
Droidel: A General Approach to
Android Framework Modeling

Sam Blackshear Alexandra Gendreau Bor-Yuh Evan Chang

University of Colorado Boulder

1

Implementing an Android app

2

App

@Override void onCreate()

How do the app and
framework

communicate?

class LoginActivity extends Activity
{!
 ...!
}! Extending special

classes such as
Activity

Overriding known
methods such as
onCreate()

How does the app hook into the
Android framework?

3

!

!

!

!

!

!

!

!

!

Android Framework

App

Callback

Events in the Android
framework trigger

callbacks on the app

@Override void onCreate()

Execution of an Android app

4

!

!

!

!

!

!

!

!

!

Android Framework

App

ActivityThread.main

Call to onCreate is not
seen in program analysis
since callbacks are called

via reflection!

Entry point

Framework invokes app-
defined callbacks via reflection@Override void onCreate()

Reflective call

!

!

!

!

!

!

!

!

!

Explicit Model

Models summarize reflective calls

5

!

!

!

!

!

!

!

!

!

Android Framework

App

androidMain()

void loginActivityHarness() {!
 Activity a = new LoginActivity();!
 ...!
}!
void androidMain() {!
 ...!
 loginActivityHarness();!
 ...!
}!

Explicit call

ActivityThread.main

Reflective call

Perfect Model:!
Replace all reflective calls
with explicit, app specific

calls

The trouble with modeling

6

The Android framework
is complex

The Android framework
is big

Client Specific Models Requires careful modeling of
execution context

Framework is big

7

Android Framework!
!

!

!

!
!
!
!
!
!
!
!Model

These behaviors are abstracted
away in the model

Model

Summarizes the
behaviors of interest

Models are client specific and thus only
summarize reflective calls relevant to a particular

analysis making it difficult to reuse models

Framework is Complex

8

Model

Needs to over
approximate behaviors

of interest

Behaviors include the
environment in which methods

are executed

void loginActivityHarness() {!
 Activity a = new LoginActivity();!
 …!
}!
!

class LoginActivity extends Activity {!
 …!
 @Override void onCreate() {!
 OnCancelListener l = …!
 }!
}!
!

To be sound, the harness must
invoke l.onCancel() with

respect to this Activity

Every harness model must soundly set up
the execution context

Goal: a general purpose modeling
approach

9

Model and augment the Android
framework

The problem is completely replacing
the framework with a model Client Specific Model

• Independent of the client analysis!

•Avoids modeling the execution context

We present Droidel, a framework model
for Android, built using these philosophies

Android Framework!

!

!
Model

A Different Approach

Contribution of!
Droidel: model and augment

!

!

!

!

!

!

!

!

!

Android Framework

App
Explicated
framework

App specific stubs

10

One time manual explication of
the Android framework

Activity a = (Activity) clazz.newInstance();!Activity a = (Activity) clazz.newInstance();!

Activity a = droidelStubs.getActivity(clazz.getName());!

Manually identified reflective call that can
instantiate an Activity

Replace with an explicit call
to DroidelStubs

11

One time manual identification of the uses of
reflection in the Android framework and replace
those calls with explicit calls to DroidelStubs

public interface DroidelStubs {!
! …!
 Activity getActivity(String cls);!
! …!
}

Contribution of!
Droidel: model and augment

!

!

!

!

!

!

!

!

!

Android Framework

App
Explicated
framework

App specific stubs

12

Contribution of!
Droidel: model and augment

!

!

!

!

!

!

!

!

!

Android Framework

App
Explicated
framework

App specific stubs

13

public interface DroidelStubs {!
! …!
 Activity getActivity(String cls);!
! …!
}

Automatic app specific stub
generation

14

!
class AppStubs implements DroidelStubs {!
 Activity getActivity(String cls) {!
 if (cls == "Activity A") {!
 return new ActivityA();!
 } else if (cls == "Activity B") {!
 return new ActivityB();!
 } else { return new Activity(); }!
 }!
}!

getter method for Activities

Dispatches based on the
name and calls the zero

argument constructor
based as per the
instructions in the
documentation for
newInstance

App specific implementation

Droidel generates an implementation
of DroidelStubs for each app

Contribution of!
Droidel: model and augment

!

!

!

!

!

!

!

!

!

Android Framework

App
Explicated
framework

ActivityThread.main

App specific stubs

15

Droidel does not model the execution
context. By explicating reflection,

AndroidThread.main can be the entry
point for analysis

Empirical Evaluation

16

Experimental methodology

Evaluate the percentage of concretely reachable
methods in the call graph.

17

“The fundamental law of bug finding is No Check = No
Bug. If the tool can't check a system, file, code path, or

given property, then it won't find bugs in it.” 1

1 Al Bessey , Ken Block , Ben Chelf , Andy Chou , Bryan Fulton , Seth Hallem , Charles Henri-Gros , Asya Kamsky , Scott McPeak , Dawson Engler, A few billion lines of code later: using
static analysis to find bugs in the real world, Communications of the ACM, v.53 n.2, February 2010

“The fundamental law of bug finding is No Check = No
Bug. If the tool can't check a system, file, code path, or

given property, then it won't find bugs in it.” 1

“The fundamental law of bug finding is No Check = No
Bug. If the tool can't check a method, then it won't find

bugs in it.” 1

Experimental setup

1.Manual exploration of a set of 7 android apps

2.Compute the number of concretely reachable
methods

3.Compare the number of concretely reachable
methods in the call graphs generated using Droidel
and FlowDroid (a taint analysis framework model).

18

Experimental results

19

Benchmark Dynamic Exploration of App Methods Reachable methods
(FlowDroid)

Reachable methods (Droidel)

Total Visited % Visited Reachable % Missed Reachable % Missed

drupaleditor 325 90 28 78 13 88 2

spycamera 254 156 61 40 74 151 3

npr 341 96 28 76 21 90 6

duckduckgo 935 520 56 352 32 449 14

textsecure 4459 1364 31 925 32 1141 16

wordpress 5796 2042 35 1362 33 1961 4

k9 5357 1905 36 1267 33 1773 7

Summary 17467 6173 38 4120 30 5653 6

FlowDroid misses more concretely reachable
methods than DROIDEL

FlowDroid: 30%!
vs.!

Droidel: 6%

Analysis independent
SOOT! WALA!

Droidel produces code that can be
read by any Java analyzer

Java source codeJava bytecode

20

How can you help us?

Please use your Android expertise to
contribute to Droidel !

(https://github.com/cuplv/droidel)

21

Remember 6%?

EXTRA SLIDES

22

Current Limitations of DROIDEL

• Not all uses of reflection have been explicated yet
(i.e. Reflective allocation of Preferences objects)!

• No generated stubs for summarizing native
methods in Android

Not a problem with our approach but a
limitation of the current implementation

23

Issues with this approach

• Client analysis specific

• Targeting another client analysis causes
soundness issues

• Extensive manual effort

24

Java Program Analysis

ActivityThread.main

DROIDEL Outputs
Java Source CodeJava Bytecode

Entry Point for
Analysis

DROIDEL Output DROIDEL Output

25

The current model and replace approach
suffers this problem as well

• Manually explicate each version of the Android
Framework

26

