
Tachyon: a Meta-circular Optimizing
JavaScript Virtual Machine

Maxime Chevalier-Boisvert
Erick Lavoie
Marc Feeley

Bruno Dufour

{chevalma, lavoeric, feeley, dufour}@iro.umontreal.ca

DIRO - Université de Montréal

2

About the Tachyon Project

● Began in summer 2010
● Compiler lab at UdeM
● Two students:

● Erick Lavoie (M.Sc.)
● Maxime Chevalier-Boisvert (Ph.D.)

● Professor Marc Feeley
● Gambit Scheme

● Professor Bruno Dufour
● Dynamic program analysis

● Big project, because we like challenges

3

What's JavaScript?

● JavaScript ≠ Java in the browser
● Dynamic (scripting) language
● Dynamic typing

● No type annotations

● Dynamic source loading, eval
● Basic types include:

● Doubles (no int!), strings, booleans, objects, arrays, first-
class functions

● Objects as hash maps
● Can add/remove properties at any time
● Prototype-based, no classes

4

Why JavaScript?

● JavaScript is very popular, it's everywhere
● JavaScript is the only language for web applications.
● Volume of JS code increasing fast, becoming more

complex

● Many competing implementations
● Push to move desktop apps to browsers
● Performance is insufficient

● Compiling dynamic languages efficiently is
challenging
● Dynamic typing, eval, etc
● Researchers definitely care!

5

State of the Art

● Firefox / JaegerMonkey
● Tracing JIT
● Compiles/specializes loop code traces

● Chrome / V8
● Hidden classes
● Inline caches, code patching
● Very fast JIT compiler
● Very efficient GC

● Is this the best we can do?
● We believe there is potential for more optimization

6

Our Objectives

● Full JavaScript (ECMAScript 5) support
● Retargetable JIT compiler (x86, x86-64)
● Meta-circularity of the VM
● Framework for dynamic language optimizations

● Better object representations
● Optimistic optimization w/ recompilation
● Fast & efficient x86 back-end

● Integration into a web-browser
● Demonstrate viability on “real” applications

● Free software / OSS

7

Meta-circularity

● Have your compiler compile itself
● Less external dependencies
● Forces you to test/debug
● Self-optimization
● Less optimization boundaries

● Fairly straightforward for a traditional static
compiler (e.g.: gcc)

● Tricky for our virtual machine
● Runtime support (on which VM does the VM run?)
● Performance issues, self-optimization
● Dynamic loading, dynamic constructs

8

Bootstrap

9

JavaScript Extensions

● JavaScript has no access to raw memory
● Essential to implement a VM/JIT

● Tachyon is written in JS w/ “unsafe” extensions
● Minimizes the need to write C code (FFI)
● Maximizes performance

– FFIs are optimization boundaries

● JS code translated to low-level typed IR
● JS extensions: insert typed instructions in code as it

is translated (Inline IR / IIR)

10

/**
Test if a boxed value is integer
*/
function boxIsInt(boxVal)
{
 "tachyon:inline";
 "tachyon:nothrow";
 "tachyon:ret bool";

 // Test if the value has the int tag
 return (boxVal & TAG_INT_MASK) == TAG_INT;
}

11

/**
Implementation of HIR lessthan instruction
*/
function lt(v1, v2)
{
 "tachyon:inline";
 "tachyon:nothrow";

 // If both values are immediate integers
 if (boxIsInt(v1) && boxIsInt(v2))
 {
 // Compare immediate integers without unboxing
 var tv = iir.lt(v1, v2);
 }
 else
 {
 // Call a function for the general case
 var tv = ltGeneral(v1, v2);
 }

 return tv? true:false;
}

12

Intermediate Representation

● Inspired from LLVM
● SSA-based
● Type-annotated

● Integers, floats, booleans, raw pointers
● Boxed values

● Low-level
● Mirrors instructions commonly found on most CPUs

– add/sub/mul/div, and/or/shift, jump/if/call, load/store, etc.
● Allows expressing more optimizations

(specialization)

13

Optimistic Optimizations

● Traditional optimizations are conservative
● Can't prove it, can't do it
● Dynamic languages offer little static type information
● Dynamic constructs problematic for analysis

– eval, load
● Often can't prove validity conservatively

● Optimistic optimizations
● Valid now, assume valid until proven otherwise
● Most dynamic programs not that dynamic
● Many optimizations do apply

14

Example: Optimization Issues

● Don't know type of list and its elements
● Dynamic type checks needed

● Name f is global, can be redefined
● Fetch from global object, is-function check needed
● Can't trivially perform inlining

● What if we add an eval?

function sum(list) {
 var sum = 0;
 for (var i = 0; i < list.length; ++i)
 sum += f(list[i]);
 return sum;
}

function f(v) { return v*v; }
print(sum([1,2,3,4,5]));

15

Realistic Assumptions
● As programmers, it's fairly obvious to us that:

● function f is extremely unlikely to be redefined
● list will likely always be array of integers

● Not obvious to a compiler, but, in general:
● How often are global functions redefined?
● How many call sites are truly polymorphic?
● How many function arguments can have more than

one type?
● How often do people use eval to change local

variable types?

