
Soot Command-Line Documentation

Patrice Pominville
patrice@sable.mcgill.ca

March 8, 2000

1 SYNOPSIS

Soot can be invoked in the following ways:

soot [option]* [classname]+
soot --app [option]* classname

2 DESCRIPTION

This manual page documents the command line version of the soot bytecode compiler/optimizer
tool.

When given one or several classnames that refers to a Java type, and no --app option, soot
will attempt to resolve it by finding a file containing the given type. Once soot has located such
a file, it will read in its contents, perform transformations on its bytecode and output the type
in a specified output format. This mode of operation is referred to as running soot in single-file
mode. All types specified on the commandline are resolved and processed. In this mode, the last
file specified on the command-line serves as the main class, when such a notion is needed.

The --app argument can be used to activate soot’s application mode. In application mode
soot will perform a transitive closure on the types listed in the constant pool of the type provided
on the command line. soot will then proceed to transform the types in this closure. The closure
will contain Java library types, as well as types particular to the application. By default, only
the application-specific types will be processed by soot. This can be overridden by command line
options. Clearly, in this case, the file specified on the command-line is the main class.

To resolve a type, soot uses the same semantics as the java command; soot looks for files
containing types in the directories specified by the soot.class.path system property. This prop-
erty serves the same purpose as java’s CLASSPATH environment variable. There is also a command
line option to override the soot.class.path property. If there is no Soot classpath, then the
external Java CLASSPATH is used. (There is a note for Windows users in the section describing the
soot-class-path entry).

Once a type has been resolved and read into soot, various transformations can be applied to
its code. These are described in the optimization section of the options below.

The Soot framework has 3 different internal representations: Baf, Jimple and Grimp. soot
allows one to output a processed class either as a standard classfile or in the textual format cor-
responding to one of the above internal representations. Thus a class can be outputted as a .baf
file, a .jimple file or a .grimple file that will contain textual representations for the Baf , Jimple

1

mailto:patrice@sable.mcgill.ca


and Grimp internal representations respectively. Additionally a processed type can be outputed in
the Jasmin assembler format, as a .jasmin file.

3 OPTIONS

3.1 Input Options

At present, only the textual representation of Soot’s Jimple internal representation can be parsed.
Soot can also read .class files directly.

--src-prec jimple By default soot will resolve types from .class files. If a type cannot be
resolved from a classfile, soot will attempt to resolve it from a .jimple file. This option
specifies the opposite policy: types are to resolved from .jimple files and only if this fails
will an attempt be made to resolve them from .class files.

3.2 Output Options

-b, --b Produces .b files. These contain an abbreviated textual form for soot’s Baf internal
representation. It is easier to read than its non-abbreviated counterpart, but can also contain
ambiguities; for instance, method signatures are not uniquely determined.

-B, --baf Produces .baf files that contain a textual representation for types in soot’s Baf internal
representation.

-j, --jimp Produces .jimp files. These contain an abbreviated textual form for soot’s Jimple
internal representation. Can contain ambiguous references.

-J, --jimple Produces .jimple files that contain a textual representation for types in soot’s Jimple
internal representation.

-g, --grimp Produces .grimp files. These contain an abbreviated textual form for soot’s Grimp
internal representation. Can contain ambiguous references.

-G, --grimple Produces .grimple files that contain a textual representation for types in soot’s
Grimp internal representation.

-s, --jasmin Produces .jasmin files for types. These can be understood by the jasmin bytecode
assembler tool.

-X, --xml Produces .xml files of classes based on the Jimple statements (courtesy of David Eng).

-c, --class Produces Java .class files executable under any Java Virtual Machine.

-d PATH Specifies that the outputted files are to be stored in PATH. This may be relative to the
working directory.

3.3 Application Mode Options

These are only valid if soot is invoked in application mode by specifying the --app command line
argument.

