
A brief user’s guide to Jedd

Ondřej Lhoták

October 14, 2005

1 Preliminaries

This mini-tutorial assumes that the reader has read the paper [LH04] about
Jedd that was presented at PLDI 2004, and is available at http://www.sable.
mcgill.ca/publications/papers/#pldi2004, as well as Chapter 3 and Ap-
pendix B of Ondřej Lhoták’s PhD thesis [Lho05], available at http://www.
sable.mcgill.ca/~olhota/pubs/thesis-olhotak-phd.ps.

2 Example

The Jedd distribution contains a directory called examples containing sample
Jedd code. Currently, it contains a single example, examples/pointsto. This
is a Jedd version of the BDD-based points-to analysis from [BLQ+03].

3 Jedd source files

Source files to be processed by Jedd must have one of the extensions .jedd or
.java. It is customary to use the extension .jedd for files containing Jedd-
specific constructs, and .java for files containing plain Java.

Jedd files should import the package jedd.* from the Jedd runtime library.
This package contains interface classes with methods that can be called by Jedd
programs. In particular, the jedd.Jedd class is a singleton containing methods
affecting the behaviour of Jedd in general, and jedd.Relation is an interface
listing the methods that can be called on any Jedd relation type. Jedd files
should not import the package jedd.internal.*.

4 Defining numberers, domains, attributes and
physical domains

The first step in writing a Jedd program is to define the numberers, domains,
attributes, and physical domains that will be used. A numberer is a class that
generates and maintains a mapping between objects and non-negative integers,

1

http://www.sable.mcgill.ca/publications/papers/#pldi2004
http://www.sable.mcgill.ca/publications/papers/#pldi2004
http://www.sable.mcgill.ca/~olhota/pubs/thesis-olhotak-phd.ps
http://www.sable.mcgill.ca/~olhota/pubs/thesis-olhotak-phd.ps
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto


and must be implemented by the programmer. A domain is a set of objects that
will form the basis of Jedd relations. Each domain must have an associated
numberer for its objects. An attribute is a domain with an assigned name,
used to distinguish multiple instances of a domain within the same relation.
A physical domain is a set of BDD bit positions to which Jedd may map an
attribute of a relation.

A numberer is a plain Java class implementing the jedd.Numberer interface.
See the file examples/pointsto/src/domains/IntegerNumberer.java, which
assigns to Integer objects the integer that is their value.

A domain is similar to a Java class, but is defined with a slightly differ-
ent syntax: the class name is immediately followed by an integer constant in
parentheses. See the file examples/pointsto/src/domains/Var.jedd for an
example. The integer constant specifies how many bits are to be used to repre-
sent the domain. The maximum number of objects in the domain is 2b, where
b is the number of bits specified. Each domain must extend the jedd.Domain
class and implement the numberer() method, which returns the numberer for
the domain.

An attribute is defined similarly to a domain, but the integer constant num-
ber of bits is replaced with the name of the domain of the attribute. See the
file examples/pointsto/src/attributes/var.jedd for an example with the
domain Var. An attribute must extend the jedd.Attribute class. However, it
should not implement its abstract method domain(); Jedd will implement it for
you.

A physical domain is defined similarly to a domain or attribute, but the
parentheses following its name are empty. See the file examples/pointsto/
src/physical_domains/V1 for an example. Each physical domain must extend
the class jedd.PhysicalDomain.

5 Selecting a backend

Jedd currently supports four different BDD libraries as backends: BuDDy,
CUDD, SableJBDD, and JavaBDD. BuDDy is the backend which has the most
complete support in Jedd, which is the most tested, and which tends to per-
form best. BuDDy and CUDD are C libraries, so they require that their
shared library (.so or .dll) files be available on the LD LIBRARY PATH. Be-
fore using Jedd in you program, you must select one of the backends by calling
jedd.Jedd.v().setBackend(). The argument to this method should be one of
"buddy", "cudd", "sablejbdd" or "javabdd".