16

What Would Tachyon Do (WWTD)?
● A VM can observe the types of global variables as a

program is executing
● Can assume that these types will not change

– e.g.: assume that f() will not be redefined
● Compile functions with these assumptions

● A VM can observe what types input arguments to a
function have
● Can specialize functions based on these

– e.g.: sum(list) is always called with arrays of integers

● Types inside of function bodies can be inferred from
types of globals and arguments
● Type propagation, simple dataflow analysis

17

Naïve JavaScript Compilation

18

What Would Tachyon Do (WWTD)?

19

What Would Tachyon Do (WWTD)?

20

Key Ideas

● Crucial to capture info about run time behavior
● Program needs to be correct at all times

● Don't need to run the same code at all times
● Multiple optimized versions correct at different times

● Can make optimistic assumptions that may be
invalidated later
● So long as we can repair our mistakes in time
● Code with broken assumptions must never be

executed
● Ideally, want invalidation to be unlikely

21

Type Profiling

● Type profiling can observe:
● Frequency of calls
● Types of arguments to calls
● Types of values stored into globals
● Types of values stored in object fields

● Goal: build fairly accurate profile of program
behavior w.r.t. types

22

Type Propagation

● Form of type inference
● Dataflow analysis
● Local or whole program
● Rules depend on language semantics, e.g.:

● add int, int → int
● add float, float → float
● mul m4x2, m2x1 → m4x1
● getprop o, “a” → prop_type(o, “a”)

● In the local case, inputs are function argument types,
globals types, closure variable types

● Output: local variable types, return type

23

Potential Difficulties

● Cost of profiling
● Need accurate information

● Cost of recompilation
● Usage of external threads

● Frequency of recompilation
● Progressive pessimization

● Inherent complexity
● Find more students!

24

Related work: Type Analysis
● M Chevalier-Boisvert, L Hendren, C Verbrugge.

Optimizing MATLAB through just-in-time
specialization. CC 2010.

● F Logozzo, H Venter. RATA: Rapid Atomic Type
Analysis by Abstract Interpretation–Application
to JavaScript Optimization. CC 2010.

● S Jensen, A Møller et al. Type analysis for
JavaScript. SAS 2009.

● And much more...

25

Related work: Deoptimization

● I Pechtchanski, V Sarkar. Dynamic optimistic
interprocedural analysis: a framework and an
application. OOPSLA 2001.
● Systematic optimistic interprocedural type analysis

to optimize polymorphic call sites

● Speculative inlining
● In Java, dynamic class loading can invalidate

inlining decisions
● Implemented in Java HotSpot VM

● Polymorphic inline cache

26

Related work: Tracing JITs
● HotpathVM, TraceMonkey, LuaJIT, etc.
● Tracing JITs are another dynamic compilation model
● Same basic underlying principle

● Observe program as it runs, gather data about behavior
● Assume current behavior will likely persist, use data to

specialize program, minimize dynamic checks

● Main limitations
● Local approach, detects & examines loops
● Knows little about what goes on outside loops
● No real way of dealing with global data, optimizing object

layout, etc.

27

Related work: Meta-circularity

● JikesRVM: meta-circular Java VM
● Maxine VM: experimental project at Sun
● PyPy: Python in Python

● JIT compiler generator based on language spec.

● Klein VM: Implementation of Self in Self

28

Distinguishing Features

● Meta-circular w/ dynamic language
● Self-optimizing
● Systematic optimistic optimizations
● Implementation flexibility

● Function call protocol
● Object layout
● Intermediate representation

● Inline IR
● Multithreaded compiler

29

Project Status
● Working:

● ECMAScript 5 parser

● Translation of ASTs to SSA-based IR

● Simple optimizations on IR

– SCCP, value numbering, peepholes

● x86 32/64 back-end w/ linear-scan reg. alloc.

● Compilation of simple programs

– Fibonacci, loops

● Precise statistical profiler

● In progress:
● Library of JS primitives (objects, strings)

● Compilation of more complex programs

● Back-end optimizations

● Integration into Chrome

30

Thanks for Listening!

We welcome your questions/comments

Feel free to contact the Tachyon team:
{chevalma, lavoeric, feeley, dufour}@iro.umontreal.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

