A Brief Overview of Shimple

Navindra Umanee (navindra@cs.mcgill.ca)

June 6, 2003

This document briefly describes Shimple, an SSA variant of Soot’s Jimple internal representation. It
assumes general knowledge of Soot, Jimple and SSA form. You may wish to jump directly to the walk-
through section for a demonstration of why you might be interested in using Shimple either by implementing
SSA-based optimizations or by applying them.

1 Why Shimple?

Static Single Assignment (SSA) form guarantees a single static definition point for every variable used in a
program, thereby significantly simplifying as well as enabling certain analyses.

Shimple provides you with an IR in SSA form that is almost entirely identical to Jimple except for the
introduction of Phi nodes. The idea is that Shimple can be treated almost identically to Jimple with the
added benefits of SSA.

For example, the additional variable splitting due to SSA form may turn a previously flow-insensitive
analysis into a flow-sensitive one with little or no additional work.

2 Hacking Overview

The public APT of Shimple is fully described in the|Soot API documentation. In particular, in thesoot.shimple
package, the |[Shimple| class provides the Shimple grammar constructors and various utility functions, the
ShimpleBody class describes Shimple bodies and [PhiExpr| provides the interface to Phi expressions.

Use/Definition and Definition/Use chains for Shimple bodies can be obtained either from the accessor
methods in ShimpleBody or with ShimpleLocalDefs in package soot.shimple.toolkits.scalar and |SimpleLo-
calUses in package soot.toolkits.scalar.

Available example analyses for Shimple currently include ShimpleLocalDefs, SEvaluator and SConstant-
PropagatorAndFolder in package [soot.shimple.toolkits.scalar. Please consult the Soot source for details.

3 Usage Options

For a full description of the options and phases pertaining to Shimple, please consult the primary Soot option
and phase documentation.

4 Command Line Walk Through

For fun, you may wish to run Shimple from the command-line and study its output. Consider the following
(compiled) Java code:

public class ShimpleTest
{
public boolean dolt;

mailto:navindra@cs.mcgill.ca
http://www.sable.mcgill.ca/soot/doc/
http://www.sable.mcgill.ca/soot/doc/soot/shimple/package-summary.html
http://www.sable.mcgill.ca/soot/doc/soot/shimple/package-summary.html
http://www.sable.mcgill.ca/soot/doc/soot/shimple/Shimple.html
http://www.sable.mcgill.ca/soot/doc/soot/shimple/ShimpleBody.html
http://www.sable.mcgill.ca/soot/doc/soot/shimple/PhiExpr.html
http://www.sable.mcgill.ca/soot/doc/soot/shimple/toolkits/scalar/ShimpleLocalDefs.html
http://www.sable.mcgill.ca/soot/doc/soot/toolkits/scalar/SimpleLocalUses.html
http://www.sable.mcgill.ca/soot/doc/soot/toolkits/scalar/SimpleLocalUses.html
http://www.sable.mcgill.ca/soot/doc/soot/shimple/toolkits/scalar/package-summary.html
http://www.sable.mcgill.ca/soot/#documentation

public int test(){
int i = 0;

if (doIt)

i = 1000;
else

i = 1000;

return i;

}

4.1 Producing Jimple

If you produce Jimple with soot.Main -f jimple ShimpleTest, you obtain the following code for the
test () method:

public int test()

{
ShimpleTest r0;
boolean z0, $z1;
int i0;
r0 := Q@this: ShimpleTest;
z0 = 0;
$z1 = r0.<ShimpleTest: boolean doIt>;
if $z1 == 0 goto labelO;
i0 = 1000;
goto labell;
labelO:
i0 = 1000;
labell:
return iO;
}

4.2 Producing Shimple

To produce Shimple instead, use soot.Main -f shimple ShimpleTest:

public int test()

{
ShimpleTest rO0;
boolean z0, $z1;
int 10, iO_1, i0_2;

r0 := Q@this: ShimpleTest;

z0 = 0;

$z1 = r0.<ShimpleTest: boolean doIt>;
if $z1 == 0 goto labelO;

i0 = 1000;

0) goto labell;

labelO:
1) i0_1 = 1000;
labell:
i0_2 = Phi(i0 #0, i0O_1 #1);

return i0_2;

3

The difference between the Jimple and Shimple output is that the latter guarantees unique local definition
points in the program (for scalars). Notice here that the variable i0 has been split into the three variables
i0, 10_1, and 10_2, each with a unique definition point.

