
Adding attributes to class files via Soot

Feng Qian (fqian@sable.mcgill.ca)
Patrick Lam (plam@sable.mcgill.ca)

June 13, 2002

Soot can annotate classfiles: for instance, it can add information about which array bounds checks and
null pointer checks are redundant. We anticipate that users of Soot may wish to add new attributes to
class files. This tutorial uses the array bounds check attribute to illustrate the internal structure of Soot
annotation and describes how to add new attributes via Soot. Before reading this tutorial, readers should
be familiar with the basic Soot classes, like SootClass, SootField, SootMethod, Body, and Unit. The other
Soot tutorials explain these classes.

1 Structure of annotation

In release 1.2.0, we introduced a scheme for class file annotation in Soot. The general description of our
annotation framework can be found in our CASCON paper, “A Framework for Optimizing Java Using
Attributes”. This tutorial explains practical issues related to implementing new attributes.

We first introduce the classes used for annotation. These classes reside in the soot.tagkit package.

Host interface
Any class which implements the Host interface promises that it can hold tags.

public interface Host
{

/** Get a list of tags associated with the current object. */
public List getTags();

/** Returns a tag with the given name. */
public Tag getTag(String aName);

/** Adds a tag. */
public void addTag(Tag t);

/** Removes a tag with the given name. */
public void removeTag(String name);

/** Returns true if this host has a tag with the given name. */
public boolean hasTag(String aName);

}

AbstractHost class
Soot provides a default implementation of the Host interface in the form of AbstractHost. Unless you
have a pressing desire to provide the functionality yourself, any classes which you would like to imple-
ment Host should subclass AbstractHost. In Soot, the classes SootClass, SootField, SootMethod,
Body, and Unit inherit from AbstractHost. Instances of these classes know how to carry tags, in the
form of the Tag interface.

1

mailto:fqian@sable.mcgill.ca
mailto:plam@sable.mcgill.ca
http://www.sable.mcgill.ca/soot/tutorial
http://www.sable.mcgill.ca/publications/#report2000-2
http://www.sable.mcgill.ca/publications/#report2000-2

Tag interface
In Soot, we represent any annotation by an object whose type implements the Tag interface. This
interface defines one methods: getName() returns the unique name of the tag (note that tag names
must not conflict with each other).

public interface Tag
{

/** Returns the tag’s name. */
public String getName();

}

Attribute interface
The Attribute interface extends Tag; it promises that the associated tag has attribute-like data which
can be read and written as an array of bytes.

public interface Attribute extends Tag
{

/** Returns the tag’s raw data. */
public byte[] getValue()

throws AttributeValueException;

/** Sets the value of the attribute from a byte[]. */
public void setValue(byte[] v);

}

An Tag which is not an Attribute could be used to store arbitrary Soot information about a Host.
An Attribute is something that would go in a classfile.

TagAggregator interface
The array-bounds check analysis annotates individual instructions as it discovers whether or not their
bounds checks are required. More generally, analyses will attach attributes directly to the Units in
question. However, the Java classfile structure does not make any provisions for directly attaching
attributes to bytecodes, and attaching attributes directly to bytecodes would in any case be inefficient.
Hence, we designed our attributes so that they would attach to a method in a tabular format: only one
actual attribute is required per method body and tag type; this meta-attribute contains information
about a number of different instructions.

An implementation of TagAggregator promises that it can combine all tags of some type into one big
aggregated attribute, which can be attached to a method’s code attribute. One implementation of a
TagAggregator is soot.jimple.toolkits.annotation.tags.ArrayNullTagAggregator.

Aggregators can be active or inactive; the effect of being active or inactive is described later.

public interface TagAggregator
{

/** Adds a new (unit, tag) pair. */
public void aggregateTag(Tag t, Unit u);

/** Generates the aggregated tag. */
public Tag produceAggregateTag();

/** Clears old accumulated tags. */
public void refresh();

2

/** Returns true if the aggregator is active. */
public boolean isActive();

}

Base64 tool class
This utility class allows the encoding of raw bytes to base64-encoded characters and the decoding of
base64 characters back to raw bytes.

