
STOOP: The Sable Toolkit for Object-Oriented Profiling

Rhodes Brown Karel Driesen
John Jorgensen Laurie J. Hendren

Qin Wang Clark Verbrugge

School of Computer Science
McGill University

[rhodesb,jjorge1,qwang21,karel,hendren,clump]@cs.mcgill.ca

1. INTRODUCTION
The performance and behaviour of object-oriented pro-

grams is often very difficult to understand, particularly for
large, complex software systems consisting of many packages
and classes. Stoop provides high-level facilities which allow
a user to rapidly construct tools to collect and visualize pro-
file data from the execution of object-oriented programs.

Stoop has been implemented in Java and we have ap-
plied the toolkit to a variety of tasks for profiling Java. We
are particularly interested in applying the toolkit to study
program behaviour that might suggest new optimization or
execution strategies for Java. For example, by examining
the behaviour of hot data fields and the relationships be-
tween field accesses we may develop new strategies to make
better use of a data cache.

As illustrated in Figure 1, Stoop consists of three ma-
jor pieces: a profiling agent, an event pipe, and a visual-
izer. The profiling agent collects various profile data and
uses it to generate a stream of events. Our intent is to
support a wide variety of profiling agents including agents
using the Java Virtual Machine Profiling Interface (jvmpi),
instrumented virtual machines, and instrumented bytecode.
The event pipe serves as a high-level interface between the
front-end profiling agent and the back-end visualizer. It con-
verts profile data to a binary format, buffers (and potentially
compresses) the data, then forwards it to the visualizer. In
order to provide a clear and flexible interface, profile events
are described using a specification language called Step. A
compiler, stepc, generates high-level representations of the
profile data that can easily be written to, and read from the
event pipe. The visualizer reads the stream of profile events
leaving the pipe and presents the data using several different
views.

The remainder of this abstract provides a short introduc-
tion to the three components: profiling agents in Section 2,
the event pipe in Section 3 and the visualizers in Section
4. We conclude and give a brief overview of related tools in
Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ..$5.00

2. PROFILING AGENTS
Profile data may originate from a wide variety of sources.

For example, traces of method invocations or object instan-
tiations might come from a jvmpi agent, maps of object ad-
dresses in memory from an instrumented garbage collector,
and arbitrary application-specific data from custom instru-
mentation compiled into the profiled program.

Any information source—including existing trace data and
sources as yet unforeseen—may act as a Stoop profiling
agent, so long as the data is converted using a Step inter-
face to generate the binary stream of events. Such a stream
can then be connected to a Step reader and Stoop visual-
izer combination to render the data.

3. EVENT PIPE
The Stoop event pipe provides an infrastructure for trans-

porting profile data from producer (profiling agent) to con-
sumer (visualizer). The reason for providing this intermedi-
ary, instead of connecting the producer directly to the con-
sumer, is twofold. The primary motivation is to create a
system that can be extended to accommodate arbitrary pro-
file data. In particular, a user of the framework is free to
define their own data schema. The second reason for decou-
pling producer and consumer is to allow the introduction
of a specialized buffering agent. The buffering agent can
use secondary storage to significantly increase its capacity.
Also, it may exploit features of the data stream to further
increase its capacity through compression. This enhanced
buffering is useful, since profile traces often comprise giga-
bytes of data. In such cases, a direct link between producer
and consumer would likely overwhelm simple buffering tech-
niques.

3.1 The Stoop Trace Event Protocol
At the core of the event pipe architecture is the Stoop

Trace Event Protocol (Step). The Step system translates
profile data to and from a binary format that is platform
independent and provides opportunities for compression1.
The main feature of the system is that it is designed to
be extensible, in the sense that users are free to define the
format of profile data records. This flexibility is achieved
through the use of a profile specification language that de-
fines the various data records which may be passed from
producer to consumer. Schema definitions are compiled (by
the stepc compiler) into Java or C code that can be di-
rectly integrated into the profile agent and visualizer. This

1For a discussion of the benefits of a binary trace format
and its potential for compression see [1].

