
GENERAL INSTRUCTIONS AND REGULATIONS

FOR ASSIGNMENTS

COMP-202A, Fall 2007, All Sections

PREAMBLE

All assignments that students will submit as part of this course are subject to the instructions and regulations
specified in this document.

Assignments specifications MAY impose additional instructions and regulations or overrule any of the
following instructions or regulations; all such cases will be explicitly mentioned in the relevant assignment
specification.

In cases where an assignment specification contains instructions or regulations which conflict with those
listed in this document, the instructions or regulations contained in the assignment specification shall have
precedence.

LATENESS POLICY

Unless otherwise specified, a lateness penalty of 5% per day late or fraction thereof will be applied to all
late submissions, up to a maximum of two full days past the assignment deadline, after which submissions
for the assignment in question will NOT be accepted and therefore receive a grade of 0.

SUBMISSION PROCEDURE

All assignment submissions MUST be sent to the graders via the appropriate WebCT submission box. In
particular:

• Answers to the mandatory questions of an assignment MUST be sent for grading using the main
WebCT submission box for that assignment.

• You MUST NOT send anything for grading using the WebCT problematic submissions box for any
assignment unless you have been specifically told to do so by your instructor or the course coordinator.
Graders will not even look at submissions sent to the WebCT problematic submissions box that have
not been authorized by an instructor or the course coordinator.

ASSIGNMENTS NOT SUBMITTED THROUGH WEBCT WILL NOT BE GRADED

GENERAL SUBMISSION GUIDELINES

Each student MUST submit:

1

• For each question that requires writing or modifying a program: the file(s) containing the source code
of your program (that is, the files with extension .java) and/or your modifications. You MUST NOT
submit files containing source code provided to you by the instructors unless you made modifications
to these source code files.

Note that unless otherwise specified, you MUST NOT submit the executable files generated by
compiling your program (that is, files with extension .class).

All your programs must conform to the programming standards specified below.

• For each question that requires a written answer: an ASCII TEXT file containing your answer.
Graders will have the discretion to penalize students who submit files in any other format as they
deem appropriate, and even to refuse to look at the file and give a grade of 0 for the corresponding
question.

You MUST follow the instructions given in the specification of each assignment regarding the names to assign
to the files you submit, including case-sensitivity. For example, if the assignment specification states that a
file you are asked to submit MUST be named HelloWorld.java, you MUST name it HelloWorld.java;
you MUST NOT name it helloworld.java, HELLOWORLD.JAVA, or assign it any other name.

You MUST NOT submit any files other than those required by the specification of each assignment, with
one exception: you MAY submit an ASCII TEXT file containing notes for the grader if you judge that
submitting such a file is relevant. If you do submit such a file, you MUST NOT submit more than one
such file and this file SHOULD be called readme.txt.

PLAGIARISM AND ACADEMIC FRAUD

Assignments must be done INDIVIDUALLY; you MUST NOT work in groups, you MUST NOT copy
your submission from another student or any part thereof, and you MUST NOT allow another student
to copy your submission or any part thereof. Performing any of the preceding actions constitutes academic
fraud, and will not be tolerated.

Graders will be randomly checking submissions for suspicious similarities. Additionally, instructors will
use automated plagiarism detection tools to compare each submission to every other submission. However,
note that these tools will be used solely to determine which submissions should be manually compared
for similarity; instructors will NOT accuse anyone of academic fraud based solely on the output of these
tools.

Students caught committing academic fraud on any assignment question will receive a grade of 0 for that
question. Cases of repeat offenders (students caught committing academic fraud more than once) will be
referred to the appropriate university officials.

IDENTIFICATION

You MUST identify yourself clearly in every file you submit. Your identification information MUST
include:

• your name

• your McGill ID

• the course number (COMP-202A)

• the section you are registered in (MWF 11:30 - 12:30: section 1; TR: 13:00 - 14:30: section 2; MWF
12:30 - 13:30: section 3)

2

• your instructor’s name (section 1: M. Petitpas; section 2: Professor C. Verbrugge; section 3: L. A.
Mahabadi)

• the assignment number

• the question number

This information MUST appear in all of the following places:

• At the beginning of EACH file containing source code (that is, files with extension .java) in comments

• At the beginning of EACH file containing written answers to an assignment question

• At the beginning of your readme.txt file if you submit one.

RESTRICTIONS

Every program you submit MUST AT LEAST compile and run using the Sun JDK 1.5 installed on the
PCs found on the third floor of Trottier engineering building.

You MUST NOT use any Java construct, feature, or library method or class that has not been introduced
in the lectures at the time the assignment is due, unless the assignment specification explicitly allows the
use of this construct, feature, or library method or class. For example, you MUST NOT use Java arrays
before they have been covered in the lectures, unless the assignment specification explicitly states that you
are allowed to use them.

When provided source code, you MUST NOT change any part which you have not been explicitly permitted
to change by the assignment specification.

PROGRAMMING STANDARDS

INPUT/OUTPUT

• Output MUST be nicely spaced and easy to understand. In particular, the user of your program
MUST be able to understand the output WITHOUT looking at the source code of your program
(also called program listing) This implies that for each value you display, you MUST display a short
message which explains briefly the meaning of this value.