JasminAttribute abstract class
Attributes are generated by analysis phases in the form of strings containing labels in the unit body and
their values; for instance, we might have the attribute "%label2%Aw==%label3%Ag==%label4%Ag=="
associated with a method body. In order to include this attribute in a class file, exact PC values are
needed for the labels.

The JasminAttribute class provides a decode method which takes a string of (label, value) pairs and
a map from labels to PCs and emits raw data, ready for inclusion in a class file. This method is called
by Jasmin after the PC values are known. Any attribute which uses (label, value) pairs can subclass
JasminAttribute to get output to classfiles for free; other attributes hoping to be output to classfiles
must subclass JasminAttribute and override the decode method.

The abstract getJasminValue() method must return a string that can be included when outputting
a .jasmin file. This string later gets decoded by decode().

public abstract class JasminAttribute implements Attribute
{

public static byte[] decode(String attr, Hashtable labelToPc);
abstract public String getJasminValue(Map instToLabel);

}

CodeAttribute class
This class provides an implementation of the abstract getJasminValue() method of JasminAttribute.
The getJasminValue() method must return a string reflecting the contents of its CodeAttribute. It
may use the provided instToLabel map to convert Units into labels used in the returned String.

public class CodeAttribute extends JasminAttribute
{

public String getJasminValue(Map instToLabel);
}

This type of attribute is clearly intended to be used for attributes associated with code.

GenericAttribute class
Java describes how three other types of attributes can be created: attributes may be associated with
methods, fields and classes as well as code. Soot supports these attributes via the GenericAttribute
class. Any such attribute can be created with an attribute name and a byte array value; it can then
be attached to SootClass, SootField, or SootMethod.

public class GenericAttribute implements Attribute
{

public GenericAttribute(String name, byte[] value);
public String getName();
public byte[] getValue();

}

3

The above classes provide APIs useful for adding new attributes. Soot attributes are represented as Tags,
and are attached to Hosts. An exception is CodeAttribute. Because the tags for CodeAttribute are attached
to units, a TagAggregator is used to combine them. Another class,
soot.baf.toolkits.base.CodeAttributeGenerator, is a phase of Baf generation. This class calls some
TagAggregators and attaches the resulting aggregated tags to method bodies, corresponding to attributes
on the code attribute. The CodeAttributeGenerator class has a method registerAggregator, which an
aggregator can use to register callbacks. An aggregator can be set as active or inactive; during Baf generation,
an active aggregator will accept tags according to the tag type.

In the array bounds check attribute example, a ArrayNullTagAggregator is registered by the Main class,
accepting ArrayCheckTags and NullCheckTags.

CodeAttributeGenerator.v().registerAggregator(new ArrayNullTagAggregator(true));

2 Adding method attributes in Soot

Adding a code attribute is non-trivial, as it requires that an aggregator be provided. We first give a trivial ex-
ample of adding a method attribute via GenericAttribute. The code can be found in ashes.examples.addattributes.
It can also be downloaded at:

http://www.sable.mcgill.ca/soot/tutorial/addattributes/Main.java
We proceed by adding a new phase to the jtp Pack, called annotexample.

package ashes.examples.addattributes;

import soot.*;
import soot.tagkit.*;
import java.util.*;

public class AnnExample
{

public static void main(String[] args)
{

/* adds the transformer. */
Scene.v().getPack("jtp").add(new

Transform("annotexample",
AnnExampleWrapper.v()));

/* invokes Soot */
soot.Main.main(args);

}
}

The AnnExampleWrapper is a subclass of BodyTransformer, which implements the internalTransform
method. It simply adds a string “Hello world!” as an attribute to every method. The attribute has the
name ‘Example’.

