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About the Tachyon Project

● Began in summer 2010
● Compiler lab at UdeM
● Two students:

● Erick Lavoie (M.Sc.)
● Maxime Chevalier-Boisvert (Ph.D.)

● Professor Marc Feeley
● Gambit Scheme

● Professor Bruno Dufour
● Dynamic program analysis

● Big project, because we like challenges
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What's JavaScript?

● JavaScript ≠ Java in the browser
● Dynamic (scripting) language
● Dynamic typing

● No type annotations

● Dynamic source loading, eval
● Basic types include:

● Doubles (no int!), strings, booleans, objects, arrays, first-
class functions

● Objects as hash maps
● Can add/remove properties at any time
● Prototype-based, no classes
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Why JavaScript?

● JavaScript is very popular, it's everywhere
● JavaScript is the only language for web applications.
● Volume of JS code increasing fast, becoming more 

complex

● Many competing implementations
● Push to move desktop apps to browsers
● Performance is insufficient

● Compiling dynamic languages efficiently is 
challenging
● Dynamic typing, eval, etc
● Researchers definitely care!
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State of the Art

● Firefox / JaegerMonkey
● Tracing JIT
● Compiles/specializes loop code traces

● Chrome / V8
● Hidden classes
● Inline caches, code patching
● Very fast JIT compiler
● Very efficient GC

● Is this the best we can do?
● We believe there is potential for more optimization
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Our Objectives

● Full JavaScript (ECMAScript 5) support
● Retargetable JIT compiler (x86, x86-64)
● Meta-circularity of the VM
● Framework for dynamic language optimizations

● Better object representations
● Optimistic optimization w/ recompilation
● Fast & efficient x86 back-end

● Integration into a web-browser
● Demonstrate viability on “real” applications

● Free software / OSS
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Meta-circularity

● Have your compiler compile itself
● Less external dependencies
● Forces you to test/debug
● Self-optimization
● Less optimization boundaries

● Fairly straightforward for a traditional static 
compiler (e.g.: gcc)

● Tricky for our virtual machine
● Runtime support (on which VM does the VM run?)
● Performance issues, self-optimization
● Dynamic loading, dynamic constructs
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Bootstrap
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JavaScript Extensions

● JavaScript has no access to raw memory
● Essential to implement a VM/JIT

● Tachyon is written in JS w/ “unsafe” extensions
● Minimizes the need to write C code (FFI)
● Maximizes performance

– FFIs are optimization boundaries

● JS code translated to low-level typed IR
● JS extensions: insert typed instructions in code as it 

is translated (Inline IR / IIR)
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/**
Test if a boxed value is integer
*/
function boxIsInt(boxVal)
{
    "tachyon:inline";
    "tachyon:nothrow";
    "tachyon:ret bool";

    // Test if the value has the int tag
    return (boxVal & TAG_INT_MASK) == TAG_INT;
}
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/**
Implementation of HIR lessthan instruction
*/
function lt(v1, v2)
{
    "tachyon:inline";
    "tachyon:nothrow";

    // If both values are immediate integers
    if (boxIsInt(v1) && boxIsInt(v2))
    {
        // Compare immediate integers without unboxing
        var tv = iir.lt(v1, v2);
    }
    else
    {
        // Call a function for the general case
        var tv = ltGeneral(v1, v2);
    }

    return tv? true:false;
}
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Intermediate Representation

● Inspired from LLVM
● SSA-based
● Type-annotated

● Integers, floats, booleans, raw pointers
● Boxed values

● Low-level
● Mirrors instructions commonly found on most CPUs

– add/sub/mul/div, and/or/shift, jump/if/call, load/store, etc.
● Allows expressing more optimizations 

(specialization)
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Optimistic Optimizations

● Traditional optimizations are conservative
● Can't prove it, can't do it
● Dynamic languages offer little static type information
● Dynamic constructs problematic for analysis

– eval, load
● Often can't prove validity conservatively

● Optimistic optimizations
● Valid now, assume valid until proven otherwise
● Most dynamic programs not that dynamic
● Many optimizations do apply



14

Example: Optimization Issues

● Don't know type of list and its elements
● Dynamic type checks needed

● Name f is global, can be redefined
● Fetch from global object, is-function check needed
● Can't trivially perform inlining

● What if we add an eval?

function sum(list) {
    var sum = 0;
    for (var i = 0; i < list.length; ++i)
        sum += f(list[i]);
    return sum;
}

function f(v) { return v*v; }
print(sum([1,2,3,4,5]));
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Realistic Assumptions
● As programmers, it's fairly obvious to us that:

