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Overview of Trace-based Compilation

Trace-based compilation uses traces as the basic unit for compilation
– A trace is a sequence of instructions collected at runtime

• Simple topology: typically single-entry, multiple-exit
• Dynamic: based on runtime execution 
• Non-canonical: may start or end at arbitrary points in a method

A brief history of trace compilation
– Initially used in binary translator (zPDT, DynamoRIO, Transitive)
– First demonstrated optimization benefit by Dynamo (PLDI’00)

• To improve binaries compiled at low-opt levels
– Later explored in embedded Java (HotpathVM and YETI)
– Recently experienced a boom in compiling dynamic scripting languages

• Javascirpt: TraceMonkey (Mozilla) and SPUR (MS research) 
• Python: PyPy and HotPy
• Lua: LuaJIT
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Trace Compilation for Java On Top of J9/Testarossa

1. Java compilation has matured, why do we need trace compilation?
2. Trace compilation is good for dynamic scripting languages, but not for Java
3. Trace compilation is the same as partial inlining
4. Do you really believe the trace compiler can outperform Testarossa?

Limitation of method-base compilation
– Workloads with flat profile are hard to optimize due to limited inlining

Trace compilation is perceived as not limited by method boundaries
– Can it be used to break the “method wall” of traditional JIT?

Challenges

Motivation

Use trace selection to drive better region selection
Reuse Testarossa as much as possible as optimization and codegen engine

Our approach

Open minded: thorough design space exploration, if we fail, we want to know why



© 2009 IBM Corporation4

bytecode 
trace

CPython

Trace JIT Overview

Trace selection
engine

IL generation

Trace runtime
(new)

jit/tracert/

Language VM
(extended)

Testarossa
(extended)

J9 interpreter 
with hook

binary

Optimization

Code generation

Trace cache

Trace 
dispatch

Counter cache

hook 
event/bb

TRIL

Python frontend
J9 frontend

code 
cache



© 2009 IBM Corporation5

Example of Trace Lifecycle

trace selection

IL generation

J9 interpreter 
with hook

Code generation

code cache/
binary execution

J9HOOK_VM_BRANCHJ9HOOK_VM_BRANCHJ9HOOK_VM_BRANCHJ9HOOK_VM_BRANCHJ9HOOK_VM_BRANCH
trace selection engine is driven by a 
sequence of events from interpreter.

trace
JBiadd java/lang/String.indexOf (bcIndex=7)
JBistore java/lang/String.indexOf (bcIndex=8)
...
JBreturn

trace selection engine forms a trace.
each BC is labeled by the method name 
and bcIndex to show its origin.
(starting from JBiadd is not possible in 
Java method compilation!)

TR-IR
istore #5

iadd
iload (load from op stack inserted)
iload (load from op stack inserted)

....

IL gen translates the trace into TR-IR.
Implicit loads are inserted before the first 
bytecode if the operand stack is not empty 
upon entry to the trace.

binary code
lwz gr5, [gr21, -32]
lwz gr7, [gr21, -36]
add gr6, gr5, gr7
stw [gr21, -20], gr6
.....

Code generator emits binary codes.
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Trace Selection

Trace selection forms traces out of executed instructions at runtime
– An active area of research as it is at the heart of any trace compilation 

system

Dynamo pioneered a form of two-step trace selection, called next-
executing-tail (NET)
1. Trace head selection: identify starting point of a trace by frequency-profiling a 

pool of potential trace heads
A. Targets of backward branches (i.e., loop headers), or
B. Instructions immediately following the exit point of a trace (exit-heads)

2. Trace recording: record a trace from the selected trace head until meeting 
one of the trace termination conditions, e.g., 
A. when encountering the head of an already formed trace
B. when detecting a likely cycle in the recorded trace
C. when the trace recording buffer overflows
D. …
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Next-Executing-Tail (NET) Selection
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(a) Control-flow graph
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(b) NET selection

Mark target of trace exit 
as potential trace headTrace 1

Trace 2

Traces are initially built from targets of backward branches
They gradually grow out of side-branches (side-exits) of existing traces
Trace size is determined by the termination conditions used in trace recording
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Trace Compilation vs Partial Inlining (I)

Inline a complete path of a callee 
method into the caller (space efficiency)
Start and end at method boundaries 

with potential side-exits

Formed out of runtime execution paths
Partial inlining naturally occurs in traces
Most trace regions start at non canonical 

program boundaries

Partially inlined regions Trace regions

Distribution of # Static Traces by Trace Starting Points
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Trace Selection vs. Method Inlining (II)

