
© 2009 IBM Corporation

Understanding the Building Blocks of Trace Selection

Peng Wu, Hiroshige Hayashizaki, and Hiroshi Inoue

IBM Research

Peng Wu – IBM Research
November 4, 2010

© 2009 IBM Corporation2

Overview of Trace-based Compilation

Trace-based compilation uses traces as the basic unit for compilation
– A trace is a sequence of instructions collected at runtime

• Simple topology: typically single-entry, multiple-exit
• Dynamic: based on runtime execution
• Non-canonical: may start or end at arbitrary points in a method

A brief history of trace compilation
– Initially used in binary translator (zPDT, DynamoRIO, Transitive)
– First demonstrated optimization benefit by Dynamo (PLDI’00)

• To improve binaries compiled at low-opt levels
– Later explored in embedded Java (HotpathVM and YETI)
– Recently experienced a boom in compiling dynamic scripting languages

• Javascirpt: TraceMonkey (Mozilla) and SPUR (MS research)
• Python: PyPy and HotPy
• Lua: LuaJIT

© 2009 IBM Corporation3

Trace Compilation for Java On Top of J9/Testarossa

1. Java compilation has matured, why do we need trace compilation?
2. Trace compilation is good for dynamic scripting languages, but not for Java
3. Trace compilation is the same as partial inlining
4. Do you really believe the trace compiler can outperform Testarossa?

Limitation of method-base compilation
– Workloads with flat profile are hard to optimize due to limited inlining

Trace compilation is perceived as not limited by method boundaries
– Can it be used to break the “method wall” of traditional JIT?

Challenges

Motivation

Use trace selection to drive better region selection
Reuse Testarossa as much as possible as optimization and codegen engine

Our approach

Open minded: thorough design space exploration, if we fail, we want to know why

© 2009 IBM Corporation4

bytecode
trace

CPython

Trace JIT Overview

Trace selection
engine

IL generation

Trace runtime
(new)

jit/tracert/

Language VM
(extended)

Testarossa
(extended)

J9 interpreter
with hook

binary

Optimization

Code generation

Trace cache

Trace
dispatch

Counter cache

hook
event/bb

TRIL

Python frontend
J9 frontend

code
cache

© 2009 IBM Corporation5

Example of Trace Lifecycle

trace selection

IL generation

J9 interpreter
with hook

Code generation

code cache/
binary execution

J9HOOK_VM_BRANCHJ9HOOK_VM_BRANCHJ9HOOK_VM_BRANCHJ9HOOK_VM_BRANCHJ9HOOK_VM_BRANCH
trace selection engine is driven by a
sequence of events from interpreter.

trace
JBiadd java/lang/String.indexOf (bcIndex=7)
JBistore java/lang/String.indexOf (bcIndex=8)
...
JBreturn

trace selection engine forms a trace.
each BC is labeled by the method name
and bcIndex to show its origin.
(starting from JBiadd is not possible in
Java method compilation!)

TR-IR
istore #5

iadd
iload (load from op stack inserted)
iload (load from op stack inserted)

....

IL gen translates the trace into TR-IR.
Implicit loads are inserted before the first
bytecode if the operand stack is not empty
upon entry to the trace.

binary code
lwz gr5, [gr21, -32]
lwz gr7, [gr21, -36]
add gr6, gr5, gr7
stw [gr21, -20], gr6
.....

Code generator emits binary codes.