public class AnnExampleWrapper extends BodyTransformer
{

private static AnnExampleWrapper instance =
new AnnExampleWrapper();

private AnnExampleWrapper() {};

public static AnnExampleWrapper v()
{

4

file:Main.java

return instance;
}

public void internalTransform(Body body, String phaseName, Map options)
{

SootMethod method = body.getMethod();
String attr = new String("Hello world!");

Tag example = new GenericAttribute("Example", attr.getBytes());
method.addTag(example);

}
}

We recompile foo and annotate it with new attribute.
java AnnExample foo
The annotated class file has an “Example” attribute for each method. The string “Hello world!” is in binary
form.

public class foo extends java.lang.Object
filename foo
compiled from foo.jasmin
compiler version 45.3
access flags 33
constant pool 14 entries
ACC_SUPER flag true

Attribute(s):
SourceFile(foo.jasmin)

2 methods:
public void <init>() <(Unknown attribute Example:

48 65 6c 6c 6f 20 77 6f 72 6c 64 21)>
void footest() <(Unknown attribute Example:

48 65 6c 6c 6f 20 77 6f 72 6c 64 21)>

public void <init>() <(Unknown attribute Example:
48 65 6c 6c 6f 20 77 6f 72 6c 64 21)>

Code(max_stack = 1, max_locals = 1, code_length = 5)
0: aload_0
1: invokespecial java.lang.Object.<init> ()V (2)
4: return

void footest() <(Unknown attribute Example:
48 65 6c 6c 6f 20 77 6f 72 6c 64 21)>

Code(max_stack = 3, max_locals = 1, code_length = 7)
0: iconst_2
1: newarray <int>
3: iconst_0
4: iconst_1
5: iastore
6: return

5

3 The Array Bounds Check Annotation Example

In this section, we will use the array bounds check attribute to illustrate the process of creating a new code
attribute.

The classes in this example are located in the soot.jimple.toolkits.annotation.arraycheck and
.nullcheck packages.

Clearly we must be able to repesent whether or not an array reference is safe. To do this, we first created
the ArrayCheckTag class implementing (a subclass of) Tag. It is not an Attribute because the information
is not in a form suitable for adding to a classfile and setting the information directly is meaningless. This
class has a constructor with boolean parameters representing upper and lower bounds checks. If a parameter
is true, the respective bound check is needed. The getValue() method converts the boolean values to a
byte value where the lowest two bits represent the bounds checks.

/**
* This tag represents the two bounds checks of an array reference.
* The value <code>true</code> indicates that a check is xneeded.
*/

public ArrayCheckTag(boolean lower, boolean upper)
{

lowerCheck = lower;
upperCheck = upper;

}

/** Returns the value of this tag as a one-byte array for inclusion in
* the classfile. */

public byte[] getValue()
{

byte[] value = new byte[1];

value[0] = 0;

if (lowerCheck)
value[0] |= 0x01;

if (upperCheck)
value[0] |= 0x02;

return value;
}

We designed an algorithm to analyze array bounds checks. The final phase of this algorithm attaches
the analysis results to the various units as tags. This is accomplished with the following code:

Tag checkTag = new ArrayCheckTag(lowercheck, uppercheck);
stmt.addTag(checkTag);

As previously explained, code tags are attached to units, but units themselves do not have attributes.
Thus, an aggregator is needed to group the attributes. Now, a null pointer check elimination algorithm
has already executed, attaching NullCheckTags to units. An ArrayNullTagAggregator will collect the
NullCheckTags and ArrayCheckTags, combining these two tags into a single ArrayNullCheckTag per method
body.

public class ArrayNullCheckTag implements OneByteCodeTag
{

private final static String NAME = "ArrayNullCheckTag";

6

public String getName();
public byte[] getValue();
public byte accumulate(byte other);

