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Abstract

Program tracing is a common technique employed by software and hardware devel-

opers who are interested in characterizing the dynamic behavior of complex software

systems. However, despite the popularity of trace-driven analyses, there are surpris-

ingly few options for encoding trace data in a standard format.

In the past, many developers have resorted to creating their own ad-hoc trace

encoding solutions, tailored specifically to the data they are considering. Such efforts

are usually redundant, and in many cases lead to an obscure and poorly documented

trace format which ultimately limits the reuse and sharing of potentially valuable

information.

The Step system was created to address this problem by providing a standard

method for encoding general program trace data in a flexible and compact format.

The system consists of a trace data definition language along with a compiler for the

language and an encoding architecture that implements a number of common trace

compaction techniques. The system simplifies the development and interoperability

of trace clients by encapsulating the encoding process and presenting the data as an

abstract object stream.

This thesis presents a detailed description of the Step system and evaluates its

utility by applying it to a variety of trace data from Java programs. Initial results

indicate that compressed Step encodings are often substantially more compact than

similarly compressed näıve formats.

i



Résumé

Le traçage des programmes est une technique couramment employée par les dévelop-

peurs de logiciels et matériel informatique intéressés à caractériser le comportement

dynamique de systèmes logiciels complexes. Par contre, en dépit de la popularité

des analyses effectuées à l’aide de traces, il existe étonnament peu d’options pour

l’encodage des traces utilisant un format standardisé.

Dans le passé, plusieurs développeurs ont eu recours à la création de leur propre

solutions spécifiques quant à l’encodage de traces, conçues sur mesure pour pour les

données examinées. De tels efforts sont habituellement rendondants, et mènent dans

plusieurs cas à un format obscur et piètrement documenté, ce qui, ultimement, limite

la réutilisation et le partage d’information possiblement pertinente.

Le système Step à été créé dans le but d’aborder ces problèmes en fournissant une

méthode standardisée pour l’encodage de données générales provenant de traçage de

programme en un format flexible et compact. Le système est consitué d’un langage de

définition des données de traces, ainsi que d’un compilateur pour ce langage et d’une

architecture d’encodage qui implémente plusieurs techniques de compaction de traces

répandues. Le système simplifie le développement and l’interopérabilité des clients

de traces en encapsulant le processus d’encodage et en présentant les données en un

train d’objects abstrait.

Cette thèse présente une description détaillée du système Step et évalue son

utilité en l’appliquant à une variété de traces provenant de programmes Java. Les

résultats préliminaires indiquent que les données encodées et compressées par Step

sont souvent substantiellement plus compactes que des formats similaires utilisant

une méthode de compression näıve.
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Résumé ii
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Chapter 1

Introduction

Efficiency is a quality pursued by virtually all software, hardware, and compiler

developers. In many cases, an exact definition of the concept depends on what devel-

opers consider relevant. Some use raw computing speed as a measure, while others

use a broader definition of resource overhead. Some even choose to frame their defi-

nition in terms of more abstract notions such as interoperability and maintainability.

Yet all such definitions of efficiency have one element in common: they are a measure

of some dynamic quality of software systems.

Historically, attempts to characterize the dynamics of software systems have fo-

cused their attention on analyses of low-level program events. The analyses are often

based on a simulated recreation of a program’s execution using a trace of the relevant

event data. Trace-driven analyses are generally favored over simple statistical sam-

pling methods since the goal is often to characterize sequential patterns in the data

rather than just summarize the occurrences of events.

Some trace analyses can be performed on-line—streaming the data directly from

a running program to the analysis routines—but, in many cases, it is preferable to

record the data for use in several off-line analyses. Recording traces is problematic

though, since they often contain huge amounts of data. A variety of lossy and loss-

less methods for reducing the size of traces have been proposed, but the research

has focused almost entirely on simple, restricted forms of data such as the target

address of load and store operations. A handful of “standard” trace file formats have
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been suggested [SCM+95, HKWZ00, JHBZ01] but most are wholly insufficient for

capturing the range of events that occur in modern software systems. The lack of

adequate trace encoding systems has led many developers to create their own ad-hoc

solutions which are frequently tailored specifically to the data they are considering.

This approach often results in a trace format with little or no documentation and

trace data that goes unpublished, consequently limiting the sharing and reuse of po-

tentially valuable information. Such efforts are also usually redundant since, as this

thesis demonstrates, a general approach to trace encoding is possible.

Step1 is a system created to address the need for a standard method of encoding

general program trace data in a flexible and compact format. The system provides a

new trace data definition language, a compiler for the language, run-time support for

the annotation features of the language, and an encoding engine that implements a

number of common trace compaction techniques. Together, the features of the system

simplify the development and interoperability of trace clients by encapsulating the

encoding process and presenting trace data as an abstract object stream.

The development of Step was motivated by a desire to collect a variety of trace

data from Java programs and provide an interface to the data that is compatible with a

variety of analysis tools. A review of the related literature did not reveal any solutions

that were capable of capturing the full range of events of interest that occur during the

execution of a Java program. However one approach, the MetaTF system [CJZ00],

did offer a useful starting point by suggesting that traces be defined with a specialized

definition language. Definitions specified with such a formal language can serve two

purposes, namely acting as an explicit document of the trace format and providing a

means for automatically generating routines to read and write the trace data files.

Early attempts to build on MetaTF’s general approach to trace definition and

encoding demonstrated that a better solution could be engineered by focusing on

support for three main features: a richer set of event record types, integration with

other tracing tools, and a more robust and extensible encoding architecture. Step is

an attempt to meet these requirements by providing a new data definition language,

1 The name Step derives from its original incarnation as the Stoop Trace Event
Protocol [BDE+01]. A number of other equally appropriate expansions have been suggested.
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1.1. Motivation

Step-DL; a compiler for the language, stepc; and an object-oriented encoding ar-

chitecture.

This thesis provides a detailed description of the Step system, elaborating on

the design rationale and highlighting a number of the issues encountered during the

development of the system. The utility of the system is evaluated by examining its

application to the encoding of a variety of trace data collected from a set of well-known

Java benchmark programs. The results are promising, indicating that compressed

Step trace files are often substantially more compact than similarly compressed näıve

formats.

1.1 Motivation

To understand the design and implementation of Step, it is best to start with a

discussion of the role the system was intended to play. In many ways, such a discussion

helps to frame the boundaries of the project and reveals influences that are echoed in

a number of the design and implementation choices.

Step was conceived to act as the core of a system for developing new methods

of improving the performance of Java programs based on analyses of both program

and run-time environment dynamics. This is not a trivial aspiration considering the

multitude of ways that trace information from Java programs can be exploited:

• The run-time overhead of Java’s automatic memory management—garbage col-

lection (GC)—is a common concern among developers interested in building

fast or precisely-timed applications. Modern GC implementations, such as vari-

ants on the generational approach, can be effective for a range of programs

but are still based on broad, statistical assumptions and, thus, are not truly

adaptive solutions. Recognizing this deficiency, a variety of approaches have

been developed that use trace data to either guide the selection of a particular

GC algorithm [FT00], or target particular object types for special treatment

[Har00].

• Program performance can often be significantly affected by the physical lay-
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1.1. Motivation

out of object data values. Highly composite objects incur the cost of frequent

dereferencing steps, while the spatial and temporal locality of object references

can affect the performance of hardware data caches. Field access traces can be

used in a range of type restructuring optimizations: in-lining high-use sub-field

definitions [LH02], and re-ordering field positions, possibly segregating low-use

fields into separate objects [RBC02].

• A number of Java program transformations such as devirtualization [SHR+00],

array bounds check removal [QHV02], and synchronization removal [Ruf00] have

been demonstrated as effective optimizations. However, as proposed, these

transformations are based on static approximations of a program’s call graph—

approximations that are often costly to generate. Trace data could be used to

accelerate such analyses by highlighting call sites that exhibit definite polymor-

phism as well as those that are apparently monomorphic.

• Trace data can be used to build statistical models of a program’s control flow.

The information can be used to estimate branching behavior [WL94] which is,

in turn, useful for performing condition or loop inversions that cooperate with

local caching and branch prediction hardware. More generally, the statistics

can be used for so-called probabilistic data flow analyses [MS00] to estimate

the cost/benefit ratio of applying a given transformation to a particular code

segment.

• Trace data can be used to quantify various benchmark program dynamics such

as polymorphism, concurrency and memory usage [DDHV02]. Such measure-

ments are of clear importance to developers of compilers and run-time systems,

in that they provide a basis for meaningful evaluation and comparison of ap-

proaches.

This list is, by no means, exhaustive but it does exhibit the diversity of potential Java

trace data as well as the diversity of potential trace-driven analysis clients.

The primary assertion behind the development of Step is that there is value in

recording the data alluded to above in a single, universal trace format. There are two
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advantages to such an approach. First, the existence of a universal (and compact)

trace format encourages developers and researchers to publish the data they collect.

As is common in other scientific endeavors, such publicly available data can then be

used as the basis for validation, extension, adaptation, and meaningful comparison of

various analyses and applications. The second advantage is that recording a broad

range of data in a single trace file allows results from several independent analyses to

be meaningfully collated and related to one another.

1.2 Requirements

Having established that a system for encoding traces in a common format is desirable,

a logical next step is to derive a series of requirements that such a system should meet.

Based on the motivations outlined above, a number of criteria present themselves:

Expressiveness:

A complete range of event data structures should be supported: essentially, any

serializable form composable from common basic types.

Flexibility:

The system should provide a flexible trace format that is not bound to any

particular set of data records. Specifically, augmenting a trace with new records

should not affect compatibility with existing tools.

Compactness:

Standard methods for trace compaction should be integral to the system. How-

ever, the default encoding should be lossless, deferring lossy reductions to a

post-processing filter.

Efficiency:

Given that traces often comprise a tremendous amount of data, the serialization

process, including compaction, should operate in linear (or near-linear) time in

the size of the input data.
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1.3. System Overview

Documentation:

To ensure proper use of the data, the trace files should be accompanied by a

descriptive document that specifies both the form and interpretation of the data

records. The document should provide sufficient detail to create a tool capable

of reading the encoded trace and reconstructing the event data.

Encapsulation:

To facilitate the interoperability of tracing and analysis tools, the system should

provide a library of routines for reading/writing trace files that encapsulates the

encoding process so as to separate the production and consumption of events

from their serialized off-line representation.

Portability:

Both the encoding software and format should be platform independent so that

traces collected on one architecture can be decoded and analyzed on any other

architecture that the system supports.

Extensibility:

Anticipating the development of new trace-based analyses or compaction schemes,

the system should provide an open architecture that allows the addition of new

event types and/or encoding strategies with minimal modification.

In addition to these criteria, it also reasonable to request that the system provide a

simple and intuitive client interface and that its design adhere to commonly accepted

software design principles.

1.3 System Overview

Step is an attempt to capture the motivations outlined in section 1.1 and to embody

the requirements proposed in section 1.2. The system consists of a specialized trace

definition language, Step-DL, and an object-oriented (OO) framework, implemented

in Java, that provides compiler and run-time support for Step-DL definitions, as well

as an encoding engine that includes a number of standard trace encoding strategies.
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Figure 1.1: An overview of the Step framework

The design of Step synthesizes a number of ideas related to tracing, resulting in an

entirely unique implementation approach.

Step is often depicted as a mediator, connecting a variety of trace data sources

to a variety of analysis and consumer tools. Clients interested in encoding data

in the Step format begin by defining the format of the data records with the Step

definition language, Step-DL. The definitions supply both a structural description of

the records as well as various annotations that can be used to automatically generate

methods for manipulating the data; for example, to serialize it into the Step binary

format. As figure 1.1 indicates, the definitions are converted by the stepc compiler

into equivalent Java class definitions that act as the interface layer that both producer

and consumer clients interact with.

Some example trace data producers are indicated on the left side of figure 1.1.

In the case of Java programs, trace data can arise from several sources. Standard
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data, such as method usage and allocation events can be collected through the Java

Virtual Machine Profiler Interface (JVMPI). Information about the inner workings of

a particular Java Virtual Machine (JVM)—such as information about a specific Just-

In-Time (JIT) compilation strategy or GC algorithm—is often obtained by directly

modifying the VM. Still more information, such as basic block or field uses, can be

obtained by adding custom instrumentation to the target Java bytecode.

Trace producers use the Java object definitions generated from Step-DL to con-

vert the trace data from its original format into the Step object format and pass the

data on to the Step encoding system for serialization. Individual records are encoded

in a platform independent, binary format according to an adaptive set of strategies

generated from annotations associated with their type. The resulting Step trace file

is usually passed to a standard compression tool such as gzip or bzip2 to further

compact the data for off-line storage. Traces are unpacked by the encoder, regenerat-

ing the original data stream in the common object format. A variety of analysis tools

(depicted on the right of figure 1.1) can consume the data; in the figure, the EVolve

[WWB+02] and JIMPLEX [Eng02] visualization tools are highlighted.

The Step encoding engine is not specific to any particular value type. Instead

the system uses annotations supplied in the Step-DL record definitions—specifically,

those referred to as encoding attributes—to generate a set of encapsulated algorithms

(strategies) for encoding each record type. The strategies are constructed hierarchi-

cally, deferring to sub-strategies in order to encode each field value. The strategies

employ a number of established techniques that exploit known characteristics in the

data to adaptively encode individual values, achieving an amortized reduction in the

number of bytes required to encode a given type.

The Step definition language has a simple and intuitive syntax that supports

a reasonably diverse set of record structures. The most significant contribution of

the language is its attention to the need for structured annotation of trace record

definitions. The basic concept is that, in addition to defining a record’s structural

composition, other supplemental information can be associated with the various el-

ements of the record. Examples include descriptive labels, basic characteristics of

the data, and information specific to a particular application (such as encoding).
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The language supports two forms of extension: common structural inheritance and

contextual refinement of attributes.

Conceptually, Step is quite straightforward. The system is a bridge, connecting

trace producers and consumers through an interface generated from simple record

definitions. However, as subsequent chapters highlight, there are a number of sub-

tleties to implementing the system as described. Step-DL’s extension mechanisms

give rise to a number of interesting syntactic and semantic issues, while the encod-

ing architecture must implement a sophisticated mechanism for handling values that

deviate from an expected norm.

1.4 Contributions

The Step framework offers a number of contributions to the research community.

Primarily, the system facilitates the development of new tracing tools by separating

the process of encoding from those of collection and analysis. A consequence of the

approach is that it provides a common trace format with explicit documentation of

the trace contents in the form of Step-DL definitions. This, in turn, encourages the

publication and reuse of traces, allowing research results to be scrutinized, evaluated

and related to one another. Among the secondary contributions of the project are

solutions for implementing a combination of structural and interpretive type exten-

sions, and the creation of an open and flexible platform for the studying and testing

various trace reduction and compaction techniques. It is also worth noting that, while

Step is primarily intended as a trace encoding system, the system does not make any

assumptions about the incoming data itself other than the regularity characteristic

common to program traces. Thus, the system may provide a basis for encoding other

forms of highly-regular, sequential data.

