
McGill University
School of Computer Science

Sable Research Group

*J Installation

Bruno Dufour

July 5, 2004

w w w . s a b l e . m c g i l l . c a

*J is a toolkit which allows to dynamically create event traces from Java programs and perform
analyses on them. It consists of two main components:

1. The *J JVMPI agent (written in C)

2. The *J analyzer tool (written in Java)

1 Installation Requirements

1. Agent

• zlib is required for reading .jar files as well as producing compressed traces.

• gcc is the recommended compiler for compiling the agent.

• GNU make is the recommended make tool for building the agent.

• The agent has not been tested under non-UN*X platforms. Contributions relating to
portability to other, non-UN*X platforms are most welcome.

2. Analyzer

• A Java compiler which support Java 1.4 or above is required to compile the analyzer
(not required for full distributions).

• Ant is the recommended build tool for compiling the analyzer (not required for full
distribution).

• A Java Virtual Machine (JVM) which supports the Java 1.4 API or above is required to
run the analyzer.

2 About the example commands

1. All example commands assume that an standard, sh-compatible UN*X shell is used to type
the commands. Such shells include, but are in no way limited to, sh, bash, ksh and zsh.

2. All example commands follow the same prompt format. The leftmost part of the command
will consist of a directory name inside square brackets. This indicates the current directory
while typing (and executing) the command. Immediately following the directory name will
be a ‘%’ sign, acting as a delimiter between the shell prompt and the actual command to be
typed (note that the ‘%’ sign is padded on both sides with a space character). Only the part
of the line at the right of the ‘%’ is to be entered.

3. The output of the command, if relevant to the description, will be shown below the command
line. The string ‘<snip>’will be used to denote irrelevant output or parts of the output from
a command.

4. An empty prompt will be show after the execution of a command, in order to show the state
of the shell at this point.

1

5. All example commands are provided as a convience to the user only. Users will want to
read the description of the step first and ensure that the provided command will perform
the described action on their own system. Differences in installations may prevent some
commands from working correctly on particular systems; please adjust them as you see fit.

3 Extracting the files

1. If you have not already done so, get the latest copy of the *J distribution from:

http://www.sable.mcgill.ca/starj/

and save it somewhere on your system (these instructions will assume that the file is saved
under the ‘/tmp/’ directory). Change the directory in which you want to install the *J
distribution (these instructions will assume that *J is to be installed in the directory named
‘~/software/starj-0.1-beta8’):

[~] % cd ~/software/

[software] %

2. Next, extract the contents of the file you downloaded:

[software] % tar xvzf /tmp/starj -0.1-beta8.tar.gz

<snip >

[software] %

3. Change to the newly created directory:

[software] % cd starj -0.1-beta8

[starj -0.1-beta8] %

4 Building the profiling agent

1. Change to the ‘agent’ directory under the root *J installation directory:

[starj -0.1-beta8] % cd agent

[agent] %

2. Set your JAVA HOME environment variable to point to the root directory of your local Java
installation. This directory must include a directory named ‘include’, which will itself contain
the file ‘jvmpi.h’:

[agent] % export JAVA_HOME=/opt/sun -jdk -1.4.1.03

[agent] % ls $JAVA_HOME/

bin/ include/ jre/ lib/ share/

[agent] % ls $JAVA_HOME/include/

jawt.h jni.h jvmdi.h jvmpi.h linux/

3. Type ‘make’ to compile the agent:

2

[agent] % make

<snip >

[agent] %

4. Set your LD LIBRARY PATH environment variable to include the ‘agent/lib’ directory. For
example:

[agent] % export LD_LIBRARY_PATH=$PWD/lib:$LD_LIBRARY_PATH

[agent] %

5. Change back to the root *J directory and test your installation:

[agent] % cd ..

[starj -0.1-beta8] % java -Xrunsj:help

StarJ Agent Options

===================

file=<string > Specifies the name of the output file

specfile=<string > Specifies the name of the event specification file

events=<event_char >+ Specifies a list of events to record

counters=<event_char >+ Specifies a list of events to count

split=<size > Specifies the file split threshold

pipe=<bool > Instructs the agent to output to a named pipe

verbose=<verbosity_level > Instructions the agent to produce additional output

opt=<bool > Instructs the agent to attempt to reduce the trace size

cp=<classpath > Specifies the agent ’s class path

cp+=<classpath > Specifies a class path to append to the value of $CLASSPATH

+cp=<classpath > Specifies a class path to prepend to the value of $CLASSPATH

colour=<bool > Specifies whether or not colour should be used in the output

bctags=<bool > Instructs the agent to output bytecode tags

gzip=<bool > Instructs the agent to output a gzip’ped trace

unique_ids=<bool > Instructs the agent to output unique identifiers

help=<string > Displays usage information

[starj -0.1-beta8] %

5 Building the trace analyzer

NOTE: if you downloaded a full or a binary distribution of *J, or if you already have the file
‘analyzer/lib/starj.jar’ and don’t want to recreate it, change to the ‘analyzer’ directory and
skip to step 3.

1. Change to the ‘analyzer’ directory under the root *J installation directory:

[starj -0.1-beta8] % cd analyzer

[analyzer] %

2. Type ‘ant’ to build the analyzer:

[analyzer] % ant

[analyzer] %

3

3. Add the ‘analyzer/classes’ directory to your CLASSPATH. For example:

[analyzer] % export CLASSPATH=$PWD/lib/starj.jar:$CLASSPATH

[analyzer] %

4. Change back to the root *J directory and test your installation:

[analyzer] % cd ..

[starj -0.1-beta8] % java starj.Main --help

Usage: java starj.Main [options] [trace file]

*J: A Tool for Dynamic Analysis of Java Programs

IO options:

--dep -graph <filename > Outputs dependency graph

-b <size >, --buffer-size <size > Sets trace buffer

-m <stream > <patterns >, --text Defines a set of metric elements to

<stream> <patterns > collect text metric output from

-x <stream > <patterns >, --xml Defines a set of metric elements to

<stream> <patterns > collect XML output from

General options:

-H, --show -hierarchy Displays pack/operation hierarchy

-p <patterns > <configurations >, Sets pack/operation options

--config <patterns >

<configurations>

-cp <classpath >, -classpath Sets the class path

<classpath >, --classpath

<classpath >

-v, --version Prints version and exits

-h, --help Print helps and exits

[starj -0.1-beta8] %

6 Post-installaction configurations

1. All environment variable changes can be made permanent by including them in you shell
initialization scripts (‘.bashrc’, ‘.cshrc’, ‘.zshrc’ and the like – refer to your shell’s docu-
mentation)

4

