set ofpremises and an-

other. We useS ∪= {s} andS \= {s} to indicate set additions and removals respectively.

We use a period (.) to indicate “such that”. Finally, we define a maximization operatorν

that searches either for the greatest natural number or the longest list with a given prop-

erty. Formally,νyR(y) means the greatest or longesty such that predicateR(y) is true,

if ∃y such thatR(y); otherwise0 (for natural numbers) or∅ (for lists). This definition

is inspired by theµ or minimization operator from primitive recursive functions in com-

putability theory [Kle52] and theν or greatest fixed point operator from theµ-calculus in

model checking [CGP99].

Lastly, we give a brief description of each rule.CREATE takes a thread poolTp and

a stackσ, checking thatTp is bound to eitherTn or Ts. It then initializes a new threadt

with ID |T |. Next, it addst to T , Tl, andTp, and initializes the stack oft to σ. Finally, it

returnst. DESTROYconversely takes a threadt ∈ Tp and bindsTp to eitherTn or Ts based

on whethert ∈ Tn or t ∈ Ts. It then removest from Tl andTp, and adds it toTd. START

calls CREATE to make a new non-speculative threadt ∈ Tn with an empty stack, and then

returns it.STOPtakes a threadt, checks thatt is non-speculative and that its stack is empty,

and then callsDESTROY to remove it. Note that hereDESTROY will bind Tp to Tn since

t ∈ Tn.

PUSH takes a freshf and appends it tostack(t), wheret is live, also addingf to F .

BUFFER takes either a live or committed thread, the name of a framee in its stack, and

provided there is no child attached toe createse′ for use by its caller, which is eitherFORK

or POP. FORK first callsPUSH, bufferse′ from e, createsu, and setst asu’s parent andu as

e’s child.

POPtakes the stack oft, and checks that the top framef ′ is valid and there is no child

attached to the framee′ underneath. There is now a set of nested choices leading to one of

four possible outcomes. Ift is non-speculative, then eithere′ is a valid frame or the stack

below f ′ is empty. If t is speculative, then eithere′ exists and can be found instack(t),
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or e′ needs to be retrieved and buffered lazily from the most speculative parent threadp

that containse. After one of these four cases is chosen,f ′ is popped by simply adjusting

stack(t) to exclude it. Note that this rule will prevent a speculativethread from popping

the last frame on the stack, because in this casee /∈ stack(p) and the call toBUFFER will

not complete. Similarly, it prevents a speculative thread from buffering and returning to a

parent frame that has a child attached to it.JOIN has similar conditions toPOP, except that

heree must both exist and have a speculative child.

The expressionνp . BUFFER(p, e|e′) in POPsays to find the greatest or most speculative

thread ancestorp that has a copy of the required stack framee, and then use it to createe′.

Threads are numbered in increasing order byCREATE, such that a parent thread always has

a lower ID than its child. Thus by searching for the maximalp we find the parent closest to

the child that hase, stopping whenp = 0. The first thread in the system is non-speculative

and created with ID0. We have a guarantee thate ∈ stack(0) if it is not found in any other

thread, because a continuation will never attempt to returnto a stack frame that was not

previously entered by either itself or some ancestor.

MERGE STACKS is called byCOMMIT. It copies the live range of stack framesd′ : ρ

from the childu to the parentt. There is now a choice between two cases. Ifd, the less-

speculative version of the child’s bottom framed′, exists instack(t), then the range of stack

framesd : π : e in t is replaced with the child stackd′ : ρ. Otherwised /∈ stack(t) and the

entire parent stack is replaced withd′ : ρ. Note thatd will always be found ift ∈ Tn, since

non-speculative threads must have complete stacks.d will only not be found ift ∈ Ts and

u has returned to some frame beyond the bottom oft.

MERGE COMMITS, as called byCOMMIT, takes the commit listγ from the parent,

appends the childu and the child commit listδ, and addsu to Tc. PURGE COMMITS is

called every timeCLEANUP is called. It removes threads without child dependences from

the most speculative end of a commit list until either all committed threads have been

purged or it encounters a dependency. The expressionγ : δ = commits(t) . δ = νδ . ∀c ∈

δ ∀f ∈ stack(c), child(f) /∈ Tl in PURGE COMMITS says to dividecommits(t) into two

parts,γ andδ, whereδ is the longest sub-list at the end ofcommits(t) such that for every

thread inδ, there are no live children attached to any of its stack frames.

CLEANUP simply destroysu and then purgest. It is called after theCOMMIT and
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ABORT operations, and internally fromABORT ALL . WhereasJOIN contains the common

logic that precedes commits and aborts,CLEANUP contains the common logic that follows

them.COMMIT is a composite operation that joinst, merges stacks and commit lists using

u from JOIN, and then cleans up.ABORT has a similar structure, callingABORT ALL

internally, which performs a depth-first search looking forlive children, and destroying

them post-order. In any real-world implementation that uses this stack abstraction, child

threads must be stopped before they can be committed or aborted.

4.4 Individual MLS Models

Using the stack abstraction from Figure 4.4 we now develop a series of concentric and

progressively more flexible MLS models, each described by their structural operational

semantics. The models are shown individually in Figures 4.5–4.11. Each consists of a

group of rules, and each of these rules maps to a specific sub-case of a public ([∗]) operation

in Figure 4.4. The primary motivation for the rules is the stepwise depiction of stack and

thread graph evolution in 2D. The primary motivation for their grouping into models is

to specify the different types of MLS design available. In essence, these models provide

an exhaustive visual reference to the MLS design considerations implicit in our unified

abstraction by exposing the core state evolution patterns that define execution. A valid

speculation for a given program at the call stack level is defined by a sequence of rule

applications, each of which acts atomically. This sequencecan be used straightforwardly

to construct the thread and stack interleavings. In Section4.5, we use these models to

explore, visualize, and understand the behaviour of various code idioms under speculation.

Before describing the models, we will first explain the structure of the rules. With

the exception ofSTART and STOP, each rule is named using a combination of abbrevia-

tions. First there is a qualifier for the operation, which maynon-speculative (N), specula-

tive (S), in-order (I), or out-of-order (O). In some cases these may be combined, such that

SI means “speculative in-order” and indicates an in-order operation performed by a spec-

ulative thread,IO means “in-order out-of-order” and indicates a nesting structure where

an out-of-order fork follows an in-order fork, andOI is the inverse ofIO. Next there is a

symbol for the operation itself, which may bePUSH(↓), POP(↑), FORK (≺), COMMIT (≻),
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or ABORT (⊁). Some of thePOP (↑) rules have a stack bottom (⊥) suffix, which means

that the thread is performing a pop operation on the bottom frame of its stack. TheMERGE

suffix for I≻MERGE indicates that two lists of committed threads created by in-order forks

are being merged via the privateMERGE COMMITS operation in Figure 4.4. Finally, square

brackets ([ ]) surrounding a rule name mean that its behaviour is actuallyprovided by an-

other rule, as indicated in the figure captions; their purpose is to illustrate specific details

of stack evolution.

Each rule also consists of two parts. Above the inference line is the corresponding

[∗] command from Figure 4.4, followed by model-specific restrictions on behaviour and lo-

cal variable mappings. For a mappingx = y, x is a value found in the transitive expansion

of the [∗] command from Figure 4.4 andy is the local value. Below the line is a visual

depiction of the transition from one stack state to the next.For each stack state, threads

appear horizontally along the bottom and are named in increasing order byτ , α, β, γ, δ,

such thatτ ∈ Tn and{α,. . . ,δ} ⊆ Ts, with a single exception in ruleI↑⊥ from Figure 4.9

whereτ may be inTs. Shown above each threadt is the value ofstack(t), which grows

upwards. Ifcommits(t) is non-empty, it grows from left to right starting att, with hor-

izontal lines joining its elements. Finally, for eachf ∈ stack(t), a horizontal line joins

it to the initial stack frame of its child thread ifchild(f) ∈ Tl. Thus the figures consist

of threads, stacks, links between stacks at fork points, andlinks between threads and their

committed children. The lengths of the horizontal lines between stacks are not fixed, and

adjust to accomodate other threads. For example, in Figure 4.8,τ andα are linked together

via π andπ′ both before and after theO≺ transition, but afterwards the line grows to acco-

modate the new threadβ, which is nested more closely toτ . This growth could be avoided

by changing the horizontal order ofα andβ. However,β must appear beforeα to prevent

stack frames from crossing horizontal lines: consider the state representation ifβ appeared

afterα, andα subsequently pushed some new frameg on its stack.

As in Figure 4.4, variablesd, e, f and their primed derivatives are given to individual

frames, whereasσ, ϕ, π, ω, υ and their primed derivatives represent lists of frames. Note

thatρ also appears, but only in the left side of the mappings from Figure 4.4 to these rules

and never below the inference line for reasons of clarity andconsistency. The rationale for

the choice of different Greek letters varies. For threads,τ is simply ‘t’ for ‘thread’, andα
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throughδ are the first four letters of the Greek alphabet that map to thefirst four speculative

threads. The letters representing lists of stack frames were chosen primarily because they

are suitably compact for 2D stack depictions, but there is also some intention here.σ is ‘s’

for ‘stack’, and appears in order beforeϕ andπ as stacks grow upwards. Any of these three

may be used at the stack bottom provided this ordering is maintained.ω is the last letter in

the alphabet and so represents the top end of the stack. Ifω is already in use for a different

thread thenυ can be used instead.

We now describe the actual models. Figure 4.5 contains a simple structured non-

speculative stack model common to many languages, including Java. Non-speculative

threads canSTART and STOP, delimiting the computation. InN↓, a new frame can be

pushed, whereσ ⊆ F and so may be∅. N↑ andN↑⊥matche ∈ stack(τ) ande /∈ stack(τ)

respectively to the two casese′ ∈ F andσ : e′ = ∅ of POP(t) in Figure 4.4. Note thatN↑⊥

is the penultimate operation on a thread, followed bySTOP.

Figure 4.6 contains the simplest MLS stack model, one that extends Figure 4.5 to allow

non-speculative threads to fork and join a single child at a time. In this model, speculative

threads cannot perform any operations, including simple method entry and exit. ForN≺,

there is a restriction on children being attached to prior stack frames, which prevents out-of-

order speculation.N≻ is the simplestCOMMIT(t) possible, with the child stack containing

only one frame, andN⊁ is similarly simple with no recursion required inABORT(τ). Fi-

nally, the restrictionτ ∈ Tn in N↓ andN≺ is sufficient to prevent speculative child threads

from doing anything other than local computation in the buffered framee′: N≻ and N⊁

must match withN≺, N↑ must matchN↓, andN↑⊥ is precluded for speculative threads

becauseBUFFER(τ, e|e′) will not complete. This model is simplest to implement, but is

only useful if the speculative work remains in the initial continuation frame.

The model in Figure 4.7 extends Figure 4.6 to allow speculative children to enter and

exit methods. A speculative pushS↓ simply creates a new frame forα, specifying thatπ′

is linked toπ via some framee′ at the bottom ofπ′ to the correspondinge ∈ π. S↑ takes

the left-hand case inPOP(t) wheree′ ∈ F , whereasS↑⊥ takes the right-hand case and

so bufferse′ from its parent. Finally, this model updatesN≻ andN⊁ to handle situations

where the child may have lefte′ via S↑⊥ or S↓, now representing the child thread stack by

ϕ′ instead ofe′. This model permits a variety of computations that contain method calls
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in the continuation and use only a single speculative thread; example patterns involving

straight-line code (Figure 4.12d) and if-then branching (Figures 4.13d and 4.13e) are given

in the next section.

The next model in Figure 4.8 simply adds one operation to allow out-of-order nesting

in non-speculative threads,O≺. This rule specifies that if there is some lower stack frame

d in π with a child attached, a new thread can be forked frome, complementingN≺ in

Figure 4.6 which prohibits this. All other existing operations continue to work as expected

in this model. As seen in Chapter 2, this model is relatively straightforward to express

in software, but does not expose maximal parallelism, as processors executing speculative

threads are for the most part idle. Nevertheless, scalable out-of-order speculation involving

head recursion (Figure 4.16d) and a mixture of head and tail recursion (Figure 4.17) is now

possible.

After out-of-order nesting comes in-order nesting in Figure 4.9. I≺ allows speculative

threadα to createβ independently of its parent.N⊁ will recursively abort these threads

without modification, butI≻ is required to allow a parent thread to commit child thread

α with a grandchildβ, maintaining the link toβ and mergingα onto the commit list of

the parent. Afterβ gets committed viaN≻, α will be freed, assuming there are no more

children. I↑⊥ is yet more complex, specifying that in order to buffer framee′, parent

threads will be searched backwards starting from the grandparent untile is found. Here;

indicates that there is a path of buffered frames fromπ′ backwards toπ, and... similarly

indicates the possibility of intermediate threads betweenτ andα. This rule is an extended

version ofS↑⊥, which only handles buffering from the immediate parent.S↑ works nicely

as is with in-order speculation, andS↑⊥ works not only in the simple case above but also

when the buffered frame is in some committed threadc ∈ Tc. This model works well

for any speculation pattern that depends on in-order nesting, including ones for iteration

(Figure 4.14c), tail recursion (Figure 4.15d), and head recursion (Figure 4.16e).

In Figure 4.10, speculative commits are now permitted. There are two simple rules,

S≻ andSI≻, which complementN≻ and I≻ respectively. In the formerβ is purged from

commits(α), whereas in the latter it is kept because of dependencyγ. [I≻MERGE] is

implied by I≻, and so adds nothing, but is shown to illustrate the full process of merging

committed thread lists, whereα andγ were already committed andβ gets added between
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START
START(|τ)

⇒
τ

STOP
STOP(τ)

τ
⇒

N↓
PUSH(τ, f) τ ∈ Tn

τ
σ⇒

τ
σ
f

N↑

POP(τ) e ∈ stack(τ)
e′ = e f ′ = f

τ
σ
e
f

⇒
τ
σ
e

N↑⊥

POP(τ) e /∈ stack(τ)
e′ = e f ′ = f

τ

f ⇒
τ

Figure 4.5: Adults-only model.No speculation.

N≺

FORK(τ, f |α) τ ∈ Tn

∀d ∈ σ, child(d) /∈ Tl

τ
σ
e
⇒

τ
σ
e
f

α

e′

N≻

COMMIT(τ)
ρ = ∅

d = e d′ = e′

τ
σ
e
f

α

e′
⇒

τ
σ
e′

N⊁
ABORT(τ)

τ
σ
e
f

α

e′
⇒

τ
σ
e

Figure 4.6: Totalitarian model.One speculative child allowed, but only non-speculative threads

can perform stack operations.

S↓

PUSH(α, f)
σ = π′ ω 6= ∅

e′ = car(π′) . e ∈ π

τ
π
ω

α
π′⇒

τ
π
ω

α
π′
f

S↑

POP(α) f ′ = f
σ : e′ = π′ ω 6= ∅
d′ = car(π′) . d ∈ π

τ
π
ω

α
π′
f
⇒

τ
π
ω

α
π′

S↑⊥

POP(α) f ′ = π′

σ : e′ = ∅ ω 6= ∅
f = car(π)

τ

ϕ
e
π
ω

α

π′

⇒
τ

ϕ
e
π
ω

α

e′

N≻

COMMIT(τ)
d′ : ρ = ϕ′

d : π : e = ϕ

τ
σ
ϕ
f

α

ϕ′

⇒
τ
σ
ϕ′

N⊁

ABORT(τ)
σ : e = σ : ϕ

τ
σ
ϕ
f

α

ϕ′

⇒
τ
σ
ϕ

Figure 4.7: Kid-friendly model.Allows PUSH andPOPactions on speculative threads, overriding

N≻ andN⊁ to accomodate. Thecar function returns the first element of a list.
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O≺

FORK(τ, f |β) τ ∈ Tn

d′ = car(π′) . d = car(π)

τ
σ
π
e

α

π′

⇒
τ
σ
π
e
f

β

e′

α

π′

Figure 4.8: Catholic model.Provides out-of-order nesting viaO≺ to allow an arbitrary number of

speculative children for non-speculative threads.

