
Soot overview/Disassembling classfiles

Raja Vallée-Rai (rvalleerai@sable.mcgill.ca)

March 15, 2000

1 Goals

By the end of this lesson, the student should be able to:

• understand what Soot is, and its two main uses

• have Soot correctly installed

• have the CLASSPATH environment variable properly set up

• produce baf, grimp or jimple code for any classfile

2 Testing your Installation

This is an interactive tutorial. So the first thing you must do is test your installation. This can be done
by typing java soot.Main at the shell prompt. If your installation is incorrect you should get a class
”soot.Main” not found exception. Please refer to the installation instructions which came with the Soot
software if this occurs. If your installation is correct you should see something like:

~ $ java soot.Main

Soot version 2.0

Copyright (C) 1997-2003 Raja Vallee-Rai and others.

All rights reserved.

Contributions are copyright (C) 1997-2003 by their respective contributors.

See the file ’credits’ for a list of contributors.

See individual source files for details.

Soot comes with ABSOLUTELY NO WARRANTY. Soot is free software,

and you are welcome to redistribute it under certain conditions.

See the accompanying file ’COPYING-LESSER.txt’ for details.

Visit the Soot website:

http://www.sable.mcgill.ca/soot/

For a list of command line options, enter:

java soot.Main --help

1

3 What is Soot?

Soot has two fundamental uses; it can be used as a stand-alone command line tool or as a Java compiler
framework. As a command line tool, Soot can:

1. dissassemble classfiles

2. assemble classfiles

3. optimize classfiles

As a Java compiler framework, Soot can be used as a testbed for developing new optimizations. These
new optimizations can then be added to the base set of optimizations invoked by the command line Soot
tool. The optimizations that can be added can either be applied to single classfiles or entire applications.

Soot accomplishes these myriad tasks by being able to process classfiles in a variety of different forms.
Currently Soot inputs two different intermediate representations (classfiles or Jimple code), and outputs
any of its intermediate representations. By invoking Soot with the --help option, you can see the output
formats:

> java soot.Main --help

<...snip...>

Output Options:

-d DIR -output-dir DIR Store output files in DIR

-f FORMAT -output-format FORMAT

Set output format for Soot

J jimple Produce .jimple Files

j jimp Produce .jimp (abbreviated Jimple) files

S shimple Produce .shimple files

s shimp Produce .shimp (abbreviated Shimple) files

B baf Produce .baf files

b Produce .b (abbreviated Baf) files

G grimple Produce .grimple files

g grimp Produce .grimp (abbreviated Grimp) files

X xml Produce .xml Files

n none Produce no output

jasmin Produce .jasmin files

c class (default) Produce .class Files

d dava Produce dava-decompiled .java files

-xml-attributes Save tags to XML attributes for Eclipse

<...snip...>

There are six intermediate representations currently being used in Soot: baf, jimple, shimple, grimp,
jasmin, and classfiles. A brief explanation of each form follows:

baf a streamlined representation of bytecode. Used to inspect Java bytecode as stack code, but in a much
nicer form. Has two textual representations (one abbreviated (.b files), one full (.baf files).)

jimple typed 3-address code. A very convenient representation for performing optimizations and inspecting
bytecode. Has two textual representations (.jimp files, and .jimple files.)

shimple an SSA variation of jimple. Has two textual representations (.shimp files, and .shimple files.)

grimp aggregated (with respect to expression trees) jimple. The best intermediate representation for inspect-
ing dissassembled code. Has two textual representations (.grimp files, and .grimple files.)

jasmin a messy assembler format. Used mainly for debugging Soot. Jasmin files end with ”.jasmin”.

classfiles the original Java bytecode format. A binary (non-textual) representation. The usual .class files.

2

4 Setting up your CLASSPATH and generating a Jimple file

Soot looks for classfiles by examining your CLASSPATH environment variable or by looking at the contents of
the -soot-classpath command line option. Included in this lesson is the Hello.java program. Download
this file, compile it (using javac or other compilers), and try the following command in the directory where
Hello.class is located.