2



-x, --exclude PACKAGE Marks classfiles in PACKAGE (e.g. java.) as context classes. Jimple is
not produced for context classes, but the SootClass, SootField and SootMethod signature
objects are created.

-i, --include PACKAGE Marks the classfiles in PACKAGE (e.g. java.util.) as application classes.
This option can be used to transform library types which by default are not transformed by
soot.

-a, --analyze-context Relabels all context classes as library classes. This means that Jimple
now gets produced for them.

--dynamic-path PATH Marks all class files in PATH as potentially dynamic classes. This allows
aggressive optimization of applications for which the set of dynamic classes that can be loaded
is known at compile time.

--dynamic-packages PACKAGES Marks all class files belonging to a package listed in PACK-
AGES (or one of its subpackages) as potentially dynamic classes. PACKAGES should be a
list of packages separated by commas.
Example: --dynamic-packages java.text.resources,spec.benchmarks. 213 javac

3.4 Single File Mode Options

--process-path PATH Process all classes in PATH. All the classes found in PATH will be loaded
and transformed in single-file mode.

3.5 Optimization Options

-O --optimize Perform scalar optimizations on the classfiles.

-W --whole-optimize Perform whole program optimizations on the classfiles; this also enables
-O.

3.6 Miscellaneous Options

--soot-classpath PATH Use PATH to resolve types. Overrides the soot.class.path system
property.

Important note for Windows users Note that as of release 1, Soot will treat drive letters
correctly, but under Windows the path separator must be a backslash (\), not a forward slash (/).

--final-rep baf When producing .baf, .jasmin or .class output, produce the output using
Soot’s Baf internal representation. See [VRGH+00] for details on this topic.

-t, --time Print out time statistics about transformations.

--subtract-gc Attempt to subtract garbage-collection time from the time stats.

-v, --verbose Verbose mode.

--debug Avoid catching exceptions and print debug information.

3



-p, --phase-option PHASE-NAME KEY:VALUE Sets run-time option KEY to VALUE for
PHASE-NAME (default for VALUE is true). This option is quite powerful; it is documented
in phase options.

-A, --annotation 〈 both — arraybounds — nullpointer 〉] Enables both array bounds and null
pointer annotation, or array bounds annotation only, or null pointer check annotation only,
respectively.

-A, --annotation LineNumber Preserves the line number tables of class files through transfor-
mations.

4 EXAMPLES

• soot --app --jimple -O -soot-classpath classes:/localhome/plam/JDKlib MyApp

Invokes soot in application mode for the type MyApp. All types to be resolved should be found
in the working directory’s classes subdirectory or /localhome/plam/JDKlib. Types will be
resolved from .class files; if this fails, .jimple files will be considered. Only the application’s
classes will be processed; scalar optimizations will be applied to these. The transformed types
will be outputted in Jimple’s textual representation as .jimple files.

• soot --final-rep baf --src-prec jimple MyApp

Invokes soot in single-file mode for the type MyApp. Tries to resolve MyApp (and all other
classes) from a .jimple file before looking for a .class file. Looks for the type in the
directories specified by the soot.class.path system property. Outputs the type as a classfile,
using the Baf internal representation to construct the bytecode.

5 BUGS

None.

6 History

• March 8, 2000: Initial release.

• March 11, 2000: Added note for Windows users.

• September 1, 2000: Added the --dynamic-packages option.

• October 6, 2000: Added the -A, --annotation option.

• March 19, 2001: Fixed a minor mistake in the first example.

• April 30, 2002: Added the -X, -A LineNumber options.

4



References

[VRGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing Java bytecode using the Soot framework: is it
feasible?. In Compiler Construction, 9th International Conference, CC 2000, April
2000.

5

http://www.sable.mcgill.ca/publications/#cc2000
http://www.sable.mcgill.ca/publications/#cc2000

	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Input Options
	Output Options
	Application Mode  Options
	Single File Mode Options
	Optimization Options
	Miscellaneous Options

	EXAMPLES
	BUGS
	History

