
Soot phase options

Patrick Lam (plam@sable.mcgill.ca)
Feng Qian (fqian@sable.mcgill.ca)

April 26, 2002

Soot supports the powerful, but initially confusing, notion of “phase options”. This document will permit
the reader to successfully use the Soot phase options.

Soot’s execution is divided into a number of phases. Building the JimpleBody is a phase (called jb), and
it has a number of subphases, like aggregation of stack variables (jb.asv).

Soot allows the user to specify options for each phase; these options will change the behaviour of the phase.
This is specified by giving Soot the command-line option -p phase.name option:value. For instance, to
instruct Soot to use original names in Jimple, we would invoke Soot like this:

[plam@cannanore test] java soot.Main foo -p jb use-original-names

Unless specified otherwise, all options are boolean; allowed values are “true” or “false”. When an option
is omitted, the default value is “false”; specifying an option without a value is the same as saying “true”.

All transformers accept the option “disabled”, which, when set to true, causes the given transformer
to not execute.

Soot transformers are expected to be classes extending either BodyTransformer or SceneTransformer.
In either case, an internalTransform method on the transformer must be overridden to provide an imple-
mentation which carries out some transformation.

These transformers belong to a Pack. The Pack keeps a collection of transformers, and can execute them,
in order, when called. To add a transformer to some Pack without modifying Soot itself, create your own
class, which modifies the Packs as needed and then calls soot.Main.

The remainder of this document describes the various transformations belonging to the various Packs in
Release 1 of Soot.

Contents

1 JimpleBody creation 1
1.1 Stack-variable aggregation . 2
1.2 Unsplit-originals local packer . 2
1.3 Local name standardizer . 2
1.4 Copy propagator . 3
1.5 Dead assignment eliminator . 3

2 Jimple Transformation Pack 3

3 Jimple Optimization Pack 3
3.1 Common subexpression elimination . 3
3.2 Busy code motion . 4
3.3 Lazy code motion . 4
3.4 Copy propagator . 4
3.5 Constant propagator and folder . 5
3.6 Conditional branch folder . 5
3.7 Dead assignment eliminator . 5

1

mailto:plam@sable.mcgill.ca
mailto:fqian@sable.mcgill.ca

3.8 Unreachable code eliminator . 5
3.9 Unconditional branch folder . 5
3.10 Unused local eliminator . 6

4 Whole-Jimple Transformation Pack 6

5 Whole-Jimple Optimization Pack 6
5.1 Static method binding . 6
5.2 Static inlining . 7

6 Annotating class files 7
6.1 Null pointer check options . 7
6.2 Array bounds check options . 8

7 Generating Jasmin 8

1 JimpleBody creation

This phase is active during JimpleBody creation; Soot will always start by creating JimpleBody’s from a
method source – either coffi, for reading .class files, or the jimple parser, for reading .jimple files.

Phase name jb
Class name soot.jimple.JimpleBody

Recognized options

no-splitting Soot will not split the locals by use-def webs while generating the Jimple body.

no-typing Soot will not resolve the types of local variables.

aggregate-all-locals Soot will aggregate both regular locals and stack locals. (See the jop.cp phase for
more information). This options will suppress the ‘no-aggregating’ option.

no-aggregating If ‘aggregate-all-locals’ is not specified, then disable the aggregation of locals for
Jimple Body’s. This subsumes ‘only-stack-locals’ in the ‘jb.asv’ phase.

use-original-names Soot attempts to find and use the original names from the method source. If this is
not specified, Soot gives standard names to local variables, according to the variable type.

pack-locals Soot will pack local names tightly, using a graph coloring algorithm.

no-cp Soot will not apply the copy propagator to Jimple Body’s.

no-nop-elimination Soot will not remove nop instructions.

no-unreachable-code-elimination Soot will not remove unreachable code.

verbatim Do not apply any options.

1.1 Stack-variable aggregation

Phase name jb.asv
Class name soot.jimple.toolkits.base.Aggregator

This phase handles the aggregation of stack variables for Jimple. For a full description of aggregation,
see [VRGH+00]. Briefly, aggregation finds instances where some expression has a single use; it replaces the
use with the expression itself.

This phase is deactivated by the ‘no-aggregating’ option in the jb phase.

2

Recognized option

only-stack-locals Aggregate values stored in stack locals only.

1.2 Unsplit-originals local packer

Phase name jb.ulp
Class name soot.toolkits.scalar.LocalPacker

This phase only executes when the ‘use-original-names’ option is chosen for the ‘jb’ phase. It unsplits
the locals according to the original names found for them.

Recognized option

unsplit-original-locals (default: true) Calls the LocalPacker to implement the use-original-names op-
tion.