• Before your program reads values from the keyboard, it MUST display a prompt describing what the
user is required to enter, which values are acceptable, and/or which values are illegal.

IDENTIFIERS: VARIABLE, METHOD, AND CLASS NAMES

• Identifiers for variables and helper methods you write (that is, those whose implementation is not
required by the assignment specification) MUST be as meaningful as possible and follow the standard
upper-case/lower-case conventions. That is:

– Variable names MUST be entirely in lower-case, except for the first letter of each word in the
variable name other than the first word; those letters MUST be upper-case letters. There should
not be any characters between the last letter of a word within a variable name and the first letter
of the next word within the same variable name. Examples: counter, myNumber, myOtherNumber.

– Method names MUST follow the same convention as variable names. In addition, the first word
in a method name SHOULD be a verb. Examples: execute(), isCalculationComplete(),
getThisVariable().

3

– Class names MUST be entirely in lower-case, except for the first letter of each word in the class
name, including the first word, which MUST be upper-case letters. There should not be any
characters between the last letter of a word within a class name and the first letter of the next
word within the same class name. Examples: Example, MyClass, MyOtherClass.

– Constant names MUST be entirely in upper-case. There MUST be ONE underscore () between
the last letter of a word within a constant name and the first letter of the next word within that
constant name. Examples: CONSTANT, ANOTHER_CONSTANT, YET_ANOTHER_CONSTANT.

• You MUST follow the method signature contracts described in the assignment specification for each
required method’s access modifier, return type, name (including case-sensitivity) and order of the
parameters it accepts; in other words, if the assignment specification asks you to write the body
of a method with signature public void myMethod(int i, double d), then the method you write
MUST be public, return void, be called myMethod (mymethod, MYMETHOD, or any other name is NOT
acceptable), and accept as parameters an int and a double in that order. This requirement is imposed
to enable graders to use automated testing programs to grade student submissions.

• Likewise, and for the same reasons, you MUST follow the class name contracts described in the
assignment specification, including case-sensitivity. For example, if the assignment specification asks
you to write a class called MyClass, the class you write MUST be named MyClass; it MUST NOT
be named myclass, MYCLASS, or any other name.

• Only declare variables your program actually uses.

• Do NOT use the same variable for different purposes. In particular, do NOT overwrite the value of
input variables (whether they are parameters to a method or variables in which your program stores
the values it reads from the keyboard).

PROGRAM STRUCTURE

• Good structure is important. You SHOULD decompose your methods into meaningful sub-methods
whenever this improves the clarity of your program. Also, you MUST avoid copying and pasting code
fragments if it is possible to turn them into a helper method.

• Code you submit MUST be indented in a systematic way that reflects how its statements are nested.
You will be taught in the lectures and/or in the labs how to properly indent your programs. You
can also consult the reference program for an example of how programs you submit SHOULD be
indented.

• Your programs MUST strictly separate user interface code (the code which handles input and output)
from application code (the code which actually performs the computations required by the assignment
specification). In particular, if user interface code and application code are part of the same method
(main(), for example), you MUST NOT start computing ANY of the results required by the as-
signment specification before ALL necessary inputs have been entered by the user. Additionally,
you MUST NOT display ANY of the results required by the assignment specification before ALL
required results have been computed.

• Ideally, application code SHOULD NOT be placed in the same method or class as user interface
code (however, note that this recommendation does not apply until methods and classes have been
covered in the lectures).

ACCESS MODIFIERS AND SCOPE

• Unless otherwise specified, all instance variables MUST be private, all required methods MUST be
public, and all helper methods (methods you write but are not required by the assignment specifica-

4

tion) MUST be private. Do not forget that not specifying an access modifier defaults to an access
modifier which is neither public nor private.

• All variables MUST be declared in the most restrictive scope possible. In particular, a variable which
is used to store intermediate values within a method and whose value is no longer needed once a method
returns MUST be declared as a local variable, and NOT as an instance variable.

• Variables local to a method SHOULD be declared at the beginning of the method in which they are
declared, although loop index variables for for loops MAY be declared in the initialization clause of
the for loop.

• Instance variables MUST NOT be used for variables that are not part of the state of an object.

• Graders will penalize students who violate the four preceding regulations by deducting marks from
those allocated to the question, not from the marks allocated to instructions and regulations.

DOCUMENTATION

• Each of your methods MUST be documented in such a way that a person who reads your code can
easily understand what a method does and how it does it (if a method is very simple, explaining the
algorithm behind it is not necessary). These explanations should take the form of comments inserted
either before the method, or before each significant code fragment in the method. These comments
should be meaningful and BRIEF.

COMPILATION ERRORS

• Starting with assignment 2, students who submit source code files for a given question which contains
compilation errors will get at most 25% of the value of that question. In other words, if, for a question
that is worth 20 marks, you submit a program which does not compile, your grade for that question
will be at most 5 marks.

Last update: 2007-09-13, 17:00 EST
Update log:

• 2007-10-08, 18:10: Clarified grader’s penalty options on forbidden file formats.

• 2007-09-13, 17:00: Corrected a few errors and formatting problems.

• 2007-09-10, 18:20: Initial publication.

5

