Droidel: A General Approach to
Android Framework Modeling

Sam Blackshear Alexandra Gendreau Bor-Yuh Evan Chang

University of Colorado Boulder

1

Implementing an Android app

@Override void onCreate()

framework
communicate?

class LoginActivity extends Activity

{

}

How does the app hook into the
Android framework?

- Events in the Android |

framework trigger
callbacks on the app

Callback

Android Framework

Execution of an Android app

A Framework invokes app-
T T ———— defined callbacks via reflection

>

Reflective call

Call to onCreate is not
t seen in program analysis
I since callbacks are called
| via reflection

.
Entry point

Android Framework

4

Models summarize reflective calls

void loginActivityHarness() {
Activity a = new LoginActivity();

. }
Reflectlve call N e e

loginActivityHarness();

\App/

ct1v1tyThread mai

Perfect Model ﬁ
Replace all reflective calls

with explicit, app specific

Android Framework

The trouble with modeling

' Requires careful modeling of |
execution context

\ / \ ,

| &1 Framework is big § &

Android Framework

behaviors of interest

aFramework is Complex

lass LoginActivity extends Activity {

@Override void onCreate() {
OnCancell.istener 1 = ..

void loginActivityHarness() {
Activity a = new LoginActivity();

 Every harness model must soundly set up |
| the execution context

Goal: a general purpose modeling
approach

f [E——— e T
The pr}

ind We present Droidel, a framework model |

forAndrmd built using these ph||0$0ph|es Jel

—— B R e EE——— —

A leferent Approach

* Independent of the client analysis

* Avoids modeling the execution context

[_) Android Framework
Model and augment the Android e

framework Model

9

Contribution of
Droidel: model and augment

Android Framework

One time manual explication of
_the Android framework

public interface DroidelStubs {

. PSRRI

([]]] \
hetivity getactivity(string c1); | | Replace With an explicit call
i o DroidelStubs
\V/
Activity a = (Activity) clazz.newInstance();

——— e pa— - —pess———— — ————————
- = - . —_— — I ———

One time manual identification of the uses of
! reflection in the Android framework and replace §
A4 those calls with explicit calls to DroidelStubs |

\‘_:_: = e — — e — —_— — — — — p— S = = - . - _—— — — — —_— -

11

Contribution of
Droidel: model and augment

Android Framework

Contribution of
Droidel: model and augment

N\

<A

N

Android Framework

Automatic app specific stub
generation

ipublic interface DroidelStubs {

e .

Activity getActivity(String cls);

getter method for Activities

4 . Tﬂ;”\\] ntation

¢ Droidel generates an implementation §

. of DroidelStubs for each app | Stubs {
Dispatcht | J{Ls) {
NAMS aitheoeny — ﬂ“@d ne vityA().s

argument constructor } else if (cls == "Activity B") {
based as per the

return new ActivityB();

instructions in the ailisial ffrsci- s NN N cabuinza ()i il

documentation for } }
newInstance

14

Contribution of
Droidel: model and augment

.

¥ Droidel does not model the execution

i context. By explicating reflection,

| AndroidThread.main can be the entry |

point for analysis

App specific stubs

ActivityThread.mai

Android Framework

15

Empirical Evaluation

Experimental methodology

— — __— _) e ——
= - ——c = = e —. — e —— S — _

fr—

| Evaluate the percentage of concretely reachable |
methods in the call graph.

, ruary 2010
17

Experimental setup

1.Manual exploration of a set of 7 android apps

2.Compute the number of concretely reachable
methods

3.Compare the number of concretely reachable

methods in the call graphs generated using Droidel
and FlowDroid (a taint analysis framework model).

18

Experimental results

17467 6173 38

— - = — e — — — — -
E— _ __ - - S — o — ——— e

l

| FlowDroid misses more concretely reachable
methods than DROIDEL

I
!

S T— 19

Analvsis independent

Java bytecode Java source code

\
7 \

e —— -,:_7'1\
4 N

| Droidel produces code that can be
read by any Java analyzer

20

How can you help us?

(p

Remember 6%7?

. J

Please use your Andr0|d expertlse to
_ 'contribute to Droidel

(https://github.com/cuplv/droidel)

R ——-

21

EXTRA SLIDES

Current Limitations of DROIDEL

* Not all uses of reflection have been explicated yet
(i.e. Reflective allocation of Preferences objects)

* No generated stubs for summarizing native
methods in Android

Not a problem with our approach but a
limitation of the current implementation

\. J

23

Issues with this approach

e Client analysis specific

e Jargeting another client analysis causes
soundness Issues

e Extensive manual effort

24

DROIDEL Outputs

Java Bytecode

~N

-

Java Source Code

/0

DROIDEL Output

N 7

[

_

ActivityThread.main

~N

J

Entry Point for
Analysis

-

G

~N

Java Program Analysis

J

25

DROIDEL Output

- Manually explicate each version of the Android
Framework

26