I≺

FORK(α, f |β)
σ = π′ ω 6= ∅

d′ = car(π′) . d ∈ π

τ
π
ω

α
π′
e
⇒

τ
π
ω

α
π′
e
f

β

e′

I≻

COMMIT(τ) τ ∈ Tn

ω 6= ∅ d′ : ρ = ϕ′ : ω
d : π : e = ϕ

τ
σ
ϕ
f

α

ϕ′ω

β

ϕ′′

⇒
τ
σ
ϕ′ω

α β

ϕ′′

I↑⊥

POP(β) f ′ = π′′ σ : e′ = ∅ ω, υ 6= ∅
f = car(π′) car(π′) ; car(π)

νpp≥0 . BUFFER(p, e|e′) = τ

τ

ϕ
e
π
ω

α

π′
υ

β

π′′...

⇒
τ

ϕ
e
π
ω

α

π′
υ

β

e′
...

Figure 4.9: One big happy model.Provides in-order nesting viaI≺ to allow speculative children of

speculative threads. Note that inI↑⊥, τ may be speculative.

S≻

COMMIT(α) ω 6= ∅
d′ : ρ = ϕ′′ d : π : e = ϕ′

τ
σ
ϕ
ω

α

ϕ′
f

β

ϕ′′

⇒
τ
σ
ϕ
ω

α

ϕ′′

SI≻

COMMIT(α) ω, υ 6= ∅
d′ : ρ = ϕ′′ : υ d : π : e = ϕ′

τ
σ
ϕ
ω

α

ϕ′
f

β

ϕ′′υ

γ

ϕ′′′

⇒
τ
σ
ϕ
ω

α

ϕ′′υ

β γ

ϕ′′′

[I≻MERGE]

COMMIT(τ) ω 6= ∅
d′ : ρ = ϕ′′′ : ω d : π : e = ϕ′

τ
σ
ϕ′
f

α β

ϕ′′′ω

γ δ

ϕ′′′′

⇒
τ
σ
ϕ′′′ω

α β γ δ

ϕ′′′′

Figure 4.10: Nuclear model. Allows speculative threads to commit their own children.

[I≻MERGE]’s behaviour is provided byI≻.
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IO≺

FORK(α, f |γ) ω 6= ∅
d′ = car(π′) . d = car(π)

τ
σ
π
ω

α

π′
e

β

π′′

⇒
τ
σ
π
ω

α

π′
e
f

γ

e′

β

π′′

[IO⊁]

ABORT(τ) ω 6= ∅
σ : e = σ : ϕ

τ
σ
ϕ
f

α

ϕ′π
ω

γ

π′

β

ϕ′′

⇒
τ
σ
ϕ

[OI≺]

FORK(β, f |γ)
σ = π′ ω 6= ∅

d′ = car(π′) . d ∈ π

τ

ϕ
π
ω

β

π′
e

α

ϕ′
⇒

τ

ϕ
π
ω

β

π′
e
f

γ

e′

α

ϕ′

Figure 4.11: Libertarian model.Allows both in-order and out-of-order nesting.[IO⊁] and[OI≺]

are provided byN⊁ andI≺ respectively.

them. This model is good because it allows parallel commit operations, reducing the burden

on the non-speculative parent thread. The disadvantage is that there is an increased risk

of failure, because an otherwise valid speculation can become invalid by merging with a

dependent invalid speculation.

Finally, in Figure 4.11, the last restrictions are removed so that all of the features in

the main abstraction in Figure 4.4 are available. In this case, it suffices to provideIO≺,

which allows speculative threads to create child threads out-of-order. This was formerly

prohibited byO≺, which only applied to non-speculative threads. The other two rules are

again shown only for purposes of illustration:[IO⊁] shows a recursive abort on a thread

with both in- and out-of-order nesting, and[OI≺] shows in-order nesting after out-of-order

nesting has taken place, as already allowed byO≺ followed by I≺. This model is useful for

more complex computations that depend on both in-order and out-of-order nesting, for ex-

ample binary tree traversals (Figure 4.18) and divide and conquer algorithms (Figure 4.19).

The above models illustrate the core behaviour patterns of common speculation strate-

gies. In the next section, we explore a series of stack evolutions that assume support for the

final combined stack model in Figure 4.11, although in some cases one of the less flexible

models will suffice.

4.5 Speculation Patterns

Simple changes in the structure of input programs and choiceof fork points can dramati-

cally affect the dynamic structure of the speculative call stack. In this section we explore
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several common code idioms and their behaviour under MLS using the full stack abstrac-

tion. This exploration is done with a view towards discovering idiomatic code structures

and speculation decisions that yield interesting parallelexecution behaviours. These id-

ioms, forking decisions, and runtime behaviour combine to form speculation patterns, from

which we can identify structural fork heuristics. We first examine the simplest constructs in

imperative programs, namely straight-line code, if-then conditionals, iteration, head recur-

sion, and tail recursion. We then examine more complicated examples, including a mixture

of head and tail recursion, binary tree traversals, and divide and conquer algorithms. We

present a series of linear state evolutions to visualize theresults, each of which is auto-

matically generated from a list of operations given to an Awkscript implementation of our

model. We also examine the source code of the Olden benchmarksuite for instances of

these patterns.

In the examples that follow, we assume that useful computation can be represented

by calls to awork function whose running time is both constant and far in excess of the

running time of all non-work computation. Thus we can reasonthat if a thread is executing

awork function, it will not return from that function until all other non-work computations

in other threads possible before its return have completed.This reasoning guides the stack

evolutions in cases where more than one operation is possible. These simplistic execution

timing assumptions yield surprisingly complex behaviour,which indicates that our work

here is a good basis for attempting to understand the behaviour of more complex programs

with variable lengthwork functions.

4.5.1 Straight-Line

The simplest code idiom in imperative programs is straight-line code, where one statement

executes after the next without branching, as in Figure 4.12. In 4.12a, two sequential calls

to work are shown, with the non-speculative stack evolution in 4.12b. In future evolutions

we omit the initialN↓ and finalN↑⊥. In 4.12c, speculation occurs on all calls towork : the

parent threadτ executeswork(1), α executeswork(2), andβ executes a continuation

which does nothing useful.τ returns from w1 and commitsα, then returns from w2 and

commitsβ, and finally pops s” to exit the program. We label this execution asinefficient
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straightline () {
work (1);
work (2);

}

(a) Code.

τ
⇒

τ
s ⇒

τ
s
w1
⇒

τ
s ⇒

τ
s
w2
⇒

τ
s ⇒

τ
(b) Do not speculate.

τ
s ⇒

τ
s
w1

α
s’⇒

τ
s
w1

α
s’
w2

β

s”⇒
τ
s’
w2

α β

s”⇒
τ
s”

(c) Speculate onwork(1) andwork(2) (inefficient).

τ
s ⇒

τ
s
w1

α
s’⇒

τ
s
w1

α
s’
w2
⇒

τ
s’
w2
⇒

τ
s’

(d) Speculate onwork(1) (good).
τ
s ⇒

τ
s
w1
⇒

τ
s ⇒

τ
s
w2

α
s’⇒

τ
s’

(e)Speculate onwork(2) (bad).

barrier () {
work (1);
stop; /∗ u n s a f e ∗ /
work (2);

}

(f) Speculation barrier code.

τ
s ⇒

τ
s
w1

α
s’⇒

τ
s’⇒

τ
s’
w2
⇒

τ
s’

(g) Speculation barrier: speculate onwork(1).

Figure 4.12: Straight-line.

because of the wasteful threadβ. In 4.12d, w1 and w2 are effectively parallelized, without

the wastefulβ from 4.12c, and so we label the execution asgood. Conversely, the execution

in 4.12e isbadbecause w1 and w2 are serialized.

Even in this simple example, the choices betweenPUSHandFORK clearly affect which

threads execute which regions of code, and whether they haveuseful work to do. In 4.12f,

the keywordstop is introduced which acts as a speculation barrier. This keyword is a

catch-all for any unsafe instruction and can be implementedas such. The result in 4.12g

is that w2 is not executed speculatively. Again, although simple, the impact of unsafe

instructions on speculative parallelism is important to consider; in some cases, speculation

barriers might even be useful for inducing desired parallelruntime behaviours.

4.5.2 If-Then

Another simple code idiom is if-then conditional branching, as shown in Figure 4.13, with

example code in 4.13a. 4.13b and 4.13c show the non-speculative execution depending on

whetherwork(1) returns true or false respectively. If the value of the conditional is spec-
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if_then () {
if (work (1))

work (2);
work (3);

}

(a) Code.

τ
i ⇒

τ
i
w1
⇒

τ
i ⇒

τ
i
w2
⇒

τ
i ⇒

τ
i
w3
⇒

τ
i

(b) Do not speculate,work(1) returns true.

τ
i ⇒

τ
i
w1
⇒

τ
i ⇒

τ
i
w3
⇒

τ
i

(c) Do not speculate,work(1) returns false.
τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2
⇒

τ
i’
w2
⇒

τ
i’ ⇒

τ
i’
w3
⇒

τ
i’

(d) Speculate onwork(1), predict true

correctly (good).

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w3
⇒

τ
i’
w3
⇒

τ
i’

(e) Speculate onwork(1), predict false correctly

(good).

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2
⇒

τ
i ⇒

τ
i
w3
⇒

τ
i

(f) Speculate onwork(1), predict true

incorrectly (bad).

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w3
⇒

τ
i ⇒

τ
i
w2
⇒

τ
i ⇒

τ
i
w3
⇒

τ
i

(g) Speculate onwork(1), predict false incorrectly (bad).

Figure 4.13: If-then.

ulative, then the particular code paths followed dependingon the value themselves become

speculative. In Figure 4.13, when speculating on the call towork(1) it is necessary to

predict a boolean return value. If the speculation is correct, as in 4.13d and 4.13e, then the

speculative work w2 or w3 respectively is committed. Otherwise, that work is aborted, as

in 4.13f and 4.13g.

For this speculation idiom to be useful, the function producing the return value should

take a long time to execute. Nested ifs have similar behaviour to this example, although

the prediction for the outer test will be more important thanthe inner test in terms of

limiting wasted computation, since the inner speculation is under its control. Extensions

to our speculation model could allow for multiple predictedreturn values, associating one

speculative thread with each. This would provide a kind of speculative hedging, and may

be worthwhile given excess resources.

139



Nested Method Level Speculation & Structural Fork Heuristics

4.5.3 Iteration

The most common code idiom considered for speculation is loop iteration. Chen & Oluko-

tun demonstrated that if a loop body is extracted into a method call, then method level

speculation can subsume loop level speculation [CO98]. We explore an example loop un-

der different speculation assumptions in Figure 4.14 to better understand the behaviour.

Outlining or extracting a loop body to convert it to the example form in 4.14a makes the

loop amenable to method level speculation, with 4.14b showing basic non-speculative ex-

ecution; conversely, inlining some or all of the code fromwork can be used to limit the

amount of parallelism. Speculating on all calls towork in 4.14c, the loop is quickly di-

vided up into one iteration per thread for as many threads as there are iterations.

To limit this aggressive parallelization, we explored speculating on everym in n calls.

In 4.14d, a child is forked every 1 in 2 calls. The stack evolves to a point where both w1

and w2 are executing concurrently and no other stack operations are possible. Once w1 and

w2 complete, a number of intermediate evolutions open up, but they all lead to the same

state with w3 and w4 executing concurrently. Effectively, the loop is parallelized across

two threads, each executing one iteration at a time. In 4.14e, speculating on every 1 in 3

calls, a similar pattern emerges, except that a non-parallel execution of w3 is interjected. In

4.14f, speculating on every 2 in 3 calls, w1, w2, and w3 execute in parallel, and once they

complete the stack evolves until w4, w5, and w6 execute in parallel.

A general rule for iteration under MLS then is that speculating on everyn−1 in n calls

to work will parallelize the loop acrossn threads, each executing one iteration. To support

multiple subsequent iterations executing in the same thread, there are two options. First,

the parent thread could passi + j to the child thread when speculating, wherej is the

number of iterations per thread; however, our model would need an explicit mechanism for

modifying specific local stack frame variables to support this. Second, the loop could be

unrolled such that multiple iterations were pushed into theparent method body, as shown

in 4.14g.
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iterate (n) {
for (i = 1; i <= n; i++)

work (i);
}

(a) Code.

τ
i ⇒

τ
i
w1
⇒

τ
i ⇒

τ
i
w2
⇒

τ
i ⇒

τ
i
w3
⇒ . . .

(b) Do not speculate.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

β

i” ⇒
τ
i
w1

α
i’
w2

β

i”
w3

γ
i”’⇒ . . .

(c) Speculate on all calls towork.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2
⇒

τ
i’
w2
⇒

τ
i’ ⇒

τ
i’
w3

β

i” ⇒
τ
i’
w3

β

i”
w4

⇒ . . .

(d) Speculate on 1 in 2 calls towork.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2
⇒

τ
i’
w2
⇒

τ
i’ ⇒

τ
i’
w3
⇒

τ
i’ ⇒

τ
i’
w4

β

i”

⇒
τ
i’
w4

β

i”
w5
⇒ . . .

(e)Speculate on 1 in 3 calls towork.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

β

i” ⇒
τ
i
w1

α
i’
w2

β

i”
w3
⇒

τ
i’
w2

α β

i”
w3

⇒
τ
i”
w3
⇒

τ
i” ⇒

τ
i”
w4

γ
i”’⇒

τ
i”
w4

γ
i”’
w5

δ

i””⇒
τ
i”
w4

γ
i”’
w5

δ

i””
w6
⇒ . . .

(f) Speculate on 2 in 3 calls towork.

unrolled (i) {
work (i);
work (i + 1);

}

iterate (n) {
i = 1;
while (i <= n)
unrolled (i += 2);

}

(g) Unrolled iteration code (n must be even).

Figure 4.14: Iteration.

4.5.4 Tail Recursion

Tail recursion is explored in Figure 4.15, with example codeshown in 4.15a and non-

speculative execution shown in 4.15b. It is well known that tail recursion can be efficiently

converted to iteration, and we see why in these examples: theonly difference in stack

behaviour is the interleavingrecurse frames. Speculating on bothrecurse andwork

in 4.15c usefully populates the stack with successive callsto work. However, this also

creates just as many wasteful threads that only ever fall outof the recursion, although they

stop almost immediately as they encounter elder siblings. Speculating on justwork in

4.15d is good, and yields a stack structure identical to thatproduced by speculating on all
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recurse (i, n) {
work (i);
if (i < n)

recurse (i + 1, n);
}

(a) Code.

τ
r1⇒

τ
r1
w1
⇒

τ
r1⇒

τ
r1
r2
⇒

τ
r1
r2
w2

⇒ . . .

(b) Do not speculate.

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2

β

r1”⇒
τ
r1
w1

α
r1’
r2
w2

γ

r2’

β

r1”⇒ . . .

(c) Speculate on all calls (inefficient).

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2
⇒

τ
r1
w1

α
r1’
r2
w2

β

r2’
⇒ . . .

(d) Speculate on all calls towork (good).
τ
r1⇒

τ
r1
w1
⇒

τ
r1⇒

τ
r1
r2

α
r1’⇒

τ
r1
r2
w2

α
r1’⇒ . . .

(e)Speculate on all calls torecurse (bad).