1.3 Local name standardizer

Phase name jb.lns
Class name soot.jimple.toolkits.scalar.LocalNameStandardizer

This phase assigns standard names to local variables. It only executes when ‘use-original-names’ is not
chosen.

Recognized option

only-stack-locals (default: true) Standardizes only stack local variables’ names.

1.4 Copy propagator

Phase name jb.cp
Class name soot.jimple.toolkits.scalar.CopyPropagator

This phase provides a cascaded copy propagator. It is executed only when ‘no-cp’ is not chosen in the
‘jb’ phase.

If it encounters situations of the form: A: a = ...; B: ... x = a; C:... use (x); where a has only one
definition, and x has only one definition (B), then it can propagate immediately without checking between
B and C for redefinitions of a (namely A) because they cannot occur. In this case the propagator is global.

Otherwise, if a has multiple definitions then it only checks for redefinitions of constants and copies in
extended basic blocks.

From bytecode, we get some number of declared locals; we call these “regular locals”. In Jimple, we
have converted the stack elements to locals. The new locals thus introduced are called “stack locals”. These
locals have names which usually begin with $.

The default behaviour in this phase is to propagate only on the ‘stack’ locals.

Recognized options

only-regular-locals Copy propagation only occurs on the “regular” locals.

only-stack-locals (default: true) Copy propagation only occurs on the “stack” locals.

1.5 Dead assignment eliminator

Phase name jb.dae
Class name soot.jimple.toolkits.scalar.DeadAssignmentEliminator

This phase eliminates assignment statements (to locals) with no uses.

3

Recognized option

only-stack-locals (default: true) Only eliminates dead assignments to stack locals.

2 Jimple Transformation Pack

Soot will always apply the contents of the Jimple transformation pack to each method under analysis. This
pack is called jtp. There are no transformations in this pack in an unmodified version of Soot.

3 Jimple Optimization Pack

When Soot is given the -O command-line option, the JimpleOptimizationPack is applied to every Jimple-
Body in an application class. This section lists the default transformations in the JimpleOptimizationPack.

3.1 Common subexpression elimination

Phase name jop.cse
Class name soot.jimple.toolkits.scalar.NaiveCommonSubexpressionElimination

Runs an available expressions analysis on a body, then eliminates common subexpressions.
This implementation is especially slow, as it does not run on basic blocks. A better implementation

(which wouldn’t catch every single common subexpression, but would get most) would use basic blocks
instead.

It is also slow because the flow universe is explicitly created; it need not be. A better implementation
would implicitly compute the kill sets at every node.

Because of the current slowness, this transformation is not enabled in the default settings. To enable it,
specify -p jop.cse disabled:false on the command line.

Recognized options None.

3.2 Busy code motion

Phase name jop.bcm
Class name soot.jimple.toolkits.scalar.pre.BusyCodeMotion

Busy Code Motion is a straightforward implementation of Partial Redundancy Elimination. This imple-
mentation is not very aggressive. The Lazy Code Motion, described in section 3.3 is an improved version of
the Busy Code Motion, and should be used instead of it.

Busy Code Motion is not enabled by default. To enable it, specify -p jop.bcm disabled:false on the
command line.

Recognized options None.

3.3 Lazy code motion

Phase name jop.lcm
Class name soot.jimple.toolkits.scalar.pre.LazyCodeMotion

Lazy Code Motion is the enhanced version of the Busy Code Motion, a Partial Redundancy Eliminator.
Before doing Partial Redundancy Elimination, this optimization performs loop inversion (turning while
loops into do while loops inside an if statement). This allows the Partial Redundancy Eliminator to
optimize loop invariants of while loops.

By default, this transformation is disabled. To enable it, specify -p jop.lcm disabled:false on the
command line.

4

Recognized options

safe:STRING (default: safe) one of safe, medium or unsafe. This option controls how fields and
exception-throwing statements are treated.

• safe is safe, but only considers additions, subtractions and multiplications.

• medium is unsafe in multi-threaded environment, as already performed field accesses are reused.

• unsafe moves exception-throwing statements, and reorders them. They are potentially moved
out of try-catch-blocks.

unroll (default: true) if true, loop inversion is performed before doing the transformation.

3.4 Copy propagator

Phase name jop.cp
Class name soot.jimple.toolkits.scalar.CopyPropagator

See section 1.4 for a description of copy propagation.
The default behaviour here is to propagate on all locals.

Recognized options

only-regular-locals Copy propagation only occurs on the “regular” locals.

only-stack-locals Copy propagation only occurs on the “stack” locals.

