
Static Analysis of JavaScript
Insights and Challenges

Ben Hardekopf

Department of Computer Science
University of California, Santa Barbara



Setting Expectations

What this talk is about

• Brief introduction to current state of JavaScript analysis

• Mostly from perspective of my research lab

F Lessons we’ve learned

F Challenges we’ve faced

• Some discussion of other groups attacking this problem

What this talk is not about

• Comprehensive overview of the entire field

• A tutorial on how exactly to analyze JavaScript

2



Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead

3



JavaScript is Everywhere

4



JavaScript is Hard to Get Right

Source: http://blog.safeshepherd.com/23/how-one-missing-var-ruined-our-launch/

5

http://blog.safeshepherd.com/23/how-one-missing-var-ruined-our-launch/


6



We Need Better Tools for JavaScript

JavaScript program desiderata:
• Fast
• Correct
• Secure
• Maintainable

Static analysis to the rescue?
• Sound?
• Precise?
• Efficient?

7



Example: Browser Addon Security

• Written in JavaScript by
3rd-party developers

• Complete access to browser
information

• No sandboxing or other security
restrictions

• Vulnerabilities (e.g., arbitrary
code execution)

• Malware (e.g., key loggers)

• Proof-of-concept exploits
(e.g., FFSniff)

Kashyap et al, “Security Signature Inference for JavaScript-based Browser Addons”
CGO 2014

8



Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead

9



The JavaScript Language

• Imperative, dynamically-typed language
F Objects, prototype-based inheritance, closures, exceptions

• Objects are the fundamental data structure
F Object properties can be dynamically inserted and deleted

F Property accesses can be computed at runtime

F Object introspection (runtime reflection)

F Functions and arrays are just objects

• Designed to be resilient
F Nonsensical actions (accessing a property of a non-object, adding

two functions together, etc) are handled using implicit conversions
and default behaviors

F Lots of quirks and edge cases (with, this, arguments, . . . )

10



Prototype-Based Inheritance

(plus dynamic property computation and insertion.)

JavaScript source code:

bar.func = function() {· · · }
var name = "fu" + "nc"
foo[name]()

↑

bar −→

{ proto
func

...x
proto

...x
foo −→

{
proto

...

11



Prototype-Based Inheritance

(plus dynamic property computation and insertion.)

JavaScript source code:

bar.func = function() {· · · }
var name = "fu" + "nc"
foo[name]()

↑

bar −→

{ proto
func

...x
proto

...x
foo −→

{
proto

...

11



Prototype-Based Inheritance

(plus dynamic property computation and insertion.)

JavaScript source code:

bar.func = function() {· · · }
var name = "fu" + "nc"
foo[name]()

↑

bar −→

{ proto
func

...x
proto

...x
foo −→

{
proto

...

11



Prototype-Based Inheritance

(plus dynamic property computation and insertion.)

JavaScript source code:

bar.func = function() {· · · }
var name = "fu" + "nc"
foo[name]()

↑

bar −→

{ proto
func

...x
proto

...x
foo −→

{
proto

...

11



Implicit Conversion: var x = myArray[idx]

What happens in the interpreter:

if myArray is null or undefined then raise type-error
if myArray is primitive then obj = toObject(myArray)
else obj = myArray
if idx is primitive then property = toString(idx)
else if idx.toString is callable then

if tmp is primitive then property = toString(tmp)
else
VAL:
if idx.valueOf is callable then

if tmp is primitive then property = toString(tmp)
else raise type-error

else raise type-error
else goto VAL
x = obj.property

12



Implicit Conversion: var x = myArray[idx]

What happens in the interpreter:

if myArray is null or undefined then raise type-error
if myArray is primitive then obj = toObject(myArray)
else obj = myArray
if idx is primitive then property = toString(idx)
else if idx.toString is callable then

tmp = idx.toString()
if tmp is primitive then property = toString(tmp)
else

VAL:
if idx.valueOf is callable then

tmp = idx.valueOf()
if tmp is primitive then property = toString(tmp)
else raise type-error

else raise type-error
else goto VAL
x = obj.property

12



Implicit Conversion: var x = myArray[idx]

What happens in the interpreter:

if myArray is null or undefined then raise type-error
if myArray is primitive then obj = toObject(myArray)
else obj = myArray
if idx is primitive then property = toString(idx)
else if idx.toString is callable then

tmp = idx.toString()
if tmp is primitive then property = toString(tmp)
else

VAL:
if idx.valueOf is callable then

tmp = idx.valueOf()
if tmp is primitive then property = toString(tmp)
else raise type-error

else raise type-error
else goto VAL
x = obj.property

12



Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead

13



To be Sound or Not to be Sound

• It is hard to be simultaneously sound, precise, and efficient
F This is always true, but for JavaScript achieving soundness is

especially difficult

• Most JavaScript analyses give up on soundness, and for some
domains this is perfectly OK, e.g., IDEs

F Code completion (Feldthaus et al, OOPSLA’13)

F Approximate callgraph construction (Feldthaus et al, ICSE’13)

• Other domains require soundness, e.g., security

F Addon security vetting (Kashyap et al, CGO’14)

• In general, it’s easier to start with soundness and remove features
than to start with unsoundness and add features

14



Intermediate Representations

What level of IR should we analyze?

