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Setting Expectations

What this talk is about

• Brief introduction to current state of JavaScript analysis

• Mostly from perspective of my research lab

F Lessons we’ve learned

F Challenges we’ve faced

• Some discussion of other groups attacking this problem

What this talk is not about

• Comprehensive overview of the entire field

• A tutorial on how exactly to analyze JavaScript
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Talk Outline

• Motivation

• The JavaScript Language

• General Approaches to JavaScript Analysis

• The JSAI JavaScript Analyzer

• Some Lessons Learned

• The Challenges Ahead
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JavaScript is Everywhere
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JavaScript is Hard to Get Right

Source: http://blog.safeshepherd.com/23/how-one-missing-var-ruined-our-launch/
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We Need Better Tools for JavaScript

JavaScript program desiderata:
• Fast
• Correct
• Secure
• Maintainable

Static analysis to the rescue?
• Sound?
• Precise?
• Efficient?
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Example: Browser Addon Security

• Written in JavaScript by
3rd-party developers

• Complete access to browser
information

• No sandboxing or other security
restrictions

• Vulnerabilities (e.g., arbitrary
code execution)

• Malware (e.g., key loggers)

• Proof-of-concept exploits
(e.g., FFSniff)

Kashyap et al, “Security Signature Inference for JavaScript-based Browser Addons”
CGO 2014
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The JavaScript Language

• Imperative, dynamically-typed language
F Objects, prototype-based inheritance, closures, exceptions

• Objects are the fundamental data structure
F Object properties can be dynamically inserted and deleted

F Property accesses can be computed at runtime

F Object introspection (runtime reflection)

F Functions and arrays are just objects

• Designed to be resilient
F Nonsensical actions (accessing a property of a non-object, adding

two functions together, etc) are handled using implicit conversions
and default behaviors

F Lots of quirks and edge cases (with, this, arguments, . . . )
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Prototype-Based Inheritance

(plus dynamic property computation and insertion.)

JavaScript source code:

bar.func = function() {· · · }
var name = "fu" + "nc"
foo[name]()

↑

bar −→

{ proto
func

...x
proto

...x
foo −→

{
proto

...
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Implicit Conversion: var x = myArray[idx]

What happens in the interpreter:

if myArray is null or undefined then raise type-error
if myArray is primitive then obj = toObject(myArray)
else obj = myArray
if idx is primitive then property = toString(idx)
else if idx.toString is callable then

if tmp is primitive then property = toString(tmp)
else
VAL:
if idx.valueOf is callable then

if tmp is primitive then property = toString(tmp)
else raise type-error

else raise type-error
else goto VAL
x = obj.property
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To be Sound or Not to be Sound

• It is hard to be simultaneously sound, precise, and efficient
F This is always true, but for JavaScript achieving soundness is

especially difficult

• Most JavaScript analyses give up on soundness, and for some
domains this is perfectly OK, e.g., IDEs

F Code completion (Feldthaus et al, OOPSLA’13)

F Approximate callgraph construction (Feldthaus et al, ICSE’13)

• Other domains require soundness, e.g., security

F Addon security vetting (Kashyap et al, CGO’14)

• In general, it’s easier to start with soundness and remove features
than to start with unsoundness and add features
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Intermediate Representations

What level of IR should we analyze?

Source Codeww�
High-Level IRww�
Mid-Level IRww�
Low-Level IR

• Lower-Level IR
F Pro: Simple, regular expressions;

implicit operations made explicit

F Con: Complex translation; results
hard to map to the source code

• Higher-Level IR
F Pro: Simple translation (if any);

easy to map results to source code

F Con: Complex, irregular
expressions; implicit semantics
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Type of Analysis

What analysis method should we use?

• Constraint-Based (Flow-Insensitive)

F Non-starter!

F We need flow-sensitivity at a minimum

• Dataflow Analysis (CFG-based)

F A popular choice, but (in my opinion) flawed

F We need complex analysis to compute control-flow

• State Reachability (Abstract Interpretation-based)

F Abstracting abstract machines (Van Horn and Might, ICFP’10)

F Widening for control-flow (Hardekopf et al, VMCAI’14)
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Other Research Groups

There are other research groups doing excellent work on JavaScript
static analysis who have explored in different directions.