3.5 Constant propagator and folder

Phase name jop.cpf
Class name soot.jimple.toolkits.scalar.ConstantPropagatorAndFolder

This phase does constant propagation and folding. Constant folding is the compile-time evaluation of
constant expressions (i.e. 2 * 3).

Recognized options None.

3.6 Conditional branch folder

Phase name jop.cbf
Class name soot.jimple.toolkits.scalar.ConditionalBranchFolder

Statically evaluates the condition-expression of Jimple IfStmts. If the condition is identically ‘true’ or
‘false’, changes the conditional branch instruction to a ‘goto’ statement.

Recognized options None.

3.7 Dead assignment eliminator

Phase name jop.dae
Class name soot.jimple.toolkits.scalar.DeadAssignmentEliminator

This phase eliminates assignment statements (to locals) with no uses. See section 1.5.
In this incarnation, the default value for only-stack-locals is false.

5

3.8 Unreachable code eliminator

Phase names jop.uce1, jop.uce2
Class name soot.jimple.toolkits.scalar.UnreachableCodeEliminator

Removes unreachable codes and empty traps.

Recognized options None.

3.9 Unconditional branch folder

Phase name jop.ubf1, jop.ubf2
Class name soot.jimple.toolkits.scalar.UnconditionalBranchFolder

Removes unnecessary ‘goto’ statements from a JimpleBody.
If a GotoStmt’s target is the next instruction, then it is removed. If a GotoStmt x’s target is another

GotoStmt, with target y, then x’s target can be changed to y’s target.
If some IfStmt’s target is a GotoStmt, then the IfStmt’s target can be updated to the GotoStmt’s target.
(These situations could result from other optimizations; after folding branches, we might generate more

unreachable code.)

Recognized options None.

3.10 Unused local eliminator

Phase name jop.ule
Class name soot.jimple.toolkits.scalar.UnusedLocalEliminator

Removes locals with no uses in the method body.

Recognized options None.

4 Whole-Jimple Transformation Pack

Soot can do whole-program analyses. For the current version of Soot, this means that Jimple bodies are
created for each method in the application, and analyses run on this set of Jimple bodies. The application
consists of one class, specified on the command-line, plus all classes referenced (directly or indirectly) by it.
It excludes classes in java.*, javax.*, and sun.*. This mode is triggered by the --app option.

In whole-program mode, Soot will always apply the contents of the Whole-Jimple transformation pack
to each method under analysis. This occurs after all Jimple bodies have been created. This pack is called
wjtp. There are no transformations in this pack in an unmodified version of Soot.

5 Whole-Jimple Optimization Pack

To run optimizing transformations on the whole program, use the -W command-line option. This tells Soot
that the whole-jimple optimization pack is to be applied (phase name wjop).

The default behaviour of this Pack has static method binding disabled and static inlining enabled. To
reverse this, give the options -p wjop.smb disabled:false -p wjop.si disabled.

By default, static method binding and static inlining uses Class Hierarchy Analysis (CHA) to identify
monomophic call sites. Changing the VTA-passes option can cause them to use Variable-Type Analysis
(VTA) once or several times rather than CHA.

6

5.1 Static method binding

Phase name wjop.smb
Class name soot.jimple.toolkits.invoke.StaticMethodBinder

Static method binding uses CHA or VTA to statically bind monomorphic call sites. That is, smb takes
the call graph returned by CHA or VTA; if the analysis result shows that any virtual invoke statement in
the Jimple bodies actually only calls one method, then a static copy of the method is made, and the virtual
invoke is changed to a static invoke.

Recognized options

insert-null-checks The receiver object is checked for nullness before the target method is invoked. If the
target is null, then a NullPointer exception is thrown.

insert-redundant-casts Inserts extra casts for the verifier. The verifier will complain if the target uses
‘this’ (so we have to pass an extra parameter), and the argument passed to the method is not the
same type. For instance, Bottle.price static is a method which takes a Cost object, and Cost
is an interface implemented by Bottle. We must then cast the Cost to a Bottle before passing it to
price static.

allowed-modifier-changes:STRING (default STRING: unsafe) Determines what changes in visibility mod-
ifiers are allowed. “unsafe” modifies the visibility on code so that all inlining is permitted; some Il-
legalAccessErrors may be missed. “safe” preserves the exact meaning of the analysed program, and
“none” changes no modifiers whatsoever.

VTA-passes:INT (default INT: 0) By defult, static method binding uses CHA. This option can cause VTA
to run one or more times as specified by the parameter.

5.2 Static inlining

Phase name wjop.si
Class name soot.jimple.toolkits.invoke.StaticInliner

The StaticInliner talkes an call graph returned by CHA or VTA and visits all call sites in the application
in a bottom-up fashion, inlining invoke statements which is determined to be monomorphic by analysis result.
Note that the modifier “static” is supposed to be compared to a (not-currently-implemented) profile-guided
inliner.

