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Problem Statement
● How to facilitate the performance analysis of flat-profile 

applications?

● More specifically: how to automate the search for 
execution patterns in flat-profile applications, that may 
indicate the need for optimization?

● Optimization may be at different levels, e.g. hardware 
architecture, code generation, application source-code
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Idea

Problem:

Mine for frequent patterns of execution in a program
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Idea

Problem:

Mine for frequent
patterns of execution
in a program

Mine for frequent
sub-graphs in a flow 
graph

Possible Solution:
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Fundamental Concepts
● Execution pattern: set of attributes that characterize 

distinct executed regions of the program

● Program regions that map to a pattern are called pattern 
instances

● Two program regions that contain the same attributes are 
two instances of the same pattern
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Fundamental Concepts
● What makes a pattern interesting?

● Support value: measure of how interesting the pattern is

● Frequent execution pattern: a pattern that has a support 
value higher than a threshold. The support value of a 
pattern is calculated from all its instances
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Execution Flow Graph
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Execution Flow Graph
● Generic representation that 

places together static and 
dynamic data

● Can be adapted to different 
mining granularities
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Solution: FlowGSpan
● Based on gSpan (Yan and Han, 2002) and FlowGSP 

(Jocksch et al., 2010)
● Mines for sequential execution patterns (sub-paths) and 

execution patterns with branches (sub-graphs)
● Maps frequent patterns to pattern instances 
● Uses support criteria based on attributed, weighted nodes 

and weighted edges
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Support Criteria
● Weight support (Sw)

● Frequency support (Sf)

● Support value (Sm = max{Sw, Sf})

● Anti-monotonicity property
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Support Criteria
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FlowGSpan Example
● Procedure: 

– generation of candidate sub-graph g of size k by 
combining possible attributes

– matching of g on dataset
– support value calculation of matches of g
–  comparison of support value of g against threshold
– if g is not frequent, discard it
– else extend g by adding an edge to it, that can either 

be connected to a new node or to a node already 
in g
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FlowGSpan Example
● Support threshold (minSup): 0.1

● Possible attributes: a, b, c, d

● Dataset size: 2 (in number of EFGs)
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FlowGSpan Example
0-edge sub-graphs
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FlowGSpan Example
0-edge sub-graphs
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FlowGSpan Example
0-edge sub-graphs
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FlowGSpan Example
0-edge sub-graphs
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FlowGSpan Example
1-edge sub-graphs
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FlowGSpan Example
● For 2-edge sub-graphs onwards...
● Approach based on gSpan: edge-by-edge pattern-growth 

(extends sub-graph by testing all combinations from 
frequent node pool)

● Optimized approach: edge combination
● Sub-graph matching issue: restarting search for every 

candidate sub-graph



25

FlowGSpan Example
Core optimization: registration of pattern instances
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Application: targeting compiler 
developers

● Implemented FlowGSpan to 
mine for sets of hardware 
events

● Matching is exact
● Tested on DayTrader 

bechmark, which was JITted 
and profiled on IBM's z196 
mainframe architecture

● Compared against optimized 
FlowGSP (with added pattern 
instance registration)
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Application: targeting compiler 
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developers
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● Implementing FlowGSpan to mine for higher-level 
patterns (“source-code patterns”)

● Idea: flow graph mining at basic block level 
● Challenges:

– How to define basic block similarity?
– Approximate matching of patterns
– How to map from patterns to corresponding 

source lines?

Application: targeting application 
developers
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Conclusion
● FlowGSpan: an algorithm that performs attributed sub-

graph mining in Execution Flow Graphs 
● FlowGSpan can be adapted according to the semantics of 

the dataset of Execution Flow Graphs to be mined
● Efficient implementation is fundamental to achieve 

acceptable performance when mining real-world, multi-GB 
datasets

● Large business applications can greatly benefit from 
automated performance analysis using FlowGSpan
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Questions?
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