© 2009 IBM Corporation6

Trace Selection

Trace selection forms traces out of executed instructions at runtime
– An active area of research as it is at the heart of any trace compilation

system

Dynamo pioneered a form of two-step trace selection, called next-
executing-tail (NET)
1. Trace head selection: identify starting point of a trace by frequency-profiling a

pool of potential trace heads
A. Targets of backward branches (i.e., loop headers), or
B. Instructions immediately following the exit point of a trace (exit-heads)

2. Trace recording: record a trace from the selected trace head until meeting
one of the trace termination conditions, e.g.,
A. when encountering the head of an already formed trace
B. when detecting a likely cycle in the recorded trace
C. when the trace recording buffer overflows
D. …

© 2009 IBM Corporation7

Next-Executing-Tail (NET) Selection

A

B C

D

(a) Control-flow graph

A

B C

D

counter1

D

counter2

C

(b) NET selection

Mark target of trace exit
as potential trace headTrace 1

Trace 2

Traces are initially built from targets of backward branches
They gradually grow out of side-branches (side-exits) of existing traces
Trace size is determined by the termination conditions used in trace recording

© 2009 IBM Corporation8

Trace Compilation vs Partial Inlining (I)

Inline a complete path of a callee
method into the caller (space efficiency)
Start and end at method boundaries

with potential side-exits

Formed out of runtime execution paths
Partial inlining naturally occurs in traces
Most trace regions start at non canonical

program boundaries

Partially inlined regions Trace regions

Distribution of # Static Traces by Trace Starting Points

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

av
ror

a

ba
tik

ec
lip

se fop h2

jyt
ho

n

lui
nd

ex
lus

ea
rch pm

d

su
nfl

ow

tom
ca

t

xa
lan

exit-head-others
branch-to-point
return-to-point
method-entry
loop-header

<30% traces start from loop
header or method entry

© 2009 IBM Corporation9

Trace Selection vs. Method Inlining (II)

ASSUMPTION: when a call graph is too big to be fully inlined into the root node

Method (partial) inlining forms
hierarchical regions

invocation

method with loop

method w/o loop

Trace selection forms contiguous regions
– blue, brown, green

© 2009 IBM Corporation10

Performance Impact of Trace Selection
Speedups of removing stop-at-existing-head (over NET)

0%
20%
40%
60%
80%

100%
120%
140%
160%

~9.1
2_

avro
ra

~9.1
2_

bati
k

~9.1
2_

eclip
se

~9.1
2_

fop
~9.1

2_
h2

~9.1
2_

jyt
hon

~9.1
2_

lui
nd

ex
~9.1

2_
lus

earc
h

~9.1
2_

pmd
~9.1

2_
tomca

t
~9.1

2_
tra

de
bea

ns:
~9.1

2_
xa

lan
GEOMEAN

Better trace selection contribute to 50% speedups over NET selection using the
same JIT and runtime

– Mainly by relaxing trace termination conditions to form longer traces
• Removing stop-at-existing-head termination condition
• And other techniques to relax termination conditions (ASPLOS 2011, under

submission CGO2011)

H
igher is better

© 2009 IBM Corporation11

Impact of Trace Selection to Jitted Code Size

Relative Code Size after Removing Stop-at-existing-head (over NET)

0%

50%

100%

150%

200%

250%

300%

~9
.12

_a
vro

ra
~9

.12
_b

ati
k

~9
.12_

ec
lip

se

~9
.12_

fop

~9
.12

_h
2

~9
.12

_jyt
ho

n
~9.1

2_
lui

nd
ex

~9
.12_

lus
ea

rch

~9
.12

_p
md

~9.1
2_

tom
ca

t
~9

.12
_tr

ad
eb

ea
ns

:
~9

.12
_x

ala
n

GEOMEAN

Low
er is better

Increasing trace size typically increases code size (>2X)
Challenge of trace selection is to control code size without limiting trace scope

© 2009 IBM Corporation12

Limitation of Stop-at-exiting-Head: Cyclic Trace

(a) control-flow graph (b) without stop-at-existing-head

Limitation of stop-at-existing-head termination conditions:
– Limit the ability to capture cyclic paths: one cyclic path per loop
– Limit the ability to “inline”: when a method entry becomes a trace head, no

subsequence trace can “inline” this method

© 2009 IBM Corporation13

Can Trace Compilation Offer New Value to Java?