This thesis contributes a number of perspectives on the design and implementation

of Step. Its primary purpose is to document the features of Step-DL and the

functioning of the encoding architecture. It provides links to a broad spectrum of

research related to tracing, and considers the applicability of a number of existing

approaches to the task of tracing Java programs. The results presented in chapter 6
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also provide a basis for evaluating the effectiveness of the approach.

1.5 Thesis Overview

The primary goal in presenting this thesis is to convey a factual description of Step.

A secondary goal, as in all theses, is to explain and formalize the intuitions behind

particular design and implementation choices. The discussion begins in chapter 2

with a survey of related approaches and applications. The review is reasonably cur-

sory and somewhat eclectic, serving as much to underscore the motivations presented

in section 1.1 as it does to present existing approaches to trace encoding. Readers

may find it useful to skim the chapter on a first reading, returning for a second pass

after covering the main content chapters. The actual presentation of Step begins in

chapter 3 with an examination of Step-DL. The chapter covers the main language

features, details some of the semantic consequences, and presents a brief historical

review of the language’s evolution. Chapter 4 continues the discussion by describing

the approach to compiling Step-DL definitions and the internal, run-time represen-

tations used in both the stepc compiler and encoding architecture. The encoding

process is then detailed in chapter 5. The complications introduced by adaptive en-

coding and type inheritance are touched upon. Following that, a categorization of

various trace encoding strategies is presented. Experiences in using the system are

presented in chapter 6 with a focus on the effectiveness of various encoding techniques

and the compressibility of trace data from a range of Java benchmark programs. The

discussion concludes with a summary of the presentation and comments on the utility

of the approach. A final section suggests future directions for the development and

use of the system.
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Chapter 2

Related Work

The design of Step draws from a broad range of research related to program

tracing. The discussion that follows begins with the most relevant influences, namely

the current approaches to trace encoding. Section 2.2 provides a brief survey of the

plethora of tracing applications. The survey is not intended as a comprehensive re-

view but is instead meant to underscore the diversity of trace data sources and forms.

The focus is on off-line tracing, since that is the area most relevant to Step. Readers

interested in on-line approaches are directed, as a starting point, towards systems

such as Morph [ZWG+97] or that of Anderson et al. [ABD+97], or for a Java spe-

cific approach to the Jikes RVM project (formerly Jalapeño [AAB+00]). Section 2.3

concludes the chapter with a short discussion of other data file definition languages.

2.1 Trace Collection and Storage

Step is a conceptual extension of the MetaTF system developed by Chilimbi, Jones

and Zorn [CJZ00]. Their approach was developed during the process of trying to

establish a common trace format for dynamic storage allocation (DSA) events. They

proposed a format called the Heap Allocation Trace Format (HATF) as an instanti-

ation of a meta-level trace specification, dubbed MetaTF. The original presentation

of MetaTF defined a language for specifying trace formats as a collection of records,

then used the language to define the records contained in the HATF format. In a

11



2.1. Trace Collection and Storage

subsequent report, Jones [Jon01] discusses some modifications to the MetaTF lan-

guage, explains the reasons for switching from the original binary file format to a

text-based approach, and details how the MetaTF specifications are compiled into

Java components for reading and writing trace files.

While it appears that MetaTF is the only previous attempt to develop a trace def-

inition language, a number of trace formats have been publicly defined. Humphries et

al. proposed the POSSE format [HKWZ00] for recording the behavior of persistent

object systems (POS). Scheuerl et al. suggest the MaStA I/O format [SCM+95] for

recording database input and output operations. New Mexico State University’s

TraceBase provides address reference streams in the PDATS format [JH94, Joh99,

JHBZ01]. As with Step, these trace encoding systems do not provide methods for

actually collecting trace data. Instead interested users are directed towards program

instrumentation systems such as pixie [Smi91], ATOM [SE94] and EEL [LS95]. Java

trace data can be obtained by explicitly modifying a JVM, providing a JVMPI [Sun]

collection agent, or instrumenting the target bytecode with a tool such as Soot

[VRGH+00].

2.1.1 Compaction Methods

PDATS and MetaTF integrate methods for compacting trace data. The methods are

generally derivatives of the difference technique developed by Samples [Sam89] for

his Mache system. MetaTF provides methods for indicating that values should be

recorded as the difference from a base offset or previous value (delta), or as following

a regular stride pattern. PDATS focuses on address values, combining the differ-

ence technique with run-length encoding. Fox and Grün [FG96] propose a method

called recovered program structure (RPS) that improves on the effectiveness of the

PDATS approach by relating instruction address values to the structure of a program

(i.e., the composition of its various instruction blocks). Elnozahy [Eln99] suggests an

apparently similar approach, but defers details to a patent application.

Address traces seem particularly amenable to compaction and have attracted a

variety of research efforts. An early study by Hammerstrom and Davidson [HD77]
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reveals that address streams often have very low entropy, an intuitive result in light

of the commonly accepted 90-10 rule of computing behavior which suggests that

programs often spend most of their effort in limited code and memory segments.

Becker, Park and Farrens [BPF91] continue this work by investigating higher order

entropy measures. Pleszkun [Ple94] builds on these studies to develop a lossless

reduction scheme based on measuring the second-order entropy of address streams;

essentially resulting in a path-based Huffman encoding of the sequence. Realizing

that many applications of address traces tolerate the deletion of a portion of the

statistically deviant values, Smith [Smi77] initiated the research into lossy address

trace reduction methods. A number of other lossy approaches [AH90, PG95, KSW99]

have followed since then.

Reiss and Renieris [RR01, RR00] suggest applying the Sequitur hierarchical

inference algorithm [NMW97] to compact general trace data. The approach is further

developed by Chilimbi [Chi01] and Larus [Lar99] who describe methods for deriving

lossy reductions.

2.2 Applications of Tracing

Collecting event traces to study the dynamic behavior of programs is a technique that

has been in use for many years. In fact, Smith [Smi82] points to uses that date back

as far as 1966.

Probably the most prominent use of tracing is in the study of caching and paging

architectures. Uhlig and Mudge [UM97] survey much of this work and also provide a

good summary of the various approaches to address trace reduction. More recently,

hardware developers have also used tracing in the development of branch prediction

architectures [EPCP98, FFW98, Wu02].

Software interactions with caching and branch-prediction hardware are addressed

in a variety of trace-based research. Chilimbi et al. look at several issues regard-

ing the layout [CDL99] and positioning [CHL99] of data structures in memory. The

concepts are used to develop trace-driven compiler optimizations [RBC02]. Ball and

Larus [BL94] suggest efficient methods for tracing the execution path of programs.
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Wu and Larus [WL94] subsequently use the traces to isolate various families of branch-

ing behavior and develop branch and loop optimizations that cooperate with local

branch-prediction hardware. Applications of statistical execution models have re-

cently evolved beyond simple optimizations to drive a number of compile-time trans-

formations based on so-called probabilistic data flow analysis [MS00].

Traces have been used in a variety of work related to memory management. Several

approaches have been developed based on object lifetime measurements. Seidl and

Zorn [SZ98] investigate how allocator efficiency can be improved by segregating heap

objects according to their lifetimes. Harris [Har00] identifies objects for pre-tenuring

in generational garbage collected systems. Shaham, Kolodner and Sagiv [SKS01] use

lifetime measurements to identify so-called dragged objects (those that outlast their

utility). In more general work, Johnstone [Joh97] used traces to compare statistical

assumptions about garbage collected systems with their actual behavior. Fitzgerald

and Tarditi [FT00] used traces to select appropriate GC algorithms for particular

programs.

Efforts to characterize program dynamics have used a variety of visualization

techniques to reveal relations and patterns in execution and memory usage. Sev-

eral tools for visualizing Java trace data are available, they include: IBM’s Jinsight

[IBM], Borland’s OptimizeitTM Suite [Bor], and Sitraka’s JProbeTM [Sit]. Many of

the visualizations these tools support are derived from the ideas of Jerding, Stasko

and Ball [JSB97]. Reiss and Renieris build on their work to develop several com-

plex visualization systems [Rei98, RR99], culminating in a system called BLOOM

[Rei01]. Shende et al. developed a similar system called TAU [SMC+98] for visual-

izing the execution of parallel, scientific applications. Step was created to support

two customizable visualization systems: EVolve [WWB+02] and JIMPLEX [Eng02].

Other miscellaneous applications of tracing abound. Informal tracing is often

used to debug programs; Netzer and Weaver [NW94] present some formal approaches.

Ernst et al. [ECGN99] describe a method that combines data and execution tracing

to locate program characteristics that remain invariant across some computation win-

dow; they use the information to reveal various implicit design contracts. Colcombet

and Fradet [CF00] describe a system that modifies code to ensure that it conforms
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to a particular family of traces (i.e. the runtime behavior is restricted). Dufour et

al. [DDHV02] use traces to develop various metrics to formally categorize benchmark

programs as memory intensive, numeric, polymorphic, etc.

2.3 Data Definition Languages

The approach of using a special definition language to define data file formats is

definitely not new. A 1978 proposal by Norton [Nor78] uses a language to define

the format of medical data files and suggests how the definitions can be used to

automatically generate tools for manipulating the data. A recent extension of this

approach was proposed by Haines, Mehrotra and Van Rosendale. Their SmartFile

system [HMVR95] imported the object-oriented concept of inheritance to increase

the interoperability and extensibility of scientific data files. Their DAta File Type

(DAFT) definition language also used specialized annotations to indicate character-

istics of the data such as units and coordinate systems.

Many fully general data definition systems exist, including international stan-

dards such as ASN.1 [ISO90] and SGML [ISO86], as well as the now ubiquitous

XML [W3C00]. However, specialized languages such as MetaTF, DAFT and Step-

DL are often preferred by developers for their concise, easily-read and application-

specific syntax.
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Chapter 3

The Step Definition Language

This chapter presents the Step Definition Language (Step-DL). The purpose

of the language is to provide clients of the Step system with a simple and concise

means for defining records to be encoded in the Step trace format. The definitions

are translated (compiled) into structures that are used to represent trace data as

objects and to convert a stream of such objects to and from the Step binary format.

The capabilities of the language (i.e., the forms of data it is capable of expressing)

provide the design foundation upon which the rest of the Step architecture is built.

A Step-DL record definition includes both a structural description of the type (its

name, its fields, the ordering of the fields and their type, etc.) as well as annotations

that indicate various supplemental information such as which encoding strategy to

use for a particular field element. The definitions are processed by the stepc compiler

to generate Java class definitions that represent the record types. The annotations

associated with a record are used to generate related structures both during compi-

lation of the definition and when the type is loaded at run-time. An example is the

encoder objects that are used to encapsulate the strategies for serializing records into

the Step trace format.

Step-DL is a simple language—its only purpose is type definition—however,

its support for features such as inheritance and contextual refinement of attributes

leads to a surprisingly complex semantics. The sections that follow describe the

details of the language and the reasoning behind the particular choice of features and
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syntax. Some of the semantic implications of Step-DL definitions are touched upon,

deferring more discussion of the compile-time and run-time issues to chapters 4 and

5 respectively. The chapter concludes by presenting a brief history of the evolution of

Step-DL, highlighting some of the original influences that shaped the language and

its implementation.

3.1 Goals

A collection of Step-DL definitions provides a so-called document type definition

(DTD) for a given trace. The definitions are used both as a basis for generating code

to represent and manipulate the data, and also as a formal document that describes

the structure and content of the data. To serve in both these capacities the language

has been designed to support both a range of types and expressions about types (and

their instances) while maintaining a syntax that is concise, precise and easy-to-read.

3.2 Approach

The design of Step-DL seeks to improve upon that of the MetaTF language [CJZ00,

Jon01] by providing a new syntax that offers increased generality, flexibility, and ex-

tensibility. Specifically, Step-DL uses a more familiar type definition syntax than

MetaTF and borrows from the DAFT language [HMVR95] to introduce type in-

heritance and a more intuitive annotation syntax. Some specific contrasts between

MetaTF, DAFT, and an earlier version of Step-DL are presented in section 3.5.

The fundamental concept in Step-DL is the separation of type structure from in-

terpretation. The language permits generalized annotations, in the form of attributes,

that contain essentially arbitrary text data. To provide some form of structure to the

attributes, the values are partitioned into groups, where the group defines the per-

missible values the attribute may contain. In this sense, the language is somewhat

open-ended. Each attribute group defines a new sub-component of the language with

its own independent syntax and interpretation. A number of attribute groups, such
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as the encoding group, are built in to the system but developers are free to add their

own groups.

3.3 Language Features

An initial appraisal might place Step-DL as somewhere between MetaTF and a gen-

eral mark-up approach such as XML [W3C00], however Step-DL’s specific purpose

(trace record definition) and its specialized notions of extension give rise to a unique

and curious language.

The syntax of Step-DL is described formally in figure 3.1. The following sections

proceed to elaborate on the various language features. To begin with, some of the

basic structural elements are presented, then the various forms of annotation are

introduced. Sections 3.3.5 and 3.3.6 exhibit the mechanisms for extending existing

definitions. Readers are encouraged to relate the simple examples that follow to the

complete, real-life examples provided in appendix C.

3.3.1 Language Basics

The syntax of Step-DL is reminiscent of Java in several respects. Step-DL files are

written in standard ASCII text and are composed of a sequence of record definitions.

Several standard comment forms are supported. Single-line comments begin with

either ‘//’ or ‘#’. Comments that begin with ‘#’ are supported to allow the intro-

duction of C-Preprocessor macros. Multi-line comments are written with the familiar

‘/*’ and ‘*/’ delimiters.

Figure 3.2 provides examples of some basic Step-DL record definitions. The

record keyword begins a definition and is followed by an identifier representing

the record’s name. Identifiers in Step-DL are of the standard letter|underscore,

letter|number|underscore* form. Each record is composed of zero or more fields,

the definitions of which are bounded by the standard ‘{’ and ‘}’ symbols. Fields are

specified starting with their type, followed by a comma separated list of field names,

terminated by the ‘;’ character.
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file → definition*

definition → package identifier ‘{’ definition* ‘}’

| record identifier string-literal?

( extends ‘!’? item-name )?

‘{’

string-literal*

attribute*

field-definition*

field-modifier*

‘}’

field-definition → type attribute* identifier string-literal* attribute*

( ‘,’ string-literal* attribute* )* ‘;’

field-modifier → ( ‘~’ | ‘!’ ) item-name attributes* ‘;’

attribute → ‘<’ identifier ‘:’ string-literal ‘>’

type → int

| float

| data

| string

| item-name

| type ‘[]’

item-name → identifier ( ‘.’ identifier )*

Figure 3.1: Step-DL 1.1 Syntax
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record A {

int i, j; // two integers

float f; // a floating-point value

string s; // a text value

data d; // byte data

}

record B {

A[] a; // an array of ‘A’ records

}

Figure 3.2: Basic Step-DL definitions

type description

int Integer values in the range −263 .. 263 − 1

float Double precision floating-point values

string Variable-length text values

data Variable-length raw byte data

Table 3.1: The primitive Step-DL types

The primitive field types are int, float1, string, and data; they are summarized

in table 3.1. The Step-DL int type abstracts over the range of Java integer types

(byte, short, int, and long), internally representing all values as 64 bit longs. The

Step-DL float type similarly abstracts over the Java single-precision (float) and

double-precision (double) floating point types. Step-DL string values wrap Java

String values. The primitive data type is provided to hold arbitrary byte data. It

is used most commonly as the basis for MetaRecords (see section 5.3.1).