τ
r1⇒

τ
r1
w1

α
r1’⇒
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α
r1’
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⇒

τ
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α
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⇒
τ
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w2

⇒
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r2
⇒
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⇒
τ
r1’
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r3
w3

β

r3’

⇒
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r3
w3

β

r3’
r4

⇒
τ
r1’
r2
r3
w3

β

r3’
r4
w4

⇒ . . .

(f) Speculate on 1 in 2 calls towork (good).

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2
⇒

τ
r1
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α
r1’
r2
w2

⇒
τ
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r2
w2

⇒
τ
r1’
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⇒

τ
r1’
r2
r3

β

r2’
⇒

τ
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r2
r3

β

r1”⇒
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r2
r3
w3

γ

r3’

β

r1”⇒
τ
r1’
r2
r3
w3

γ

r3’
r4

β

r1”⇒
τ
r1’
r2
r3
w3

γ

r3’
r4
w4

β

r1”⇒ . . .

(g) Speculate on 1 in 2 calls towork andrecurse (inefficient).
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r1⇒

τ
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w1
⇒

τ
r1⇒

τ
r1
r2
⇒

τ
r1
r2
w2

⇒
τ
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r2
⇒

τ
r1
r2
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α

r2’
⇒

τ
r1
r2
r3
w3

α

r2’
⇒

τ
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τ
r1
r2
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α
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r2
r3
r4

α
r1’⇒

τ
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r2
r3
r4
w4

α
r1’⇒

τ
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r2
r3
r4

α
r1’

⇒
τ
r1
r2
r3
r4
r5

β

r4’

α
r1’⇒

τ
r1
r2
r3
r4
r5
w5

β

r4’

α
r1’⇒

τ
r1
r2
r3
r4
r5
w5

β

r3’

α
r1’⇒ . . .

(h) Speculate on 1 in 2 calls torecurse (bad).

Figure 4.15: Tail recursion.
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calls in iteration, as in 4.14c, modulo the interleavingrecurse frames. On the contrary,

speculating on justrecurse in 4.15e is bad, because calls towork are never parallelized.

Speculating on 1 in 2 calls towork in 4.15f yields another structure directly comparable

to iteration, this time mirroring 4.14d, where w1 and w2 execute in parallel before the stack

evolves to w3 and w4. Speculating on 1 in 2 calls towork andrecurse in 4.15g is similar

but introduces inefficiency. Speculating on 1 in 2 calls torecurse in 4.15h is bad, but

yields interesting behaviour which sees speculative children unwind the stack by one frame

before stopping.

4.5.5 Head Recursion

Head recursion is considered in Figure 4.16. Comparing the code shown in 4.16a with tail

recursion, the call towork now comes after the call torecurse instead of before. This

means that in the non-speculative execution shown in 4.16b,work is not executed until

there aren recurse frames on the stack. Speculating on all calls torecurse andwork in

4.16c is inefficient, just as for tail recursion, whereas speculating on justrecurse in 4.16d

is good, allowing for calls towork to be executed out-of-order. This is expected given

that head recursion is seen as dual to tail recursion. Surprisingly, however, speculating on

just work in 4.16e is also good: the stack gets unwound in-order. For head recursion, the

support for both out-of-order and in-order nesting in our stack model, needed by 4.16d and

4.16e respectively, ensures that all available parallelism is obtained.

Speculating on 1 in 2 calls torecurse andwork in 4.16f yields unbounded parallelism,

where pairs of two calls are unwound in-order within a pair, and out-of-order between

pairs. Speculating on 1 in 2 calls towork in 4.16g yields a bounded parallelism structure

comparable to the iteration in 4.14d and the tail recursion in 4.15f, where first wn and wm

execute in parallel, and then the stack evolves to a state where wl and wk execute in parallel.

We were again surprised by speculating on 1 in 2 calls torecurse in 4.16h:α executes

w2, and after returning the stack evolves until it executes w1. This pattern is strikingly sim-

ilar to the loop unrolling in 4.14g, where two successive calls execute in the same thread.

This particular example is unbounded, however, because nothing prevents the growth ofτ

up the stack, such that every two calls towork start all together and are then unrolled all to-
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recurse (i, n) {
if (i < n)

recurse (i + 1, n);
work (i);

}

(a) Code.
τ
r1⇒

τ
r1
:
⇒

τ
r1
:
rm

⇒
τ
r1
:
rm
rn

⇒
τ
r1
:
rm
rn
wn

⇒
τ
r1
:
rm
rn

⇒
τ
r1
:
rm

⇒
τ
r1
:
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⇒ . . .

(b) Do not speculate.

τ
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τ
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⇒
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(c) Speculate on all calls (inefficient).
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(d) Speculate on all calls torecurse (good).
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β
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(e)Speculate on all calls towork (good).

τ
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β
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(f) Speculate on 1 in 2 calls torecurse and

work (unbounded parallelism).
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(g) Speculate on 1 in 2 calls towork (compare with Figures 4.14d and 4.15f).
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⇒

τ
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⇒
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α

r2’
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⇒
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:
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⇒
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:
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:
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⇒

τ
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r2
r3
:

α
r1’⇒ . . .

(h) Speculate on 1 in 2 calls torecurse (comparable to loop unrolling in Figure 4.14g).

Figure 4.16: Head recursion.
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gether. In general, calls to work can be divided into batchesof sizeb and distributed evenly

acrosst threads, whereb = n/t, by choosing to speculate on every 1 inb calls torecurse.

The unrolling within a given batch is in-order, but the creation of batches themselves is

out-of-order.

4.5.6 Mixed Head and Tail Recursion

We next experimented with a mix of head and tail recursion, asshown in Figure 4.17.

Given the interesting behaviours seen for these kinds of recursion in isolation, it seemed

reasonable that a combination might yield even more interesting results. Tail recursion has

two distinguishing properties under speculation: it provides in-order distribution across

threads, and it prevents the forking thread from proceedingimmediately to the top of the

stack because useful work must complete first. On the other hand, head recursion is able to

provide behaviour comparable to loop unrolling in a single thread. However, head recursion

is uncapped and will always proceed immediately to the top ofthe stack.

The code in 4.17a constitutes a minimal example that uses head recursion to provide

batch processing and tail recursion to limit stack growth. In 4.17b, the non-speculative

evolution skips past the work in the head recursive calls, but stops to execute w3 and w4

tail recursively. In 4.17c, the repeating pattern is again two head recursive calls followed

by two tail recursive calls, additionally speculating ontail1 insidehead2, the first tail

recursive call. This creates a threadα that executes the first two calls towork out-of-order,

while the parent threadτ executes the second two calls towork in-order. Except during

brief periods of stack state evolution, there will only everbe two threads actively executing

code, and the pattern established in the first four calls towork will repeat itself.

We can use this pattern to schedule batches of sizeb acrosst threads when the depth of

the recursion is unknown or when onlyb× t calls should be scheduled at once. We need a

pattern ofb× (t− 1) head recursive calls followed byb tail recursive calls, speculating on

every(cb + 1)th head recursive call in the pattern forc ∈ N1 and on the first tail recursive

call in the pattern. A generalizedrecurse function that provides this behaviour is given

in 4.17d; note that we have introduced aspec keyword here to indicate speculation points.

As an example, to distribute work in batches of size 3 across 4threads, use a pattern of 9
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head1 (i, n) {
head2 (i + 1, n);
work (i);

}

head2 (i, n) {
tail1 (i + 1, n);
work (i);

}

tail1 (i, n) {
work (i);
tail2 (i + 1, n);

}

tail2 (i, n) {
work (i);
head1 (i + 1, n);

}

(a) Two head then two tail code; callhead1 (1,n).

τ
h1⇒

τ
h1
h2
⇒

τ
h1
h2
t1

⇒
τ
h1
h2
t1
w3

⇒
τ
h1
h2
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⇒
τ
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t2

⇒
τ
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⇒
τ
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t2

⇒ . . .

(b) Two head then two tail: do not speculate.

τ
h1⇒

τ
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⇒

τ
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α

h2’
⇒
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⇒
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α
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⇒
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α
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⇒
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α

h2’
w2

⇒
τ
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α

h2’
w2

⇒
τ
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t1
t2
w4

α

h2’
⇒

τ
h1
h2
t1
t2
w4

α
h1’⇒

τ
h1
h2
t1
t2
w4

α
h1’
w1
⇒ . . .

(c) Two head then two tail: callhead1 (1,n) and

speculate ontail1 in head2. This creates two

batches of two calls each.

recurse (i, n, b, t) {
if (i < n && (i - 1) % (b * t) < b * (t - 1))

if (i % b == 1 && i % (b * t) > b)
spec recurse (i + 1, n, b, t);

else
recurse (i + 1, n, b, t);

work (i);
if (i < n && (i - 1) % (b * t) >= b * (t - 1))

if (i % b == 1 && i % (b * t) > b)
spec recurse (i + 1, n, b, t);

else
recurse (i + 1, n, b, t);

}

(d) Mixed head and tail recursion code. To split work into multiple threads, callrecurse (1,n,b,t),

wheren is the number of calls towork, b is the batch size, andt is the number of threads. Speculation points

are indicated by thespec keyword.

(e)Mixed recursion example, whereb = 3 andt = 4.

Figure 4.17: Mixed head and tail recursion.
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head recursive calls followed by 3 tail recursive calls, andspeculate on the4th and7th head

recursive calls and the first tail recursive call, repeatingthe pattern for the next 12 calls.

This example is illustrated in Figure 4.17e.

4.5.7 Olden Benchmark Suite

At this point we decided to examine the Olden benchmark suite[Car96] for speculation pat-

terns. These are well-known parallelizable benchmarks written in C that manipulate irreg-

ular data structures. They were originally intended for parallelization with non-speculative

futures. The differences between futures and MLS are that futures do not allow for any

unsafe operations in the method continuation, such as consuming a predicted return value,

futures do not typically allow the continuation code to return from the calling function, fu-

tures are an annotation based programming model that requires a programmer to insert them

into the code, and the programmer must ensure the safety of all heap accesses. However,

these differences are not irreconcilable, and there are many transferable results between fu-

tures and MLS. Manual parallelization of the Olden benchmarks using SableSpMT is part

of our future work, as described in Section 6.2.2.

The results of a manual source code analysis are shown in Table 4.1. We analysed Olden

version 1.01, the last published version of the suite. For each benchmark, we identified the

parallel data structures being constructed, the functionsthat build the data structures, and

the functions that traverse the data structures. We then looked for patterns in the parallel,

future-based traversals, and mapped them to the speculation patterns outlined in this sec-

tion. There were five different kinds of traversal in total: straight-line code speculation,

iteration, head recursion, tree traversal, and divide and conquer. The first three kinds of

traversal have already been considered in Figures 4.12, 4.14, and 4.16 respectively. We

now consider tree traversal and divide and conquer algorithms.

4.5.8 Tree Traversals

An important consideration in parallelization is the traversal of irregular data structures. In

Figure 4.18 we consider binary tree traversals. Here the traversals can be either preorder or

postorder, and either fully parallel or only parallelized one tree level at a time. In 4.18a–
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benchmark data structure parallel construction parallel traversal traversal pattern

bh array of lists uniform testdata() computegrav() forall iteration

stepsystem()

octtree hackcofm() freetree() level-based postorder

bisort binary tree RandTree() BiMerge() level-based preorder

Bisort() level-based postorder

SwapTree() 1

node none SwapTree() 2 straight-line

em3d array of lists do all() do all compute() divide and conquer

health quadtree of lists alloc tree() get results() level-based postorder

mst array of lists AddEdges() ComputeMst() forall iteration

Do all BlueRule() divide and conquer

perimeter quadtree MakeTree() perimeter() level-based postorder

power array of lists build lateral() ComputeTree() forall iteration

nested lists build lateral() ComputeLateral() head recursion

build branch() ComputeBranch()

treeadd binary tree TreeAlloc() TreeAdd() level-based postorder

tsp binary tree build tree() tsp() level-based postorder

union quadtree MakeTree() copy() level-based preorder

TreeUnion()

voronoi binary tree none build delaunay() level-based postorder

Table 4.1: Parallel traversal patterns in the Olden benchmarks.

4.18d, we again use aspec keyword to indicate speculation points. These functions use

speculation over straight-line code to split the traversalat each node into two threads. In

4.18e–4.18h the results of traversing a three-node tree with two leaves are shown. The

pre-order traversals executework before descending into the tree, whereas the post-order

traversals executework on ascending out of the tree. w1 is the work done by the parent

node, whereas w2 and w3 represent the work done by the two child nodes. Although only

binary trees are shown, these patterns are straightforwardly extended to trees with arbitrary

arity.
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tree (node *n) {
if (leaf (n))

work (n);
else {

spec work (n);
spec tree (n->left);
tree (n->right);

}
}

(a) Pre-order binary tree traversal, fully parallel.

tree (node *n) {
work (n);
if (!leaf (n)) {
spec tree (n->left);
tree (n->right);

}
}

(b) Pre-order binary tree traversal, one level at a time.

tree (node *n) {
if (!leaf (n)) {

spec tree (n->left);
spec tree (n->right);

}
work (n);

}

(c) Post-order binary tree traversal, fully parallel.

tree (node *n) {
if (!leaf (n)) {
spec tree (n->left);
tree (n->right);
pause;

}
work (n);

}

(d) Post-order binary tree traversal, one level at a time.

τ
t1⇒

τ
t1
w1
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t1’⇒
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β

t1”
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(e)Pre-order binary tree traversal with 2 leaves, fully parallel.
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(f) Pre-order binary tree traversal with 2 leaves, one level at atime.
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(g) Post-order binary tree traversal with 2 leaves, fully parallel.
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(h) Post-order binary tree traversal with 2 leaves, one level ata time.

Figure 4.18: Tree traversals.
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The difference between the fully parallel traversal in 4.18a and the level-based traversal

in 4.18b is that in 4.18a the call towork only stops stack evolution if it occurs at a leaf

node, whereas in 4.18b evolution stops on every call towork. The difference between

the fully parallel traversal in 4.18c and the level-based traversal in 4.18d is that in 4.18c

both sub-trees are traversed whilework is executed speculatively, whereas in 4.18d the

call towork is not executed until both sub-trees have finished evaluation. To enforce this,

we introduce a newpause keyword in 4.18d that ensures both the left and right sides of

the tree have completed before beginning work on the parent node. This keyword can be

implemented simply by stopping speculation until the most immediate ancestor thread has

committed the current child. There is a subtle difference here with stopping speculation

altogether, which would necessitate waiting for a non-speculative parent to commit the

state, and would in turn serialize otherwise independent parallelism. pause is equivalent

to “touch” in future-based systems. Adding this keyword to our system would allow for

MLS to subsume futures.

The tree traversals in the Olden suite are the most complicated of the patterns we iden-

tified. In many cases there are additional conditions controlling the traversals, such as

whether the node in question is a leaf or non-leaf node, or more generally what its rela-

tionship to other nodes is. In all cases level-based traversals are done. For the postorder

traversals, this is presumably due to a lack of support for futures returning from the stack

frame in which they were created; this would require a stack buffering mechanism like we

describe for MLS. For the preorder traversals, it appears more a matter of convention not

to speculate on thework parts.

4.5.9 Divide and Conquer

The divide and conquer pattern used by the Olden benchmarks is shown in Figure 4.19.