Built a robust trace JIT based on
J9/Testarossa

– multithreading, monitor, GC, exception,
async compilation, JNI, trace linking, …

Enabled most warm-level optimizers
except for some loop opts and escape
analysis

Thorough design space exploration on
trace selection, new algorithms

Significant efforts to reduce trace
runtime overhead

Missing features: re-compilation, trace
cache flush, interpreter profiling

In some benchmarks, trace JIT
outperforms method JIT (6%~36%)

In more cases, trace JIT produces
better jitted codes but suffers from
more runtime overheads

Observed very long traces through
many method layers

Where are we now?

Where do we see potentials?

Compare to default TR JIT (pap3260)?

Almost comparable performance to
TR method-JIT

– 6% slower than default TR JIT on
DaCapo (new)

– 50% more jitted code size

© 2009 IBM Corporation14

Steady-state CPU Time Breakdown
for trace-JIT and method-JIT

Jython (DaCapo 9.12)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

method-JIT
(warm opt)

method-JIT
(full opt)

our trace-JIT
(warm opt)

no
rm

al
iz

ed
 C

P
U

 ti
m

e
.

OS Kernel
GC
Runtime
Native library
JIT-compiled code

sh
or

te
r

is
 fa

st
er

Trace 6788 (rank#3): 1.98% time spent, cyclic trace of 57BB, with 18 invocations,
99% utilized (5 side-exits BBs)
Trace 7870 (rank#6): 1.17% time spent, linear trace of 256BB, with 56
invocations, 2 side-exit, 75% utilized (2 side-exit BBs)

Flat profile
– max weight of single trace is <4%
– top 1670 traces (out of 8800) cover 90%

execution
Many very long traces

– 25% time spent on traces of 256 BB
(max trace size)

Many method boundary crossing
– among the top 1000 traces, single trace

contains an average of 51 invoke
bytecodes

(Partial) inlining effect on traces
– 44% of bytecodes executed on inlined

portions of traces

© 2009 IBM Corporation15

Concluding Remarks

Our surprise findings
– Trace regions are truly different from

method regions

– A method-based optimizer can be
retrofitted to optimize (non-canonical)
traces and be quite effective

– Extending trace scopes matters a lot in
performance

– Increasing trace lengths are easy,
controlling code size is tricky

– Linear traces are not necessarily inferior
to structured traces

Open research questions:
– Lack of deep understanding for trace

compilation
– When can trace compilation outperform

method compilation and why?

Our on-going explorations:
– Built some theoretical foundation on trace

compilation
– Control code size without limiting trace scope
– Trace formation beyond linear traces
– Incorporate profiling into trace compilation
– Enable remaining Testarossa optimizers
– Explore trace compilation for Python

Our hunch: there is unlikely a one-size-fit-all approach, the end system would have a
mixture of method- and trace-based compilation

Trace compilation is an exciting new approach to dynamic compilation, but it is
still at its early age of explorations

© 2009 IBM Corporation16

BACK UP

© 2009 IBM Corporation17

Limitation of Stop-at-existing-head: “Inlining” Effect

Stop-at-existing head limits the “inlining” effect on traces
– when a trace is formed at the entry point of a method, the method cannot

be “inlined” to any subsequent traces

polymorphic
call-site in W

multiple calling
context of R

	Understanding the Building Blocks of Trace Selection���Peng Wu, Hiroshige Hayashizaki, and Hiroshi Inoue��IBM Research
	Overview of Trace-based Compilation
	Trace Compilation for Java On Top of J9/Testarossa
	Trace JIT Overview
	Example of Trace Lifecycle
	Trace Selection
	Next-Executing-Tail (NET) Selection
	Trace Compilation vs Partial Inlining (I)
	Trace Selection vs. Method Inlining (II)
	Performance Impact of Trace Selection
	Impact of Trace Selection to Jitted Code Size
	Limitation of Stop-at-exiting-Head: Cyclic Trace
	Can Trace Compilation Offer New Value to Java?
	Steady-state CPU Time Breakdown �for trace-JIT and method-JIT
	Concluding Remarks
	BACK UP
	Limitation of Stop-at-existing-head: “Inlining” Effect