Recognized options

insert-null-checks As in StaticMethodBinder.

insert-redundant-casts As in StaticMethodBinder.

allowed-modifier-changes As in StaticMethodBinder.

expansion-factor:FLOAT (default FLOAT: 3) Determines the maximum allowed expansion of a method.
Inlining will cause the method to grow by a factor of no more than expansion-factor.

max-container-size:INT (default INT: 5000) Determines the maximum number of Jimple statements for
a container method. If a method has more than this number of Jimple statements, then no methods
will be inlined into it.

max-inlinee-size:INT (default INT: 20) Determines the maximum number of Jimple statements for an
inlinee method. If a method has more than this number of Jimple statements, then it will not be
inlined into other methods.

VTA-passes:INT (default INT: 0) This option can cause VTA to run one or more times as specified by the
parameter.

7

6 Annotating class files

Soot has a number of phase options to configure the annotation process. Array bounds check and null pointer
check detection have separate phases and phase options.

6.1 Null pointer check options

The null pointer check analysis has the phase name jtp.npc. It has one phase option (aside from the default
disabled option).

-p jtp.npc onlyarrayref By default, all bytecodes that need null pointer checks are annotated with the
analysis result. When this option is set to true, Soot will annotate only array-referencing bytecodes
with null pointer check information; other bytecodes, such as getfield and putfield, will not be
annotated.

6.2 Array bounds check options

The array bounds check analysis has the phase name jtp.abc. If whole-program analysis is required, an
extra phase wjtp2.ra for finding rectangular arrays occurs.

-p jtp.abc with-cse The analysis will consider common subexpressions. For example, consider the situ-
ation where r1 is assigned a*b; later, r2 is assigned a*b, where both a and b have not been changed
between the two statements. The analysis can conclude that r2 has the same value as r1. Experiments
show that this option can improve the result slightly.

-p jtp.abc with-arrayref With this option enabled, array references can be considered as common subex-
pressions; however, we are more conservative when writing into an array, because array objects may be
aliased. NOTE: We also assume that the application in a single-threaded program or in a synchronized
block. That is, an array element may not be changed by other threads between two array references.

-p jtp.abc with-fieldref The analysis treats field references (static and instance) as common subex-
pressions. The restrictions from the ‘with-arrayref’ option also apply.

-p jtp.abc with-classfield This option makes the analysis work on the class level. The algorithm
analyzes ‘final’ or ‘private’ class fields first. It can recognize the fields that hold array objects with
constant length. In an application using lots of array fields, this option can improve the analysis results
dramatically.

-p jtp.abc with-all A macro. Instead of typing a long string of phase options, this option will turn on
all options of the phase “jtp.abc”.

-p jtp.abc with-rectarray, -p wjtp2.ra with-wholeapp These two options are used together to make
Soot run the whole-program analysis for rectangular array objects. This analysis is based on the call
graph, and it usually takes a long time. If the application uses rectangular arrays, these options can
improve the analysis result.

7 Generating Jasmin

This is not a phase in the same sense as the others; notably, it does not belong to any Pack.

Phase name Jimple.JasminClass
Class name soot.jimple.JasminClass

This class is used in the generation of a jasmin file from a SootClass containing either Jimple or Grimp
bodies.

For more detail about peepholes, see [VRGH+00].

8

Recognized option

no-peephole Peephole optimizations are disabled when generating Jasmin.

History

• March 16, 2000: Initial version.

• October 6, 2000: Added new phase options for Soot 1.2.0 concerning annotation.

• April, 2002: Added busy code motion and lazy code motion options.

References

[VRGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville, and Vijay
Sundaresan. Optimizing Java bytecode using the Soot framework: is it feasible?. In Compiler
Construction, 9th International Conference, CC 2000, April 2000.

9

http://www.sable.mcgill.ca/publications/#cc2000

	JimpleBody creation
	Stack-variable aggregation
	Unsplit-originals local packer
	Local name standardizer
	Copy propagator
	Dead assignment eliminator

	Jimple Transformation Pack
	Jimple Optimization Pack
	Common subexpression elimination
	Busy code motion
	Lazy code motion
	Copy propagator
	Constant propagator and folder
	Conditional branch folder
	Dead assignment eliminator
	Unreachable code eliminator
	Unconditional branch folder
	Unused local eliminator

	Whole-Jimple Transformation Pack
	Whole-Jimple Optimization Pack
	Static method binding
	Static inlining

	Annotating class files
	Null pointer check options
	Array bounds check options

	Generating Jasmin

