
Applying Flow Graph Mining to the
Performance Analysis of Flat Profile

Applications
Carolina Simões Gomes and Jose Nelson Amaral

Department of Computing Science, University of Alberta, Canada.

Li Ding, Arie Tal and Joran Siu

 IBM Toronto Lab, Canada.

2

Motivation

3

Motivation

4

Motivation

5

Problem Statement
● How to facilitate the performance analysis of flat-profile

applications?

6

Problem Statement
● How to facilitate the performance analysis of flat-profile

applications?

● More specifically: how to automate the search for
execution patterns in flat-profile applications, that may
indicate the need for optimization?

7

Problem Statement
● How to facilitate the performance analysis of flat-profile

applications?

● More specifically: how to automate the search for
execution patterns in flat-profile applications, that may
indicate the need for optimization?

● Optimization may be at different levels, e.g. hardware
architecture, code generation, application source-code

8

Idea

Problem:

Mine for frequent patterns of execution in a program

9

Idea

Problem:

Mine for frequent
patterns of execution
in a program

Mine for frequent
sub-graphs in a flow
graph

Possible Solution:

10

Fundamental Concepts
● Execution pattern: set of attributes that characterize

distinct executed regions of the program

● Program regions that map to a pattern are called pattern
instances

● Two program regions that contain the same attributes are
two instances of the same pattern

11

Fundamental Concepts
● What makes a pattern interesting?

● Support value: measure of how interesting the pattern is

● Frequent execution pattern: a pattern that has a support
value higher than a threshold. The support value of a
pattern is calculated from all its instances

12

Execution Flow Graph

13

Execution Flow Graph
● Generic representation that

places together static and
dynamic data

● Can be adapted to different
mining granularities

14

Solution: FlowGSpan
● Based on gSpan (Yan and Han, 2002) and FlowGSP

(Jocksch et al., 2010)
● Mines for sequential execution patterns (sub-paths) and

execution patterns with branches (sub-graphs)
● Maps frequent patterns to pattern instances
● Uses support criteria based on attributed, weighted nodes

and weighted edges

15

Support Criteria
● Weight support (Sw)

● Frequency support (Sf)

● Support value (Sm = max{Sw, Sf})

● Anti-monotonicity property

16

Support Criteria

17

FlowGSpan Example
● Procedure:

– generation of candidate sub-graph g of size k by
combining possible attributes

– matching of g on dataset
– support value calculation of matches of g
– comparison of support value of g against threshold
– if g is not frequent, discard it
– else extend g by adding an edge to it, that can either

be connected to a new node or to a node already
in g

18

FlowGSpan Example
● Support threshold (minSup): 0.1

● Possible attributes: a, b, c, d

● Dataset size: 2 (in number of EFGs)

19

FlowGSpan Example
0-edge sub-graphs

20

FlowGSpan Example
0-edge sub-graphs

21

FlowGSpan Example
0-edge sub-graphs

22

FlowGSpan Example
0-edge sub-graphs

23

FlowGSpan Example
1-edge sub-graphs

24

FlowGSpan Example
● For 2-edge sub-graphs onwards...
● Approach based on gSpan: edge-by-edge pattern-growth

(extends sub-graph by testing all combinations from
frequent node pool)

● Optimized approach: edge combination
● Sub-graph matching issue: restarting search for every

candidate sub-graph

25

FlowGSpan Example
Core optimization: registration of pattern instances

26

Application: targeting compiler
developers

● Implemented FlowGSpan to
mine for sets of hardware
events

● Matching is exact
● Tested on DayTrader

bechmark, which was JITted
and profiled on IBM's z196
mainframe architecture

● Compared against optimized
FlowGSP (with added pattern
instance registration)

27

Application: targeting compiler
developers

28

Application: targeting compiler
developers

29

● Implementing FlowGSpan to mine for higher-level
patterns (“source-code patterns”)

● Idea: flow graph mining at basic block level
● Challenges:

– How to define basic block similarity?
– Approximate matching of patterns
– How to map from patterns to corresponding

source lines?

Application: targeting application
developers

30

Conclusion
● FlowGSpan: an algorithm that performs attributed sub-

graph mining in Execution Flow Graphs
● FlowGSpan can be adapted according to the semantics of

the dataset of Execution Flow Graphs to be mined
● Efficient implementation is fundamental to achieve

acceptable performance when mining real-world, multi-GB
datasets

● Large business applications can greatly benefit from
automated performance analysis using FlowGSpan

31

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