Fields may be specified as arrays. As in Java, Step arrays are first-class objects.

1Only basic support for the float type is provided in the initial public version of Step
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package p1 {

record A { } // p1.A

}

package p2 {

package p3 {

record B { // p2.p3.B

p1.A a;

}

}

}

package p1 { // continue p1

record C { // p1.C

A a;

}

}

Figure 3.3: Package scopes and qualified names

The size of arrays are defined at run-time, and multi-dimensional arrays may be

ragged. If an array field is always of a fixed size, this fact can be indicated with a

relative encoding attribute modifier (see section 3.3.5).

Once defined, a record type may be used to define the fields of other records.

3.3.2 Packages

Record definitions may be partitioned into various packages. A package scope

is indicated with the package keyword, followed by the name of the package and

delimited by the ‘{’ and ‘}’ symbols. As indicated in figure 3.3, packages may be

nested or specified in several portions. In the context of multiple packages, record
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record A "multi-word label for A" {

"description explaining what A records signify"

"...a continuation of the description"

int x "description of x values";

}

Figure 3.4: Labels and descriptions

names are specified relative to the current package or by their absolute name, using

the ‘.’ symbol as a qualifier. The example illustrates fields defined with both relative

and absolute references to the A record type.

The intention of Step-DL packages is simply to provide a name-space partition-

ing that allows a convenient grouping of record types, or a resolution of potentially

ambiguous type names (e.g., a Class record which, when implemented in Java, needs

to be distinguished from the standard java.lang.Class type).

3.3.3 Labels and Descriptions

The simplest forms of annotation in Step-DL are labels and descriptions. Exam-

ples of both forms are illustrated in figure 3.4. A label indicates an alternate name

for a record that is not restricted to the identifier syntax. Descriptions provide an

elaboration on what a record or field value represents. The various platform specific

methods for terminating a text line are addressed by having multi-part descriptions,

where a break implies a line-break in the description text.

The reason for providing labels and descriptions is so that a tool reading the data

can access the annotations to automatically generate on-line help (or some other form

of elaboration) regarding the given record type.

22



3.3. Language Features

record A {

<g:"record attribute">

int x <g:"field attribute 1">, y <g:"field attribute 2">;

int <g:"distributed field attribute"> i, j, k;

}

Figure 3.5: Attribute placement

3.3.4 Attributes

Anticipating that Step-DL definitions could be used to interpret Step record data in

a variety of contexts (encoding, visualization, conversion, etc.), the language provides

a means for generalized annotation in the form of attributes. Figure 3.5 illustrates

Step-DL attributes in a variety of placements. In the example, only a single attribute

is present in each location, however the grammar permits any number of attributes

(written in sequence) to be associated with a given item.

Attributes are divided into two parts, a group identifier and a text value. For

both simplicity and generality, the examples in this section use the fictitious group

identifier g (see appendix B for a description of the real attribute groups, such as

encoding). The group identifier provides a context for the attribute value. For

example, an attribute value of “constant” could indicate that all instances of a field

have the same value or that the field represents a well known quantity. By qualifying

the attribute with the encoding group identifier, the meaning is refined to be: “all

subsequent instances can be cloned from the initial field instance value.”

Attributes are delimited by the ‘<’ and ‘>’ symbols, a feature which suggests

their analogy to mark-up tags from languages such as XML. An important difference

however is the choice of the ‘:’ symbol which separates the group name from the value.
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The symbol is chosen to contrast the meaning of Step attributes from that implied

in the common ‘key=value’ syntax. A Step-DL attribute specification indicates,

not an assignment, but an addition: “add value v to the group g.”

There are two varieties of attributes, record attributes and field attributes. Al-

though no strict requirements are placed on the meaning of attributes, record at-

tributes generally indicate information that applies to the type as a whole as opposed

to details concerning individual record values. For example, a common record at-

tribute is <property:"event"> which indicates that the record represents an actual

event as opposed to other records which are used as auxiliary data types. Such at-

tributes highlight the intended separation of structure from interpretation. Whether

or not a record should be interpreted as an event is a secondary feature of the data

and by deferring the information to an attribute, clients can choose to act on the

information at their discretion. In contrast, encoding attributes do not appear as

record attributes because doing so would imply a uniform strategy for all instances,

when clearly the encoding of records may vary by context.

Record attributes are placed after any description elements, before the field defi-

nitions. Field attributes are applied to a specific field by placing them immediately

after the field name in a definition. In the example, the x and y fields have specific

attributes. Attributes that appear between the type and field name, as with the i, j,

and k fields in the example, are distributed to each field in the list as if they preceded

any specific field attributes. The syntax for distributed field attributes is provided

purely as a convenience. It is often the case that a set of attributes are applicable

to several fields, the distributed notation simply allows for such redundancy to be

collapsed. The syntax also allows the definition of C-Preprocessor macros that rep-

resent common combinations of type and attributes. This technique is applied in the

examples listed in appendix C.

The division of attributes into groups is intended as a method for distributing the

complexity of Step-DL definitions. The basic language is quite simple and so are

the built-in sub-components (i.e., attribute groups). If the language directly included

elements for specifying encoding it would not only become more complicated, but also

more rigid. The current syntax allows any developer to introduce new interpretive
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extensions to the language in a way that does not break other clients: consulting the

attributes is purely optional.

Step-DL’s concept of annotation relates to the common notion of so-called meta-

data. However, the term meta-data is used in a specific sense in this document, thus

it is useful to refine the definition with respect to Step. The colloquial definition

of meta-data can be paraphrased as “data about data.” In the Step system data

about data occurs in both static and dynamic contexts. The static context is em-

bodied by Step-DL annotations, they are information about the data instances. As

section 3.3.5 explains, attribute annotations can be extended and overridden. The

annotations are however fixed for all instances of a given type.2 On the other hand,

the encoding process, presented in chapter 5, makes use of the term meta-data to de-

scribe data regarding the changing encoding policy that is embedded in the encoding

stream. To avoid confusion, the term meta-data (in the context of Step) is only used

to refer to the dynamic variant encountered in the encoding process. Static forms are

referred to as annotations, and in most cases, simply as attributes.

3.3.5 Field Modifiers

Following the field definitions in a record, any number of field modifiers may be

specified with the ‘~’ (extend) and ‘!’ (override) operators. In the case of extension

modifiers (‘~’ followed by the field name), the attributes that follow are appended to

the currently defined set. Override modifiers (those that use the ‘!’ operator) indicate

that all previous attributes should be discarded, the defaults (if any) restored, and

new attributes appended subsequently.

Figure 3.6 illustrates both the extension and override modifiers. The first state-

ment in the definition is a definition of the x field, which assigns a base attribute

for the group g. The first modifier extends the attributes of the x field, appending

<g:"extended attribute">. The override modifier discards the two previous at-

tributes and leaves x with the single attribute <g:"overridden attribute">. Over-

ride modifiers are often useful for experimentation, since they allow the attributes

2Section 5.3.2 describes a subtle exception to this rule.
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record A {

int x <g:"base attribute">;

~x <g:"extended attribute">;

!x <g:"overridden attribute">;

}

Figure 3.6: Field modifiers

for a given item to be reset and updated without adjusting other records in the type

hierarchy.

Modifiers were originally developed as a method for indicating changes to inher-

ited fields (see section 3.3.6), however they can also be used to modify fields within

the same definition to enhance the readability of the definition. Basic attributes

can be specified in the definition of a field and other more specialized or experimen-

tal attributes deferred to later in the definition. This technique is used in some of

the examples in appendix C, separating encoding strategy attributes from the main

definitions.

Modifiers can also apply to sub-components of a field. Common examples are

string, data, or array fields that have a fixed length. This characteristic is indicated,

as in figure 3.7, by specifying an encoding attribute. In the example, A records are

defined as having a string field, x, where the values of x always have the same

length.3 Another record, B, contains an A record as one of its fields and modifies

the attributes for the length of the x sub-component to specify that in the particular

context of B.a values, the values “mostly” have the same length (see section B.1.1

for details on the constant and default strategies).

3string, data, and array types have an implicit length sub-field. A modifier may also be applied
to the base type of an array by referring to its element field.
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record A {

string x;

~x.length <encoding:"constant">; // all same length

}

record B {

A a;

~a.x.length <encoding:"default">; // most same length

}

Figure 3.7: Relative modifiers

Modifiers can only be applied to attributes, and not to labels and descriptions.

The reasoning is that labels and descriptions are fixed concepts that do not vary with

context, while other attributes may require refinement based on context.

3.3.6 Inheritance

Step-DL supports inheritance from a single parent type with the use of the familiar

extends keyword. Figure 3.8 illustrates a simple example where the type B derives

from A, inheriting the field x and adding a new field y.

Type inheritance is supported because it is a familiar and established method

for promoting reuse. It also has the secondary benefit of allowing the records to be

arranged into hierarchical groupings which are often useful for accounting purposes.

An important consequence of supporting inheritance is that it allows traces to be

extended without breaking existing tools. For example, a Class record might initially

be defined with only a name field. The record could then later be extended to include

information such as the size of its instances, the interfaces it implements and/or a

variety of other information. By deriving the new, extended version of the record (vs.

creating a completely new definition), a tool designed to read the original record type
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record A {

int x;

}

record B extends A {

int y;

}

Figure 3.8: Simple inheritance

would still function, accepting the new extended type in its place.

It is often useful to view attributes as analogous to methods from other object-

oriented systems. In essence, they dictate ways (methods) in which the record data

might be used. The encoding attributes, for example, provide rules for assembling a

functor object (i.e., an encoder) to be applied to instances of the type. The property

attribute group supplies more nebulous information, but still acts to define how the

data might be used. With this analogy in mind, it is then natural to see why at-

tributes might share the same notions of inheritance that methods do: what applies

to the parent version should, in most cases, also apply to the child, however there are

exceptions which may require a slight modification (in the case of attributes, the act of

extension) or a complete redefinition (in the case of attributes, overriding). Figure 3.9

illustrates the various Step-DL modifier operators in the context of inheritance. In

the case of the B type, both record attributes and field attributes for the x field are

inherited from A. For C records, the ‘!’ operator included in the extends expression

discards the record attributes normally inherited from A. A second override modifier

is used to discard and update the attributes associated with the x field.
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record A {

<g:"record attribute for A">

int x <g:"field attribute for A.x">;

}

record B extends A {

// inherit: <g:"record attribute for A">

// inherit: x <g:"field attribute for A.x">

~x <g:"extend x’s attributes">;

}

record C extends !A {

// do not inherit: <g:"record attribute for A">

// inherit: x <g:"field attribute for A.x">

!x <g:"override x’s attributes">;

}

Figure 3.9: Inheritance of attributes
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3.4 Semantic Issues

Although Step-DL is not a programming language, there are still several semantic

issues that influence the resulting translations of the definitions. For the most part,

the significant issues result from the ordering of various elements. Records may appear

in any order in a Step-DL file, however the order in which they are parsed does have

consequences for the type resolution process, described in chapter 4. The ordering of

fields within a definition has ramifications in that the generated Java class definitions

define equality, hash-code and iteration methods that operate on the fields in the

order of their definition (i.e., top down, with inherited fields first).

The semantics of attribute ordering are more subtle. As with fields, there is

an implied linearity to the order of attributes. Attributes distributed from a field

type precede those that follow individual fields. Subsequent extensions append to the

previous list of attributes. However, as previously indicated, the meaning of attributes

technically lies in the definition of the particular group to which they belong. The

built-in encoding and property attributes define a top-down interpretation with

the most recent (bottom) value taking precedence. Having said that, some attribute

values, as is the case with encoding attributes, have non-overlapping semantics. A

review of section B.1 reveals how some attributes have a layered interpretation. In

such cases, a modifier may introduce a new dominant attribute in one layer that does

not affect the others.

Step-DL permits recursive type definitions. An example of why such a feature

might be useful can be drawn from the Java type system. A Class is a Type and so is

an Interface. Each Class may implement zero or more Interfaces and thus may

be represented as a Step record with an Interface[] field. Thus a Type (Class)

contains other Types, namely the Interfaces the type implements. In this case,

the recursive definition is acceptable since inheritance is a directed relation, thus the

record values should not directly or indirectly refer to themselves. Recursive type

definitions are problematic for Step only when they are used to instantiate data

values that actually contain circular references. Since there is no simple method for

detecting such values, they will cause the serialization process to continue expanding
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tag.width = 1;

size.width = 4;

size.interpretation = none;

address.width = 4;

address.interpretation = none;

alloc : (tag, size, address, vfield) {

tag.value = 4;

}

Figure 3.10: A simple MetaTF specification

sub-structures infinitely.

3.5 History

The current version of Step-DL is the result of many iterations. In particular the

approach to attributes went through a number of phases. Early on, the attributes

related purely to encoding issues and thus their syntax was more integrated with the

base language. As development proceeded, it became clear that attributes could be

used to automate (or at least explicitly document) the interface with other tools.

This led to the partitioning of attributes into groups, each with a specific purpose.

To place the syntax and features of Step-DL in some sort of context it is useful

to contrast the language with its primary influences, namely MetaTF and DAFT.

Figure 3.10 shows an example MetaTF definition, extracted from the DTD for

HATF and simplified somewhat. The example shows the definition for an alloc

record with four fields, tag, size, address, and vfield. The example highlights

MetaTF’s implicit typing, as well as a misleading attributing syntax that suggests

attributes are sub-fields. The typing is adjusted to be somewhat more explicit in
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filetype len_t = {

parameter n;

field Length[n] : double

<units=meters>;

}

filetype flen_t : len_t = {

field Length[n] : double

<units=feet>;

}

Figure 3.11: A simple DAFT specification

version 1.2 of MetaTF, however the use of fixed record tag values persists.

The DAFT language uses a significantly different syntax, which is illustrated in

figure 3.11. Since DAFT definitions equate a single record type with a file, the example

actually defines two file formats, where each record in the file is a fixed size array

of double values. Despite the limited focus of DAFT, the language does offer some

interesting features. It supports inheritance (one file type derives from another) and

a more familiar annotation syntax that uses the ‘<’ and ‘>’ symbols. One confusing

element of DAFT is the approach to overriding attributes. To override an attribute,

the field must be redefined in a sub-type with new attributes. A similar mechanism

was implemented in early versions of Step-DL, however it quickly became apparent

that such an approach led to definitions where it was unclear which elements were

inherited and which were being defined for the first time. To alleviate this problem,

the modifier syntax was introduced.