}

The ArrayNullTagAggregator implements the TagAggregator interface. It is called while Baf is gener-
ating its backend code. The refresh() method clears accumulated tags; it is called when a new method is
examined. The aggregateTag method accumulates one (unit, tag) pair, typically encountered during Baf’s
traversal of the units. Finally, the produceAggregateTag generates a fresh CodeAttribute with the name
and (unit, tag) pairs we have collected from the method under consideration.

public class ArrayNullTagAggregator implements TagAggregator
{

private boolean status = false;
private List tags = new LinkedList();
private List units = new LinkedList();

private Unit lastUnit = null;
private ArrayNullCheckTag lastTag = null;

public ArrayNullTagAggregator(boolean active)
{

this.status = active;
}

public boolean isActive()
{

return this.status;
}

public void refresh()
{

tags.clear();
units.clear();
lastUnit = null;
lastTag = null;

}

public void aggregateTag(Tag t, Unit u)
{

if(t instanceof OneByteCodeTag)
{

if (lastUnit == u)
{

byte[] v = ((OneByteCodeTag)t).getValue();
lastTag.accumulate(v[0]);

}
else
{

units.add(u);
lastUnit = u;

byte[] v = ((Attribute)t).getValue();
lastTag = new ArrayNullCheckTag(v[0]);

7

tags.add(lastTag);
}

}
}

public Tag produceAggregateTag()
{

if(units.size() == 0)
return null;

else
return new CodeAttribute("ArrayNullCheckAttribute",

new LinkedList(units),
new LinkedList(tags));

}
}

We examine the annotation process on a simple example, foo.class.

public class foo
{

void footest()
{

int[] c = new int[2];
c[0] = 1;

}
}

After compilation with javac, we can use the JavaClass tool to inspect the contents of the class file.

public class foo extends java.lang.Object
filename foo
compiled from foo.java
compiler version 45.3
access flags 33
constant pool 14 entries
ACC_SUPER flag true

Attribute(s):
SourceFile(foo.java)

2 methods:
public void <init>()
void footest()

public void <init>()
Code(max_stack = 1, max_locals = 1, code_length = 5)
0: aload_0
1: invokespecial java.lang.Object.<init> ()V (3)
4: return

Attribute(s) = LineNumber(0, 1)

void footest()
Code(max_stack = 3, max_locals = 2, code_length = 9)

8

0: iconst_2
1: newarray <int>
3: astore_1
4: aload_1
5: iconst_0
6: iconst_1
7: iastore
8: return

Attribute(s) = LineNumber(0, 5), LineNumber(4, 7), LineNumber(8, 3)

Great. Next, we annotate the class by executing

[plam@kerala soot]$ java soot.Main -A both foo

and inspect the annotated class file.

public class foo extends java.lang.Object
filename foo
compiled from foo.jasmin
compiler version 45.3
access flags 33
constant pool 14 entries
ACC_SUPER flag true

Attribute(s):
SourceFile(foo.jasmin)

2 methods:
public void <init>()
void footest()

public void <init>()
Code(max_stack = 1, max_locals = 1, code_length = 5)
0: aload_0
1: invokespecial java.lang.Object.<init> ()V (2)
4: return

Attribute(s) = (Unknown attribute ArrayNullCheckAttribute: 00 01 00)

void footest()
Code(max_stack = 3, max_locals = 1, code_length = 7)
0: iconst_2
1: newarray <int>
3: iconst_0
4: iconst_1
5: iastore
6: return

Attribute(s) = (Unknown attribute ArrayNullCheckAttribute: 00 05 00)

We can see that an ArrayNullCheckAttribute has been added to the class file, and we can read the
attribute data in hexadecimal.

9

Known shortcomings

Soot cannot currently preserve existing attributes in a class file when transforming and annotating it. In the
foo example, any debug information from javac would be lost after annotation.

History

• October 6, 2000 : Initial version.

10

	Structure of annotation
	Adding method attributes in Soot
	The Array Bounds Check Annotation Example

