Combining Type-Analysis with Points-To Analysis
for Analyzing Java Library Source-Code

Nicholas Allen
Padmanabhan Krishnan
Bernhard Scholz

Oracle Labs,
Brisbane, Australia

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved

Disclaimer

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and
practices at any time, and the development, release, and timing of any
features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily reflect the views of Oracle.

: ‘ CLE Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Agenda

* Motivation: Security analysis of libraries
* Background: Points-to, Static analysis

* Types and Most General Application

* Experiments

* Future Work & Conclusion

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Motivation

* Context: Security vulnerabilities in the JDK library
— Reason about JDK library without an application

* Security enforced by library
— Enforcement transparent to application
— Library code is known vs. application code is unknown

Sufficient Privileges
Permission Check >

; Security Sensitive

Method

Untrusted Code
(Application) P&

No Leak
Trusted Code (Library)

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Static Program Analysis Challenge for OO-Programs

* Major building block for security analysis
— Points-to analysis reasoning about heap and program variables

* Open/closed world problem
— Application code is unknown

— JDK Library code is known

* How to reason about unknown applications?

— Abstractions for interactions between application & library DS IR

(known)

Java Application
(unknown)

— Heap Abstractions for the library for all applications
— Points-to relationship between variables and heap objects

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Background

Context-insensitive, flow-insensitive Anderson’s style points-to for Java

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis

* Flow-insensitive, inclusion-based, context-insensitive points-to

e Abstract domain

— Program variables
* Local, actual/formal parameters, return-values, bases, this-variables

— Heap-allocated objects
* Creation-site as an abstraction for dynamically created objects with fields

ey Abstract Domain

o> <o'a T O
ORACLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis in Datalog

_________|JavaCode ___ Datalog Encoding

Allocations h:v=new C(); vP(v,h) :- “h: v = new C()”.
Store v.f=v,; hP(h,fh,) :- “v,.f=v,”,
vP(v,,h,), vP(v,,h,).
Load v, = v,.f; vP(v,, h,) :- “v, = v .f,
hP(h,f,h,), vP(v,,h,).
Moves, Arguments V, = Vy; vP(v,, h) :- “v, =v,”,
vP(v,,h).

* (v,h) € vP if variable v may point to an object of creation-site h
* (h,f,h,) EhP if object of h; may point to an object of h, via field f

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 8

Points-To Example

a:x=new Foo()
Y=Xjy
1f (cond) {

zZ = V;
} else {
b:z=new G();

z.ft = vy;

ORACLE

Variables

Copyright © 2014, Oracle and/or its affiliates. All rights reserv

ed.

vP

? Object-creation sites

hP

Types and Most General Application

Context-insensitive Anderson’s style points-to for Java

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved

Extending Points-To for Unknown Applications

* Applications have a contract how they interact with the library
— Viia Types and via public interfaces
— Enforced by the programming language

* Extend the points-to analysis with types
— Abstract domain is extended
— Semantic equations are altered

* New Abstract Domain
— Object-creation sites can be summarized by their classes/types
— Reason about objects from unknown application code

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

11

Amalgamate Points-To with Type Analysis

* Assume creation-site A and B create instances of class X

Coarse- f
grained ’

\\

- Abstract Domain
Creation-site B

> > <

Fine- e f
grained Creation-site A

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

12

Classes: Universal Quantifiers for Object-Creation sites

* Interpretation of a class X in abstract domain:
— Subsumes all object-creation sites of class X and its sub-classes
— May subsume unknown and known object-creation sites
— Sub-classes may be known or unknown

* Heap-Abstraction
— Classes (vs. object-creation sites) produce higher abstraction level

— If there exists an edge between two classes X and Y via field f
* there exist two object creation sites of type X and Y connected by field f

* Lattice permits co-existence of type- and points-to analysis

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

13

Points-To Analysis with Types

_________|JavaCode ___ Datalog Encoding

Allocations h:v=new C(); vP(v,h) :- “h: v = new C()”.
Store v,.f=v,; hP(o,f,h,) :- “vi.f =v,", vP(v,,h,),
isOf(o,h,), vP(v,,h,).
Load V2 S Vl-f; VP(Vz; hz) - ”VZ = Vl.f”,
hP(h,f,h,), vP(v,,h,).
Moves, Arguments V, = Vg; vP(v,, h) :- “v, =v,”,
vP(v,,h).

* Relations vP and hP extended for types,
» Adapt store semantics: if type t = update all creation-sites of type t

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 14

Interactions with Unknown Applications

* Construct Most General Application
— Mimicking the behaviour of all applications

Public

— Over-approximation et
* Worst-case assumptions Most
. G |
— All public interfaces are called by MGA Ap;gﬁon
— Parameters of invocations are types Public

— However, no program variables in MGA Method k

* Which heap-abstraction as an initial state? Library

Oracle Confidential — Restricted

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

15

15

Initial State for Most General Application (MGA)

* Construction
— Nodes of the initial heap abstractions are public classes
— Connect class with public accessible fields in heap abstraction with their type
— Public sub-classes inherit connection

* Private fields are excluded
— Only library can change field contents

* Less connection in the initial state produce makes points-to more precise

* Assumption
— Object/Root class is owned by library

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

16

Example: Initial State

class A {
public B f1;
private C £2; }

class B extends A {
public A £3;
private A f4 ; }

class C {
public A £5; }

ORACLE

o

Copyright © 2014, Oracle and/or its affiliates. All rights reserve

d.

17

Experiments

ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

18

Experimental Setup

* Extended DOOP framework for open/closed world assumption
* DOOP runs on Logicblox

* Analysis of OpenlDK library: version 7, build 147

* Machine: Intel Xeon E5-2660 (2.2GHz), 256GB Ram

 Work flow:
_I—b | S
Relations .
| Jaffa ll Extractor Logicblox
@ TRANSLATOR » TRANSLATOR DATALOG FACTS Datalo?Engine q D§$ASéJAI§E
Open]DK T
SOURCE o

Open/Closed World
DOOP
DATALOG RULES

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 19

Experiment with OpenJDK 7 / build 147

CHA without MGA with MGA
Call-Graph Edges (#) 3,030,157 378,495 851,127
Points-To (#) n/a 384,207,724 661,970,750
Runtime (seconds) 30 1719 3662

* Class Hierarchy Analysis (CHA)
— Type analysis of objects

* Points to analysis with Most General Application (MGA)

—124% more call graph edges in call graph
— 73% more variable/object relations in points-to set

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 20

Future Work

* How to deal with reflection?
* Can the notion of MGA be extended to security properties?
* How to prove the semantic correctness?

* How to improve precision and runtime of the specifications?

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

21

Conclusion

* Amalgamate type-analysis with points-to

* Types used to summarize unknown objects in application

* Analysis handles types and creation-sites uniformly

* Over-approximating applications with Most General Application

* Overhead for large code is manageable

R CLG Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

22

Hardware and Software
Engineered to Work Together

c L]
OR CLE CCCCC ight © 2014 , Oracle and/or its affiliates. All rights reserved |