As depicted in figure 3.12, early versions of Step-DL bore a significant resem-

blance to DAFT definitions. In particular, the type is seen as following the name

of a field and the attribute syntax uses the ‘key=value’ form. One notable feature
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record Allocation {

type : identifier;

size : int <width=1>;

}

Figure 3.12: An early Step-DL specification

record Allocation {

string type <encoding:"identifier">;

int size <encoding:"size=1">;

}

Figure 3.13: A modern Step-DL definition

of early Step-DL is the existence of an identifier type. The identifier strategy

(discussed in several subsequent sections) was prevalent enough in early experiments

to suggest that it form a separate type. However, once the separation of structure

from interpretation was refined, it was clear that the “identifier” characteristic was

independent of the type.

Contrasting the Allocation record defined in figure 3.12 with a more modern

expression in Step-DL illustrates the clear partitioning of encoding information into

explicit annotations.
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Chapter 4

The stepc Compiler

The stepc compiler provides a mechanism for processing Step-DL definitions.

The current version is capable of parsing the definitions, validating certain built-

in attributes and generating output in the form of Java class definitions suitable

for interfacing with the Step encoding system. The discussion that follows focuses

primarily on the internal representation (IR) for Step types and how this internal

form is initially generated and subsequently regenerated from the compiler outputs.

While an understanding of the run-time representation of Step types is helpful for

understanding elements of the Step-DL language and Step encoding architecture,

it is not an essential part of the presentation of Step. The material presented in this

chapter will, however, be of interest to those who wish to create extensions to the

encoding architecture or extensions that define and utilize new attribute categories.

4.1 Goals

The stepc compiler exists as a platform for working with type representations spec-

ified in Step-DL. The aim is to provide a modular solution where the aspects of

the compilation process (parsing, IR construction, validation, and output) operate

reasonably independently. Clearly, the primary goal is to have a method for generat-

ing elements to interface with the Step encoding system however, the hope is that
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the design of stepc will also open the door to a variety of extensions for processing

Step-DL definitions.

4.2 Approach

A Step-DL input stream is processed by creating a compiler object that completes

the parsing of the input and builds the intermediate type representations. Once the

resolution of the types is complete, a series of attribute verifiers can be applied to the

definitions, followed by a series of emitters that generate output from the definitions.

The mechanism for representing (and creating) type objects in stepc is the same

one used to create the definitions within the run-time environment in which Step

records are instantiated. The reason for using the same representation is that the

definitions remain compatible: information available at compile-time is also available

at run-time.

4.3 Step-DL → Intermediate Form

Generating the intermediate, object representation of Step-DL record definitions

with stepc proceeds in four phases:

1. The input Step-DL files are parsed to generate an abstract syntax tree (AST)

representation of the input.

2. Skeleton type structures are built from the AST representation.

3. The type structures are resolved in two sub-phases. The first resolves structural

information such as the existence of referenced types and inherited field infor-

mation for derived types. The second sub-phase applies the attribute modifier

statements to complete the set of attributes associated with various elements.

4. For attribute groups that are known to the compiler, the resolved definitions

are checked to ensure valid attribute values.
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Each of the four phases is applied to the set of input files in sequence. Types defined,

resolved and validated from earlier inputs persist in the run-time environment and

thus may be referenced (without definition) in subsequent input files.

4.3.1 Parsing Step-DL

The first phase in the compilation of Step-DL files involves parsing the input to

create an AST representation of the definitions. The parsing mechanism used in

stepc is generated using the SableCC [Gag98] compiler generator tool. The tool

generates Java classes for scanning and parsing a given syntax and also provides

skeleton methods for traversing the subsequent ASTs using the visitor design pattern.

4.3.2 Building Step Record Definitions

Once an AST has been created for a given input file, the stepc compiler then tra-

verses the tree constructing object representations of the Step record definitions.

Step’s internal type representations are conceptually similar to Java’s Class objects

in that they contain an abstraction of the type as various field and attribute objects.

The reason for creating object representations of the record types is twofold. First,

they serve as a useful intermediate form that various back-ends of the stepc compiler

can query to generate output. The second role of the object type definitions is their

use in the run-time generation of elements for processing Step records. In particu-

lar, the encapsulated encoder objects (described in chapter 5) are generated, not at

compile-time, but on-demand as various records are passed to the encoding system.

The encoders are created by inspecting a definition object that is equivalent to the

one generated at compile-time. The definition object is recreated in the run-time en-

vironment by code that accompanies the Java source output for the type definition.

This process is best illustrated with a simple example.

Figure 4.1 presents a simplified Step-DL definition for JVMPI method entry

events (one extracted from those presented in section C.1). In the second processing

phase of stepc, a variant of the builder pattern is used to assemble type objects by

traversing the AST and adding elements to the definitions as they are encountered.
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package jvmpi {

record METHOD_ENTRY2 "Method Entry" extends MethodEvent {

int <property:"address"><encoding:"size=4">

targetObjId "Target Object Address";

~targetObjId <encoding:"cache=65536">;

}

}

Figure 4.1: Step-DL for a method-use record

...

DEFINITION = RecordDef.builder().newRecordDef("METHOD_ENTRY2", "jvmpi")

.setParent("jvmpi.MethodEvent", false)

.setLabel("Method Entry")

.addField(FieldDef.builder().newFieldDef("targetObjId", "step.StepInt")

.addDescriptionLine("Target Object Address")

.addAttribute(new Attribute("property", "address"))

.addAttribute(new Attribute("encoding", "size=4"))

.addAttribute(new Attribute("encoding", "cache=65536"))

.makeFieldDef())

.makeRecordDef();

...

Figure 4.2: Java code for building an internal Step type definition
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An equivalent sequence of build operations can then be distilled from the completed

type and included in the generated Java output for the type. A segment of the out-

put Java code for building a representation of METHOD ENTRY2 records is illustrated in

figure 4.2. The sequence of construction operations (newRecordDef(), setParent(),

addField(), etc.) acts on a builder object (the singleton RecordDef.builder()), ap-

pending various items to the current build state. When all the necessary elements have

been set/added the builder combines the information to create a new definition ob-

ject. The example also shows the use of a subordinate builder (FieldDef.builder())

to create individual field definitions. One step in the build process that is not shown

in figure 4.2 is the addition of modifiers (such as the one that modifies targetObjId

in the example). Local modifications are expanded by stepc, and thus only modifi-

cations to inherited fields or sub-fields appear in the generated Java output.

Note that newly constructed type definitions only have indirect references to other

types; specifically, the parent and field types are referenced only by name.

4.3.3 Resolving Type Information

After the traversal of the AST and construction of the skeleton type definitions, stepc

assumes that all the necessary type information has been loaded and then proceeds

to resolve the dangling references alluded to in the previous section. The resolution

phase iterates over the definition objects, completing their type information in two

steps. The first resolves references to other types, ensuring that fields have types that

are defined, and in the case of derived records importing the inherited attribute and

field structures. The second resolution step applies the various modifiers included in

the original Step-DL definition.

Types are resolved by stepc roughly in the order that they were defined in the

Step-DL input. Out-of-order resolutions arise from two requirements. First, in the

case of derived types, it is necessary for the parent type to be complete prior to

importing the inherited structures. Thus, if a derived type precedes its parent in the

input, the parent will be resolved on-demand before the derived type. The second

case where a type may be resolved on-demand occurs in the application of relative
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record A {

B b;

~b.x <encoding:"size=1..">;

}

record B {

int x <encoding:"size=1+">;

}

Figure 4.3: A field that requires an alternate type definition

modifiers (see section 3.3.5).

Figure 4.3 illustrates a situation where a relative modifier leads to on-demand

resolution. In the example, the modifier applies to a sub-component of the b field,

thus a complete definition of the B type is needed to interpret the modification. Since

the definition for B follows after A, it is resolved ahead-of-time during the resolution

of A.

The example also provides an introduction to the concept of alternate type def-

initions. Without the modifier, the definition of A’s b field would simply require a

reference to the B type. However, the inclusion of a relative modifier requires that the

field be defined in terms of a refined version of the B record type. To implement the

refinement, the definition of b to refers to an alternate version of the B type, where

the x field is extended to include the additional <encoding:"size=1.."> attribute.

The alternate type definition is created by copying the definition of B and adding the

extra attribute to the copy’s x field.

4.3.4 Attribute Verification

The fourth stage in the compilation of Step-DL definitions provides developers with

an opportunity to support verification of the content of various attribute values. The
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current version of stepc only checks encoding attributes, essentially ensuring that

the values are syntactically valid (according to the definitions in section B.1) and that

they are applied to the correct types of fields.

4.4 Compilation Errors

Errors in Step-DL definitions that stepc is capable of detecting can essentially be

divided into categories that follow the four phases of compilation. The error messages

that are produced follow the SableCC approach of specifying the location of the error

with a line number and offset (e.g., [3,12] expecting: ’;’). Parse errors and

those that occur during the building of the type object (e.g., redefinition of a local

field) can often be associated with a specific location, whereas errors in the resolution

and attribute verification phases are associated with a given type definition, and

thus identified by the start of the corresponding Step-DL record definition. Some

example error messages and their interpretation are presented in table 4.1.

4.4.1 Circular Dependency Errors

The multi-phase type resolution in stepc provides the flexibility needed for defin-

ing directly and indirectly recursive types. However, as a byproduct, this flexibility

also creates the potential for circular dependency errors. Examples of the two kinds

of circular dependencies are illustrated in figure 4.4. The first error is common to

all languages that support type inheritance, namely that a type cannot derive from

itself. The second error is specific to Step-DL. The problem occurs in recursive types

when a relative field modifier is applied to a sub-component of the type, where the

sub-component has the same type as that being resolved. In the example, the type C

has a field d of type D which in turn has a sub-component c of type C. To apply the

modifier !d.c during the resolution of C, it is necessary to have a complete definition

for the type of d, namely D. However, resolving D results in a similar dependence on

C, completing the cycle and preventing the resolution of either type. These examples

are rather trivial, but it is reasonable to think a larger and more complex definition
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Error Message Description

Unknown token: é Lexical Error: The character ‘é’ is not al-
lowed in Step-DL

expecting: ’;’ Parse Error: The statement requires a termi-
nating ‘;’

redefinition of type "T" Semantic Error: The record type T was al-
ready defined earlier

parent type "T" is undefined Semantic Error: A record is defined as in-
heriting from a non-existent type named T

redefinition of field "f" Semantic Error: A field named f was already
defined in the current or parent record

the type of field "f" (T) is

undefined

Semantic Error: The type T is not defined,
thus f cannot be defined as being of type T

can’t modify field "f", it is

not defined for "T" types

Semantic Error: A modifier (‘~’ or ‘!’) was
applied to a field that is not defined in the cur-
rent or parent record

circular inheritance; "T"

derives from itself

Semantic Error: Type T is defined by inher-
iting directly or indirectly from itself

circular dependency detected Semantic Error: A modifier requires the
complete definition of the current type (which
is impossible without the completed modifier)

field "f" has illegal encoding

attribute: "size = -1"

Attribute Error: The attribute value is un-
known or incorrect for the encoding group

Table 4.1: Interpreting stepc compile errors
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record A extends B {

}

record B extends A {

}

(a) Circular inheritance

record C {

D d; !d.c;

}

record D {

C c; !c.d;

}

(b) Circular relative modifiers

Figure 4.4: Circular type dependencies
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hierarchy could contain such errors through several levels of indirection.

4.5 Generated Java Output

The Java class definitions generated from the internal type representation are rea-

sonably simple. Code for recreating the definition object is included in the static

initializer of the class. Various instance methods are generated for iterating over a

record’s fields, comparing two records for equality, and computing a hash-code for the

record. The equality and hash-code methods are necessary for records to be compat-

ible with the identifier strategy. Finally, since the encoding engine must be able to

create instances of the records without directly invoking a specific constructor, the

Java output includes an inner factory class that can be used to instantiate records

from a set of field data.

Java output for the METHOD ENTRY2 record defined in figure 4.1 would appear as

follows:

package jvmpi;

import step.*;
import step.typedef.*;

public class METHOD_ENTRY2 extends jvmpi.MethodEvent
{
public static final RecordDef DEFINITION;

static
{
DEFINITION = RecordDef.builder().newRecordDef("METHOD_ENTRY2", "jvmpi")
.setParent("jvmpi.MethodEvent", false)
.setLabel("Method Entry")
.addField(FieldDef.builder().newFieldDef("targetObjId", "step.StepInt")
.addDescriptionLine("Target Object Address")
.addAttribute(new Attribute("property", "address"))
.addAttribute(new Attribute("encoding", "size=4"))
.addAttribute(new Attribute("encoding", "cache=65536"))
.makeFieldDef())

.setFactory(new Factory())

.makeRecordDef();
}
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public StepInt targetObjId;

public METHOD_ENTRY2(StepInt envId, StepInt methodId, StepInt targetObjId)
{
super(envId, methodId);
this.targetObjId = targetObjId;

}

public FieldIterator fieldIterator()
{
StepObject[] fields = { envId, methodId, targetObjId };
return new FieldIterator(fields);

}

public boolean equals(Object o)
{
METHOD_ENTRY2 rhs = (METHOD_ENTRY2) o;
return envId.equals(rhs.envId)&&methodId.equals(rhs.methodId)&&

targetObjId.equals(rhs.targetObjId);
}

public int hashCode()
{
return envId.hashCode()+methodId.hashCode()+targetObjId.hashCode();

}

private static class Factory implements RecordFactory
{
public StepRecord newRecord(StepObject[] fieldData)
{
return new METHOD_ENTRY2(

(StepInt) fieldData[0],
(StepInt) fieldData[1],
(StepInt) fieldData[2]

);
}

}
}

44



Chapter 5

Encoding Architecture

Chapters 3 and 4 established how to define trace data records and create the type

structures associated with the records. This chapter focuses on the main function

of Step, namely encoding a stream of such records in a compact file format. The

discussion reveals the inner workings of the central portion of figure 1.1, detailing

how the run-time record definitions are used to create modular, adaptive encoding

policies for each data element. Some of the subtleties of the approach are described

including how so-called meta-data regarding the encoding process is embedded in the

output stream, and how dynamic polymorphism is handled by the encoding policies.

Several common adaptive compaction strategies are discussed and a classification of

the various techniques is presented. The chapter concludes with a discussion that

touches on some of the other design factors that influenced the particular approach

of Step.

5.1 Goals

The primary goal of the encoding engine is to embody a method that, in most cases,

produces an encoding that is significantly more compact than a näıve serialization

of the data. This goal must be balanced against the need to provide a solution that

is efficient both in the time and memory needed to encode a trace. Specifically, the

approach should be constrained to operate in linear time, O(n), and use a bounded,
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O(1), amount of memory, both with respect to the input trace size. Furthermore, an

effective (or at least desirable) solution should also provide an open, flexible architec-

ture that makes few assumptions about the forms of data to encode and the strategies

used to implement the encoding. Finally, to address the portability requirement, both

the encoding system and format should be compatible with various platforms.

