
Static Type Inference for Jimple Local Variables

Etienne M. Gagnon (gagnon@sable.mcgill.ca)

September 20, 2000

If you want a description of the type inference algorithm used in Soot, as well as the supporting theory,
please read the SAS 2000 paper entitled Efficient Inference of Static Types for Java Bytecode that you can
find on the http://www.sable.mcgill.ca/publications, Sable publications web page.

1 Where is the actual code?

You can find the implementation of typing in the following packages:

• soot.jimple.toolkits.typing: classes for infering reference types.

• soot.jimple.toolkits.typing.integer: classes for infering integer types (like int, short, char, byte, boolean).

The actual algorithm is fully described on the paper referenced above.

2 Pitfalls

While programming Soot, you should not assume the original .class files were generated by a Java compiler.
You may only assume verifiable bytecode.

This leads to somewhat weird sitations, as you may end up with the following typed .jimple code
(generated from a handcoded verifiable class file):

private static boolean error1(int)
{

int i0;
boolean z0;
i0 := @parameter0: int;
z0 = (boolean) i0;
return z0;

}

Notice the (z0 = (boolean) i0;) statement. It contains a type cast from int to boolean. This is not
possible in Java. This type cast is simply discarded when generating class files, but should be transformed
into:

z0 = (i0 != 0);

when decompiling back to Java source code.
The inverse is also possible, and should translate as follows:

i0 = (int) z0;

should become

i0 = z0 ? 1 : 0;

1

mailto:gagnon@sable.mcgill.ca
http://www.sable.mcgill.ca/publications


3 Questions?

If you have carefully read the paper referenced above, but still have more questions related to type inference,
you may ask your questions on the Soot mailing-list (see information on the http://www.sable.mcgill.ca/soot,
Soot web site).

History

• October 6, 2000 : Initial version.

2

http://www.sable.mcgill.ca/soot/

	Where is the actual code?
	Pitfalls
	Questions?