ASSUMPTION: when a call graph is too big to be fully inlined into the root node

Method (partial) inlining forms 
hierarchical regions

invocation

method with loop

method w/o loop

Trace selection forms contiguous regions
– blue, brown, green
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Performance Impact of Trace Selection
Speedups of removing stop-at-existing-head (over NET)
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Better trace selection contribute to 50% speedups over NET selection using the 
same JIT and runtime

– Mainly by relaxing trace termination conditions to form longer traces
• Removing stop-at-existing-head termination condition
• And other techniques to relax termination conditions (ASPLOS 2011, under 

submission CGO2011)

H
igher is better
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Impact of Trace Selection to Jitted Code Size

Relative Code Size after Removing Stop-at-existing-head (over NET)
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Low
er is better

Increasing trace size typically increases code size (>2X)
Challenge of trace selection is to control code size without limiting trace scope
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Limitation of Stop-at-exiting-Head: Cyclic Trace

(a) control-flow graph (b) without stop-at-existing-head

Limitation of stop-at-existing-head termination conditions: 
– Limit the ability to capture cyclic paths: one cyclic path per loop
– Limit the ability to “inline”: when a method entry becomes a trace head, no 

subsequence trace can “inline” this method 
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Can Trace Compilation Offer New Value to Java?

Built a robust trace JIT based on 
J9/Testarossa

– multithreading, monitor, GC, exception, 
async compilation, JNI, trace linking, …

Enabled most warm-level optimizers 
except for some loop opts and escape 
analysis

Thorough design space exploration on 
trace selection, new algorithms

Significant efforts to reduce trace 
runtime overhead

Missing features: re-compilation, trace 
cache flush, interpreter profiling 

In some benchmarks, trace JIT 
outperforms method JIT (6%~36%)

In more cases, trace JIT produces 
better jitted codes but suffers from 
more runtime overheads

Observed very long traces through 
many method layers

Where are we now?

Where do we see potentials?

Compare to default TR JIT (pap3260)?

Almost comparable performance to 
TR method-JIT 

– 6% slower than default TR JIT on 
DaCapo (new)

– 50% more jitted code size
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Steady-state CPU Time Breakdown 
for trace-JIT and method-JIT

Jython (DaCapo 9.12)
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Trace 6788 (rank#3): 1.98% time spent, cyclic trace of 57BB, with 18 invocations, 
99% utilized (5 side-exits BBs)
Trace 7870 (rank#6): 1.17% time spent, linear trace of 256BB, with 56 
invocations, 2 side-exit, 75% utilized (2 side-exit BBs)

Flat profile
– max weight of single trace is <4% 
– top 1670 traces (out of 8800) cover 90% 

execution
Many very long traces

– 25% time spent on traces of 256 BB 
(max trace size)

Many method boundary crossing
– among the top 1000 traces, single trace 

contains an average of 51 invoke 
bytecodes

(Partial) inlining effect on traces
– 44% of bytecodes executed on inlined 

portions of traces
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Concluding Remarks

Our surprise findings
– Trace regions are truly different from 

method regions

– A method-based optimizer can be 
retrofitted to optimize (non-canonical) 
traces and be quite effective

– Extending trace scopes matters a lot in 
performance

– Increasing trace lengths are easy, 
controlling code size is tricky

– Linear traces are not necessarily inferior 
to structured traces

Open research questions:
– Lack of deep understanding for trace 

compilation
– When can trace compilation outperform 

method compilation and why?

Our on-going explorations:
– Built some theoretical foundation on trace 

compilation
– Control code size without limiting trace scope
– Trace formation beyond linear traces
– Incorporate profiling into trace compilation
– Enable remaining Testarossa optimizers 
– Explore trace compilation for Python

Our hunch: there is unlikely a one-size-fit-all approach, the end system would have a 
mixture of method- and trace-based compilation

Trace compilation is an exciting new approach to dynamic compilation, but it is 
still at its early age of explorations
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BACK UP
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Limitation of Stop-at-existing-head: “Inlining” Effect

Stop-at-existing head limits the “inlining” effect on traces
– when a trace is formed at the entry point of a method, the method cannot 

be “inlined” to any subsequent traces

polymorphic 
call-site in W

multiple calling 
context of R
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