In 4.19a, the work is divided among the number of processorsn, with one call towork

for each processor. The speculative stack in 4.19c evolves to form a tree structure, such

that w0, w1, w2, and w3 execute in parallel. This code assumesan array of lengthn, such

that the work could just as easily be parallelized using the forall iteration in Figure 4.14c;

it is unclear why the authors chose a divide and conquer approach here. A more general

150



4.5. Speculation Patterns

function that allows for per-processor batch sizesb that can be larger than 1 is shown in

4.19b. Here the batch size is most appropriately calculatedas the array length divided by

the number of processors.

divide (i, n) {
if (n > 1) {

spec divide (i + n/2, n/2);
divide (i, n/2);

} else
work (i);

}

(a) Divide and conquer code from Olden.

divide (i, n, b) {
if (n > b) {
spec divide (i + n/2, n/2, b);
divide (i, n/2, b);

} else
for (j = i; j < i + b; j++)
work (j);

}

(b) Generalized divide and conquer code.
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(c) Divide and conquer called withdivide (0, 4). Non-leaf stack frames are named after argumentsi

andn, concatenated in order to form two-digit strings.

Figure 4.19: Divide and conquer.

4.5.10 Discussion

We can see from these examples that the dynamic parallelization behaviour induced by

MLS is not obvious, and that there are surely more interesting patterns to be found. The

key lesson here is that we cannot take ordinary programs withcall and return semantics,

provide a set of parallelization operations that significantly perturbs the normal execution

order, and expect to obtain dramatic performance results, especially if we do not under-

stand the underlying behaviour. We can however use investigations of sequential program

behaviour under our stack model to derive generalizations about program structure and

the correlation with performance or lack thereof. We can also look at successful manual

151



Nested Method Level Speculation & Structural Fork Heuristics

parallelization, such as that found in the Olden benchmark suite, and use it to both vali-

date patterns discovered through exploratory analysis andmine for new patterns that have

applicability to both non-speculative and speculative code.

Method level speculation is a powerful system for automaticparallelization, particularly

when relatively arbitrary speculation choices are permitted. The challenge is to restructure

sequential code so that any inherent parallelism can be fully exploited. In general, parallel

programming is an optimization, and thus cannot be divorcedfrom knowledge of what dif-

ferent code structures imply for the runtime system if performance is to be maximized. Just

as tail-recursion is favoured in sequential programs for its efficient conversion to iteration,

so should other idioms in sequential programs be favoured for their efficient conversion to

parallel code. Of course, the end goal is for a compiler to remove this optimization burden

from the programmer wherever possible.

4.6 Conclusions and Future Work

Empirical studies of language implementation strategies can only provide so much under-

standing. For a strategy such as MLS, there is obviously significant performance potential,

but the results can be confusing and moreover mired in system-specific performance de-

tails. At some point, formalizing the model and exploring behaviour in abstract terms can

provide a fresh perspective.

As an enabling step for arbitrary child nesting, we presented a simple multithreaded

custom allocator for child thread data structures that relies on knowledge about ownership

dominator trees. It eliminates a major performance bottleneck in our system involving re-

peated allocation across a library interface of child thread structures each having 37 nodes.

It also solves a producer / consumer problem where memory allocated from a freelist in one

thread is freed to a freelist in another, which came to light in our attempt to support in-order

nesting. The synchronization overhead and memory localityin our scheme are probably

sub-optimal, and it would be interesting to see how well state-of-the-art general purpose

multithreaded allocators could compete with the 37-fold reduction in calls tomalloc and

free that our solution provides. We would be quite excited to see recycling of aggregate

data structures evolve into a general purpose memory management paradigm.
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In the next major part of this chapter we developed a unified model of MLS that ac-

counts for the major design variations involved in buildingsuch a system. The individual

sub-models run from completely sequential to highly speculative, and exhaustively cover

the core patterns of behaviour encoded in the unified model. This model is valuable purely

from a specification standpoint, facilitating system comprehension, comparison, testing,

and implementation. Preliminary work suggests our model isalso suitable for a proof of

MLS correctness. Once obtained, showing equivalence with other continuation-based par-

allelization systems could then be used to transfer proof results. Our model finally lends

itself to rapid design prototyping of future extensions, which might normally require sig-

nificant implementation effort to explore. One such extension is support for out-of-order

speculative commits. These would work like in-order speculative commits, but instead al-

low for a speculative thread to merge with a child of some ancestor that it encountered upon

returning from a call and attempting to buffer a stack frame.

The last part of this chapter details an exploration of MLS behaviour using our stack

model as a tool for insight. We identified some key relationships between program struc-

ture, choice of fork point, and resultant speculation behaviour. In some cases we labelled

them as good, bad, or inefficient in terms of exposing parallelism, and in others we used

them to synthesize desirable higher level behaviours. These experiments demonstrated that

all features of the speculation model are useful for creating parallelism, including both in-

order and out-of-order nesting, and that robustness and flexibility in an MLS system are

important. Our experience here is that accurately predicting how the parallel state will

evolve without actually trying scenarios out on paper is overwhelmingly impractical. In

the future, automated explorations of this nature may yieldfurther insights. In general,

we found that MLS behaviour is fragile, but that if understood it can be beneficially con-

trolled. This is best demonstrated by our analysis of the Olden benchmark suite whose

source code contains much domain-specific programming knowledge with respect to fu-

tures, a non-speculative parallelization construct closely related to MLS. It would be inter-

esting to apply the speculation patterns identified so far tounparallelized benchmarks. We

believe that maximizing parallelism will require a combination of programmer awareness,

compiler transformation, profile information, and judicious static and/or dynamic forking

decisions.
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Finally, our visualization methods could be equally well applied to output from actual

MLS implementations, including our own Java-based SableSpMT presented in Chapter 2.

Our stack diagrams are unique for their compactness, linearscalability, uniform symbol

density, lack of overlapping lines, and relation to actual data structures. The state evolutions

require only a simple event trace along with unique thread and frame identifiers as inputs.

This avenue could be useful for empirical studies of real-world programs.
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Related Work

Automatic parallelization has been a primary focus of research on parallel computing,

compilers, and programming languages for many years [BCF+88]. Existing approaches

have been most successful when analysing loop based, highlystructured scientific appli-

cations, typically C or Fortran based [CLS96, GPZ00], thoughJava experiments have also

been done [AGMM00]. Wolfe gives a comprehensive survey of standard techniques [Wol96].

Various studies have also examined analysis methods, seeking to better understand the ap-

plicability and performance of parallelization approaches [McK94, PW94, SMH98]. De-

signs and results for arbitrary, irregular, object-oriented programs remain less common, as

even simple unknown information such as loop bounds can preclude parallelization.

Speculative multithreading (SpMT), also known as thread level speculation (TLS), is an

optimistic technique that seeks to overcome the limitations of non-speculative parallelizing

compilers, exposing parallelism in a broader class of applications. Kejariwal and Nicolau

maintain an extensive bibliography of publications related to speculative execution [KN07].

Although work on SpMT dates back to the early 1990s and most experimental results are

positive, there are still no production SpMT systems in either hardware or software.

At a high level, there are various granularities available for creating speculative threads.

The coarsest model is method level speculation (MLS), for example [CO98] and of course

this thesis, under which speculative method continuationsexecute in parallel with a non-

speculative method body. Next is loop level speculation, for example [SCZM05], under

which a parent thread will typically execute iterationi non-speculatively while iterations
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i + 1, i + 2, . . . execute in successively more speculative child threads. Advanced schemes

can handle nested loops and partition iterations more freely between threads. Basic block

level speculation is the finest model, for example [BF04], wherein speculative threads begin

and end on basic block boundaries, and can also be started at arbitrary points.

In addition to choice of speculation granularity, there arechoices about whether to use a

hardware or software architecture and which languages to handle. From the perspective of

hardware loop level speculation for C, C++, and Fortran, SpMT is much more well-studied

than software method level speculation for Java or comparably rich languages. Our initial

software MLS for Java system is described in Chapter 2. On the one hand our choice of

research topic is motivated by convincing prior work that includes one or two of the same

high level choices, and on the other it is motivated by the desire to broaden the scope of

SpMT applicability. Although most software studies have focused on loops in C programs,

the viability of software loop level speculation for Java has been demonstrated [KL00].

Further, MLS has been identified as particularly appropriate for Java, given both the object-

oriented method based structure of Java programs and the simplifications available due to

explicit knowledge about stack, local, and heap operations[CO98]. Our choice of the

Java language presents many challenges, which most relatedwork treats as orthogonal and

neglects to some degree. MLS can also subsume loop level speculation, as demonstrated in

Chapter 4, albeit with extra invocation overhead. We discusshardware SpMT approaches

in Section 5.1, Java language issues in Section 5.2, software approaches in Section 5.3, and

method level speculation in Section 5.4.

All SpMT implementations include some mechanism for handling dependence viola-

tions. We use a cache-like dependence buffer, sending speculative reads and writes through

thread-local storage, as described in Chapter 2, although other systems use undo logging,

writing directly to main memory. The dependence buffering mechanism from SpMT sys-

tems is highly similar to transactional memory, a form of speculative storage that is typ-

ically used to create atomic sections in parallel programs.An alternative approach is

speculative locking, which executes the critical sectionsin existing lock-based programs

speculatively. We discuss dependence buffering in Section5.5, transactional memory in

Section 5.6, and speculative locking in Section 5.7.

A näıve implementation of software or VM-based SpMT can result in relatively high
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overhead costs, and so while SpMT itself is an optimization,second order optimization of

the different SpMT operations involved is also critical, both in terms of final performance

and suitability as a research tool. In this thesis the primary optimizations we propose are

adaptive return value prediction, nested speculation and asupporting memory allocator, and

structural fork heuristics based on observations of irregular program behaviour under spec-

ulation. In Section 5.8 we discuss related work on return value prediction, in Section 5.9

memory management, in Section 5.10 nested speculation, andin Section 5.11 high level

strategies for handling irregular parallelism. More general heuristics for deciding where to

fork threads are discussed in Section 5.12, and techniques for reducing misspeculations are

discussed in Section 5.13.

Finally, there are several areas that are closely related tomethod level speculation, with-

out falling under the general SpMT umbrella. In Section 5.14we discuss non-speculative

method level parallelism for imperative languages, which informs much of the design of

our system. In Section 5.15 we discuss speculation for functional languages, which is ac-

tually non-speculative with respect to the potential for dependence violations. Lastly, we

briefly consider other uses of speculative techniques in Section 5.16.

5.1 Hardware Architectures

Speculative multithreading approaches have been developed primarily in the context of

novel hardware environments. A number of general purpose speculative architectures have

been proposed, including the Multiscalar architecture [Fra93], the Superthreaded architec-

ture [THA+99], trace processors [Rot99], MAJC [TCC+00], Hydra [HHS+00], and sev-

eral other designs [KT99,SCZM00,FF01,OKP+01]. Hardware simulations have in general

shown good potential speedups, given suitable timing assumptions; for example, Krishnan

and Torrellas demonstrate that interprocessor communication speeds are a strong contrib-

utor to overall performance [KT01], and thread creation overhead is typically quite low,

on the order of 10 cycles. Steffanet al. provide a more recent loop based implementation

with STAMPede. They also give a good overview of the state of the art [SCZM05], as

does Warg [War06]. Our choice to implement SpMT at the Java virtual machine level was

motivated by hardware designs. In general, virtual machines are good platforms for explor-
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ing software virtualizations of hardware techniques, especially considering that interpreter

bytecode is often based on hardware instruction sets. Further, as an experimental platform,

full hardware simulations often incur a 1000-fold slowdown[KT98], whereas we found a

modified JVM to incur a 5-fold slowdown.

Only a few hardware studies consider Java programs explicitly. At the speculative hard-

ware level, an executing Java virtual machine does not exhibit distinguished performance

in comparison with other applications [WS01]. However, as aninterpreted language, com-

piled Java programs can provide higher level abstractions and information than generic

machine code, which has contributed to an interest in Java-specific studies. Chen & Oluko-

tun pioneered work on method level speculation for Java using a modified Kaffe JVM and

JIT running on the Hydra architecure [CO98]. They later developed TEST, which uses

hardware speculative trace generation and analysis modules that cooperate with an online

feedback-directed JIT compiler to improve runtime performance [CO03b]. Unlike their

previous work on MLS, TEST focuses only on identifying candidates for loop level spec-

ulation. It is essentially a hardware profiling system that identifies speculative loop candi-

dates for dynamic recompilation by a JIT compiler. The culmination of their work is Jrpm,

an overall software / hardware hybrid design for dynamically parallelizing Java programs

that uses the TEST hardware internally and runs on Hydra [CO03a]. They found speedups

of 2-4x for a wide range of integer, floating point, and multimedia benchmarks using loop

level speculation, observing only minor overhead for theirparticular hardware configura-

tion. This work is for the most part comparable to other SpMT compilation efforts, with

the biggest advantage of the JIT environment apparently being dynamic recompilation in

response to online profiling. It is also the most robust demonstration that the JVM is a

viable platform for speculation. As with their work on MLS, discussed in Section 5.4, they

identified a number of manual changes that helped speculation. We examine their treatment

of Java language features in Section 5.2. Traces of Java programs have also been applied to

simulated architectures, by Huet al. in their study of the impact of return value prediction

on MLS performance [HBJ03], and by Whaley & Kozyrakis and Warg in their studies of

heuristics for method level speculation [WK05,War06]. Finally, the cancelled MAJC pro-

cessor was designed primarily for Java programs, and included SpMT support [TCC+00].

Most current hardware designs could in fact be classified as hybrid hardware / software
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approaches since they rely to various extents on software assistance. Most commonly,

compiler or runtime processing is required to help identifythreads and insert appropri-

ate SpMT directives for the hardware; in some cases softwarevalue prediction is used

to reduce hardware costs. We discuss software support for hardware architectures as far

as value prediction, fork heuristics, and misspeculation reduction are concerned in Sec-

tions 5.8, 5.12 and 5.13 respectively.

5.2 Language Semantics

Hardware speculation support, even with cooperating software support, largely obviates

the consideration of high level language semantics: correct machine code execution im-

plies correct program behaviour. Further, software-only SpMT architectures based on C or

Fortran have relatively straightforward mappings to machine code. Accordingly, designs

such as Softspec [BDA00], thread pipelining for C [Kaz00,KL01], and those by Rundberg

et al. [RS01] and Cintraet al. [CL03] do not require a deep consideration of language

semantics.

Supporting the Java language and virtual machine environment requires stronger guar-

antees and entails a much finer set of considerations. Cook considered many similar seman-

tic issues in the context of supporting JVM rollback for debugging purposes [Coo02]. How-

ever, they have not been fully addressed by any prior Java SpMT implementation, including

the details published by Sun for the cancelled Java-inspired MAJC processor [TCC+00].

Largely this is because non-software or non-VM designs tendto elide treatment of com-

plicated language safety issues to achieve results expediently at the (reasonable) cost of

generality, whereas a software-only VM-only study presents no real choice. As part of

their JIT compiler thread partitioning strategy in Jrpm, Chen & Olukotun do discuss Java

exceptions, mark-and-sweep GC, and synchronization requirements [CO03a]. Jrpm allows

speculative threads to throw and catch exceptions, whereasSableSpMT stops speculation

on all exceptions. Jrpm also provides thread-local free lists for speculative object alloca-

tion, whereas SableSpMT synchronizes on a global heap lock.Finally, Jrpm ignores the

constraints imposed by synchronization in speculative threads, a simplifying relaxation that

is unsound for multithreaded applications, whereas SableSpMT is conservative in this re-
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gard. The studies by Huet al. [HBJ03] and Whaley & Kozyrakis [WK05] benefit from the

same relaxation. Yoshizoeet al. describe a JVM with limited support for software-only

loop speculation, but the short execution traces and limited environment under considera-

tion preclude interactions with Java language issues [YMH98]. Kazi provides a pure Java

source implementation and discusses exceptions, polymorphism, and GC, albeit without

analysing them, but avoids the issue of dynamic class loading by assuming ahead-of-time

whole program availability [Kaz00].