5.2 Approach

The wealth of tracing research highlighted in chapter 2 indicates that trace data

is highly compactible. Experience has demonstrated that the compactibility is due

to patterns and redundancy that exist on two levels: in the instances values of a

particular record type and in the sequence of records within a given data stream.

The philosophy of the Step encoding system is to attack the first form of patterns

and redundancy, striving for a near-optimal byte-level encoding of record values. The

compression of record sequences is deferred to an established tool such as gzip [GAF]

or bzip2 [Sew]. This approach requires special attention to ensure that the record

reductions achieved by the Step encoding system do not adversely affect the overall

compaction of traces when combined with sequence compression techniques. The

discussion of such issues is continued in section 5.4 and chapter 6.

To address the efficiency goals stated above, the encoding process operates in a sin-

gle pass, converting the input record stream directly to the binary format without any

buffering. To obtain an amortized reduction in the average size of records, the process

is implemented by creating encoder objects that encapsulate an encoding policy for a

particular type where the encoders adapt their policy based on the sequence of values

they encounter. The basic concept is illustrated in figure 5.2. OBJECT ALLOC records

(defined in figure 5.1) have a newObjId field that contain address values which are

likely to be steadily increasing by small increments. These values are passed through

a delta encoder object that outputs just the difference from the previous value. Policy

changes are included in the binary output stream in the form of meta-data, that is

“data about the encoded data.”

The mechanism that implements the encoding process is completely isolated from
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record OBJECT_ALLOC extends JVMPI_Event {

int arenaId;

int classId <property:"address"> <encoding:"size=4">;

int arrayType <property:"unsigned"><encoding:"size=1">;

int size <property:"unsigned">;

int newObjId <property:"address"> <encoding:"size=4">;

~classId <encoding:"identifier">;

~newObjId <encoding:"delta">;

}

Figure 5.1: Step-DL for an allocation record

newObjIdnewObjId

example.jvmpi.OBJECT_ALLOC.newObjId
Encoding Strategy for

delta

Input Records

STEP output

12401234

6

Figure 5.2: The encoding process
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StepRecordOutput stepOut = new StepEncodedOutput(file);

stepOut.write(new OBJECT_ALLOC(...));

(a) Producer

StepRecordInput stepIn = new StepEncodedInput(file);

StepRecord record = stepIn.readRecord();

(b) Consumer

Figure 5.3: The basic Step client interface

clients of the system. Figure 5.3 shows the only operations that clients need to be

aware of. Trace producers simply create an output stream and write objects to the

stream, while consumers just create an input stream an read records from it. The

run-time definitions associated with each record (mentioned in previous chapters) are

used internally by the encoding system to assemble the encoding policy objects based

on the encoding attributes associated with the original definition.

5.3 The Encoding Process

The contents of a Step data file begins with an identification and options header

which is followed by a series of [size][record] entries. The size, in bytes, of each

record is included so that record types that are unknown, or unavailable, during

the decoding process can simply be passed over. Each record entry begins with an

identification of the subsequent type, where the ID values for each type are assigned

automatically, and thus are not bounded or prone to conflict as in the MetaTF [CJZ00]

system.

One of the key differences between Step and other trace encoding systems is its

48



5.3. The Encoding Process

use of an adaptive encoding process. Instead of using a fixed encoding policy (or a dy-

namic policy with explicit changes, as is possible with MetaTF), the system monitors

various characteristics of the input data and, when appropriate, makes adjustments

to the encoding policy automatically. The process is implemented by associating each

record type with a separate encoder object. Each encoder encapsulates a policy for

translating values of the given type to and from the binary representation. Some en-

coders implement a direct translation, while others implement a more sophisticated

transformation based on properties of the underlying values. Encoders are arranged

to form a tree- or DAG-like hierarchy, with record encoders deferring to sub-encoders

to handle their various fields. The encoders are assembled, as needed at run-time, by

a factory object which queries the type definition for a record to get the policy basis

from the encoding attributes. As records are received by the system, the encoders

adjust their internal policy based on the parameters of their particular strategy, com-

municating their state changes in the form of meta-events. When the trace is decoded,

the meta-events are applied so as to recreate the same sequence of policy adjustments

made by the encoding process.

Encapsulating the encoding policies inside independent objects provides a great

deal of flexibility. Encoders may be nested, chained or shared in a variety of ways

and their interface makes few assumptions about the data being encoded. The design

facilitates experimentation with encoding techniques, as new strategies can be added

with only minor modifications. Furthermore, if the definition for a particular trace

record is not available during the decoding process, the record is simply skipped with

no effect on the other encoders.

5.3.1 Meta-Events and Meta-Records

The term meta-data is generally used to refer to information about the content of

some underlying data stream. Using this definition, virtually all Step-DL attribute

information could be viewed as meta-data. However, with regards to Step, the term

is used to refer to information about changes in the encoding policy. This information

is transmitted in the form of meta-events, which are in turn packaged in meta-records.
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record A {

int[] x;

~x.element <encoding:"size=1+">;

}

Figure 5.4: A definition that causes meta-events

To understand the role of meta-events and meta-records in the Step data stream,

it is useful to consider a simple example. Suppose a record A is defined as in figure 5.4.

The definition indicates that the x field is an array of integers, where most of the values

are expected to require a single byte to encode but some larger deviants are allowed.

Consider then what happens when an A.x field holds the data [3, 10, 1, 13563,

2, 19]. In this case the first three values conform to the baseline policy (i.e., they

only require 1 byte to encode) however, the policy must be adjusted part way through

the encoding of x to account for the deviant value (the value 13563 requires 2 bytes

to encode).

The approach used in the initial version of the MetaTF system is to insert an

independent record ahead of the current one—in this example, the A record—that

expresses the policy adjustment. Thus, the decoding of A.x would be adjusted to

expect 2 byte values for all the array elements. It should be clear from the example

that such an approach results in policy changes that are often premature, excessive,

and depending on the type of adjustment, potentially even error-prone. Consider an

extension of the example. Suppose the A.x field also includes the value 78321, which

requires ≥ 3 bytes to encode. If meta information is automatically generated on-

demand and prepended to the current record, which change should apply? In what

order?

The Step approach to meta-data is designed to provide specific targeting of policy

adjustments. The basic idea is to introduce a new form of meta-record that bundles
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data: [3, 10, 1] [13563, 2, 19]

|

meta: [A.x.element, size:=2]

Figure 5.5: Data and meta-data

together both the policy change information and the particular data record that the

change applies to. The structure of meta-records is quite simple. The data record

is partitioned into sections, where the end of a partition indicates that a meta-event

(i.e., a policy adjustment) should be applied before continuing to decode the data.

To continue the example above, the A record would be packaged in a meta-record as

follows: The data is partitioned into 2 segments, one including the data for the x

field before the adjustment and a second with the data that follows immediately after

the adjustment. The meta-record also contains a meta-event record that specifies

the policy change, in this case that the next element of an A.x field is a 2-byte

value. Following the encoding strategy shown in figure 5.4, resizing adjustments of

A.x.element are elastic, and thus the policy promptly returns to using a single byte

encoding for the subsequent element values. Figure 5.5 illustrates the contents of the

meta-record.

This definition of meta-records allows several policy changes to be applied through-

out the decoding of a given record. The general property of meta-records is that for

n data segments, there are n − 1 meta-events to be applied between each partition.

The decoding of meta-records is implemented with a sort of buffer stack. When the

current data segment is exhausted, the next meta-event is immediately applied to the

current context.

The encoding and decoding of meta-records is complicated somewhat by the fact

that the meta-events are implemented as Step records themselves. This is useful since
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meta-events often contain data that can benefit from common encoding strategies such

as the identifier strategy (see section 5.4.4). However, the implication is that, in some

cases, one of the meta-data segments of a meta-record—normally a meta-event—can

actually be another embedded meta-record, which contains the meta-event and meta-

meta-data. The result is that the encoding engine must be structured to allow for

such, potentially recursive, record constructions. The implementation of the engine

accounts for this while maintaining a low-cost execution path for the common (i.e.,

non-recursive) case.

This design may seem excessive, however the benefits are twofold. First, by com-

bining data and meta-data into a single record, encoding policy changes can be tar-

geted at the exact byte position that the change is relevant, rather than at the coarse

record level. Second, using Step records to encode meta-events ensures that the

amortized size overhead of meta-data is minimized.

Common Meta-Event Types

The current Step implementation uses two kinds of meta-events. The first, and most

often used, is the IrregularValueEvent. Such events indicate that the next value

to be decoded is a deviation from those normally expected by the so-called regular

value strategies discussed in section 5.4. In this case, the decoder defers to some

baseline strategy to decode the value. The second, and more general, meta-event

is the EncoderMessageEvent. These events pass an arbitrary text message to the

decoder. In the example above, the message “size:=2” is passed to the decoder for

elements of A.x. In this particular case, the policy is elastic and thus the value size

returns to 1 immediately after decoding the deviant value.

5.3.2 Accounting for Polymorphism

The fact that Step allows inherited record types introduces some subtleties to the

encoding process that are necessary to handle the case when a derived type is used in

place of its parent. The issue is that sub-types must be correctly detected, indicated,
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record A {

int x <encoding:"size=1">;

}

record B extends A {

~x <encoding:"size=2">;

}

record C {

A a;

~a.x <encoding:"size=3">;

}

Figure 5.6: Conflicting modifiers

and encoded to prevent so-called object slicing.1 In other words, the decoding process

must have sufficient information to recreate the polymorphic data stream instead of

simply generating base-type versions of those that were encoded by the producer.

The presence of polymorphism thus requires that fields that are record types

themselves must be encoded with an additional, hidden sub-field that indicates the

exact type of each instance value. To minimize the added overhead of identifying the

type of each field, encoding strategies are applied to the type values according to one of

three variants: the fields are indicated as definitely monomorphic, rarely polymorphic,

or often polymorphic. The encoding attributes for these variants are described in

section B.1.4. The root encoder for all records uses the polymorphic variant, whereas

the default strategy for other record fields is to use the rarely polymorphic version.2

1Object slicing occurs when an object is copied or exported through a reference that views the
object as one of its parent types. In such cases, fields that are not defined in the parent get lost (or
sliced) during the copy process.

2In the common case were fields are never polymorphic, the overhead of the “rarely polymorphic”
encoding is essentially nil.
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One particular difficulty with polymorphism arises when there is a conflict between

attribute extensions. Figure 5.6 illustrates a situation where a modifier that applies

to an inherited field conflicts with a relative modifier. If a B record is used in place of

an A for the C.a field, the modifiers applied to the x sub-field differ on how to encode

the values. Specifically, it is unclear which of the “size=2” or “size=3” rules should

take precedence. To account for such discrepancies—which can only be detected

at run-time—the encoding system implements a mechanism for merging inherited

field attributes with relative modifier attributes, where the contextual modifications

take precedence (i.e., they follow) the inheritance modifications. The reasoning is

that when the rules disagree, the contextual modification is assumed to be the most

relevant.

5.4 Encoding Techniques

The strength of the Step system is that it permits a wide range of techniques for

reducing the average size of record data. Some of the strategies are based on simple

transformations, such as using a minimal number of bytes to encode integer values.

However, the most significant reductions can be attributed to strategies that exploit

certain “regularity” characteristics of the underlying values.

To be effective, these strategies must address two issues. First, there must be

a simple method for handling values that deviate from the expected pattern. The

Step encoding process addresses this issue with a solution based on the well known

decorator design pattern. Strategies are stacked one on top of another. When the

top of the stack encounters a deviant value, it simply defers to the next strategy

in the stack; the deviant value is signaled by an IrregularValueEvent meta-event.

Generally, strategies are arranged in two levels, one implementing a complex pattern-

based strategy and a second baseline rule to handle deviants. However, the design

permits essentially any form of multi-level reduction strategy. The second criteria

for effectiveness is that pattern-based reduction strategies must be designed and used

carefully so as not to introduce new complex data patterns that will frustrate aggre-

gate compression of the output data. Samples discusses this effect in his work on
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address trace reduction [Sam89]. For example, if address reference data are separated

into separate instruction-read, data-read, and data-write streams, each stream is in-

dividually more reducible than the whole. However, this separation requires a fourth

stream to identify the category of each reference. It turns out that this fourth stream

is highly incompressible, thus resulting in no overall benefit.

The current strategies implemented in the Step system fall into three main cate-

gories. Values are either removed entirely, reduced according to some computational

rule, or replaced by a smaller representative value. In addition to the descriptions

below, the strategies are also described in more detail in section B.1. Section 6.2.2

discusses the application of several of the following strategies to a collection of real

traces, and includes examples that express the strategies in Step-DL attributes.

5.4.1 Translation Rules

The basic translation rules implement a direct mapping of data values onto portable

byte encodings. The most significant are the various methods for encoding integer

data. Integers may be indicated as requiring a fixed number of bytes to encode,

where, in some cases, a meta-event can signal a permanent or elastic resizing. The

overhead of meta-data can often be avoided by using a variable sized encoding that

uses the high bit of each byte to indicate whether there are more bits to follow.

5.4.2 Removal Techniques

Some trace values are extremely repetitive. A good example are thread identifiers for

single-threaded programs. In this case, it is sufficient to encode the initial occurrence

of the value and then simply assume the same value for all subsequent occurrences—

thus effectively reducing the amortized encoding size to 0 bytes.

The ConstantValueStrategy encoder implements three versions of this approach.

The first assumes that the values are truly constant, encodes the initial value and

generates an error if any other value is given. The second approach is similar to the

first, but allows some deviant values, signalling the irregularity with a meta-event.

This is often the preferable version for data such as thread identifiers (given that the
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program is single-threaded) because, at least in the Java environment, some other

threads used by the virtual machine may still exist and generate a small number of

events. The last variant is useful for values that are comprised of long sequences of

repeats. Essentially, the default value is reset each time a new value is encountered.

These strategies are indicated in Step-DL as the encoding attributes “constant”,

“default”, and “repeat” respectively.

It is worth mentioning that another common trace reduction technique, run-length

encoding, is essentially a version of the repeat strategy. The idea is to encode the

number of repeats along with the initial value, so that changes in the default need

not be conveyed with meta-data. The reason Step does not currently implement

run-length encoding is that it would require look-ahead information. To compute

run-lengths, the encoder would need to either make two passes over the input or

implement a buffer where output records are suspended until the end of a run.

5.4.3 Computational Techniques

Computational reduction techniques can be summarized as those that exploit some

known formulaic pattern in the data sequence. In other words, the next value in

the input sequence can be reconstructed with knowledge of the previous values and

some piece of information that can be encoded with fewer bytes than the actual

value. This is a rather broad definition that actually includes the removal strategies

mentioned earlier. However, in the current Step implementation the definition is

most applicable to the arithmetic strategies known as delta and stride.