1

Visualizer

input

Profiling
Agent

STEPC

In
te

rf
ac

e

Pr
og

ra
m

Agent Writer

C
om

pr
es

s

Buffer

D
ecom

press

Reader

In
te

rf
ac

e

Manager

Data

Event Pipe

View

View

Figure 1: Overview of Stoop

allows for a more intuitive, high-level interface to both pro-
file agent and visualizer, while masking representation and
transmission details.

4. VISUALIZERS
Each visualization is generated by the combination of a

data manager with a view. The data manager reads the
data provided by the event pipeline, extracts the informa-
tion relevant for the particular visualization, and relays it
to the view. The view draws the corresponding output and
interacts with the user. The data-view interface allows the
view to both read data from the data manager and to send
control information, such as filtering criteria, back to it.

The data manager understands the meaning of the data
and chooses which views may be used to visualize the in-
formation. It also needs to decide how the data can be
interpreted in a given view and implements the view’s in-
terface accordingly. The view, on the other hand, does not
need to know what the data represents. Instead, it reads the
data as a sequence of information units from the data man-
ager, and displays these units according to their properties,
as directed by the user.

For example, instances of a histogram view might be used
to visualize both the distribution of object allocations by ob-
ject size and the frequencies with which the fields of different
classes are referenced. In the first case, the data manager
would select each object allocation event, and send to the
view an information unit which increments the count for the
corresponding object size. In the second case, the data man-
ager would select each field reference event, and ask the view
to increment the count for the corresponding field name.

The same data may also be visualized in different ways
by sending it to multiple views. In Stoop there are several
built-in views, and new views can easily be added.

5. CONCLUSIONS AND RELATED WORK
In this abstract we have given an overview of the Stoop

profiling toolkit. The main goal of the toolkit is to provide
a profiler developer with support for rapid development of
custom profilers for object-oriented languages. The toolkit
has been designed to support many different profiling agents
and visualizers which communicate through an event pipe.
The Step protocol is used to specify the format of profile

records and the stepc compiler is used to automatically gen-
erate the interface methods.

The Step system was inspired primarily by the Meta-

TF language introduced in [1]. Since our primary goal was
to create a framework that could accept arbitrary profile
data, the notion of using a profile specification language
was naturally appealing. Originally, we had hoped to use
the Meta-TF language directly, however we found it useful
to extend (and slightly modify) the language in several ways.
The result is a distinct Step metalanguage.

Our approach is unlike commercial profilers such as Op-
timizeIt [4], JProbe [3] and Jinsight [2] in that these sys-
tems are fixed profiling tools where the user interacts with
the profiler to view predetermined program properties. The
purpose of our tool is to allow one to develop profilers to
view both standard and non-standard program properties,
and to view events that come from a variety of sources.

Perhaps closer to our approach is Bloom [5, 6], a profiling
system which allows the user to interactively build a query
which may be displayed using a wide range of supported data
views. However, even in this system the program traces are
predefined and there is no specification language for defin-
ing new trace events. Nonetheless, Bloom’s query-based vi-
sualization techniques may prove useful in visualizing novel
profile data with Stoop.

6. REFERENCES
[1] T. Chilimbi, R. Jones, and B. Zorn. Designing a trace

format for heap allocation events. In Proceedings of the
ACM SIGPLAN International Symposium on Memory
Management (ISMM 2000), pages 35–49, Minneapolis, MN,
USA, October 2000.

[2] Jinsight. http://www.research.ibm.com/jinsight/.
[3] JProbe. http://www.sitraka.com/software/jprobe/.
[4] OptimizeIt. http://www.vmgear.com/.
[5] S. P. Reiss. An overview of Bloom. In Proceedings of the

2001 ACM SIGPLAN-SIGSOFT Workshop on Program
Anaylsis for Software Tools and Engineering, pages 71–77,
Snowbird, Utah, USA, June 2001.

[6] S. P. Reiss and M. Renieris. Generating Java trace data. In
Proceedings of the ACM 2000 conference on Java Grande,
pages 71–77, San Francisco, CA, USA, June 2000.

2

