
Optimizations using Variable Type Analysis

Felix Kwok (wkwok@sable.mcgill.ca)

September 5, 2000

This note explains how to apply Variable Type Analysis to whole-program optimizations. The user
should first be familiar with material in both Soot command-line options and Phase options.

1 What is Variable Type Analysis?

Variable Type Analysis (VTA) is a linear algorithm that determines statically a set of possible runtime types
of each variable in the program. This analysis is useful for virtual method call elimination: if VTA discovers
that the receiver of a virtual invoke site can only have one possible type, we can use this information to
inline the target method or to bind the method statically, so that virtual method lookup is no longer needed.

For more information on VTA, see the Sable technical report 1999-4.

2 Running whole-program optimizations

Soot provides tools for whole-program optimizations in the wjop pack, some of which uses VTA. To use
these tools, one must run soot in whole-program mode and must have turned on optimization. This is
accomplished by the command-line options --app and -W. Also, since VTA needs to analyze the bodies of
the java library code, one must include the command-line option -a or --analyze-context to tell Soot to
obtain Jimple code for library methods.

3 The wjop Pack

The wjop pack contains two transformers, StaticMethodBinder and StaticInliner. Only one transformer
should be applied for each execution. By default, StaticMethodBinder is disabled and StaticInliner
enabled. This can be changed by setting the disabled option for each transformer.

StaticInliner (phase wjop.si) does the following:

1. finds call sites which are monomorphic;

2. checks whether the call sites can be safely inlined. The inlining criteria are listed in Vijay Sundaresan’s
Master’s thesis;

3. if the call site is safe to inline, inlines the body of the target into that of the caller.

StaticMethodBinder (phase wjop.smb) does the following:

1. finds call sites which are monomorphic (i.e. has only one target);

2. creates an new static method which has a body identical to the target, but whose first parameter is
the object that used to be the receiver;

3. redirects the original call site to the newly-created static method.

By default, StaticInliner and StaticMethodBinder uses Class Hierarchy Analysis (CHA) to find
monomorphic call sites. Changing the VTA-passes option can cause them to use VTA once or several times.

1

mailto:wkwok@sable.mcgill.ca
http://www.sable.mcgill.ca/publications/#report1999-4
http://www.sable.mcgill.ca/publications/#vijayMastersThesis
http://www.sable.mcgill.ca/publications/#vijayMastersThesis


4 Including dynamically-loaded classes

If the program to be optimized loads classes dynamically using the newInstance method, Soot will be unable
to tell statically which classes need to be resolved. In this case, the user will need to tell Soot explicitly
which classes are loaded. This can be done using one of the following command-line options:

1. --dynamic-path lets the user specify paths under which all classes are considered potentially dynamic.
This option works provided the class files do not belong to any packages (i.e. the fully quantified name
is the same as the class name). For example, this will work for a stand-alone class file, but will not
work for classes like sun.security.provider.Provider.

2. --dynamic-packages lets the user specify packages, separated by commas, for which all class files
belonging to this package or any subpackage thereof are considered potentially dynamic. For instance,
saying

--dynamic-packages sun.security.provider

will mark a class like sun.security.provider.Provider as potentially dynamic.

We currently do not provide a way for the user to specify individual classes as potentially dynamic, but we
hope to do that in the future. Note: The user must specify all potentially dynamic classes using one (or
both) of the above, or the results of VTA may be incorrect.

5 Examples

• java -mx300m soot.Main --app -W -a -p wjop.smb disabled:false -p wjop.si disabled
-p wjop.smb VTA-passes:2 spec.benchmarks._201_compress.Main

This command runs StaticMethodBinder instead of StaticInliner. It also asks Soot to apply VTA
twice on the analysis. It analyzes library classes, but does not include any dynamic packages. The
-mx300m switch is present so that the virtual machine is allowed to use more memory (300 Mb) than
the default value (since whole-program analysis usually uses a lot of memory). Note that the switch
for allowing more memory usage may be different depending on the virtual machine used.

• java -mx500m soot.Main --app -W -a --dynamic-packages
java.text.resources,spec.benchmarks._213_javac SpecApplication

This command runs StaticInliner with no VTA. It uses CHA to find monomorphic sites. It analyzes
library classes, and it includes all classes in the packages java.text.resources, spec.benchmarks. 213 javac,
or any of their subpackages, as potentially dynamic classes. It allows the virtual machine to use 500
Mb of memory.

History

• September 5, 2000: Initial version.

2


	What is Variable Type Analysis?
	Running whole-program optimizations
	The PD1OT1cmrcmrmmnnwjop Pack
	Including dynamically-loaded classes
	Examples