These are nota priori clearly insignificant differences; the effect of dynamic class

loading in Java, for instance, has spawned a large number of non-trivial optimization

considerations [AR02], and despite Kazi and Lilja’s dismissal of GC as unimportant for

applications with small footprints, many Java applications do have large memory require-

ments [DH99, DDHV03, BGH+06]. Differences and omissions such as the ones we have

highlighted can make it difficult to compare Java studies, and leave important practical

implementation questions open; our work here is meant to help rectify this situation.

5.3 Software SpMT

Whether applied to Java or not, hardware SpMT requires the expensive step of hard-

ware construction and deployment, making an all-software system desirable. In practice,

software-only approaches to SpMT are relatively uncommon.Rauchwerger & Padua de-

veloped the LRPD test, a first attempt at software-only loop level speculation, finding good

results for previously unparallelizable loops in Fortran programs [RP95]. Gupta and Nim

later improved on their work with a new set of runtime tests [GN98]. Papadimitriou and

Mowry describe a system for C programs based on a virtual memory page protection mech-

anism [PM01]. Conflicting memory accesses between threads are caught and memory is

synchronized using standard page trapping and signal handling. However, the high over-

heads encountered at this coarse granularity interfere with the viability of the approach.

Other approaches follow hardware designs more closely in terms of tracking individual

memory access conflicts. Rundberg and Stenström describe a software approach to loop

level speculation in C [RS01]. Their prototype implementation shows good speedup, but is

verified only through hand done transformations and limitedreal world testing. Kazi and
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Lilja describe a software model forcoarse-grained thread pipeliningand validate it through

manual parallelization of loops in C programs [KL01], relying on their software library

implementation of the SuperThreaded architecture by Tsaiet al. [THA+99]. Softspec is a

compiler and runtime system that parallelizes loops in C programs with stride-predictable

memory references [BDA00]. The approach depends on machine code level offline pro-

filing to identify independent loop bodies suitable for speculative execution. Cintra and

Llanos describe a Fortran-based system that also speculates on loop bodies, exploiting

both compiler analysis and runtime testing to identify shared variables and handle individ-

ual dependence violations [CL03]. They later explore the design space of software loop

speculation more completely [CL05]. Finally, Frank describes the SUDS system for loop

based parallelization that is a software-only system but designed for the specialized Raw

processor [Fra03]. These approaches generally achieve good performance results, but none

are based on Java or designed as experimental frameworks.

Only very limited studies on software-only speculation forJava have been done previ-

ously. Yoshizoeet al. give results from a partially hand-done loop level speculation strategy

implemented in a rudimentary prototype VM missing core features such as garbage collec-

tion [YMH98]. They show good speedup for simple situations,but a lack of heap analysis

limits their results. A more convincing analysis is given byKazi and Lilja through manual

Java source transformations of loops in Java programs [KL00, Kaz00]. Although source

level transformations such as these are not ideal when compared to compiler or VM-based

transformations, these studies showed that specialized hardware is not an absolute require-

ment, and that Java programs are viable candidates for speculation. The most interesting

result of the study by Kazi and Lilja is that scalable speculation is even possible with na-

tive Java threads, provided thread granularities are coarse enough. Opposingly, Warg and

Stenstr̈om argue that Java-based SpMT has inherently high overhead costs which can only

be addressed through hardware support [WS01]. However, thisconclusion is based on data

from Java programs translated to C and subsequently executed on simulated hardware, not

on an actual software system. Our data and analysis are significantly more comprehensive

than prior studies. They indicate that while overheads can be quite high, there is sufficient

potential parallelism to offset the cost. At the same time, exposing this parallelism is a

challenge. Based on our experience, we believe high quality fork heuristics are more im-
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portant than the performance of the underlying runtime system, but that key optimizations

such as adaptive return value prediction and support for a combination of both in-order and

out-of-order nesting are also important.

Our initial work on software MLS for Java directly inspired two M.Sc. theses. Costanza

implemented a speculative system in Jikes RVM that uses static analysis to identify single-

entry single-exit regions in leaf methods and execute them speculatively [Cos07]. The

significant complexity of implementation is identified as a disadvantage of this model when

compared with method level speculation. Schätti later partially implemented a method

level speculation system called HotSpec in the Sun HotSpot JVM [Sch08]. The significant

complexities of extending a production JVM ended up limiting development progress. On

the basis of these two experience reports, we chose to pursuemore generically applicable

investigations into return value prediction, nested MLS, and fork heuristics rather than a

complex JIT compiler implementation.

Libraries are a key mechanism for providing reusability in software development. As

discussed briefly in this thesis, we have extracted the VM-independent speculation logic

in SableSpMT into a separate library, libspmt [PVK07]. There are many software trans-

actional memory libraries for a variety of languages that could provide efficient depen-

dence buffer implementations; transactional memory is discussed more fully in Section 5.6.

With respect to SpMT specifically, Oancea and Mycroft describe PolyLibTLS, a config-

urable library for loop level SpMT [OM08]. It provides configurable dependence buffer,

thread behaviour, and thread management support through the use of C++ template meta-

programming. They later use this library to evaluatein-place support for SpMT in the

context of software loop level speculation for C++, showing that direct updates to main

memory combined with an undo log can be more efficient than a traditional dependence

buffer [OMH09].

There have been various approaches to software speculationthat rely on programmer

intervention. Dinget al. exploit offline profiles and manual source code changes to identify

and exposebehaviour oriented parallelism(BOP) by markingpossibly parallel regions,

achieving significant speedups using very coarse thread granularities [DSK+07]. Praunet

al. describe a system for manual parallelization drawn from SpMT and transactions, also

showing how profiling feedback is important in determining speculation points [vPCC07].
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Welcet al. proposedsafe futuresfor Java, making the non-speculative futures model spec-

ulative by allowing continuations to execute speculative reads and writes [WJH05]. These

are an implementation of the Java 1.5 future construct that function similarly to MLS except

that the programmer specifies where to create threads and speculation past consumption of

the return value is not possible. They found good speedups ofloops in easily parallelizable

benchmarks. Zhanget al. considered safe exception handling for Java futures [ZKN07b],

and Navabiet al. later presented a formal semantics for a higher-order functional language

with first-class exceptions [NJ09]. The similarities at theVM level in terms of dependence

buffering, stack buffering, exception handling, bytecodeexecution, scheduling, and roll-

back between MLS and safe futures mean that many of the advances and results are in turn

transferable between them.

5.4 Method Level Speculation

There is significantly less work on method level speculationthan loop level or basic block

level speculation. According to Chen & Olukotun [CO98], Oplinger et al. were the first

to propose the concept of MLS in a limit study for C programs that sought to identify the

maximum amounts of loop and method level parallelism available [OHL99]. Similar limit

studies of both loop and method level parallelism were done by Warg & Stenstr̈om [WS01]

and Kreasecket al. [KTC00]. Hammond, Willey, and Olukotun later designed the Hydra

chip multiprocessor for SpMT that included MLS support [HWO98]. They later described

techniques to improve performance via overhead reductionsand compiler-assisted code

restructuring [OHW99].

Chen & Olukotun concurrently described a more realistic method level speculation sys-

tem for Java, which combined a modified version of the Kaffe JVM and JIT compiler run-

ning on the Hydra architecture [CO98]. They found encouraging amounts of speculative

method level parallelism in JIT-compiled code, particularly for data parallel applications,

with simulated speedups comparable to ours on a four-way machine. They also identi-

fied three types of manual source code changes that could improve speedups, sometimes

dramatically. The first change was outlining or extracting loop bodies, effectively demon-

strating how method level speculation can subsume loop level speculation, albeit at the
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cost of extra invocation overhead. The second change was critical forwarding path reduc-

tion, which involves moving dependent reads down and the corresponding stores up, as

discussed in Section 5.13. The third change was eliminatingfalse dependences by moving

writes from loop bodies into methods called by the loop. A limitation of their approach

is that they did not consider call or operand stack dependences in their simulation; pre-

sumably this implies that speculative continuations cannot return from their initial frame,

which requires stack buffering. Further, although their examples include support for in-

order nesting, out-of-order nesting is not discussed. Finally, the only benchmark they con-

sidered from SPEC JVM98 wasjavac, although they did also examineraytrace, the

single-threaded version ofmtrt.

Since its initial development, support for method level speculation has been included

in a number of SpMT systems, but has only been the primary focus of a few studies. Hu

et al. considered the impact of return value prediction on method level speculation in a

JVM [HBJ03]. Whaley & Kozyrakis considered a range of input sources and fork heuris-

tics for a Java-based method level speculation system [WK05]. Warg explored techniques

for reducing overhead costs in hardware method level speculation for C and Java programs

that depends on a similar set of heuristics, specifically predicting thread lengths, success

rates, and balances between parents and children [War06]. Finally, although not method

level speculation in the sense of speculative continuationexecution, Balakrishnan and Sohi

describe a unique method based approach called program demultiplexing, in which meth-

ods are executed speculatively when their inputs become available, following a data-flow

approach to parallelization [BS06].

Kejariwalet al. have performed various limit studies on the profitability ofspeculation

which ultimately suggest that broader forms of speculativeparallelism such as MLS are

necessary to maximize performance. They showed that inner loop speculation for SPEC

CPU2006 yields a 6% performance improvement for a thread creation overhead of 10 cy-

cles, and only 1% if the overhead is 1000 cycles [KTG+07]. Results for loop speculation

in SPEC CPU2000 were similarly pessimistic [KTL+06]. More recently they performed

an MLS limit study using the SPEC CPU2006 benchmarks that was somewhat more op-

timistic [KGT+10b]. Here they exclude call graph cycles from their analysis to prevent

unbounded dependence buffer growth. They found an upper bound of only 20% specu-
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lative coverage for all benchmarks except464.h264ref which had a coverage of 50%.

This suggests that speculative recursion may in fact be important for MLS peformance.

Kejariwal et al. later analysed the impact of in-order nesting depth on speculation suc-

cess [KGT+10a]. They considered that when a speculative thread creates a speculative

thread, the doubly-speculative thread’s success rate is dependent on its speculative parent’s

success rate. They observe that the success rates exponentially decrease with increased

nesting depth. Of course, long dependence chains may be still viable if there is a high

success rate for each participant thread.

5.5 Dependence Buffering

All SpMT systems rely on some kind of dependence buffering strategy to prevent out-

of-order speculative execution from corrupting non-speculative execution. These strategies

involve tracking both reads and writes and invalidating in the case of read-after-write, write-

after-read, and write-after-write dependence violations. The specifics of our dependence

buffering model are described in Chapter 2.

Garzaranet al. reviewed the extant literature and proposed a taxonomy for state buffer-

ing mechanisms in thread level speculation [GPL+05]. According to that taxonomy, our

model supports Eager Architectural Main Memory (Eager AMM), as speculative threads

write variables to a dependence buffer and not directly to main memory, and the buffer is

committed immediately at join time along with the child stack. It also supports multiple

tasks and multiple versions of variables per processor (MultiT&MV): per-processor helper

threads begin execution of speculative children as soon as both a helper and child are avail-

able, and each child has its own dependence buffer. This design is recommended as the

most effective in terms of benefits gained for the complexityof implementation.

With respect to software buffering approaches, Papadimitriou and Mowry described a

software SpMT system based on a virtual memory page protection mechanism [PM01].

Conflicting memory accesses between threads are caught and memory is synchronized us-

ing standard page trapping and signal handling. Oancea and Mycroft reviewed software

SpMT buffering mechanisms and provided configurable support for three kinds of buffer

in PolyLibTLS, their software SpMT library [OM08]. First, aread-only buffer, where any
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writes invalidate the speculation. Second, a lightweight serial commit buffer that exploits

loop iteration behaviour to reduce dependency tracking costs. Third, a buffer that updates

memory in-place and allows for parallel commits.

5.6 Transactional Memory

Transactional memory (TM) is another kind of optimistic concurrency that is complemen-

tary to SpMT, relying on a similar core mechanism of speculative code isolation based

on dependence buffering and rollback. However, TM seeks to parallelize the critical sec-

tions in already multithreaded programs, whereas SpMT parallelizes single-threaded pro-

grams. Thus SpMT incurs the additional overheads of speculative thread management

when compared to a TM system. Under TM, instead of using locksto create critical sec-

tions, programmers writeatomic sectionswithout specifying any particular monitor object.

Larus & Rajwar reviewed the extensive research on both software and hardware TM sys-

tems [LR06], many of which could be used to provide an alternative to the SpMT depen-

dence buffering discussed in Section 5.5. For example, Mehraraet al. and Ramanet al.

explore the use of software TM to parallelize loops in C programs [MHHM09,RKM+10].

Many of the same Java language considerations we consider arise in a TM environment,

although the solutions differ because the underlying parallelization paradigm is different.

In Chapter 4 we provide a precise semantics for our MLS call stack model. There have

been similar formalization efforts with TM, given widespread experience that although the

transactional programming model appears simple, implementations vary considerably in

terms of when concurrent operations may be performed, whether and how transactions

may be nested inside each other, what visibility of intermediate calculations have, and

how to ensure correctness with respect to underlying memorymodels. MLS and SpMT of

course differ fundamentally from TM in that speculative execution is not user-specified and

is also potentially unbounded. However the nesting models have some similarity, meaning

that the correspondence between different MLS nesting strategies and transactional nesting

could be interesting to explore. Although we have not formally proven safety and liveness

properties, the stack abstraction we use is drawn from a rigourously tested implementation,

and could form the basis for future proofs. Previously we developed an initial proof of
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MLS correctness based on a simpler list-based abstraction [PVK09]. The correctness of

SpMT systems in general appears more straightforward to demonstrate than correctness of

TM systems; Kimet al. provide a simple proof of correctness of both hardware-onlyand

compiler-assisted SpMT in the context of reference idempotency analysis [KlOE+01].

In terms of specific formal approaches, Jagannathanet al. useTransactional Feather-

weight Javato show serializability of both versioning and two-phase locking approaches

to transaction control [JVWH05]. In another early effort, Scott gives a sequential speci-

fication of TM semantics [Sco06]. Other major differences exist in terms of transaction

nesting and hence available parallelism. Harriset al. provide a composable abstraction for

Haskell, including support for one form of nested transactions, although with limited par-

allelism [HMPJH05]. Moore & Grossman also use a small-step operational semantics to

investigate different nesting forms, showing equivalencebetween weaker models that en-

able greater parallelism, and using a type system to verify correctness in terms of progress

of transactional substeps [MG08]. Abadiet al. have a similar goal, also building a type-

based approach to prove correctness. They develop a specialized calculus of automatic

mutual exclusion, and use it to examine the impact of weak atomicity models. Guerraoui

and Kapalka argue thatopacityis a fundamental serialization criterion, and use that to show

correctness, as well as complexity bounds [GK08].

5.7 Speculative Locking

Lock synchronization poses a potential problem for speculative execution: lock acquire

and release operations affect the program globally, and conservatively require speculative

threads to stop. However, locking itself is quite amenable to speculation, and optimizations

are indeed possible. Speculative locking is closely related to transactional memory, the

primary difference being that the locks are not written as transactions, but rather executed

speculatively without programmer changes.

Mart́ınez and Torrellas show how speculative locking can reduce the impact of con-

tention on coarse-grained locking structures in a hardwaresystem [MT02]. Rundberg and

Stenstr̈om extended this model to allowpost factospeculative lock acquisition reordering,

which minimizes dependences to extract as much concurrencyas possible [RS03]. In a re-

167



Related Work

lated hardware context Rajwar and Goodman define a microarchitecture-based speculative

lock elision system [RG01]. Welcet al. later demonstrated a software implementation in a

Java virtual machine [WJH06].

