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Implementing an Android app

@Override void onCreate()

framework
communicate?

class LoginActivity extends Activity

{

}




How does the app hook into the
Android framework?

- Events in the Android |

framework trigger
callbacks on the app

Callback

Android Framework



Execution of an Android app

A Framework invokes app-
T T ———— defined callbacks via reflection

>

Reflective call

Call to onCreate is not
t seen in program analysis
I since callbacks are called
| via reflection

.
Entry point

Android Framework
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Models summarize reflective calls

void loginActivityHarness() {
Activity a = new LoginActivity();

. }
Reflectlve call N e e

loginActivityHarness();

\App/

ct1v1tyThread mai

Perfect Model ﬁ
Replace all reflective calls

with explicit, app specific

Android Framework




The trouble with modeling

' Requires careful modeling of |
execution context




\ / \ ,

| &1 Framework is big § &

Android Framework

behaviors of interest




aFramework is Complex

lass LoginActivity extends Activity {

@Override void onCreate() {
OnCancell.istener 1 = ..

void loginActivityHarness() {
Activity a = new LoginActivity();

 Every harness model must soundly set up |
| the execution context



Goal: a general purpose modeling
approach

f [E——— e T
The pr}

ind We present Droidel, a framework model |

forAndrmd built using these ph||0$0ph|es Jel
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A leferent Approach

* Independent of the client analysis

* Avoids modeling the execution context

[ _ ) Android Framework
Model and augment the Android e

framework Model

9




Contribution of
Droidel: model and augment

Android Framework



One time manual explication of
_the Android framework

public interface DroidelStubs {

. PSRRI

( [ ] ] ] \
hetivity getactivity(string c1); | | Replace With an explicit call
i o DroidelStubs
\V/
Activity a = (Activity) clazz.newInstance();

——— e pa— - —pess———— — ————————
- = - . —_— — I ———

One time manual identification of the uses of
! reflection in the Android framework and replace §
A4 those calls with explicit calls to DroidelStubs |

\‘_:_: = e — — e — —_— — — — — p— S = = - . - _—— — — — —_— -
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Contribution of
Droidel: model and augment

Android Framework



Contribution of
Droidel: model and augment

N\

<A

N

Android Framework




Automatic app specific stub
generation

ipublic interface DroidelStubs {

e .

Activity getActivity(String cls);

getter method for Activities

4 . Tﬂ;”\\] ntation

¢ Droidel generates an implementation §

. of DroidelStubs for each app | Stubs {
Dispatcht | J{Ls) {
NAMS aitheoeny — ﬂ“@d ne vityA( ).s

argument constructor } else if (cls == "Activity B") {
based as per the

return new ActivityB();

instructions in the ailisial ffrsci- s NN N cabuinza ()i il

documentation for } }
newInstance
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Contribution of
Droidel: model and augment

.

¥ Droidel does not model the execution

i context. By explicating reflection,

| AndroidThread.main can be the entry |

point for analysis

App specific stubs

ActivityThread.mai

Android Framework
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Empirical Evaluation



Experimental methodology

— — __— _ ) e ——
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fr—

| Evaluate the percentage of concretely reachable |
methods in the call graph.

, ruary 2010
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Experimental setup

1.Manual exploration of a set of 7 android apps

2.Compute the number of concretely reachable
methods

3.Compare the number of concretely reachable

methods in the call graphs generated using Droidel
and FlowDroid (a taint analysis framework model).
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Experimental results

17467 6173 38
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| FlowDroid misses more concretely reachable
methods than DROIDEL

I
!
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Analvsis independent

Java bytecode Java source code

\
7 \

e —— -,:_7'1\
4 N

| Droidel produces code that can be
read by any Java analyzer
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How can you help us?

( p

Remember 6%7?

. J

Please use your Andr0|d expertlse to
_ 'contribute to Droidel

(https://github.com/cuplv/droidel)

R ——-
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EXTRA SLIDES



Current Limitations of DROIDEL

* Not all uses of reflection have been explicated yet
(i.e. Reflective allocation of Preferences objects)

* No generated stubs for summarizing native
methods in Android

Not a problem with our approach but a
limitation of the current implementation

\. J

23



Issues with this approach

e Client analysis specific

e Jargeting another client analysis causes
soundness Issues

e Extensive manual effort
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DROIDEL Outputs

Java Bytecode

~N

-

Java Source Code

/0

DROIDEL Output

N 7

[

\_

ActivityThread.main

~N

J

Entry Point for
Analysis

-

G

~N

Java Program Analysis

J
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DROIDEL Output




- Manually explicate each version of the Android
Framework

26