6 Selecting a physical domain ordering (optional)

By default, Jedd places the various physical domains one after the next in
the BDD. For performance reasons, you may want to select a different or-
dering. This is done by calling jedd.Jedd.v().setOrder(). An example

2

https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/domains/IntegerNumberer.java
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/domains/Var.jedd
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/attributes/var.jedd
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/physical_domains/V1
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/physical_domains/V1


of how this method is called appears in the points-to analysis example (see
examples/pointsto/src/Prop.jedd). A detailed explanation of the orderings
that can be specified appears in Ondřej Lhoták’s Ph.D. thesis [Lho05], in the
section titled “Specifying physical domain ordering” in Chapter 3.

7 Writing Jedd code

The Jedd grammar and explanations of its operators appear in [LH04, Lho05],
and are outside the scope of this guide. The paper also includes various exam-
ples of Jedd code. Refer also to the points-to analysis example in examples/
pointsto/src/Prop.jedd.

The javadoc documentation of the (rather small) API available to Jedd pro-
grams is available in doc/api. In particular, this includes the jedd.Jedd class
with methods controlling the behaviour of Jedd in general, and the jedd.Relation
interface of methods that can be called on any relation type.

8 Compiling Jedd code

The Jedd compiler is invoked with the command java jedd.Main. It uses
the same command-line format as Polyglot, with two additional switches for
specifying the path to a SAT solver (-s) and a SAT core extractor (-sc). The
simplest way to compile a project is to list all the .jedd files on the command
line. This will compile them to .java files, and run javac on them to compile
them to classfiles. The -c switch disables the javac pass. If your project consists
of both .jedd and .java files, you can put them all on the command line, but
be warned that Polyglot will overwrite your .java files unless you specify an
alternate output directory with the -d switch.

The points-to analysis example includes a simple Ant build file which can
be modified for use in other projects.

9 Using the profiler (optional)

To use the profiler, it must be enabled before the computation to be profiled
begins by calling jedd.Jedd.v().enableProfiling(). At the end of the com-
putation, the recorded profiling data can be written to a file in SQL format by
calling jedd.Jedd.v().outputProfile() with a java.io.PrintStream. See
the file examples/pointsto/src/Prop.jedd for an example use of the profiler.

Viewing the profile data requires an SQL database and a CGI-capable web
server. The CGI scripts (found in the profile_view directory in the Jedd dis-
tribution) are specific to SQLite, but should work with any web server. They
expect the profiling data in a database called profile.db, in the same directory
as the scripts. This file can be generated by piping the SQL file to SQLite with
the command
cat profile.sql | sqlite profile.db

3

https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/Prop.jedd
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/Prop.jedd
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/Prop.jedd
https://svn.sable.mcgill.ca/soot/jedd/trunk/doc/api
https://svn.sable.mcgill.ca/soot/jedd/trunk/examples/pointsto/src/Prop.jedd
https://svn.sable.mcgill.ca/soot/jedd/trunk/profile_view


(assuming the SQL file is profile.sql). thttpd can be started with the com-
mand:
/usr/sbin/thttpd -d /directory/with/cgi/scripts -p 8080 -c ’*.cgi’
(where /directory/with/cgi/scripts is replaced with the directory contain-
ing the Jedd CGI scripts from profile_view). This starts the web server on
port 8080. To view the profiling data, point your web browser to
http://127.0.0.1:8080/main.cgi.

References

[BLQ+03] Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and
Navindra Umanee. Points-to analysis using BDDs. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, pages 103–114. ACM Press, 2003.

[LH04] Ondřej Lhoták and Laurie Hendren. Jedd: A BDD-based rela-
tional extension of Java. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation.
ACM Press, 2004.

[Lho05] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams.
PhD thesis, McGill University, December 2005.

4

https://svn.sable.mcgill.ca/soot/jedd/trunk/profile_view
http://127.0.0.1:8080/main.cgi

	Preliminaries
	Example
	Jedd source files
	Defining numberers, domains, attributes and physical domains
	Selecting a backend
	Selecting a physical domain ordering (optional)
	Writing Jedd code
	Compiling Jedd code
	Using the profiler (optional)