Source Codeww�
High-Level IRww�
Mid-Level IRww�
Low-Level IR

• Lower-Level IR
F Pro: Simple, regular expressions;

implicit operations made explicit

F Con: Complex translation; results
hard to map to the source code

• Higher-Level IR
F Pro: Simple translation (if any);

easy to map results to source code

F Con: Complex, irregular
expressions; implicit semantics

15



Type of Analysis

What analysis method should we use?

• Constraint-Based (Flow-Insensitive)

F Non-starter!

F We need flow-sensitivity at a minimum

• Dataflow Analysis (CFG-based)

F A popular choice, but (in my opinion) flawed

F We need complex analysis to compute control-flow

• State Reachability (Abstract Interpretation-based)

F Abstracting abstract machines (Van Horn and Might, ICFP’10)

F Widening for control-flow (Hardekopf et al, VMCAI’14)

16



Other Research Groups

There are other research groups doing excellent work on JavaScript
static analysis who have explored in different directions.

• Anders Møller’s group, Aarhus University, Denmark

• WALA group, IBM T.J. Watson

• Sukyoung Ryu’s group, KAIST, Korea

• And others...

17



Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead

18



JSAI Challenges

• How to guarantee soundess?
F People have tried “best effort” and it doesn’t work

F Need formalisms, abstract interpretation

• How to define static analysis?
F Standard dataflow analysis doesn’t work (no CFG available)

F Need different formulation of static analysis

• What abstractions/sensitivities should be used?
F No one knows what abstractions and sensitivities work best

F Need to easily experiment with different possibilities

19



JSAI Features

• Features of JSAI
F First provably sound static analysis for JavaScript

F Extensively tested against commercial JavaScript engines

F Configurable control-flow sensitivity and abstract domains

F Novel abstract domains for objects and strings

• Publically available to research community
F Build client analyses

F Experiment with abstract domains

F Experiment with sensitivities

20



JSAI Architecture

Concrete
semantics

Concrete
result

JavaScript
program

notJS
IR

Sensitivity
strategy

Abstract
semantics

Abstract
result

translate

specify

execute

execute

21



The notJS IR

We designed the IR with static analysis in mind in order to make the
analysis simpler, more efficient, and more precise.

Selected IR Features

• Separate pure expressions from impure statements

• Translate implicit conversions into explicit operations

• Make the this and arguments parameters explicit

• And more...

22



Concrete Semantics

• Concrete semantics specifies actual program behavior
F Define as a state transition system

F Technically, an abstract machine smallstep operational semantics

• Sound analysis⇒ formal semantics
F Forces us to precisely specify behavior

F Amenable to proofs

• Reality-check on our understanding of JavaScript behavior
F “Ground truth” for our static analysis

F Heavily tested on over 1 million JavaScript programs, using
Spidermonkey as a reference

23



Concrete State Transition System
1 x := random int()
2 if (x < 0) {
3 x := -x
}

4 if (x > 42) {
5 x := 42
}

6 print x

State = ProgramPoint × Store
Store = Variable→ Z
⇒ ∈ State× State

1
x 7→?

2
x 7→ −50

2
x 7→ 33

. . .

3
x 7→ −50

4
x 7→ 50

5
x 7→ 50

6
x 7→ 42

4
x 7→ 33

6
x 7→ 33

24



Abstract Semantics

• Also in the form of a state transition system
F Think of an abstract state as representing a (potentially infinite) set

of possible concrete states

F There is no control-flow graph; the analysis computes the set of
reachable abstract states using the state transition system

• Specifies the actual static analysis
F Combines type inference, pointer analysis, control-flow analysis,

string analysis, and boolean and number constant propagation

F Novel abstract domains to represent objects and strings

• Sound wrt the concrete semantics

25



Abstract State Transition System
1 x := random int()
2 if (x < 0) {
3 x := -x
}

4 if (x > 42) {
5 x := 42
}

6 print x

State] = ProgramPoint × Store]

Store] = Variable→ Z]

⇒ ∈ State] × State]

1
x 7→ ⊥

2
x 7→ (−∞,∞)

3
x 7→ (−∞,−1]

4
x 7→ [1,∞)

5
x 7→ [43,∞)

6
x 7→ [42, 42]

6
x 7→ [1, 42]

4
x 7→ [0,∞)

5
x 7→ [43,∞)

6
x 7→ [42, 42]

6
x 7→ [0, 42]

26



Configurable Sensitivity

• The previous abstract semantics is exponential in the number of
nondeterministic transitions

• Control-flow sensitivity bounds the state space

F Flow-sensitivity, context-sensitivity, path-sensitivity

F Enables trade-offs between precision versus performance
F An analysis usually bakes in a specific sensitivity

• Theoretical insight: Completely separate sensitivity strategy
from abstract semantics

F Define and implement abstract semantics independently from the
sensitivity strategy