> java soot.Main -f jimple Hello

This may or not work. If you get the following:

Exception in thread "main" java.lang.RuntimeException: couldn’t find type: java.lang.Object (is your

This means that a classfile is not being located. Either Soot can not find the Hello classfile, or it can
not load the Java Development Kit libraries. Soot resolves classfiles by examining the directories in your
CLASSPATH environment variable or the -soot-classpath command line option.

Potential problem #1: Soot can not locate the Hello classfile. To make sure that it can find the classfile
"Hello", (1) add "." to your CLASSPATH or (2) specify "." on the command line.

To carry out (1) on UNIX-style systems using bash,

> export CLASSPATH=$CLASSPATH:.

and on Windows machines,

> SET CLASSPATH=%CLASSPATH%;.

and to do (2),

> java soot.Main --soot-classpath . -f jimple Hello

Potential problem #2: Soot cannot locate the class libraries. In this case, Soot will report that the type
"java.lang.Object" could not be found.

Under JDK1.2, the class libraries do not need to be explicitly specified in the CLASSPATH for the Java Vir-
tual Machine to operate. Soot requires them to be specified either on the CLASSPATH or in the soot-classpath
command line option. Theoretically, this means adding the path to a "rt.jar" file to the CLASSPATH or the
soot-classpath.

4.1 Locating the rt.jar file

It is usually in a directory of the form ”$root/jdk1.2.2/jre/lib” where $root is ”/usr/local” or some similarly
named directory. If you can not find it, you can attempt a find command such as:

> cd /usr ; find . -name "rt.jar" -print

which may be able to locate it for you. Otherwise your best bet is to contact your system administrator.

Important note for Windows users Note that as of release 1, Soot will treat drive letters correctly,
but under Windows the path separator must be a backslash (\), not a forward slash.

Summing up, you must issue a command of the form:

> export CLASSPATH=.:/usr/local/pkgs/jdk1.2.2/jre/lib/rt.jar

or if you use the soot-classpath option which is more cumbersome:

> java soot.Main -f jimple --soot-classpath .:/usr/local/pkgs/jdk1.2.2/jre/lib/rt.jar Hello

3

Once your CLASSPATH is set up properly, you should get:

> java soot.Main -f jimple Hello

Transforming Hello...

The file called Hello.jimple should contain:

public class Hello extends java.lang.Object

{

public void <init>()

{

Hello r0;

r0 := @this: Hello;

specialinvoke r0.<java.lang.Object: void <init>()>();

return;

}

public static void main(java.lang.String[])

{

java.lang.String[] r0;

java.io.PrintStream $r1;

r0 := @parameter0: java.lang.String[];

$r1 = <java.lang.System: java.io.PrintStream out>;

virtualinvoke $r1.<java.io.PrintStream: void println(java.lang.String

)>("Hello world!");

return;

}

}

5 Generating jimple, baf, grimp for java.lang.String

By simple extrapolation, you should be able to now generate .b, .baf, .jimp, .jimple, .grimp, and
.grimple files for any of your favorite classfiles. A particularly good test is a classfile from the JDK library.
So a command like:

> java soot.Main -f baf java.lang.String

should yield a file java.lang.String.baf containing text of the form:

public static java.lang.String valueOf(char[], int, int)

{

word r0, i0, i1;

r0 := @parameter0: char[];

i0 := @parameter1: int;

i1 := @parameter2: int;

new java.lang.String;

dup1.r;

load.r r0;

load.i i0;

4

load.i i1;

specialinvoke <java.lang.String: void <init>(char[],int,int)>;

return.r;

}

6 History

• February 8, 2000: Initial version.

• February 16, 2000: Added changes for Soot version 021400 (Soot now prints the missing type) and
emitted the title at the beginning. -PL

• March 1, 2000: Added changes for Release 1 (phantom class error printed instead) and emphasized
that rt.jar should not occur in CLASSPATH. -PL

• March 11, 2000: Added note for Windows users in section about the classpath.

• March 15, 2000: Final tweaks for Release 1.

• January 29, 2001: Add the note of the release 1.2.1 .

• February 3, 2001: Added a hyperlink to Hello.java.

• June 6, 2003: Update for Soot 2.0.

5