We have also introduced a Phi node. You can read i0-2 = Phi(i0 #0, i0_1 #1) as saying that i0.2
will be assigned 10 (that is, 10-2 = i0) if control flow comes from unit #0, or it will be assigned i0_1 (that
is, 102 = i1) if control flow comes from unit #1.

If you have a prejudice against variable names with underscores, you may use soot.Main -f shimple
-p shimple standard-local-names ShimpleTest instead so that Shimple applies the Local Name Stan-
dardizer each time new locals are introduced.

Feel free to skip the following digression and move on to the next subsection.

4.2.1 A Digression on Shimple Pointers

Because Soot represents the body of a method internally as a Unit chain, we need to store the explicit
pointers #0 and #1 to keep track of the control flow predecessors of the Phi statements.

Shimple’s internal implementation of PatchingChain attempts to move and maintain these pointers in a
manner that will be as transparent as possible to the user. For example, in the simplest case, if a statement
is appended to block:

labelO:
1) i0_1 = 1000;
to obtain:
labelO:
i0_1 = 1000;
&D) new_stmt;

Shimple will automatically move the #1 pointer down to the new statement since it is in the same basic
block.

The intent is to provide maximum flexibility for code motion optimizations as well as other transforma-
tions. In this case, i0_-1 = 1000 is free to move up or down the Unit chain as long as the new location
dominates the original CFG block it was in.

4.3 Producing Jimple, Again

Since we eventually have to get rid of those pesky Phi nodes, you may wish to see what the code looks like
after going from Jimple to Shimple and back again to Jimple. Do this with java soot.Main -f jimple
--via-shimple ShimpleTest:

public int test()

{
ShimpleTest rO0;
boolean z0, $z1;
int 10, iO_1, i0_2;

r0 := Qthis: ShimpleTest;
$z1 = r0.<ShimpleTest: boolean doIt>;
if $z1 == 0 goto labelO;

i0_2 = 1000;
goto labell;

labelO:
i0_2 = 1000;

labell:
return i0_2;

3

Happily, in this case, the Jimple produced looks exactly like the original Jimple code. As usual you
may specify -p shimple standard-local-names if the underscores hurt your eyes; they are otherwise quite
harmless.

To understand what’s really going on when Shimple eliminates Phi nodes, you can tell it to eliminate them
naively with soot.Main -f jimple --via-shimple -p shimple phi-elim-opt:none ShimpleTest:

public int test()
{
ShimpleTest rO0;
boolean z0, $z1;
int i0, i0_1, i0_2;
r0 := Q@this: ShimpleTest;
z0 = 0;
$z1 = r0.<ShimpleTest: boolean doIt>;
if $z1 == 0 goto labelO;

i0 = 1000;
i0_2 = i0;
goto labell;

labelO:
io_1 1000;
i0_2 = i0_1;

labell:
return i0_2;

3

Now you can see that all Shimple did was to replace the Phi nodes with equivalent copy statements.

4.4 Applying Shimple Optimizations

So, what good is Shimple?

If you were paying attention, you may have noticed that in this example, no matter which control flow
path is taken, variable i is assigned a value of 1000 and is used by a single return statement. In other
words, i is a constant and is otherwise quite useless. Obviously, this needs to be optimized away.

Let’s try to apply Jimple’s Constant Propagator and Folder. In fact, to be fair, let’s try all the available
Jimple optimizations activated with soot.Main -f jimple -p jop on ShimpleTest:

public int test()

{
ShimpleTest rO;
boolean $z1;
int i0;
r0 := Q@this: ShimpleTest;
$z1 = r0.<ShimpleTest: boolean doIt>;
if $z1 == 0 goto labelO;
i0 = 1000;
goto labell;

labelO:
i0 = 1000;

labell:
return iO;

}

As you can see in this case, the Jimple optimizations had trouble tracking the control flow and failed to
deduce that i is a constant. Shimple, on the other hand, encodes control flow information explicitly in the
Phi nodes thereby allowing optimizations to make use of the information.

Currently, the only optimization we have specifically implemented for Shimple is a fairly naive and literal
version of the constant propagation algorithm sketched by the Cytron et el. Let’s apply it with soot.Main
-f jimple --via-shimple -p sop on ShimpleTest:

public int test()
{
ShimpleTest rO0;
boolean z0, $z1;
int i0, i0_1, i0_2;
r0 := Q@this: ShimpleTest;
$z1 r0.<ShimpleTest: boolean doIt>;
if $z1 == 0 goto labelO;

goto labelO;

labelO:
return 1000;
3

Et voila, Shimple optimized out the i variable completely and replaced it with a constant. What happened
is that the optimization propagated the constants to the Phi node and then noticed that the Phi node was
useless (because it made a selection from identical values) and therefore trimmed it out.

