Program Behavior Sequence Prediction

Bo Wu, Yunlian Jiang, Xipeng Shen (The College of William & Mary) Yaoqing Gao, Raul Silvera, Graham Yiu (IBM Toronto)

Outline

- Motivation
- Our perspectives
- Behavior sequence prediction framework
- Some results of loop trip count prediction
- Possible uses
- Summary

- Accurate and proactive prediction of program behaviors is essential for many optimizations
 - Loop trip counts for loop unrolling
 - Function hotness for function optimization level in JIT
 - Profitability for speculative parallelization
 - Cache miss rates for prefetching aggressiveness
 - Loop coldness for outlining

.....

The usefulness is not limited to program optimizations

- OS level
 - Provision in cloud computing
 - Scheduling to reduce resource contention
- Architecture level
 - Voltage scaling

However, the prediction of program behaviors is challenging

Opportunities do exist

Our Perspectives

Difference between instance prediction and sequence prediction

- Instance prediction: the next one or several instances
- Sequence Prediction: the whole sequence of the considered behavior

Statistical correlation among different behaviors

- Trip counts of two different loops
- Loop trip counts and function hotness

Context awareness

- Loop stack and call stack
- Correlated behaviors happened before

Our Perspectives

Three requirements for behavior prediction

- Accuracy
- Proactivity
- Scope

	accuracy	scope	proactivity
offline profile-based pred	0	\checkmark	\checkmark
runtime instance pred	\checkmark	0	0
goal of sequence pred	\checkmark	\checkmark	\checkmark

The initial study is on loop trip counts prediction

- Loops are dominant parts
- Resource requirements
- inlining
- Computation granularity
- ...

Loop trip count sequences follow patterns

Three steps

- Simplification
 - Recognize the pattern of a sequence and use several features to represent it
- Prediction
 - Predict the sequence features through correlation
- Generation
 - Reconstruct sequences from the predicted features

Pattern Recognition

Pattern Recognition

<c1.4,1,1,17> <c2.1.1,c1.4,10,31,-1,c1.1,18,23>

Correlation Prediction

// A: the training data set
for each behavior b
for each behavior b' that b'.id

for each dimension d of b's pattern vector
 Let y be a vector containing all values of d of b in A
 Let X be a matrix containing all pattern vectors of b' in A
 Do regression: corRegress(y, X, err, model);
 if (err < minErr)
 minErr=err; b.partners[d] =b'; b.model[d]=model;
 end if
 end for
end for</pre>

Results

Results

Thursday, November 10, 11

```
Possible Uses
```

```
    Aggressive Optimizations
    Loop unrolling for non-countable loops
```

```
While(!p) {
    if(satisfySomeCondition(p)) {
        result = p;
        break;
    }
    else
        p = p->next;
}
```

Need runtime check and recovery support

Possible Uses

Loop parallelization

Possible Uses

- From loop trip counts to other behaviors
 - -Function hotness
 - Prefetching aggressiveness
 - -Software pipelining
 - -Trace selection in trace JIT

Summary

Program behavior prediction is useful for many compiler optimizations, and even for OS and architecture level

- Behavior Sequences show extreme complexity, but correlation provides an opportunity to predict them
- Three requirements for useful predictions

High prediction accuracy is possible for many loops

Thanks!

Bo Wu @ William & Mary

Thursday, November 10, 11