Our current implementation causes speculative threads to stop speculating on synchro-

nization. Under traditional speculative locking, non-speculative threads become specula-

tive upon entering a critical section. However, a differentapproach becomes available when

combined with an SpMT system, namely allowing already speculative threads to enter and

exit critical sections. The profiling data in Chapter 2 revealthat even in single-threaded

Java programs this second kind of speculative locking couldbe a useful optimization. We

include both variants of speculative locking as potential future work in Section 6.2.1.

5.8 Return Value Prediction

Return value prediction is a kind of value prediction, a well-known technique for allowing

speculative execution of various forms to proceed beyond normal execution limits. Value

prediction has been researched for well over a decade, primarily in the context of novel

hardware designs and constraints. A wide variety of value predictors have been proposed

and examined, including simple computational predictors,more complex table-based pre-

dictors, machine learning based predictors, and hybrid implementations. Our work here ex-

tends previous investigations of RVP in a Java context [CO98,HBJ03,PV04b,PV04a,SB06]

with practical explorations of accuracy, speed, and memoryconsumption in an adaptive,

dynamic software-only environment. Further, our unification framework brings together

many known value predictors that are suitable for RVP.

Burtscheret al. provide a good overview of basic value prediction techniques [BDH02].

As a general rule, accommodating more patterns and using more historical information

can improve prediction accuracy, and generalizations of simple predictors, such as lastN

value prediction, have been studied by a number of groups [BZ99a, WF97, LS96]. LastN

value prediction allows for short, repetitive sequences tobe captured, and can yield good

results; Burtscher and Zorn, for example, show a space-efficient last4 value predictor can

outperform other more complex designs [BZ99a]. Zhouet al. later provided the gDiff

predictor, which is a global version of our lastN stride predictor [ZFC03]. Yonget al.’s
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revised stride data value predictor [YYX05] is essentiallya last 2 stride predictor, such

that its patterns are also captured by the lastN value predictor. Most predictors can be

further improved by incorporating statistical measures such as formal confidence estimates,

although this does add extra complexity [BZ99b]. Limits on the possible success of value

prediction strategies have also been analysed [WS01].

Gabbay introduced the stride predictor and last value predictor, as well as several more

specialized predictors, such as the sign-exponent-fraction (SEF) and register-file predic-

tors [Gab96]. Specialized predictor designs provide further ways to exploit value predic-

tion where more general approaches work poorly. The SEF predictor, for instance, predicts

the sign, exponent, and fraction parts of a floating point number separately. Although the

sign and exponent are often highly predictable, the fraction is not, which usually results

in poor prediction accuracy for floating point data. Tullsenand Seng extended Gabbay’s

register-file predictor to a more general register value predictor. It predicts whether the

value to be loaded by an instruction into a register is already present in that register [TS99].

It may be worth considering a stack top predictor that is simply a register value predictor

specialized for return values.

Pointer-specific prediction is also possible, an example being the address-value delta

(AVD) prediction introduced by Mutluet al. that predicts whether the difference be-

tween an address and the value at that address for a given pointer load instruction is sta-

ble [MKP06]. Marcuelloet al. propose an increment-based value predictor [MTG99,

MGT04] for value prediction within a speculative multithreading architecture. This predic-

tor is like the 2-delta stride load value predictor, but is further differentiated by computing

the storage location value stride between two different instruction address contexts.

Sazeides and Smith examine the predictability of data values produced by different in-

structions. They consider hardware implementations of last value, stride, and finite context

method (FCM) predictors, showing the limits of predicability and the relative performance

of context and computational predictors [SS97b]. Subsequent work considers the prac-

tical impact of hardware resource (table size) constraintson predictability [SS97a]. The

original idea for the finite context method predictor comes from the field of text compres-

sion [BCW90]. Goemanet al. proposed thedifferentialFCM (DFCM) predictor [GVdB01]

as a way of further improving prediction accuracy. Burtscherlater suggested an improved
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DFCM index or hash function that makes better use of the table structures [Bur02]. We

use Jenkins’ fast hash to compute hash values because it is appropriate for a software con-

text [Jen97].

Hybrid designs allow predictors to be combined, complementing and in some cases

reinforcing the behaviour of individual sub-predictors. Wang and Franklin show that a

hybrid value predictor achieves higher accuracy than its component sub-predictors in iso-

lation [WF97]. To improve performance, Calderet al. studied techniques for filtering out

instructions not worth predicting [CRT99] in the context of ahybrid predictor. The in-

teraction of sub-predictors can be complex, and Burtscher and Zorn show that resource

sharing as well as the impact of how the hybrid selects the best sub-predictor can sig-

nificantly affect performance [BZ02]. Designs have thus beenproposed to reduce hybrid

storage requirements [BZ00], and to use selection mechanisms that reduce inappropriate

bias, such as cycling between sub-predictors [SB05b], or theuse of improved confidence

estimators [JB06]. Sam and Burtscher argue that complex valuepredictors are not al-

ways necessary in optimal hybrid designs that maximize the efficiency of client applica-

tions [SB05a]. Examples of generic, non-hybrid predictors include those based on percep-

trons from machine-learning [TK04,SH04].

Software value prediction, while less common, has also beeninvestigated, usually in

conjunction with a hardware design. For instance, Liet al. use static program analysis to

identify value dependencies that may affect speculative execution of loop bodies, and apply

selective profiling to monitor the behaviour of these variables at runtime [LDZN03]. The

resulting profile is used to customize predictor code generation for an optimized, subse-

quent execution [DLL+04, LYDN05]. Liu et al. incorporated software value prediction in

their POSH compiler for speculative multithreading and found a beneficial impact on per-

formance [LTC+06]. The predictors are similar to those used by Liet al. [LDZN03], and

handle return values, loop induction variables, and some loop variables. Hybrid approaches

have also been proposed, which combine software with simplified hardware components in

order to reduce hardware costs [BSMF08,Fu01,RVRA08].

Performance can also be improved through static compiler analysis. For example,

Burtscheret al. analyse program traces to divide load instructions intoclasses, with dif-

ferent groupings having logically distinct predictability properties [BDH02]. Quĩnones
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et al. developed the Mitosis compiler for speculative multithreading that relies on pre-

computation slices for child threads, predicting thread inputs in software but performing the

speculation in hardware [QMS+05]. Duet al. use a software loop unrolling transformation

to improve speculation efficiency, but also evaluate likelyprediction candidates from trace

data using a software cost estimation [DLL+04]. Code scheduling approaches that iden-

tify and move interthread dependencies so as to minimize thechance of a misprediction

have been developed by Zhaiet al. [ZCSM02]. A more general consideration of compiler

optimization is given by Satoet al., who analysed the effect of unrelated optimizations on

predictability and found that typical compiler optimizations do not in general limit pre-

dictability [SHSA01]. Finally, in related work of our own, we developed areturn value use

analysis that determines if and how return values will be used, and aparameter dependence

analysis that determines which parameters affect the return value of a method [PV04a].

Return value prediction is a basic component of MLS systems, where even simple last

value and stride predictors can have a large impact on speculative performance [CO98,

OHL99]. Huet al. extend this early work by analysing data from Java traces, and use sim-

ulated hardware to make a strong case for return value prediction in MLS systems [HBJ03].

In particular, they find that return values are typically consumed between 10 and 100 ma-

chine instructions after a call, which means that accurate return value prediction can con-

tribute significantly to increased thread lengths. They also introduce the parameter stride

predictor we examine and give prediction results for SPEC JVM98. Singer and Brown con-

sider theoretical limits on RVP by using information theoryto determine the predictability

of return values in Java programs, independent of any specific predictor design [SB06].

Our work builds on prior efforts by including new predictors, by extending the data col-

lected, and by providing an optimized software implementation. In Chapter 2 we provide a

software implementation of MLS that shows RVP has a beneficial impact on performance

in a relative sense, but contributes to overall system slowdowns in an absolute sense. In

Chapter 3, we provide optimizations to this base system that dramatically reduce overhead.

In our system predictions are made by the speculative child thread in order to relieve the

non-speculative parent thread of prediction overhead. In an even more aggressive approach

to overhead reduction, Tuck and Tullsen explore multithreaded value prediction, which

uses separate cores to predict the values for a single thread[TT05].
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Finally, several of our new predictor designs are based on memoization, particularly

suitable for RVP. Although our work is the first to address memoization in a value pre-

diction setting, memoization is obviously a well known technique, one that has even been

used to speed up speculative hardware simulations [SL98]. Effective memoization based

compiler and runtime optimizations have also been described [DL04]. Note that unlike tra-

ditional memoization approaches, limitations due to conservative correctness are not neces-

sary in our speculative environment. In a related investigation we developed a dynamic pu-

rity analysis for Java programs and used our memoization framework to non-speculatively

memoize statically impure but dynamically pure methods [XPV07].

Type information is another vector for optimizing performance. Sato and Arita show

that data value widths can be exploited to reduce predictor size; by focusing on only smaller

bit-width values accuracy is preserved at less cost [SA00].Loh demonstrates both memory

and power savings by using data width information [Loh03], although the hardware context

requires heuristic discovery of high level type knowledge.Sam and Burtscher later show

that hardware type information can be efficiently used to reduce predictor size [SB04].

They also demonstrate that more complex and hence more accurate predictors have a worse

energy-performance tradeoff than simpler predictors and are thus unlikely to be imple-

mented in hardware [SB05a].

5.9 Memory Management

In Section 4.2, we describe a simple custom memory allocatorfor arbitrarily nested MLS.

It uses per-thread and global freelists to recycle aggregate child thread data structures,

allowing for memory to be allocated in one thread and freed inanother without causing a

producer / consumer problem.

Multiprocessor memory management is in general well-studied. Bergeret al. designed

Hoard, the first scalable malloc that uses per-processor andglobal heaps to bound mem-

ory consumption and avoid false sharing [BMBW00]. Dice and Garthwaite provided a

mostly lock-free malloc that is 10 times faster than Hoard asoriginally published in some

cases [DG02]. Michael later provided a completely lock-free allocator based on Hoard that

offers further improvement [Mic04]. Schneideret al. demonstrated yet another scalable
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multiprocessor malloc implementation [SAN06]. Hudsonet al. described a scalable malloc

for transactional memory [HSATH06]. Evans implementedjemalloc, the state-of-the-art

multiprocessor malloc in FreeBSD [Eva06]. Larson and Krishnan observed that for server

applications, only 2–3% of memory is allocated and freed in different threads [rLK98],

which indicates that the producer / consumer allocation problem that arises under in-order

MLS nesting is likely an outlier.

Freelists have also long been used in custom memory allocators. Data structure pooling

and allocation-based ownership have been studied more recently. Hirzel et al. examine

the connectivity of heap structures, finding that objects connected via pointers usually have

similar lifetimes [HHDH02]. Boyapatiet al. combine user-specified ownership types with

region-based memory management [BSWBR03]. Lattner and Adve later provide a sys-

tem for automatic pool or region allocation that segregatesthe memory required by an

individual data structure into its own pool [LA05]. Mitchell subsequently examines the

runtime structure of object ownership for many large real-world applications, identifying

many dominator trees [Mit06].

Bergeret al. found that custom memory allocation offered no improvementover the

widely available Lea allocator for 6 out of 8 benchmarks in a survey, and that region-based

allocation explained the performance improvement of the other two [BZM02]. Indeed, our

solution to the producer / consumer allocation problem presented by in-order nesting is

directly inspired by Hoard, and its multiprocessor behaviour is likely quite similar. Our

model does present a specialization of the general purpose allocators in that it always uses

one heap per thread and one thread per processor. This is an advantage in the common case

of allocating from the local thread heap instead of the global heap because synchronization

operations can be eliminated altogether. However, the realperformance advantage comes

from recycling the aggregate child thread data structures that form ownership dominator

trees, because it reduces the number of allocator calls by a factor of the number of sub-

objects in each tree. This eliminates a significant performance bottleneck in our system. If

we were to use an existing general purpose allocator, we would need to rewrite the applica-

tion to allocate much larger regions of memory and divide them up manually to accomodate

sub-objects in order to achieve the same effect. Thus there are software engineering bene-

fits in that a straightforward object-oriented applicationstructure can be used. Further, the
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allocator we describe is itself extremely simple to implement.

In future work, it would be interesting to generalize our memory management system

by combining it with the different ideas from these works to create a general purpose mul-

tiprocessor allocator that returns usable pre-assembled data structures. One case where the

data structure recycling might be immediately applicable comes from Suganumaet al.’s

experience translating COBOL programs to Java [SYON08]. Theyfound that in the initial

automatic translation step, large classes containing manyarrays of inner classes with mul-

tiple levels of nesting get generated to hold the original program data. If these classes are

instantiated, used, and discarded frequently, for exampleonce for each execution of a hot

transaction, this can cause unacceptably frequent garbagecollection. Their solution is to

instantiate inner array elements lazily, since not all of them are necessary. An alternative

approach mirroring our solution would be to maintain freelists of these frequently allocated,

short-lifetime, large objects with unchanging structure and zero out fields as necessary.

5.10 Nested Speculation

There is prior work on both in-order and out-of-order nestedspeculation. Loop level spec-

ulation models almost always provide in-order nesting, such that one speculative loop iter-

ation can spawn the next, whereas method level speculation often allows for out-of-order

nesting. Renauet al. extend a model with unlimited in-order nesting to allow unlimited

out-of-order nesting, for both methods and nested loops [RTL+05]. This contrasts with

our work that began in Chapter 2 with unlimited out-of-order nesting and was extended

in Chapter 4 to support unlimited in-order nesting. They propose a hardware architecture

based on timestamps that is complex and does not translate easily to software. Our model,

while not directly suitable for a hardware implementation due to its abstract nature, is quite

suitable for software MLS and exploits the call stack to ensure correctly ordered commits,

a nearly universal program structure.

Our stack abstraction also provides a simple framework for understanding, clarifying,

and unifying method level speculation approaches. In general, the precise operations al-

lowed on call stacks in most related work are somewhat obscured, which in turn makes

performance comparisons difficult. For example, in their evaluation of fork heuristics for
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Java MLS, Whaley and Kozyrakis claim to allow speculative threads to create specula-

tive threads, which meets the definition of in-order nesting[WK05]. However, all of their

examples actually demonstrate out-of-order nesting. Zhaibriefly describes stack manage-

ment for speculation [Zha05], but does not provide details on the complexities of entering

and exiting stack frames speculatively. Zahran and Franklin examine return address pre-

diction in a speculative multithreading environment [ZF02], and later consider entire trees

of child tasks [ZF03], but do not provide a precise semanticsfor the return address stack

they describe.

A key consideration in all of the work on SpMT and MLS that our approach in Chap-

ter 4 elides is the impact of speculative data dependences. We consider the problem of

managing data dependences not unimportant but orthogonal to the problem of creating ef-

ficient stack and thread interleavings. This makes our work on thread nesting applicable to

non-speculative method level parallelism approaches as well, with a possible optimization

being the elimination of unnecessary stack frame buffering. The most direct example of

this is that many of our speculation patterns are found in thenon-speculative Olden bench-

marks, as discussed in Section 4.5.7. In general, the strongisolation properties assumed

by speculative threads require some kind of dependence buffering or transactional memory

subsystem, as described in Sections 5.5 and 5.6.

5.11 Irregular Parallelism

Method and continuation based parallelism can be particularly appropriate for programs

based on recursive, dynamic data structures. However, Kulkarni et al. argue that this is a

problem for speculative approaches, because many such programs employ worklist or fixed

point iteration designs, where shared meta data structure updates can easily result in fre-

quent conflicts or rollbacks [KPW+07]. As a solution they describe the Galois approach,

which provides both ordered and unordered optimistic, concurrent iterators for special-

ized and high-level concurrency control. Mendezet al. extend this design with further

optimizations to reduce rollbacks and workload processingcosts [MLNP+10]. As an al-

ternative, we argue it is possible to rewrite traditional while loop worklist and fixed point

algorithms to use head recursion, which in turn enables headrecursive speculation via the
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techniques described in Section 4.5, such that the meta datastructure manipulations can oc-

cur non-speculatively while the actual work on the underlying data structure is parallelized

speculatively.