• Anders Møller’s group, Aarhus University, Denmark

• WALA group, IBM T.J. Watson

• Sukyoung Ryu’s group, KAIST, Korea

• And others...
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JSAI Challenges

• How to guarantee soundess?
F People have tried “best effort” and it doesn’t work

F Need formalisms, abstract interpretation

• How to define static analysis?
F Standard dataflow analysis doesn’t work (no CFG available)

F Need different formulation of static analysis

• What abstractions/sensitivities should be used?
F No one knows what abstractions and sensitivities work best

F Need to easily experiment with different possibilities
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JSAI Features

• Features of JSAI
F First provably sound static analysis for JavaScript

F Extensively tested against commercial JavaScript engines

F Configurable control-flow sensitivity and abstract domains

F Novel abstract domains for objects and strings

• Publically available to research community
F Build client analyses

F Experiment with abstract domains

F Experiment with sensitivities
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JSAI Architecture

Concrete
semantics

Concrete
result

JavaScript
program

notJS
IR

Sensitivity
strategy

Abstract
semantics

Abstract
result

translate

specify

execute

execute
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The notJS IR

We designed the IR with static analysis in mind in order to make the
analysis simpler, more efficient, and more precise.

Selected IR Features

• Separate pure expressions from impure statements

• Translate implicit conversions into explicit operations

• Make the this and arguments parameters explicit

• And more...
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Concrete Semantics

• Concrete semantics specifies actual program behavior
F Define as a state transition system

F Technically, an abstract machine smallstep operational semantics

• Sound analysis⇒ formal semantics
F Forces us to precisely specify behavior

F Amenable to proofs

• Reality-check on our understanding of JavaScript behavior
F “Ground truth” for our static analysis

F Heavily tested on over 1 million JavaScript programs, using
Spidermonkey as a reference
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Concrete State Transition System
1 x := random int()
2 if (x < 0) {
3 x := -x
}

4 if (x > 42) {
5 x := 42
}

6 print x

State = ProgramPoint × Store
Store = Variable→ Z
⇒ ∈ State× State

1
x 7→?

2
x 7→ −50

2
x 7→ 33

. . .

3
x 7→ −50

4
x 7→ 50

5
x 7→ 50

6
x 7→ 42

4
x 7→ 33

6
x 7→ 33
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Abstract Semantics

• Also in the form of a state transition system
F Think of an abstract state as representing a (potentially infinite) set

of possible concrete states

F There is no control-flow graph; the analysis computes the set of
reachable abstract states using the state transition system

• Specifies the actual static analysis
F Combines type inference, pointer analysis, control-flow analysis,

string analysis, and boolean and number constant propagation

F Novel abstract domains to represent objects and strings

• Sound wrt the concrete semantics
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Abstract State Transition System
1 x := random int()
2 if (x < 0) {
3 x := -x
}

4 if (x > 42) {
5 x := 42
}

6 print x

State] = ProgramPoint × Store]

Store] = Variable→ Z]

⇒ ∈ State] × State]

1
x 7→ ⊥

2
x 7→ (−∞,∞)

3
x 7→ (−∞,−1]

4
x 7→ [1,∞)

5
x 7→ [43,∞)

6
x 7→ [42, 42]

6
x 7→ [1, 42]

4
x 7→ [0,∞)

5
x 7→ [43,∞)

6
x 7→ [42, 42]

6
x 7→ [0, 42]
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Configurable Sensitivity

• The previous abstract semantics is exponential in the number of
nondeterministic transitions

• Control-flow sensitivity bounds the state space

F Flow-sensitivity, context-sensitivity, path-sensitivity

F Enables trade-offs between precision versus performance
F An analysis usually bakes in a specific sensitivity

• Theoretical insight: Completely separate sensitivity strategy
from abstract semantics

F Define and implement abstract semantics independently from the
sensitivity strategy

F Plug in sensitivity strategies a posteriori, modularly tuning the
analysis sensitivity
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Widened Abstract State Transition System
1 x := random int()
2 if (x < 0) {
3 x := -x
}

4 if (x > 42) {
5 x := 42
}

6 print x

State] = ProgramPoint × Store]

Store] = Variable→ Z]

⇒ ∈ State] × State]

1
x 7→ ⊥

2
x 7→ (−∞,∞)

3
x 7→ (−∞,−1]

4
x 7→ [0,∞)

5
x 7→ [43,∞)

6
x 7→ [0, 42]
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JSAI Architecture Review