F Plug in sensitivity strategies a posteriori, modularly tuning the
analysis sensitivity

27



Widened Abstract State Transition System
1 x := random int()
2 if (x < 0) {
3 x := -x
}

4 if (x > 42) {
5 x := 42
}

6 print x

State] = ProgramPoint × Store]

Store] = Variable→ Z]

⇒ ∈ State] × State]

1
x 7→ ⊥

2
x 7→ (−∞,∞)

3
x 7→ (−∞,−1]

4
x 7→ [0,∞)

5
x 7→ [43,∞)

6
x 7→ [0, 42]

28



JSAI Architecture Review

Concrete
semantics

Concrete
result

JavaScript
program

notJS
IR

Sensitivity
strategy

Abstract
semantics

Abstract
result

translate

specify

execute

execute

29



JSAI Evaluation

• We evaluate JSAI for both performance and precision
F We use a type-error analysis to measure relative precision:

because the analysis is sound, fewer potential type errors means
more precise

• 28 benchmarks, 4 different categories of JavaScript programs
(prior work mostly used just the first category)

F Standard benchmarks (Sunspider, Octane)
F Browser addons
F Real-world open-source programs from Github
F Generated JavaScript via Emscripten

• Tested 56 different sensitivities
F Largest such study ever done, due to our configurable sensitivity

30



Selected Results

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs

31



Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead

32



Reduced Product is Essential

Computing control-flow and data-flow requires:

• Type inference
• Pointer analysis
• Control-flow analysis
• String analysis
• Number analysis
• Boolean constant propagation

All of these need to work together in carefully designed harmony in
order to get useful results.

33



String and Object Abstract Domains Very Important

• Object classes. Objects come from different pre-defined classes,
e.g., Array, Function, Number, etc. An object’s class affects its
semantics.

F Example: assignment to length property for Array vs non-Array

• Property names. The names of properties are just strings;
looking up an unknown string as a property can lose tremendous
amounts of precision.

F Example: Prototype-based inheritance means that the results
merge all properties of all objects in the prototype chain

34



Type Refinement

Old idea: refine abstract values based on branch conditions.

• Often ignored in dataflow analysis
• Especially important for JavaScript
• Most important refinements are to type information
• Most important branches are implicit in the semantics
• A low-level IR helps tremendously

We tried this with JSAI for a type-error client analysis.

• Average 53% reduction in reported type errors
• Maximum 86% reduction in reported type errors

35



Higher Precision ⊃ Better Performance

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs

36



Context-Sensitivity: Callstring > Object

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs

37



State Reachability ⊃ Good Parallelization

The state reachability method for static analysis turns out to be
amenable to parallelization:

• State reachability is embarassingly parallel

• Merging states for sensitivity adds synchronization points

• Different sensitivities tradeoff parallelism for reduced state space

We tried this for JSAI.

• 2–4× speedup on average, 36× maximum

• We think it could do even better with more work

38



Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead

39



Sensitivities and Abstractions

What are the right ones to use?

• Better abstractions for strings and objects

• Better sensitivities for precision and performance

Need to explore more sensitivities to find the sweet-spot (JavaScript’s
equivalent of object-sensitivity for Java).

JSAI’s configurable sensitivity helps make this feasible.

40



Performance

We can handle 1,000s–10,000s LOC, but we need to handle 100,000s.

• Parallelism. We’ve made a good start, but need more

• Sparseness. Traditional SSA won’t cut it; what can we do?

F Complex dependencies, need to consider branch conditions

F Some progress. (Jensen et al, SAS 2010; Madsen et al, 2014)

F Not a solved problem

• Other ideas?

41



Frameworks

JavaScript frameworks are extremely useful and popular, e.g., JQuery.

• Some of the hairiest JavaScript code you’ll ever see

• Very difficult to get precision and performance

• One of the biggest open problems in JavaScript analysis

• Some progress, but much remains (Shäfer et al, PLDI’13;
Andreasen et al, OOPSLA’14)

42



Dynamic Code Injection

Handling eval and family.

Dynamic code injection is the bane of static analysis. What can we do?

• Some application domains don’t use eval

F Browser addons

F Machine-generated JavaScript

• Sometimes we can eliminate eval from the program

F Unnecessary uses of eval when other techniques will work

• What about when we do have to deal with eval?
F Assume and enforce?

F Dynamically patch analysis?

F Other ideas?

43



Dialects of JavaScript

Different JavaScript engines have effectively their own dialects.

• JavaScript engine implementors sometimes consider the ECMA
language specification more of a “suggestion”

F Mozilla SpiderMonkey allows assignment to object prototype fields

• Different engines refine underspecified behavior in different ways

F V8 vs SpiderMonkey: different iteration orders for for..in loops

• Production engines are used to proselytize potential future
language extensions

F Mozilla SpiderMonkey: object proxies, typed arrays

44



Different Environments

JavaScript is used in different settings which require static analyses to
model different external environments.

• Web pages: DOM

• Addons: XPCOM

• Server: Node.js API

This is a major problem and concern for JavaScript analysis
infrastructures.

45



The End

Questions?

46