The delta strategy, often referred to in the literature as the difference technique,

is most useful for sequences of numeric values that exhibit an increasing or decreas-

ing pattern. The strategy works by computing the difference between the current

value and the previous value. If the absolute value of the difference is below a given

threshold then only the difference value is encoded, otherwise the value is considered

a deviant, signalled with a meta-event, and encoded with the baseline rule. The

difference technique has proven to be a particularly effective way to reduce address

values in both allocation and load/store traces. Furthermore, it appears that in
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many cases the difference values themselves exhibit a high degree of regularity. For

example, load/store addresses increase or decrease in multiples of 4 (on a 32-bit archi-

tecture), whereas allocators often proceed sequentially through free-space, producing

a number of common object sizes. The difference technique is the primary reduction

strategy used by both Mache [Sam89] and PDATS [JHBZ01] and is also used in the

HATF [CJZ00] format.

Another arithmetic technique is the stride strategy. The stride strategy is, es-

sentially, a version of the difference technique where the delta values are constant.

As with the other constant value strategies, only the initial value is encoded and all

subsequent values are computed by simply adding the fixed increment to the previous

value.

5.4.4 Substitution Techniques

Substitution techniques apply when a more compact representative can be output

instead of the complete value. The two examples implemented in Step are numeric

offsets and ID substitutes.

The offset strategy outputs the difference between a value and a given fixed base.

The window strategy is an adaptive variant of the offset strategy where the base is

shifted whenever the difference exceeds a given threshold. The two variants of the

offset strategy are often useful for encoding address values when no other strategy

applies. For example, the window strategy may be a good choice for encoding the

addresses of garbage collected objects. In this case, the values are unlikely to exhibit

any particular pattern, however it is likely that the collector will reclaim dead objects

in the same memory region at roughly the same time.

One encoding strategy, in particular, has a significant effect on the compactness

and compressibility of Step traces. The strategy arose from an early observation

that traces often contained fields that are limited to a certain fixed set of values. In

many examples, the values are text identifiers used to label various entities (methods,

types, threads, etc.). Clearly it is wasteful to store the full representation of such

values (e.g. “spec.benchmarks. 213 javac.UnsignedShiftRightExpression” for
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a type field) in each record. Instead, the identifier strategy encodes the values using

a compact integer ID, signalling the mapping of value to ID with meta-events. The

current version of Step, extends this idea beyond string values to include arbitrary

field data that exhibit an identifier distribution. For example, JVMPI data uses an

address value to refer to class and method structures, but the number of distinct

values is often small enough that values can be indicated using 1 or 2 byte identifier

values.

In cases where the total number of distinct values is large and the actual values

are reasonably small (as is the case with address data), the identifier strategy can

begin to lose its effectiveness. However, if the distribution of values remains limited

within a given input window then the cache strategy may be a viable alternative.

The approach is similar to the identifier strategy in that values are indicated by their

cache slot ID. The current implementation of the cache strategy is rather basic, using

a simple rotational replacement policy, signalling replacements with a meta-event.

Not many forms of data are suited to the cache strategy, since frequent replace-

ments generate an unacceptable amount of meta-data. Samples encountered this ef-

fect in his initial attempts to use a caching strategy for his Mache encoder. Although

Samples abandoned the idea in favor of the much simpler (and apparently equally

effective) difference technique, caching remains useful for some pernicious forms of

data such as the target object address for virtual dispatch calls.

5.5 Other Framework Design Factors

Like the approach of Haines et al. [HMVR95], the Step system is designed to embody

the major elements of Booch’s definition [Boo94] of an object model : abstraction (data

objects appear uniform, while they exhibit variable encoding), encapsulation (clients

are isolated from the encoding process), modularity and hierarchy (interpretation

strategies are modular and composable; record types are extensible). The system

also embodies some minor elements including typing, and persistence.

Also, an attempt is made to implement the system using a number of common

object-oriented design patterns. Constructional approaches such as the factory and
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builder patterns are used to create encoder and type definition objects, respectively.

The adaptive encoding policy objects are a clear instance of the strategy pattern.

The hierarchy of encoders is enabled through the use of the composite and decorator

patterns.
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Chapter 6

Experiences

The preceding chapters have addressed a number of the requirements for a gen-

eral trace encoding system established in section 1.2. This chapter completes the

discussion by illustrating how Step addresses its primary objective, namely to gen-

erate compact trace representations. The presentation considers the application of

Step to encoding a variety of trace data collected from a number of different Java

programs. The results indicate that Step encodings are significantly more compact

than näıve alternatives, and also that in many case the compressibility of the data

is improved when encoded in the Step format. The chapter concludes with a brief

discussion of applications that have been developed to consume Step data.

6.1 Trace Collection

In total, 8 Java programs were used as a source of trace data. They are summarized

in table 6.1. The first six are from the standard SPECjvm98 [SPEC98] suite of

benchmarks and the last two are adapted from programs included in the Ashes [VRSa]

suite of programs. Appendix D offers a slightly more detailed description of the

programs, and in some cases their input.

Three different trace groups were collected to provide a range of data values. The

first two were collected through the Java Virtual Machine Profiler Interface [Sun] by

writing the records out verbatim and then converting the raw data format to a Step
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program description

compress Lempel-Ziv compression program

jess the Java Expert Shell System

db database simulation

javac Sun’s Java compiler from JDK 1.0.2.

mpegaudio MP3 audio decoder

mtrt multi-threaded raytrace program

jack parser generator

sablecc object-oriented compiler compiler

soot Java bytecode transformation framework

Table 6.1: Traced Java programs

encoding. The third set of traces was collected by instrumenting the application

bytecode with the Soot tool [VR00] where the instrumentation wrote the events

directly in the Step format. The number of events collected from each program is

summarized in table 6.2.

The first set of traces (subsequently referred to as the “memory” set) consists of

heap allocation and free events, garbage collection start and stop events, and class

load events. The memory traces provide a heterogeneous mix of records that consist

mostly of integer data. Two of the traces (compress and mpegaudio) have relatively

few allocations and thus are given separate treatment in some of the analyses.

The second set of traces (subsequently referred to as the “method” set) consists

of method usage events and class load events. The method traces provide large and

mostly homogeneous event sequences that permit a statistically meaningful discussion

of the average record reduction achieved by the Step encoding. The traces from

compress, mtrt, sablecc, and soot were truncated due to limitations of the JVMPI

profiling agent.

The third set of traces (subsequently referred to as the “invoke/field” set) consists

of invoke (vs. dispatch receiver) and field access events for only the application classes

in the benchmarks (i.e., events from the standard library classes are not included).
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program total events

memory method invoke/field

compress 20669 165170511 100000000

jess 15889150 96347193 100000000

db 6428666 117540344 100000000

javac 12743801 94254338 100000000

mpegaudio 26946 99511817 100000000

mtrt 13303965 165169490 100000000

jack 11962806 58057376 76468069

sablecc 66705675 165159324 100000000

soot 29412399 165143277 59416025

Table 6.2: Trace event summaries

The invoke/field traces supply a highly regular, heterogenous sequence of text-based

events. In most cases the traces are truncated after encountering 100 million events.

The soot run is an exception since the benchmark prematurely terminates (after

roughly 50% execution) due to a virtual machine error not encountered during the

JVMPI runs.

6.2 Encoding

To begin with it is useful to relate the Step encoding format to other more näıve

encodings. Figures 6.1 and 6.2 relate the size of Step trace files for the memory

and method traces to versions that simply record the data in a raw format with no

attempt at reduction. The raw format consists of standard JVMPI event structures

encoded verbatim (i.e., 4 bytes for an integer, etc.), using a single byte to indicate

the event type. On average the Step format achieves a better that 50% reduction in

total trace size. Another perspective, illustrated in figures 6.3 and 6.4, considers the

average number of bytes per record (bpr) used by the encoding. The Step encoding

similarly reduces the average record size to less than half of that required by the
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Raw Format STEP Format
jess 257.92 92.5 compress
db 104.53 36.83 jess
javac 206.19 71.17 db
mtrt 215.87 80 javac
jack 194.3 64.7 mpegaudio
sablecc 1086.72 377.24 mtrt
soot 487.87 168.57 jack

sablecc
soot

jess 46.82 35.99 6.98 2.25 compress
db 14.68 4.55 0.52 0.26 jess
javac 39.59 31.36 7.87 3.59 db
mtrt 36.33 23.91 2.5 1.07 javac
jack 35.08 27.86 5.27 2.08 mpegaudio
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Figure 6.1: Memory trace sizes

Raw Format STEP Format
2048 945.36

1194.8 544.38
1457.49 650.81
1168.92 564.08

1234 568.51
2048 1065.46

720.06 317.89
2048 946.16
2048 1027.67

23.99 7.95 16.7 7.61
95.31 57.23 81.51 62.68

215.07 156.62 169.99 143.69
105.18 67.83 87.29 72.8

26.5 7.33 19.19 5.2

gzip Raw bzip2 Raw gzip STEP bzip2 STEPcompress jess db javac mpegaudio mtrt jack sablecc soot
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Raw Format STEP Format

Si
ze

 in
 M

B

compress jess db javac mpegaudio mtrt jack sablecc soot
0

40

80

120

160

200

240

280

gzip Raw bzip2 Raw gzip STEP bzip2 STEP

Si
ze

 in
 M

B

Figure 6.2: Method trace sizes
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Raw Format STEP Format
compress 32.56 18.44 compress
jess 17.02 6.1 jess
db 17.05 6.01 db
javac 16.97 5.86 javac
mpegaudio 30.53 16.21 mpegaudio
mtrt 17.01 6.31 mtrt
jack 17.03 5.67 jack
sablecc 17.08 5.93 sablecc
soot 17.39 6.01 soot
average 20.29 8.5 average
significant 17.08 5.93
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Figure 6.3: Memory trace bpr rates
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Figure 6.4: Method trace bpr rates
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raw format. The results for the method traces also indicate that the Step encoding

actually does achieve a nearly optimal byte-level encoding of 6 bytes per record (vs.

13 bpr for the raw format). The encoding is near-optimal in the sense that method-

use events, which comprise on average 99% of the data, are composed of five values

(record size, record type, thread, method, and target object), where the method ID

values require 2 bytes to encode since there are often well over 256 different values.

Since the invoke/field traces were encoded directly in the Step format, an alter-

nate comparison considered a conversion of the traces to a text version of the records.

Although the text record format was engineered to be reasonably concise, the fre-

quent occurrence of large text (string) field values resulted in a striking contrast

when compared to the Step format. On average, the text encoding was nearly 40

times the size of the Step version, with an average record size of 205 bytes (vs. 5.2

bpr for the Step format). These results indicate that decision of Jones et al. to

modify version 1.2.1 of MetaTF [Jon01] to use text-based encoding should be called

into question when considering mostly text-based trace values.

6.2.1 Compression Results

After adjusting the encoding strategies to achieve a reasonably good byte-level encod-

ing of the Step records, the resulting traces were then compressed using the standard

gzip [GAF] and bzip2 [Sew] tools, which are freely available for most UNIX plat-

forms. The compressibility of the traces is summarized in table 6.3. Compressibility

is expressed as a percentage of the original size of the Step encoding. There are

several elements to note in the results. First, the small number of allocations in the

compress and mpegaudio benchmarks skew the compression results for the memory

traces since the small traces are more biased by class loading events. Removing the

deviants results in average reductions to 6.44% with gzip and 2.64% with bzip2. The

variance in regularity of the method traces is highlighted by the range of compression

results, from db which is hard to compress to compress which is highly compressible.

The regularity introduced by eliminating library code events is prominent in the high

compressibility of the invoke/field traces.
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program compression ratios

memory method invoke/field

gzip bzip2 gzip bzip2 gzip bzip2

compress 28.86% 23.82% 1.77% 0.80% 0.97% 0.35%

jess 7.54% 2.43% 14.97% 11.51% 1.53% 0.40%

db 1.42% 0.71% 26.12% 22.08% 0.82% 0.24%

javac 11.06% 5.04% 15.48% 12.91% 4.11% 1.69%

mpegaudio 26.73% 21.74% 3.37% 0.91% 2.05% 1.02%

mtrt 3.13% 1.34% 19.22% 14.60% 7.88% 2.86%

jack 8.15% 3.21% 17.57% 14.74% 2.53% 0.78%

sablecc 2.56% 1.13% 1.95% 1.47% 0.66% 0.22%

soot 7.88% 3.33% 17.66% 14.67% 3.37% 0.92%

average 10.81% 6.97% 13.12% 10.41% 2.66% 0.94%

Table 6.3: Compression of Step traces

The results indicate that the block-sorting approach [BW94] of bzip2 often achieves

significantly better compression versus the Lempel-Ziv [ZL77] variant used by gzip.

However, it is worth noting that empirical observations suggest compressing with

bzip2 often takes an order of magnitude longer that gzip. On a dual AMD Athlon

2000MP system gzip required roughly 5–10 minutes to compress the traces whereas

bzip2 often required more than an hour. Thus there is a cost/benefit factor to be

considered when compressing traces.

Again, comparing the Step encodings to the raw encodings of the memory and

method traces, figures 6.5 and 6.6 show the relative sizes of the compressed raw

and Step traces. In the case of the memory traces, the results are quite dramatic.

For example, the gzipped, raw sablecc trace is 176MB, while the gzipped Step

version is just 9.6MB. These results are considered further in section 6.2.2. The

results are somewhat more variable for the method traces, but still, on average, are

an improvement over the näıve encoding. A measurement of the average number

bytes per record for the compressed traces is also presented in figures 6.7 and 6.8.
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Figure 6.5: Compressed memory trace sizes
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Figure 6.6: Compressed method trace sizes
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mtrt 2.86 1.88 0.2 0.08 mtrt
jack 3.08 2.44 0.46 0.18 jack
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Figure 6.7: Compressed memory trace bpr rates

1.56 0.95 1.3 0.99
1.16 0.78 1.01 0.85
0.25 0.11 0.12 0.09
1.35 0.94 1.15 0.96
0.99 0.63 0.81 0.64

compress jess db javac mpegaudio mtrt jack sablecc soot average
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

gzip Raw bzip2 Raw gzip STEP bzip2 STEP

By
te

s 
pe

r R
ec

or
d

Figure 6.8: Compressed method trace bpr rates
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6.2.2 Choosing Appropriate Strategies

Experience has demonstrated that an appropriate choice of encoding strategies can

have a significant impact on the both the average record size and the ultimate com-

pressibility of traces encoded with Step.

Improving Memory Trace Compaction

The memory traces provide an excellent opportunity to study the incremental effect

of various strategies. The content of the traces is dominated by the heap allocation

and free events, each comprising almost 50% of the data stream. All the records

have implicit size and type fields, and also share an explicit environment identifier

field (essentially the thread in which the event occurred). The allocation records

additionally have fields for the arena of allocation, the type allocated, whether or not

the allocation was an array, the size of the allocated object, and the address of the

newly allocated object. The free records have one additional field, namely the address

of the freed object. Step-DL for the allocation and free records is shown in figure

6.9.1 A series of four incremental improvements are applied to improve the encoding

of these fields. The reduction in the bytes per record of both the Step encodings

and the compressed Step encodings are summarized in figures 6.10 and 6.11. (Note,

only the traces with a significant number of allocations are considered.)

