Soot support for whole-program analyses
Patrick Lam (plam@sable.mcgill.ca)

March 23, 2000

This note describes some features of Soot relevant to whole-program analyses.
The developer should first understand both the Ereateclasy and [menagerid documents.

1 Goals

In particular, the developer will understand:
e The role of the Hierarchy object, especially in relation to the Scene.

e Care and feeding of InvokeGraphs.

2 Soot Hierarchys

We have previously seen that the Scene is a container for all of the SootClasses. However, the Scene does
not provide convenient access to the class hierarchy.

Soot provides the Hierarchy to answer inheritance-related questions. We start by instantiating a
Hierarchy object with new Hierarchy(); it queries the Scene for all active SootClass objects and stores
the data in instance variables.

Stale Hierarchies If a Hierarchy object is created, and the Scene is subsequently changed, by the
addition or removal of a SootClass, the Hierarchy becomes stale, and attempts to call its methods will
result in an exception.

The Hierarchy provides methods like getSubclasses0f and isClassSuperclass0f. In general, when-
ever the method name contains Including, the current class is included in the query; that is, the call
isClassSubclass0fIncluding(x, x) returns true.

As of version 1.0.0, not all of the functionality on Hierarchy is provided.

3 Resolving Virtual Method Dispatches

In order to carry out certain program transformations, such as inlining, we must be able to query Soot
about the list of possible targets for an invoke expression or statement. The InvokeGraph provides this
functionality.

The usual way of getting an InvokeGraph is through the ClassHierarchyAnalysis.newInvokeGraph ()
method. This uses CHA to construct an invoke graph.

In the future, other ways of constructing InvokeGraphs might be provided, for instance with Variable
Type Analysis. We do not currently supply a working VTA implementation with Soot; the initial implemen-
tation was developed for an old version and will eventually be updated.

The graph is inherently a bipartite one; one set of nodes is the set of callsites, and the other parti-
tion is the set of methods in the program. One can add sites to the InvokeGraph, and then add edges
corresponding to invocations, from sites (previously added) to methods. This is done with, respectively,
InvokeGraph.addSite() and InvokeGraph.addTarget ().


mailto:plam@sable.mcgill.ca

We can then query the InvokeGraph for a list of targets at any given callsite, using getTargets0f (Stmt
site); to combine all callsites from a method, we use getTargets0f (SootMethod container). To get all of
the methods reached from a given container, we use getTransitiveTargets0f (SootMethod container).

We can also query for a list of sites in any method, using getSites0£f ().

History

e March 23, 2000: Initial version.



	Goals
	Soot PD1OT1cmrcmrmmnnHierarchys
	Resolving Virtual Method Dispatches