Data parallel solutions to the worklist problem have also been proposed. Lublinerman

et al. describe a data parallel language wherein computation is performed locally and

concurrently onobject assemblies, which are disjoint pieces of the main data structure,

following a strong data ownership model [LCČ09]. Assemblies are active objects, merging

to acquire ownership of data required for computation and splitting to increase concurrency.

This applies nicely to algorithms where data locality maps to computational locality, as in

much of the Lonestar suite provided by Kulkarniet al. [KBPC09].

We have been unable to find a detailedalgorithmicexploration of how irregular paral-

lelism evolves at runtime that compares to our analysis in Section 4.5. Kulkarniet al. do

provide a tool called ParaMeter for visualizing how available parallelism evolves over time

from a performance perspective, but there is no consideration of the actual dynamic thread

structures [KBI+09]. Since for any real program these thread structures willbe incred-

ibly complex, we consider our basic on-paper explorations of simple examples essential

for an intuitive understanding of how to expose irregular parallelism. In terms of regu-

lar speculative parallelism, Prahbu and Olukotun demonstrate how TLS hardware support

can simplify manual source level parallelization of loops in C programs, identifying some

programming strategies [PO03], and later focus more explicitly on loop level speculation

patterns [PO05].

High level knowledge of the underlying use of data structures provides an obvious ad-

vantage to any parallelization strategy. Cahoon and McKinley described compiler analyses

to detect linked data structures in Java programs, and used this to improve the performance

of JOlden through automatic prefetching [CM01]. Ghiyaet al. also detected the use of par-

allelizable data structure traversals automatically [GHZ98]. They showed how to convert

foreach to forall by traversing the data structure first and saving the nodes in a temporary

array. Our suggestion above to convert while loop algorithms to head recursive algorithms

is comparable, in that it saves the traversal information inthe call stack.

Parallel program development and optimization can be facilitated by exploiting more

general observations or patterns. For instance, Raghavachari and Rogers discuss properties
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of several irregular benchmarks including Barnes-Hut, relating them to different language

and algorithmic abstractions [RR95]. Specific pattern sets for concurrency have also been

described; these extend from relatively simple paradigms such as master / worker, pipeline,

and divide and conquer [CG90], to more complex designs based on specific synchroniza-

tion constructs. Schmidtet al. provide an overview of many common designs [SSRB00].

Explicit high-level concurrency patterns provided by languages or their aspect-oriented ex-

tensions [CSM06] and by standardized libraries [Lea05a] enable direct concurrency control

where it can be easily and appropriately applied. Our work onunderstanding and exposing

implicit, speculative parallelism via a consideration of programming idioms and specu-

lation points complements these explicit patterns, and could benefit from a more formal

pattern-based approach, following Wilkins’ general methodology for constructing pattern

languages [Wil03].

5.12 Fork Heuristics

A program partitioning or thread decomposition strategy that chooses speculation points is

necessary for all speculative parallelization. We refer tothese strategies asfork heuristics.

In Chapter 2 we experimented with a dynamic profile-based system that assigned priorities

to speculative threads based on success rates and thread lengths. Given a lack of insight into

the behaviour of this system, particularly when in-order nesting is enabled, we developed

severalstructural fork heuristics in Chapter 4. These are essentially speculation patterns

that recommend fork points based on program structure and on-paper knowledge of how

the speculation will evolve at runtime.

Marcuello & Gonźalez observe that at a coarse granularity, even the choice tospeculate

on loops or methods is a form of heuristic [MG02]. Huet al. later observe that the method

inlining performed by a JIT will change the set of fork pointsavailable under method level

speculation [HBJ03]. They suggest that for this reason theirsystem is able to extract thread

lengths significantly longer than those observed by Warg andStenstr̈om [WS01]. Our

choice of interpreter-based MLS is thus a fork heuristic as well.

Several static techniques based on ahead-of-time compilertransformations for SpMT

architectures have been suggested. Kim and Eigenmann describe a compiler that allows
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for both explicit non-speculative multithreading as well as implicit inner loop-based spec-

ulative multithreading [KE01]. Bhowmik and Franklin describe a general compiler sup-

port framework including both loop-based and basic block-based thread partitioning that

also supports out-of-order thread creation [BF04]. Johnsonet al. transform and solve

the partitioning problem using a weighted, min-cut cost model [JEV04]. Dou and Cin-

tra developed another static approach based on estimated speedup that they claim could

be parameterized by profiling data [DC07]. Indeed, various groups have investigated of-

fline profile-based approaches to fork heuristics. Marcuello & Gonźalez depend on a basic

block profile to create speculative threads [MG02]. Liuet al. developed the GCC-based

POSH compiler for C programs that again uses profiling data toenable loop and method

level speculation [LTC+06]. Quĩnoneset al. developed the Mitosis compiler that relies on

pre-computation slices to compute child thread inputs for threads partitioned at the basic

block, loop, or method level, also using a profiler to identify dependences and model con-

trol flow [QMS+05]. Steffanet al. also use profiling support to identify suitable loops in

STAMPede [SCZM05]. Finally, Duet al. use a misspeculation cost model, transforming

loops to reduce dependence violations, with loop unrolling, value prediction, and profiling

as enabling techniques.

Dynamic thread partitioning strategies have also been considered. These reduce pre-

processing needs at the expense of runtime overhead. Codrescu and Wills describe a

simple hardware algorithm based on dynamically partitioning the instruction stream into

threads [CW00]. Gaoet al. considered a model for dynamically creating threads in recur-

sive programs, again targeting a hardware architecture [GLXN09]. They initially predict

the structure of the recursion tree to create threads and then adapt the speculation to match

actual outcomes. It could be interesting to combine this approach with our structural fork

heuristics given their shared focus on irregular and often recursive programs. Finally, as

discussed in Section 5.1, Chen & Olukotun’s Jrpm uses TEST, a hardware tracing system,

in combination with a JIT compiler to partition threads dynamically. Jrpm also transforms

speculative code to reduce variable dependencies [CO03a].

Warg describes various MLS fork heuristics based on dynamicprofile information

gathered in a hardware environment [War06]. The first isrun-length prediction, which

measures parent thread lengths and disables forking if theydo not meet some minimum
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threshold. The second isparallel overlap prediction, which measures the time a parent and

child spend executing in parallel, and again disables forking if it does not meet a certain

minimum threshold. The third ismisspeculation prediction, which unlike the techniques

described in Section 5.13 that attempt to gracefully handlemisspeculations, simply dis-

ables thread creation altogether once a misspeculation is identified. Whaley and Kozyrakis

also studied MLS fork heuristics, and in particular how theybehave when applied to Java

programs [WK05]. They consider various sources of profile information in a systematic

comparison. They use parent method execution time (analogous to Warg’s run-length pre-

diction), parent method store count, expected speedup obtained by executing parent and

child in parallel as opposed to sequentially, and expected cycles saved by executing parent

and child in parallel as inputs (analogous to Warg’s parallel overlap prediction). The key

result is that simple heuristics are actually more effective than multipass heuristics that take

the program call graph into consideration, because they aremore permissive and eliminate

fewer threads.

All of the approaches described here target SpMT hardware, which is designed support

relatively short thread lengths due to low overhead costs. For example, an average of 11–43

machine instructions per thread are obtained when the methodology in [JEV04] is applied

to the SPEC INT2000 benchmarks. As such, these techniques are likely too low-level and

fine-grained to be directly translated to a pure software environment, although the higher

level concepts should be transferable to some degree. With respect to software systems

based on dynamic profiling, such as our initial attempt at fork heuristics, Arnoldet al.

provide a comprehensive literature review of adaptive optimization in response to online

feedback, a technique that is widely used in production virtual machines and dynamic

compilation systems, particularly for languages such as Java where ahead-of-time profiling

and analysis is impractical [AFG+05].

5.13 Misspeculation Reduction

High thread overheads and limited CPU resources have motivated various attempts at re-

ducing misspeculation rates. Steffanet al. demonstrated that when a speculative thread

encounters a memory read that may violate a data dependence with some parent specula-
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tive or non-speculative thread, it may be more beneficial forthe thread to: 1) speculate as

usual by simply loading the current value from the parent thread into a dependence buffer;

2) predict the value using a load value predictor; or 3) dynamically synchronize, by stalling

and waiting for the dependence to be resolved [SCZM02]. In a similar study, Cintra and

Torrellas employed a finite state machine for each dependence that begins by speculating,

switches to value prediction if the number of misspeculations is high enough, and from

value prediction switches to dynamic synchronization if the confidence of the predictor is

low [CT02]. Each group found that for some benchmarks, a combination of optimizations

outperformed any one technique in isolation.

Specific compiler optimizations have also been developed. Zhaiet al. define and evalu-

ate instruction scheduling optimizations based on the length of thecritical forwarding path,

or time between a definition in one thread and a dependent speculative use of the same

variable in another [ZCSM02]. This can be quite effective at reducing stalls when vari-

able dependencies between threads are enforced through synchronization. A flow analysis

described in [KlOE+01] depends on a compiler to label memory references asidempotent

if they need not be tracked in speculative storage and can instead access main memory

directly. This reduces the overhead in terms of space and time of buffering the reads and

writes of a speculative thread. For Java MLS no local variables are visible from other

threads, and so can easily be designated idempotent withoutimplementing an analysis.

This means that values on a thread’s stack need not be trackedin the speculative storage,

an observation that we exploit throughout this thesis. Ooiet al. develop further opti-

mizations that limit the size of speculative threads to fit within hardware buffering con-

straints [OKP+01]. Finally, aprobabilistic points-to analysis can be used to predict the

likelihood of violation in a speculative thread [CHH+03,SS06].

5.14 Non-Speculative Method Level Parallelism

Various software systems have been designed to support parallel execution in imperative

languages at the method level without speculation. In general, these implementations ex-

change the complexity of speculative execution designs forthe complexity of ensuring con-

servatively correct memory access orderings. We have focused on specifying and under-
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standing the behaviour of MLS in terms of its interaction with the program call stack. Con-

current stack management is an important practical design concern, with many common

aspects between various forms of method level parallelism,particularly for continuation-

based approaches. Efficient models have been explored in general [HDB90], and also with

respect to specific parallelization strategies.

The Cilk language is based on a sophisticated runtime environment for non-speculative

method level parallelization with dynamic load balancing and scheduling, and is guided

by explicit programmer specifications [FLR98]. The pure continuation passing style of

Cilk simplifies implementation by ensuring stacks are empty upon method completion and

hence do not overlap [BJK+95]. The zJava compiler and runtime system is a more recent

and VM-related example. zJava depends on symbolic access paths computed at compile

time to parallelize a program dynamically, without using programmer directives [CA04].

Method calls are executed in separate child threads, while the parent executes the method

continuation until either a return value is consumed or a heap data dependence is encoun-

tered, at which point it blocks. A registry of running threads, methods, and heap regions

is maintained to enforce sequential execution semantics. In another compiler-based study,

Rul et al. parallelizedbzip2 at the function level by using profile-based knowledge of

data dependences, a call graph, and an interprocedural dataflow graph to identify function

clusters operating on shared data structures and partitionthem into using pipeline-based

parallelism [RVB07].

Goldsteinet al. provide an efficient implementation ofparallel call that also uses a

thread creation model dual to ours, wherein the child task executes the method and the

parent thread executes the continuation [GSC96]. They represent the concurrent stack by

a coarsely linked structure of individually allocatedstacklets, which are regions of con-

tiguous memory that can store several frames. This eliminates the need to collect garbage

frames, at the cost of occasionally allocating and linking new stacklets. Pillar is a new lan-

guage that supports this abstraction [AGG+07]. Although parallel call was not designed to

be speculative, a translation of the speculation rules and runtime behaviour patterns of our

system could be used to extend it. Carlisle and Rogers use a similar approach in Olden, mi-

grating futures to different processors and leaving their continuations on the stack [CR01].

The resulting concurrent stack management is minimized through the use of a simplified
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spaghetti stack, a sequential interleaving of thread frames with potentially non-contiguous

live stack segments [RCRH95]. Goldstein reviews the multithreaded stack design space

for systems where the forking thread executes the continuation [Gol97], discussing the

advantages and disadvantages of both stacklets and spaghetti stacks. Carlisle and Rogers

also provide a detailed review of many non-speculative, imperative, parallel programming

languages and runtime environments [CR01].

We compared our model to ones in which the parent thread executes the continuation

in Section 1.2 in reference to Figure 1.1. The most significant challenge in adapting any of

these models for speculation is in the support for stack frame buffering. Our understanding

is that in non-speculative systems, a primary reason to execute the continuation in the

forking thread is that the continuation stack frame does notneed to be copied to a new

thread. As such, none of these models have been designed witha mechanism for stack

frame buffering in mind, and in fact are optimized for the case where it is unnecessary.

Another concern that speculation presents is that non-speculative work must have a higher

priority than speculative work, which is best supported by having the parent execute the

method body, whereas in non-speculative systems it can be just as efficient to execute the

continuation in the current thread and delay execution of the parent. We also feel that

irrespective of buffering and speculation issues, our representation is easier to depict and

understand visually, because each thread has its own stack and it scales cleanly to arbitrary

numbers of threads and stack frames in 2D space. Nevertheless, our stack model is closest

to Goldstein’s stacklets in terms of implementation, and there may be specific low level

optimizations therein that are transferable to ours.

As discussed in Section 4.5, futures often use a “get” or “touch” method that blocks the

continuation before using the return value from the future.Although return value predic-

tion would always allow MLS to proceed safely, in some cases get / touch is also used to

control runtime parallelism, as in the case of level by leveltree traversals that we illustrate.

To provide this functionality, we suggest a “pause” keywordthat only stops speculation

until the immediate and possibly speculative parent has completed, rather than stopping

continuation execution altogether until the non-speculative parent has committed the child.

This appears sufficient to allow MLS to subsume futures, as well as safe futures, which are

discussed in Section 5.3.
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5.15 Functional Language Speculation

The focus on method calls as a means to achieve parallelism inMLS suggests an affinity for

functional language contexts, where the relative lack and greater control of method side-

effects reduces implementation complexity and suggests significant available parallelism.

In fact, there has been much work on speculative evaluation in functional languages. How-

ever, due to a difference in nomenclature, speculation in a functional language context does

not imply interaction with a dependence buffer or transactional memory subsystem as it

does with MLS, but rather simply that function bodies can evaluate in parallel with func-

tion arguments. Thus data dependences require blocking, although parallel computation

can resume once they are resolved.

Osborne developed speculative computation for Multilisp,wherein speculative evala-

tion can be aborted, but again this differs from abortion under MLS: instead of aborting

speculative computations because they are incorrect, the computations are aborted because

they are unnecessary, and the abortion is a way to reclaim computation resources [Osb90].

Greiner and Blelloch attempt to unify existing work by defining a parallel speculativeλ-

calculus that helps model the performance and prove the timeefficiency of lazy languages

using speculative evaluation [GB99], including those supporting futures [Hal85, GG89],

lenient languages wherein all subexpressions can evaluatespeculatively [Tra88], and spec-

ulative approaches to parallel lazy graph reduction [TG95]. Baker-Finchet al. [BFKT00]

subsequently showed that parallel lazy evaluation was equivalent to sequential. Finally,

Sarkar and Hennessy argue that much parallelization work istoo fine-grained, and describe

a coarse-grained compiler based approach for partitioningparallel Lisp programs into sub-

graphs for macro dataflow [SH86].