Concrete
semantics

Concrete
result

JavaScript
program

notJS
IR

Sensitivity
strategy

Abstract
semantics

Abstract
result

translate

specify

execute

execute
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JSAI Evaluation

• We evaluate JSAI for both performance and precision
F We use a type-error analysis to measure relative precision:

because the analysis is sound, fewer potential type errors means
more precise

• 28 benchmarks, 4 different categories of JavaScript programs
(prior work mostly used just the first category)

F Standard benchmarks (Sunspider, Octane)
F Browser addons
F Real-world open-source programs from Github
F Generated JavaScript via Emscripten

• Tested 56 different sensitivities
F Largest such study ever done, due to our configurable sensitivity
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Selected Results

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs
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Reduced Product is Essential

Computing control-flow and data-flow requires:

• Type inference
• Pointer analysis
• Control-flow analysis
• String analysis
• Number analysis
• Boolean constant propagation

All of these need to work together in carefully designed harmony in
order to get useful results.
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String and Object Abstract Domains Very Important

• Object classes. Objects come from different pre-defined classes,
e.g., Array, Function, Number, etc. An object’s class affects its
semantics.

F Example: assignment to length property for Array vs non-Array

• Property names. The names of properties are just strings;
looking up an unknown string as a property can lose tremendous
amounts of precision.

F Example: Prototype-based inheritance means that the results
merge all properties of all objects in the prototype chain
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Type Refinement

Old idea: refine abstract values based on branch conditions.

• Often ignored in dataflow analysis
• Especially important for JavaScript
• Most important refinements are to type information
• Most important branches are implicit in the semantics
• A low-level IR helps tremendously

We tried this with JSAI for a type-error client analysis.

• Average 53% reduction in reported type errors
• Maximum 86% reduction in reported type errors
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Higher Precision ⊃ Better Performance

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs
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Context-Sensitivity: Callstring > Object

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs
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State Reachability ⊃ Good Parallelization

The state reachability method for static analysis turns out to be
amenable to parallelization:

• State reachability is embarassingly parallel

• Merging states for sensitivity adds synchronization points

• Different sensitivities tradeoff parallelism for reduced state space

We tried this for JSAI.

• 2–4× speedup on average, 36× maximum

• We think it could do even better with more work
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Sensitivities and Abstractions

What are the right ones to use?

• Better abstractions for strings and objects

• Better sensitivities for precision and performance

Need to explore more sensitivities to find the sweet-spot (JavaScript’s
equivalent of object-sensitivity for Java).

JSAI’s configurable sensitivity helps make this feasible.
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Performance

We can handle 1,000s–10,000s LOC, but we need to handle 100,000s.

• Parallelism. We’ve made a good start, but need more

• Sparseness. Traditional SSA won’t cut it; what can we do?

F Complex dependencies, need to consider branch conditions

F Some progress. (Jensen et al, SAS 2010; Madsen et al, 2014)

F Not a solved problem

• Other ideas?
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Frameworks

JavaScript frameworks are extremely useful and popular, e.g., JQuery.

• Some of the hairiest JavaScript code you’ll ever see

• Very difficult to get precision and performance

• One of the biggest open problems in JavaScript analysis

• Some progress, but much remains (Shäfer et al, PLDI’13;
Andreasen et al, OOPSLA’14)
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Dynamic Code Injection

Handling eval and family.

Dynamic code injection is the bane of static analysis. What can we do?

• Some application domains don’t use eval

F Browser addons

F Machine-generated JavaScript

• Sometimes we can eliminate eval from the program

F Unnecessary uses of eval when other techniques will work

• What about when we do have to deal with eval?
F Assume and enforce?

F Dynamically patch analysis?

F Other ideas?
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Dialects of JavaScript

Different JavaScript engines have effectively their own dialects.

• JavaScript engine implementors sometimes consider the ECMA
language specification more of a “suggestion”

F Mozilla SpiderMonkey allows assignment to object prototype fields

• Different engines refine underspecified behavior in different ways

F V8 vs SpiderMonkey: different iteration orders for for..in loops

• Production engines are used to proselytize potential future
language extensions

F Mozilla SpiderMonkey: object proxies, typed arrays
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Different Environments

JavaScript is used in different settings which require static analyses to
model different external environments.

• Web pages: DOM

• Addons: XPCOM

• Server: Node.js API

This is a major problem and concern for JavaScript analysis
infrastructures.
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The End

Questions?
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