To understand what is really going on, you can look at the output from soot.Main -f shimple -p sop
on and soot.Main -f jimple --via-shimple -p shimple phi-elim-opt:none -p sop on on this and
other examples.

Although this example isn’t sufficiently complex to be all that interesting (a Jimple-based analysis could
easily detect and handle this particular case), once control flow gets more elaborate, the SSA-based analysis
will really start to win out.

Perhaps you would like to experiment with slightly less simple examples and see how well the Shimple
optimization fares:

public class ShimpleTest

{
public boolean dolIt, doIt2;

public int test2(){
int i = 1000;
int j = i;

while (doIt){
i=3j;
while(doIt2)
j=1;

if(doIt2 != dolt)
i = 1000;
else
j = 1000;

return i + j;

}

5 Thanks and Credits

Thanks and credits go alphabetically to Laurie Hendren, John Jorgensen, Patrick Lam and Ondrej Lhotak
for helping with the design of Shimple and general implementation issues.

6 Future Work

Much more work on Shimple is planned as the project is likely to morph into a Master’s thesis. Some
thoughts currently include investigating the various scalar SSA variants as well as heap, array and possibly
concurrent forms of SSA. The Shimple architecture and implementation will therefore evolve quite a bit
internally, but as far as possible we will try to maintain backwards-compatibility for the public interfaces.

Suggestions, improvements and bug reports/fixes welcome! Please send these either to the Soot mailing
list at soot-list@sable.mcgill.ca), or directly to myself at navindra@cs.mcgill.ca.

6.1 Partial To-Do List

e Implement more SSA-based analyses.
e Add timers and profiling code.

e Make internal analyses more useful and generic for external use.

Adopt an Strategy-type pattern for SSA builder modules, etc.

Implement a Shimple parser.

Provide an interface for CFG manipulations that intelligently updates Phi nodes.

Implement a Control Dependence Graph? Any interest in that?

mailto:soot-list@sable.mcgill.ca
mailto:navindra@cs.mcgill.ca

6.2 Known Issues

A vague description of a couple of known issues follows. You may ignore this section completely since regular
usage of Shimple should not be affected in general.

6.2.1 Issuel

One issue is related to Phi nodes inserted at the beginning of try blocks which are subsequently used by Phi
nodes in the corresponding handler block. Fortunately, although the code produced looks strange it is not
incorrect. Example:

labell:
i0_2 = Phi(i0 #0, iO_1 #1);
(2) il =4/ 0;
(3) i0_3 = i0_2 / 0;
i2 = i0_3;
label2:

goto label4d;

label3:
$r0 := Qcaughtexception;
i0_4 = Phi(iO_1 #1, i0 #0, i0_2 #2, i0_3 #3);

catch java.lang.Exception from labell to label2 with label3;

The #2 pointer of the second Phi node really should be pointing directly at the first Phi node instead
of at the statement following it (since the latter may throw an exception and branch to the handler block).
Fortunately, in these cases the second Phi node will always be pointing directly at the predecessors of the
first Phi node as well (#0 and #1 in this example), rendering the matter moot. This glitch will be eliminated
in a future release.

6.2.2 Issue 2

Another issue is related to the Shimple patching algorithm. In the rare case that control flow falls through
from an if statement to a try block and the if statement has a pointer to it:

value = 1000;
(1 if (whatever) goto labell00;

labell:
first_trap_statement;

goto labell00;

label2:
$r0 := Qcaughtexception;
i0 = Phi(value #1, ...);

In the above, it may be desireable to move the #1 pointer down if a Unit happens to be inserted after
the if statement. Although Shimple is smart enough to do this in most known cases, it currently misses the
one case where control flows from an if statement in a non-exceptional context to an exceptional context.

This is not a big problem for most people unless an exotic code motion algorithm (currently non-existent
in Soot) attempts to move the definition of value below the if statement for some reason.

	Why Shimple?
	Hacking Overview
	Usage Options
	Command Line Walk Through
	Producing Jimple
	Producing Shimple
	A Digression on Shimple Pointers

	Producing Jimple, Again
	Applying Shimple Optimizations

	Thanks and Credits
	Future Work
	Partial To-Do List
	Known Issues
	Issue 1
	Issue 2