In more practical work, Mattson, Jr. found that speculativeevaluation in Haskell can be

supported with low overhead [Mat93]. Ennals and Peyton Jones present a similar optimistic

execution system that works together with the lazy evaluation model in Haskell [EJ03].

They provide an operational semantics, but do not model the stack explicitly nor use their

semantics to visualize behaviour. Harris & Singh later extended this model to work with

the Haskell thunk structure allocated in optimized programs [HS07]. In their feedback

directed system, they use an offline profiling phase and subsequent work stealing at runtime
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to extract implicit parallelism, obtaining significant speedup in pure software.

Given that these speculation models are inherently stack based, the stack abstraction

in Section 4.3 could be modified to support them, clarifying their semantics in terms of

low-level implementation behaviour, and then subsequently used as a tool for visualizing

program behaviour. There is also the question of whether MLSsupports lazy or eager

evaluation. The uses of return values and heap and static variables under MLS are beyond

eager, in that they are predicted or read and then used speculatively before even becoming

available. However, the overall structure for parallelizing method calls and their continua-

tions is quite similar to lazy evaluation. Considerf(g()): lazy evaluation allows calling

f() without knowing the result ofg(), whereas method level speculation executesf() as

if g() has already returned.

5.16 Other Uses of Speculation

Techniques developed for speculation have also been employed in various other contexts.

Eugster demonstrated a debugging environment for concurrent programs that is also based

on the core idea of thread rollback [Eug03]. Here, saving state and rolling back execu-

tion allows for different scheduling choices to be replicated in debugging or exhaustively

considered in testing. Persistent designs also require basic program state checkpointing

to restore the system to a previous, interrupted execution [CV06, Tja99]. Concepts such

as rollback and checkpointing are important to fault-tolerant schemes in general, allowing

correctness to be ensured by saving state and replaying an execution if failure is detected.

They also provides the basic mechanism for transactional execution, which can be used to

give Java codelets ACID properties [RW02]. Finally, Oplingerand Lam show that spec-

ulation is particularly effective in the context of parallelizing monitoring functions in a

monitor-and-recover design for software reliability [OL02].
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Chapter 6

Conclusions & Future Work

This thesis presents the first comprehensive study of software method level speculation

for Java. Our work was broken into three major milestones: building a working prototype,

designing an advanced return value prediction system, and developing a model of nested

speculation that could be used to identify structural fork heuristics. Our work ranges from

the concrete to the abstract and can support many future research directions.

6.1 Conclusions

The first major milestone of this work was to design and implement a working prototype

system. We introduced the SableSpMT framework as an extension of the SableVM Java

bytecode interpreter. Supporting method level speculation in a language as rich as Java is

non-trivial, particularly in a non-simulated software environment where problematic oper-

ations can neither be trivially elided by the simulation nordeferred to a speculative hard-

ware subsystem, meaning that correctness is of paramount concern. We detailed all of

the significant modifications and considerations related tothe JVM environment, including

mechanisms for preparing speculative methods for execution, actual steps in the execution

process, and high level language concerns. We also designedSableSpMT to be suitable

as an analysis framework. It is highly instrumented for a wide range of analyses, and eas-

ily extendable to include new approaches. It supports logging and trace generation, has a

unique single-threaded debugging mode, and its source codeis freely available. Although
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we have focused on Java, we believe that our designs here are transferable to other lan-

guages, in particular to virtual machine environments, andthat method level speculation

can benefit well-structured but irregular programs in general.

Experimentally, we found that most language level concernsdo not impact significantly

on speculative performance, with notable exceptions beingspeculative object allocation,

heap access, return value prediction, method entry and exit, and synchronization. Al-

though we could show significant parallelism and thus relative speedup, actual speedup

was precluded due to excessive speculation overheads. We identified three main sources

of overhead during profiling and these informed our subsequent efforts: expensive return

value prediction due to non-adaptivity, idle speculative processors due to a shortage of

speculative threads, and an abundance of short threads due to näıve fork heuristics.

The second major milestone was to expand and optimize our return value prediction

subsystem. We first introduced a new unification framework for specifying predictors, and

brought together many known predictors from the hardware literature under it. We also

introduced several predictors based on memoization, uniquely suitable for return value

prediction. We then described a design for a novel hybrid predictor that identifies ideal

sub-predictors on a per-callsite basis at runtime and specializes to them, eliminating calls to

unused sub-predictors. Our framework is implemented in libspmt, a library for speculative

multithreading that was created by refactoring the original SableSpMT implementation.

New predictors are simple to add, and the RVP code is instrumented for easy data analysis.

Experimentally, we reconfirmed our result from the first milestone that while a naı̈ve

hybrid prediction strategy yields high accuracy, it also suffers from high speed and mem-

ory overhead, essentially incurring the summed cost of all sub-predictors. Our first adaptive

hybrid was an offline predictor that required an initial profiling run to determine ideal pre-

dictors. A subsequent run that used these ideal predictors at startup achieved the same

accuracy as the naı̈ve design at a fraction of the overhead cost. This result indicates that

ideal per-callsite predictors do in fact exist, at least forour benchmarks. We then devel-

oped an online hybrid predictor that uses a warmup period as well as specialization and

despecialization thresholds to find ideal predictors at runtime. This predictor performed

acceptably close to the performance of the naı̈ve and offline strategies in terms of accuracy,

and dramatically better than the naı̈ve strategy in terms of overhead. We thus considered
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our first optimization objective complete.

The third major milestone was composed of three steps. We first described a memory

allocator for child threads. The first feature of this allocator was already present in the initial

milestone, namely recycling of aggregate data structures in order to prevent excessive calls

to malloc andfree. The second feature, migrating blocks of child tasks between local

and global heaps, was novel and was required to prevent a producer consumer problem that

arises under in-order nesting, namely one where memory allocated in one thread is freed

in another. Following development of our allocator, we thendescribed an abstract model

of arbitrarily nested speculation, which included previously missing support for in-order

nesting. This model was based on stack operations and drawn from the implementation of

speculative call stacks in libspmt, which was again refactored from the original SableSpMT

implementation. Finally, we used this model to explore speculation behaviour via visual-

ization of stack state evolutions. Our allocator is simple to reimplement, our stack model

can be used for both abstract reasoning and concrete implementation, and our visualizations

are straightforward to understand.

Experimentally, we found that the memory allocator was dramatically faster than the

system allocator, and that it also solved a memory leak problem under in-order nesting.

We also found that enabling in-order nesting had the desiredeffect of providing idle pro-

cessors with extra work, satisfying our second optimization goal, but that now the work

available using our initial “always fork” strategy was so much that meaningful analysis

was precluded. Thus the real experimental analysis in this chapter was a search for better

fork heuristics, in turn satisfying our third optimizationgoal. This search consisted of nu-

merous on-paper explorations of speculation behaviour, starting from simple programming

idioms and observing how the stack state evolved as speculative threads were forked ac-

cording to various conditions. We were able to identify somepatterns as better than others,

thus deriving a form of structural fork heuristic. We also demonstrated how they could be

combined with each other to yield higher level patterns. Whenwe examined the source

code for a set of benchmarks parallelized with futures, which are closely related to method

level speculation, we found many instances of our patterns as well as several new ones.
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6.2 Future Work

Over the course of this thesis research, many interesting avenues for future exploration

appeared, as discussed at the end of Chapters 2, 3, and 4. The SableSpMT framework we

developed provides a good scaffolding for such work. We now consider a variety of such

projects immediately possible within our system.

6.2.1 Speculative Locking

As discussed in Section 5.7, speculative locking is an SpMT extension that allows for

speculative execution of critical sections. Implementingspeculative locking requires two

main extensions to our system. The first allows non-speculative threads to enter contended

critical sections without holding the locks protecting them and thus become speculative.

This is similar to typical transactional memory systems [LR06]. The second allows threads

that are already speculative to enter and exit critical sections. This can be achieved by

recording lock and unlock operations and not sharing bufferentries across these barriers.

In both cases, accounting for the constraints and idiosyncrasies of the Java memory model

is a significant challenge. Given support for the first kind ofspeculative locking, it would

be interesting to combine it with our previous work on lock allocation that decides which

objects should protect the critical sections in a program [HPV07]. We could first allocate

the locks statically and then apply speculative locking to improve performance. The result

would be an efficient implementation of optimistic atomic sections.

6.2.2 Manual Parallelization

SableSpMT works safely with both in-order and out-of-ordernesting for arbitrary Java pro-

grams with efficient return value prediction. The major barrier to speedup is that the sys-

tem does not know where to create speculative threads. However, manualparallelization

of certain benchmarks following the patterns identified in Section 4.5 should yield actual

speedup. Although a focus on manual parallelization does not directly support the goal of

automatic MLS, this work would have several benefits. First,it would demonstrate the ac-

tual viability of our system. Second, it would likely exposeadditional system optimization
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opportunities. Third, it would serve as an oracle for automatic application of speculation

patterns based on static analysis. Fourth, it would providea language level mechanism for

experimentation with MLS.

Initially, we would expect synthetic micro-benchmarks based on the examples in Sec-

tion 4.5 to asymptotically approach the performance predicted by our speculation patterns

as thework functions increased in running time. In terms of methodology, these bench-

marks could be manually annotated with our suggestedspec, pause, andstop keywords,

and then read in by a modified version of Soot’s Java source code front end. Soot could

then communicate the annotations to SableSpMT via a combination of classfile attributes

and the current method for inserting forks and joins. The next step would be to parallelize

JOlden, a sequential version of the Olden benchmarks written in Java [CM01]. Given that

Olden is known to be parallelizable without speculation on data dependences or return

values, we would also expect an explicit manual annotation of fork points for speculation

to yield actual speedup. Following this, it should be possible to manually parallelize the

Java Grande and OO7 benchmarks used for safe futures [WJH05],also with comparable

speedup. Finally, the Lonestar suite of benchmarks [KBPC09] is known to be parallelizable

using the Galois approach to speculation [KPW+07]. Many of these benchmarks depend

on a loop-based worklist algorithm for computing fixed points. It would be most interesting

to convert these benchmarks to use head recursive fixed pointalgorithms for parallelization

with out-of-order method level speculation.

6.2.3 Static Analysis

Static analyses for SpMT have the potential to provide significant information to the run-

time system. In particular, a set of static fork heuristics could complement or at least prime

our dynamic fork heuristic system. These would be based on static estimations of method

invocation and continuation length, method invocation andcontinuation purity, and return

value use and predictability. They could also search for thespeculation patterns identified

in Chapter 4. Static analyses can also be used to restructure code for more efficient specula-

tion. First, by advancing non-speculative writes and delaying dependent speculative reads,

the chances of dependence violations in child threads can bereduced. This technique is
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known as critical forwarding path minimization [ZCSM04]. Second, by extracting loop

bodies into methods, method level speculation can subsume loop-level speculation, albeit

with extra method call overhead [CO98]. A good name for this technique is outlining, the

opposite of the well-known inlining optimization technique. Third, generalized code re-

structuring to fit known speculation patterns combined withprecise marking of speculation

points could make the results in Chapter 4 applicable in non-obvious situations. Fourth,

moving fork points forwards into the method or backwards into the pre-invoke instruction

can change the balance between parent and child thread lengths. Fifth, this rebalancing

can also be achieved by moving the instructions surroundinga callsite into the method

body, or by moving instructions from the method body into thepre-invoke or continuation

instructions.

6.2.4 Dynamic Purity Analysis for Speculation

The side effects of a pure method are either invisible or in some way contained. We previ-

ously developed a dynamic purity analysis for Java programs[XPV07]. Integrating online

purity information with our SpMT system would provide two benefits. First, entirely pure

methods could be simply memoized, thus eliminating unnecessary speculation overhead.

Second, quantifying the extent of dynamic purity on a fork point basis could provide an-

other input to our fork heuristics module.

6.2.5 JIT Compiler Speculation

SableSpMT was initially implemented around SableVM, a Javabytecode interpreter. After

refactoring, the code specific to SableVM became a client of libspmt, a general purpose

SpMT library. Other clients of libspmt would afford different research challenges and op-

portunities, chief among them a just-in-time (JIT) compiler. As part of this thesis research,

we implemented initial support for speculation inside the IBM Testarossa JIT compiler for

the IBM J9 VM, and this was the primary motivation for creatinglibspmt. A JIT compiler

runs approximately 10x faster than SableVM, so relative overheads could reasonably be

estimated to be 10x higher. However, the presence of method inlining changes the call

graph significantly, in turn changing the behaviour of speculation, possibly for the better;
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Hu et al. attributed the positive difference between their results [HBJ03] and those of Warg

& Stenstr̈om [WS01] to the presence of inlining. A direct comparison of the effect of in-

lining alone could be made by exporting the inlined call graph from a JIT compiler client

of libspmt and importing it into SableSpMT. A JIT compiler could also take advantage of

specific hardware support for speculation, whether simulated or actually existing, by gen-

erating code for the target architecture, much like the Jrpmsystem [CO03a]. Finally, there

are interesting engineering problems, such as unsafe inlining of known generic C library

code into generated JIT code, switching between speculative and non-speculative code in

the presence of register usage, and deciding which methods to compile for speculation.

6.2.6 New Systems

It would perhaps be the most interesting to build new systemsfor new languages based on

this thesis. In our review of related work, loop level speculation was a prominent feature

of many designs. Our work here was focused primarily on new directions, but including

explicit support for loops is an important optimization in any real system. It may or may

not be possible to provide this support efficiently with MLS.Non-speculative paralleliza-

tion is similarly important and will often expose a significant amount of parallelism, at

least for regular, numerical programs. As far as method level speculation proper is con-

cerned, it seems reasonable to implement our stack model andmemory manager to provide

both in-order and out-of-order nesting. Our examination ofspeculation patterns showed

that both are necessary to maximize parallelization opportunities. The dependence buffer-

ing subsystem would best be provided by 3rd-party transactional memory, whether in the

form of a software library, compiler, or hardware implementation. Forwarding dependence

buffer values from a sequentially earlier speculative thread to a sequentially later one is a

useful technique for reducing misspeculations. Adaptive return value prediction is useful

for method level speculation, and can be implemented straightforwardly and efficiently.

Reusing the simpler predictors for software load value prediction is an obvious optimiza-

tion. In truth, many of these components are provided by libspmt and are not tied explicitly

to SableSpMT. Rather than rewrite MLS from scratch and contend with a host of new bugs,

it might make the most sense to adapt libspmt to a new language, compiler, or VM environ-
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ment, even if it involves aggressive refactoring. Given itsobject-oriented nature, it might

make sense to convert libspmt from C to C++.

At the VM level, safety is a primary concern, and it is important to get the language

semantics correct. In our experience, the best stress test for MLS was to attempt speculation

at every method call for an industry standard benchmark suite. As far as optimizations are

concerned, speculative object allocation and synchronization are key areas. Related work

has demonstrated that it is possible build a JIT compiler forspeculation without supporting

speculation at the interpreter level. The most aggressive dynamic recompilations in a JIT

compiler focus on frequently executed or “hot” methods, butin the case of MLS, it is also

important to optimize continuation code for speculation. There is a great body of work on

compiler analysis for speculation. It would be sensible forany new system to include either

an AOT or JIT compiler that implements existing techniques.Profiling support, whether

online or offline, is extremely valuable. As suggested abovefor specific enhancements to

SableSpMT, simple language level keywords for controllingmethod level speculation and

a compiler analysis that can insert them based on structuralfork heuristics would be useful.

As long as parallelizing compilers are not sufficiently advanced, there will be value in safe

and simple manual parallelization constructs that mirror the safety and simplicity of atomic

sections for transactional memory.
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[VR00] Raja Valĺee-Rai. Soot: A Java bytecode optimization framework. Master’s

thesis, School of Computer Science, McGill University, Montréal, Qúebec,
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