The baseline measurement considers a version with no intelligent encoding strate-

gies, just appropriate use of the basic integer encoding rules. Already, this encoding

offers a 3.5 bpr over the raw version and a 1 bpr improvement in the compressed

versions.

The first improvement applies the repeat strategy to the environment (thread)

identifier values. Since the traces are from single-threaded programs, the 4 bpr im-

provement is to be expected. The 4-byte address values used for the environment ID

are essentially eliminated from the trace.

The second improvement applies the identifier strategy to the class ID values in

1Some attributes and descriptions have been omitted for clarity. See section C.1 for the complete
listing.
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#define ADDRESS int <property:"address"><encoding:"size=4">

record JVMPI_Event

{

ADDRESS envId "Environment Identifier";

~envId <encoding:"repeat">; // improvement #1

}

record OBJECT_ALLOC "Object Allocation" extends JVMPI_Event

{

int arenaId;

ADDRESS classId;

int arrayType <property:"unsigned"><encoding:"size=1">;

int size <property:"unsigned">;

ADDRESS newObjId;

~classId <encoding:"identifier">; // improvement #2

~newObjId <encoding:"delta">; // improvement #4

}

record OBJECT_FREE "Object Free" extends JVMPI_Event

{

ADDRESS objId "Freed Object Address";

~objId <encoding:"window=8192">; // improvement #3

}

Figure 6.9: Step-DL for object allocation and free records
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Baseline Repeat Identifier Window Delta
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Figure 6.10: Memory trace encodings

the allocation records. The result is another 1.2 bpr improvement, which can actually

be read as 2.4 bpr for the allocation records since they comprise roughly half of the

stream. In other words, the original 4-byte class ID value (the address of the Java

class structure) only requires 1.6 bytes to encode, on average.

The third improvement applies the window strategy to the freed object address

field of object free records. The technique is surprisingly effective. The strategy used

a threshold that restricts the resulting offset values to be encodable in 2 bytes with

the variable size “creep” integer encoding (i.e., 2 × 7 usable bits, −1 for the sign

⇒ a threshold of 213 = 8192). The theory is that while the address of objects freed

by a Java garbage collector is unlikely to follow any specific pattern, a sweeping or

copying collector is likely to free objects in the same memory region at roughly the

same time. The conjecture pays off, reducing the encoding by 1 bpr (or 2 bpr for

the 50% of records that are free events), thus effectively achieving the desired 2-byte

maximum for the encoded version freed object addresses.
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Baseline Repeat Identifier Window Delta
1.98 1.87 1.85 1.6 0.46
2.29 2.16 2.15 1.9 0.65
2.11 2 1.97 1.73 0.46
1.97 1.87 1.81 1.26 0.15
2.18 2.06 2.05 1.75 0.47
2.11 1.99 1.96 1.65 0.44

Baseline Repeat Identifier
0.27 0.21 0.2
0.1 0.09 0.08

1.37 1.31 1.3
0.99 0.97 0.99

jess javac jack sablecc soot average
0

0.4

0.8

1.2

1.6

2

2.4

Baseline Repeat Identifier Window Delta

By
te

s 
pe

r R
ec

or
d

Mem .step.gz Mem .step.bz2 Meth .step.gz Meth .step.bz2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Baseline Repeat Identifier

By
te

s 
pe

r R
ec

or
d

Figure 6.11: Compressed memory trace encodings

The fourth and final improvement yields the most dramatic results. The delta

strategy is applied to the address values of newly allocated objects. The theory is

that an allocator is likely to proceed sequentially through memory allocating objects

at steadily increasing memory addresses. Again, the guess pays off and the average

record size decreases by another 1.4 bpr (2.8 bpr for allocation records). On its

own, the fact that the addresses can be represented with an average of 1.2 bytes is

a satisfying result. However the real benefit of the strategy is in the improvement

it introduces in the compressibility of the traces. Apparently the delta patterns

are significantly more regular than the underlying progression of new object address

values. This is an intuitive result since the delta essentially captures the size of the

new object (its offset from the last one allocated). A number of researchers have

remarked that there are often strong patterns in object allocations sizes.

While the first three improvements do not change any of the patterns in the record

values (as the delta strategy does in the fourth case), the speculation is that they still
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produce incremental improvements in the compressibility of the traces by allowing

more complete records to fit into the pattern space of a sequential compressor such

as gzip or bzip2. This notion is reinforced by the next set of results that consider

improvements to traces from the lone multi-threaded program.

Although the results for the memory traces are not directly comparable to those

presented for the HATF format [CJZ00], they do offer some opportunity for a rough

comparison with other trace encoding approaches. In both cases the traces are com-

posed of memory management events, and it seems reasonable to assume that alloca-

tion and free events dominate the traces in proportions similar to those seen in table

6.5. As with the Step format, the HATF traces also achieve a near-optimal byte-level

encoding. However, the strategies applied to the Step traces are clearly advantageous

with regards to compression, since the Step encodings are significantly more com-

pressible (with gzip ratios of 10.8%, or 6.4% omitting compress and mpegaudio for

the Step traces vs. 27–33% for the best HATF methods).

Improving Multi-Threaded Trace Compaction

As indicated in section C.1 all of the records used in the memory and method traces

derive from a base JVMPI Event type which has one field for the environment (thread)

in which the event occurred. For most of the benchmarks, this field is highly redun-

dant since the programs are single-threaded. On the other hand, the mtrt benchmark

is multi-threaded and warrants a different strategy for encoding the environment ID

than is used for the other programs.

Figures 6.12 and 6.13 exhibit two progressions in the encoding of the environment

ID field. First, as in the previous section, a baseline version of the encoding is

produced where the values are recorded verbatim as a 4-byte addresses. The next

version uses the repeat strategy in the same way that it is used for the single-threaded

traces. Surprisingly, there is reduction of 3 bpr in the Step encoding, suggesting that

while mtrt is multi-threaded, long sequences of events occur between context switches.

The second improvement applies the identifier strategy to the environment ID field,

a more natural choice given that there are only a few active threads in the program.

73



6.2. Encoding

Mem .step Meth .step
0

1

2

3

4

5

6

7

8

9

10

11

Baseline Repeat Identifier

By
te

s 
pe

r R
ec

or
d

Mem .step.gz Mem .step.bz2 Meth .step.gz Meth .step.bz2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Baseline Repeat Identifier

By
te

s 
pe

r R
ec

or
d

Figure 6.12: Multi-threaded trace encodings
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Figure 6.13: Compressed multi-threaded trace encodings
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The change leads to another, albeit small, reduction in the average record size.

The strategy changes also improve the compressibility of the traces, as indicated

in figure 6.13. The fact that method traces are slightly more compressible when

using the repeat strategy with bzip2 lends support to the proposal that squeezing

more records into a pattern buffer can result in better compression. The reasoning

is that the repeat strategy eliminates values whereas the identifier strategy compacts

them. Thus long sequences without any deviations from the default will locally have

a smaller average record size when using the repeat variant.

6.2.3 Overhead

Measuring the overhead of encoding Step traces is not as straightforward as measur-

ing the compactness and compressibility of the traces. However, during the process

of encoding the traces a number of informal attempts to monitor execution time,

memory use, and meta-data overhead were undertaken.

Encoding Time

Given the variations in hardware, software and system load that factor into the run-

ning time of a program, exact timing values are not particularly meaningful. Some

empirical observations suggest that converting the raw JVMPI data files to the Step

format requires roughly the same time as does compressing the traces with gzip. In

the case of the invoke/field traces, it appears that the actual encoding of the trace

data increases the execution time by a factor of 5 to 10 times.

Memory Requirements

As expected from the nature of the encoding strategies, the goal of using a bounded,

O(1), amount of space is apparently achieved. Table 6.4 indicates the average memory

load for decoding traces. The values are obtained by taking an average of the total

memory less free memory (after requesting garbage collection), measured at every

10000th record decoded. As the table shows, even decoding the large traces from

mtrt and soot (which exceed 1GB) requires less than 4MB of memory.
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program average memory use

memory method

compress 562.34 KB 2720.16 KB

jess 590.32 KB 3795.57 KB

db 562.30 KB 3703.10 KB

javac 688.93 KB 3936.27 KB

mpegaudio 582.41 KB 2790.49 KB

mtrt 573.10 KB 3731.25 KB

jack 570.49 KB 3777.67 KB

sablecc 670.03 KB 3895.02 KB

soot 767.08 KB 4051.07 KB

Table 6.4: Average memory overhead

program trace composition

memory method

meta-data object

allocation

object free meta-data method

enter

compress 4.2% 62.5% 31.6% < 0.1% 99.9%

jess 0.3% 49.9% 49.9% 0.6% 99.4%

db 0.1% 50.0% 49.9% 2.2% 97.8%

javac 0.3% 49.4% 50.2% 4.0% 96.0%

mpegaudio 2.6% 65.5% 30.6% < 0.1% 99.9%

mtrt 0.2% 49.9% 50.0% 1.0% 99.0%

jack 0.2% 49.9% 49.8% 0.9% 99.1%

sablecc 0.3% 50.3% 49.4% 0.2% 99.8%

soot 0.2% 52.2% 47.6% 6.1% 93.9%

Table 6.5: Meta-data overhead
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Impact of Meta-Data

Informal measurements,2 summarized in table 6.5, indicate that meta-data often com-

prise only a small fraction of the data stream. Some notable exceptions are the mem-

ory traces from compress and mpegaudio, where start-up effects are visible in the

small traces, and the method traces from javac and soot, where it is believed that

the cache strategy used for dispatch targets encounters frequent cache-misses (which

result in the generation of meta-events). However, even such poorly behaved traces

require no more than 6% of the output stream to be composed of meta-data.

6.3 Analyzing Trace Data

Step was originally developed as part of a larger framework for tracing and analyz-

ing Java programs. Two systems for visualizing trace data were designed to act as

consumer clients of Step.

EVolve [WWB+02] is a customizable event visualization system designed to reveal

a wide variety of trace patterns and characteristics. Figure 6.14 shows several graphs

generated with the tool based on trace data from a very simple Java application.

The Java Intermediate Language (JIL) [Eng02] was created to augment Java inter-

mediate representations with information from a number of static, compiler analyses.

The JIL representation was later extended to incorporate dynamic program charac-

teristics and present the data along side the relevant static results. A JIL document

browser called JIMPLEX is illustrated in figure 6.15. The display shows counts of

field and method use for a given class.

2The measurements do not account for the nesting of meta-data described in section 5.3.1. Thus,
the results over-estimate the proportion of meta-data since meta-data bytes may be counted multiple
times as meta-records are unpacked.
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Figure 6.14: Visualizing traces with EVolve
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Figure 6.15: Browsing program dynamics with JIMPLEX
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Chapter 7

Conclusion

7.1 Summary

This thesis has presented Step, a system designed to facilitate the definition, encod-

ing, and sharing of arbitrary program trace data. The system was motivated by the

need to capture the rich variety of events and behaviors exhibited by modern software

systems such as Java programs running on a Java Virtual Machine.

The approach uses a new and powerful trace data definition language, Step-DL,

that supports features such as type inheritance and generalized annotation. The

stepc compiler uses the trace definitions to generate Java class definitions for inter-

facing with the included encoding engine. The design of Step builds on a number

of existing approaches to provide a robust and effective solution for encoding general

trace data.

The utility of the system was evaluated by encoding a variety of trace data from a

range of well-known Java benchmark programs. The discussion considered both the

compactness and compressibility of the encoding, as well as the overhead of operating

the system.
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7.2 A Success?

The preceding chapters have illustrated how the design and implementation of Step

have addressed the requirements outlined section 1.2. The Step Definition Language

is capable of expressing a wide range of trace data types and the annotation features

of the language provide a structured method for documenting the data. The encoding

architecture that supports the language implements a flexible and portable file format,

and offers a simple input/output interface to clients by encapsulating the details of

the encoding process. Step-DL supports extensibility in the form of inheritance and

attribute refinement, while the encoding architecture uses modular encoding policies

to allow extension and experimentation with new reduction strategies. In combination

with standard compression tools, the encoding strategies included with the system

provide an efficient method for creating particularly compact trace representations.

In several examples, the compressed Step encodings were less than 1% of the size of

equivalent näıve encodings.

The Step system can be considered a success in the sense that it meets its design

goals of flexibility and interoperability while still producing an encoding format that is

competitive with other approaches, both in terms of bytes-per-record size and overall

compressibility.

7.3 Future Directions

Step was conceived as an openly extensible framework, and a variety of future en-

hancement possibilities exist. The Step-DL attribute partitioning described in chap-

ter 3 was specifically designed so that developers of trace production and consumption

tools could add their own attribute groups and extend the stepc compiler to generate

additional interface components. The current set of encoding strategies is effective but

by no means complete or optimal. The identifier and cache strategies could benefit

from more sophisticated implementations, and other refinements on the removal and

computational techniques would be a welcome addition. Finally, the most obvious

extension would be to integrate sequential compression as part of the Step encoding.
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A number of researchers have shown that the Sequitur hierarchical inference algo-

rithm is particularly well suited to compressing trace data. A space-restricted version

of the algorithm [NMW98] would be an excellent addition to Step.
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Appendix A

On-line Step Resources

Step is software made publicly available, at no cost, under the terms of the GNU

General Public License (version 2, or later). The source code for Step, compiled

Java binaries, javadoc API documentation, and other related documents (including

a copy of this thesis) are available from McGill University’s Sable Research Group at:

http://www.sable.mcgill.ca/step/.
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Appendix B

Step-DL Attribute Groups

B.1 encoding Attributes

The encoding attribute group is the most prominent and integral to the Step sys-

tem. The encoding techniques fall into 3 categories: general regularity strategies,

which may be applied to any data value; specific regularity strategies, which target a

particular data type; and simple, property based rules. The precedence of encoding

strategies is based on these three categories. First, the most recent general strategy is

applied. If an irregular value is encountered, the next available rule is used: either a

targeted strategy or basic rule. Again, if a targeted strategy encounters an irregular

value, it defers to the most recently defined basic rules. If no basic rule is given,

the encoder factory assigns certain default rules. When a strategy must defer to its

subordinate, the irregular value is indicated through the use of a meta-event record.

B.1.1 General Strategies

identifier

This strategy is applied when the values are expected to derive from a relatively

small, fixed distribution. As new values are encountered, they are written as

< value, ID > pairs. All subsequent occurrences of the value result in only the

ID being written to the trace. The decoder reads the IDs and converts them to
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values based on the initial mapping.

cache=size

The cache strategy is similar to the identifier approach. size values are kept in

a table. When a value’s equivalent exists in the table, only the table index is

encoded. New values are placed in the table on a rotational basis. Generally,

the cache strategy is only useful when the size of the value distribution is too

large for the identifier strategy to be effective.

constant

This strategy assumes that all values for the given field are the same. The value

is only written for the initial occurrence. If any subsequent value differs from

the initial value, an error is generated.

default

This strategy is similar the the constant strategy, but deviant values are allowed

and are signalled with meta-data. This strategy is effective for fields which

almost always have the same value.

repeat

The repeat strategy is similar to the default strategy, except that deviant values

change the base value. The strategy is useful for data with long repeating

sequences, or when the best default is not the initial value.