● function f is extremely unlikely to be redefined
● list will likely always be array of integers

● Not obvious to a compiler, but, in general:
● How often are global functions redefined?
● How many call sites are truly polymorphic?
● How many function arguments can have more than 

one type?
● How often do people use eval to change local 

variable types?
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What Would Tachyon Do (WWTD)?
● A VM can observe the types of global variables as a 

program is executing
● Can assume that these types will not change

– e.g.: assume that f() will not be redefined
● Compile functions with these assumptions

● A VM can observe what types input arguments to a 
function have
● Can specialize functions based on these

– e.g.: sum(list) is always called with arrays of integers

● Types inside of function bodies can be inferred from 
types of globals and arguments
● Type propagation, simple dataflow analysis
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Naïve JavaScript Compilation
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What Would Tachyon Do (WWTD)?
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What Would Tachyon Do (WWTD)?
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Key Ideas

● Crucial to capture info about run time behavior
● Program needs to be correct at all times

● Don't need to run the same code at all times
● Multiple optimized versions correct at different times

● Can make optimistic assumptions that may be 
invalidated later
● So long as we can repair our mistakes in time
● Code with broken assumptions must never be 

executed
● Ideally, want invalidation to be unlikely
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Type Profiling

● Type profiling can observe:
● Frequency of calls
● Types of arguments to calls
● Types of values stored into globals
● Types of values stored in object fields

● Goal: build fairly accurate profile of program 
behavior w.r.t. types
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Type Propagation

● Form of type inference
● Dataflow analysis
● Local or whole program
● Rules depend on language semantics, e.g.:

● add int, int → int
● add float, float → float
● mul m4x2, m2x1 → m4x1
● getprop o, “a” → prop_type(o, “a”)

● In the local case, inputs are function argument types, 
globals types, closure variable types

● Output: local variable types, return type
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Potential Difficulties

● Cost of profiling
● Need accurate information

● Cost of recompilation
● Usage of external threads

● Frequency of recompilation
● Progressive pessimization

● Inherent complexity
● Find more students!
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Related work: Type Analysis
● M Chevalier-Boisvert, L Hendren, C Verbrugge. 

Optimizing MATLAB through just-in-time 
specialization. CC 2010.

● F Logozzo, H Venter. RATA: Rapid Atomic Type 
Analysis by Abstract Interpretation–Application 
to JavaScript Optimization. CC 2010.

● S Jensen, A Møller et al. Type analysis for 
JavaScript. SAS 2009.

● And much more...
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Related work: Deoptimization

● I Pechtchanski, V Sarkar. Dynamic optimistic 
interprocedural analysis: a framework and an 
application. OOPSLA 2001.
● Systematic optimistic interprocedural type analysis 

to optimize polymorphic call sites

● Speculative inlining
● In Java, dynamic class loading can invalidate 

inlining decisions
● Implemented in Java HotSpot VM

● Polymorphic inline cache
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Related work: Tracing JITs
● HotpathVM, TraceMonkey, LuaJIT, etc.
● Tracing JITs are another dynamic compilation model
● Same basic underlying principle

● Observe program as it runs, gather data about behavior
● Assume current behavior will likely persist, use data to 

specialize program, minimize dynamic checks

● Main limitations
● Local approach, detects & examines loops
● Knows little about what goes on outside loops
● No real way of dealing with global data, optimizing object 

layout, etc.
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Related work: Meta-circularity

● JikesRVM: meta-circular Java VM
● Maxine VM: experimental project at Sun
● PyPy: Python in Python

● JIT compiler generator based on language spec.

● Klein VM: Implementation of Self in Self
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Distinguishing Features

● Meta-circular w/ dynamic language
● Self-optimizing
● Systematic optimistic optimizations
● Implementation flexibility

● Function call protocol
● Object layout
● Intermediate representation

● Inline IR
● Multithreaded compiler
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Project Status
● Working:

● ECMAScript 5 parser

● Translation of ASTs to SSA-based IR

● Simple optimizations on IR

– SCCP, value numbering, peepholes

● x86 32/64 back-end w/ linear-scan reg. alloc.

● Compilation of simple programs

– Fibonacci, loops

● Precise statistical profiler

● In progress:
● Library of JS primitives (objects, strings)

● Compilation of more complex programs

● Back-end optimizations

● Integration into Chrome
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Thanks for Listening!

We welcome your questions/comments

Feel free to contact the Tachyon team:
{chevalma, lavoeric, feeley, dufour}@iro.umontreal.ca
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