B.1.2 Integer Strategies

Integer (int) field values may be encoded using a variety of targeted strategies and

basic rules.

Targeted Strategies

delta | delta=threshold

This strategy assumes that values are arithmetically “close” to the previous

value, and only encodes the difference. In the case when a threshold is specified,
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absolute delta values greater than the threshold cause the deviant value to be

transmitted with a meta-event instead. This is a version of Samples’ difference

technique [Sam89]. The strategy is useful for data such as allocation addresses

where the values often exhibit a sequentially increasing pattern.

stride=increment

This strategy assumes that values occur with a regular increment from the

previous value. In such cases, nothing is written to the trace and the decoder

reconstructs the value from the previous value and the increment.

offset | offset=base

This strategy assumes that values are clustered about a given base value and

that it is more economical to transmit the difference from the base than the

absolute value. If no base is specified, the initial value is used as the base.

window=threshold

This strategy can be viewed as an adaptive version of the offset strategy. The

initial value is used as the base, and subsequent values are encoded as the offset

from the initial value. If the difference exceeds the given threshold, the base is

shifted.

Basic Rules

size=fixed | start.. | min+ | creep

The number of bytes used for an integer value (i.e., its size) can be defined in

a number of ways. The rule may state that values always use the same fixed

number of bytes. The rule may begin using a particular size, and then grow to

use more bytes as larger values are encountered. The resizing may be elastic,

in the case where values requiring more than the minimum are rare. Finally,

a variable size encoding may be used, where the high bit of each byte is used

to signal whether more bytes should be read. The default rule is to use the

variable size “creep” rule.
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signed | unsigned

Values that are always ≥ 0 are indicated as unsigned. The default is to as-

sume signed integer values. Unsigned values are also implied by the property

attributes “unsigned” and “address”, and is often omitted in favor of the

property version.

B.1.3 String Rules

String (string) types currently have just a single basic rule which states character

encoding of the string in bytes.

charset=UTF-8 | US-ASCII | ...

The encoding of string values parallels Java’s string encoding rules. The de-

fault rule is to encode values using the UTF-8 character set.

B.1.4 Record Rules

type=variable | default | constant

Since Step supports inheritance of record types, it is possible that sub-types

may be used in the place of a field’s defined type. To avoid object slicing, the

record encoder must indicate the type of the specific value. The strategy for

tagging the type of a record value assumes that either a) the types are uniform,

in which case the default or constant options are appropriate, or that b) a

number of different types are used, in which case the variable option (based

on the identifier strategy) is a better choice.

General Notes

• string, data and array objects write a length field when encoded. The length

encoding strategy may be adjusted with a relative modifier (e.g., ~x.length

<encoding:"default">).
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• The strategy for elements of an array field can also be changed by applying a

modifier to the element field.

B.2 property Attributes

B.2.1 Record Properties

event | entity

Step does not make an explicit distinction between records that represent an

event or those that are used as auxiliary structures to describe complex entities.

Indicating whether a record signifies and event or entity is useful for tools that

consume the trace data to distinguish the two forms.

B.2.2 Integer Properties

signed | unsigned

Values that are always ≥ 0 are indicated as unsigned. The default is to assume

signed integer values.

address

Address values imply the “unsigned” property and also indicate a memory

coordinate.

boolean

Values that should be converted to an appropriate boolean representation,

where non-zero ⇒ true and zero ⇒ false.
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Appendix C

Step-DL Examples

C.1 Step-DL Definitions for JVMPI Data

This section presents a listing of the Step-DL definitions used to encode the ‘method’

and ‘memory’ traces discussed in chapter 6. The definitions parallel the standard

JVMPI event record definitions.

#define ADDRESS int <property:"address"><encoding:"size=4">

package example {

package adapt {

record AdaptHeader {
int magic <property:"unsigned"><encoding:"size=4">;
data options;

}

}

package jvmpi {

record JVMPI_Event {
<property:"event">

ADDRESS envId "Environment Identifier";
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C.1. Step-DL Definitions for JVMPI Data

~envId <encoding:"repeat">; // nearly constant for single-threaded apps
//~envId <encoding:"identifer">; // variable for multi-threaded apps

}

record JVM_Entity {
<property:"entity">

}

record Method "JVM Method" extends JVM_Entity {
string methodName "Method Name";
string signature "Method Signature";
int startLine "First Source Line";
int endLine "Last Source Line";
ADDRESS methodId "Method Identifier";

}

record Field "JVM Field" extends JVM_Entity {
string fieldName "Field Name";
string signature "Field Signature";

}

record Thread "JVM Thread" extends JVM_Entity {
string threadName "Thread Name";
string group "Thread Group";
string parent "Parent Thread";
ADDRESS threadId "Thread Identifier";
ADDRESS threadEnvId "New Thread’s Environment Identifier";

}

// -- Definition Events ------------------------------------------------------

record ClassEvent extends JVMPI_Event {
ADDRESS classId "Class Identifier";

}

record CLASS_LOAD "Class Load" extends ClassEvent {
"a class was loaded into the VM"

string className "Class Name";
string source "Source File";
int numInterfaces;
Method[] methods;
Field[] staticFields, instanceFields;

}

record CLASS_UNLOAD "Class Unload" extends ClassEvent {
"a class was unloaded from the VM"

}
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// -- Memory Management ------------------------------------------------------

record OBJECT_ALLOC "Object Allocation" extends JVMPI_Event {
"an object was allocated on the heap"

int arenaId "Allocation Arena Identifier";
ADDRESS classId "Allocated Type Identifier";
int arrayType "Array Type" <property:"unsigned"><encoding:"size=1">;
int size "New Object Size" <property:"unsigned">;
ADDRESS newObjId "New Object Address";

~classId <encoding:"identifier">;
~newObjId <encoding:"delta">; // capture patterns in allocation size

}

record OBJECT_FREE "Object Free" extends JVMPI_Event {
"a heap object was freed"

ADDRESS objId "Freed Object Address";

~objId <encoding:"window=8192">; // gc freeing objects in nearby locations
}

record ArenaEvent extends JVMPI_Event {
int arenaId "Allocation Arena Identifier";

}

record ARENA_NEW "Arena New" extends ArenaEvent {
"an allocation arena was created"

string arenaName "New Arena Name";
}

record ARENA_DELETE "Arena Delete" extends ArenaEvent {
"an allocation arena was deleted"

}

record GC_START "Garbage Collection: Started" extends JVMPI_Event {
"a garbage collection cycle has begun"

}

record GC_FINISH "Garbage Collection: Finished" extends JVMPI_Event {
"a garbage collection cycle has ended"

int <property:"unsigned">
usedObjects,
usedObjectSpace,
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usedTotalSpace;
}

// -- Execution --------------------------------------------------------------

record MethodEvent extends JVMPI_Event {
ADDRESS methodId "Method Identifier";

~methodId <encoding:"identifier">;
}

record METHOD_ENTRY extends MethodEvent {
}

record METHOD_ENTRY2 "Method Entry" extends MethodEvent {
ADDRESS targetObjId "Target Object Address";

~targetObjId <encoding:"cache=65536">;
}

record METHOD_EXIT "Method Exit" extends MethodEvent {
}

record JVM_INIT_DONE "JVM Initialization Complete" extends JVMPI_Event {
"the JVM has finished its initialization phase"

}

record JVM_SHUT_DOWN "JVM Shut Down" extends JVMPI_Event {
"the JVM is exiting"

}

// -- Concurrency ------------------------------------------------------------

record THREAD_START "Thread Start" extends JVMPI_Event {
"a new thread of execution was started"

Thread newThread "New Thread";
}

record THREAD_END "Thread End" extends JVMPI_Event {
"a thread of execution ended"

}

record MonitorEvent extends JVMPI_Event {
ADDRESS lockObjId "Lock Object Address";

~lockObjId <encoding:"identifier">; // limited number of locks? cache?
}
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C.1. Step-DL Definitions for JVMPI Data

record MONITOR_CONTENDED_ENTER "Monitor Contend: Enter"
extends MonitorEvent

{
"attempt to acquire contended monitor lock"

}

record MONITOR_CONTENDED_ENTERED "Monitor Contend: Lock Acquired"
extends MonitorEvent

{
"acquired contended monitor lock"

}

record MONITOR_CONTENDED_EXIT "Monitor Contend: Exit"
extends MonitorEvent

{
"released contended monitor lock"

}

record MonitorWaitEvent extends MonitorEvent {
int timeout "Wait Timeout" <property:"unsigned">;

}

record MONITOR_WAIT "Monitor Wait: Begin" extends MonitorWaitEvent {
"wait for a monitor lock"

}

record MONITOR_WAITED "Monitor Wait: End" extends MonitorWaitEvent {
"done waiting for a monitor lock"

}

record RawMonitorEvent extends JVMPI_Event {
string monitorName "Monitor Name";
int monitorId "Monitor Identifier" <property:"unsigned">;

~monitorName <encoding:"identifier">;
}

record RAW_MONITOR_CONTENDED_ENTER "Raw Monitor Contend: Enter"
extends RawMonitorEvent

{
"attempt to acquire contended raw monitor lock"

}

record RAW_MONITOR_CONTENDED_ENTERED "Raw Monitor Contend: Lock Acquired"
extends RawMonitorEvent

{
"acquired contended raw monitor lock"

93



C.1. Step-DL Definitions for JVMPI Data

}

record RAW_MONITOR_CONTENDED_EXIT "Raw Monitor Contend: Exit"
extends RawMonitorEvent

{
"released contended raw monitor lock"

}

} // jvmpi

} // example
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C.2 Step-DL Definitions for Java Run-Time Data

This section presents a listing of the Step-DL definitions used to encode the ‘in-

voke/field’ traces discussed in chapter 6. The definitions include a number of static

Java entities and run-time events.

#define TYPE_ID example.java.Type <encoding:"identifier">
#define METHOD_ID example.java.Method <encoding:"identifier">
#define SITE_ID example.java.MethodSite <encoding:"identifier">
#define FIELD_ID example.java.Field <encoding:"identifier">

package example {

package java {

record JavaEntity {
<property:"entity">

}

record Thread extends JavaEntity {
string name;
string group;

}

record Type "Java Type" extends JavaEntity {
string name;

}

record Method extends JavaEntity {
string signature;
Type declaringClass;

}

record MethodSite "Method Site" extends JavaEntity {
Method method;
int number <property:"unsigned"><encoding:"size=1+">;

}

record Field extends JavaEntity {
string name;
Type type;
Type declaringClass;
int isStatic <property:"boolean"><encoding:"size=1">;

}
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package rt {

record RuntimeEvent "Runtime Event" {
<property:"event">

example.java.Thread thread;

~thread <encoding:"repeat">; // for single-threaded apps
//~thread <encoding:"identifier">; // for multi-threaded apps

}

record Allocation extends RuntimeEvent {
TYPE_ID allocatedType;
SITE_ID allocationSite;

}

record MethodEvent extends RuntimeEvent {
METHOD_ID method;

}
record MethodEnter extends MethodEvent {
}
record MethodExit extends MethodEvent {
SITE_ID exitSite;

}

record FieldAccess extends RuntimeEvent {
FIELD_ID field;
SITE_ID accessSite;

}
record FieldRead extends FieldAccess {}
record FieldWrite extends FieldAccess {}

record Invoke extends RuntimeEvent {
METHOD_ID method;
METHOD_ID callerMethod;
SITE_ID callSite;

}

record DispatchInvoke extends Invoke {
TYPE_ID targetType;

}
record InterfaceInvoke extends DispatchInvoke {}
record VirtualInvoke extends DispatchInvoke {}
record StaticInvoke extends Invoke {}
record SpecialInvoke extends Invoke {}

} // rt
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} // java

} // example
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Appendix D

Benchmark Program Descriptions

The programs used to collect the traces discussed in chapter 6 are briefly summa-

rized below. The first six are taken from the well known SPECjvm98 [SPEC98] suite

of Java benchmarks. The remaining two (sablecc and soot) are modified versions

of those found in the Ashes [VRSa] benchmark suite. The descriptions of the SPEC

programs are adapted from those included with the benchmark bundle.

201 compress

A modified Lempel-Ziv compression method (LZW). Basically, the program

finds common substrings and replaces them with a variable size code. The

method is deterministic, and can be done on the fly. Thus, the decompression

procedure needs no input table, but tracks the way the table was built.

202 jess

JESS, the Java Expert Shell System, is based on NASA’s CLIPS expert shell

system. In simplest terms, an expert shell system continuously applies a set

of if-then statements, called rules, to a set of data, called the fact list. The

benchmark workload solves a set of puzzles commonly used with CLIPS. To

increase running time, the benchmark problem iteratively asserts a new set of

facts representing the same puzzle but with different literals. The older sets

of facts are not retracted. Thus, the inference engine must search through

progressively larger rule sets as execution proceeds.
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209 db

Performs multiple database functions on a memory resident database. Reads in

a 1 MB file which contains records with names, addresses, and phone numbers

of entities and a 19KB file called scr6 which contains a stream of operations to

perform on the records in the file. The program loops and reads commands till

it hits the ‘q’ (quit) command. The commands performed on the file include,

among others:

• add an address

• delete and address

• find an address

• sort addresses

213 javac

This is the Java compiler from the Sun’s JDK 1.0.2. [No further details are

provided.]

222 mpegaudio

This is an application that decompresses audio files that conform to the ISO

MPEG Layer-3 audio specification. As this is a commercial application only

obfuscated class files are available. The workload consists of about 4MB of

audio data.

227 mtrt

This is a variant of 205 raytrace, a raytracer that works on a scene depicting

a dinosaur, where two threads each render the scene in the input file time-test

model, which is 340KB in size.

228 jack

A Java parser generator that is based on the Purdue Compiler Construction

Tool Set (PCCTS). This is an early version of what is now called JavaCC. The

workload consists of a file named jack.jack, which contains instructions for
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the generation of jack itself. This is fed to jack so that the parser generates

itself multiple times.

sablecc

An object-oriented compiler generator. The tool generates classes to repre-

sent lexical and grammatical units, state machines for scanning and parsing the

given syntax, and methods for generating and traversing an abstract syntax tree

(AST) representation of an input sequence. This benchmark uses SableCC ver-

sion 2.16.2 and executes on a grammar for version 1.1 of the Java programming

language. SableCC is available for download at: http://www.sablecc.org.

soot

A Java bytecode transformation and optimization framework. The framework

provides a number of static program optimizations that are applied to a 3-

address intermediate representation called Jimple. This benchmark uses Soot

version 1.2.4.dev.12 and optimizes several large class files from the framework

itself (requiring many other context classes to be analyzed in the process). Soot

is available for download at: http://www.sable.mcgill.ca/soot/.
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