
C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202

More on Chapter 2

CONTENTS:
Compilation
Data and Expressions

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 2

Programming Language Levels

• There are many programming language levels:
– machine language
– assembly language
– high-level language

• Each type of CPU (Sparc processor, Intel processor, …) has its
own specific machine language. These are the simple built-in
instructions the CPU comes pre-designed with.

• The other levels were created to make it easier for a human to
write programs

011001011
110111100

Add r1,5
Mov r1,r2Java, C, C++,

Fortran

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 3

Programming Languages

• A program must be translated into machine language before it
can be executed on a particular type of CPU

• This can be accomplished in several ways
– A compiler is a software tool which translates source code into a

specific target language. Often, that target language is the machine
language for a particular CPU type.

• Input: files written in a high-level programming language
• Output: executable binary file that can be processed by CPU
• need compilers for each CPU type

– Interpreter:
• no output executable file
• Instead the source code is translated and executed on-the-fly.

• The Java approach is somewhat different

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 4

Java Translation and Execution

• The Java compiler translates Java source code into a special
representation called bytecode

• Java bytecode is not the machine language for any traditional
CPU

• Another software tool, called an interpreter, translates
bytecode into machine language and executes it

• Therefore the Java compiler is not tied to any particular
machine

• Java is considered to be architecture-neutral

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 5

Java Translation and Execution

Java source
code

Machine
code

Java
bytecode

Java
interpreter

Bytecode
compiler

Java
compiler

.java

.class

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 6

More on System.out
• Two built-in commands to print on the screen:

– System.out.println(….stuff to print out….);
• A line-break is printed after ….stuff to print out…

– System.out.print(….stuff to print out….);
• Only ….stuff to print out…. is printed

• Syntax:
– System.out.println(EXPRESSION);
– Where:

• EXPRESSION = “anything between quotes”
• EXPRESSION = variable
• EXPRESSION = “anything ” + variable
• EXPRESSION = “anything ” + variable + “ something more”

• Example:
– System.out.print(“x = ” + x);

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 7

Countdown.java

 class Countdown
 {

public static void main(String args[])
{

System.out.print(“Three… ”);
System.out.print(“Two… ”);
System.out.print(“One… ”);
System.out.print(“Zero… ”);

System.out.println(“Liftoff!”);

System.out.println(“Houston, we have a problem!”);
}

 }

What does this output?

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 8

Countdown Result

Three… Two… One… Zero… Liftoff!
Houston, we have a problem!
__

Cursor ends up here

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 9

Variables

MODIFIER TYPE IDENTIFIER = VALUE;

Where:
• MODIFIER final, static (optional)
• TYPE int, char, double, … (mandatory)
• IDENTIFIER a single word as defined previously (mandatory)
• = VALUE a constant matching the TYPE (optional)
• ; (mandatory)

This is a partial definition

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 10

Primitive Data

• There are exactly 8 primitive data types in Java

• Four of them represent integers:
– byte, short, int, long

• Two of them represent floating point numbers:
– float, double

• One of them represents characters:
– char

• And one of them represents boolean values:
– boolean

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 11

Numeric Primitive Data

• The difference between the various numeric
primitive types is their size and type, and
therefore the values they can store:
Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 12

Characters

• A char variable stores a single character from the Unicode
character set
– char gender;
– gender = ‘F’;

• A character set is an ordered list of characters, and each
character corresponds to a unique number

• The Unicode character set uses 16 bits (2 Bytes) per character,
allowing for 65,536 unique characters

• It is an international character set, containing symbols and
characters from many world languages

• Character literals are delimited by single quotes:
'a' 'X' '7' '$' ',' '\n'

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 13

Characters

• The ASCII character set is older and smaller
than Unicode, but is still quite popular

• The ASCII characters are a subset of the
Unicode character set, including:

uppercase letters
lowercase letters
punctuation
digits
special symbols
control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 14

Boolean

• A boolean value represents a true or false
condition

• A boolean can also be used to represent any two
states, such as a light bulb being on or off

• The reserved words true and false are the
only valid values for a boolean type

boolean done = false;
…
done = true;

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 15

More on Boolean Expression

• evaluates to either true or false
– if (denominator == 0)

System.out.println(“…..

• Boolean variable can be used where a boolean
expression is expected
– if (done)

System.out.println(“you are done”);
– if (!done)

System.out.println(“not yet done”);

– The ! negates the value of a boolean expression
• if a boolean expression e is true, then !e is false
• if a boolean expression e is false, then !e is true

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 16

Adding an arbitrary amount of
numbers

import java.util.Scanner;
public class AddArbitraryAlternative
{
 public static void main (String [] args)
 {
 double input;

double output = 0;
boolean done = false;

 Scanner scan = new Scanner(System.in);

// read in the values in a loop and incrementally perform calculation
while (!done)
{
 System.out.println("Enter number (0 indicates you want to exit):");
 input = scan.nextDouble();
 if (input == 0)
 done = true;
 else
 output = output + input;
}
System.out.println("The sum is: " + output);

 }
}

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 17

Arithmetic Expressions

• An expression is a combination of operators and operands
• Arithmetic expressions compute numeric results and make use

of the arithmetic operators:

Addition +
Subtraction -
Multiplication *
Division /
Remainder %

• If either or both operands to an arithmetic operator are
floating point, the result is floating point

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 18

Operator Precedence

• Operators can be combined into complex expressions

result = total + count / max - offset;

• Operators have a well-defined precedence which determines
the order in which they are evaluated

• Multiplication, division, and remainder are evaluated prior to
addition, subtraction, and string concatenation

• Arithmetic operators with the same precedence are evaluated
from left to right

• Parentheses can always be used to force the evaluation order

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 19

Operator Precedence

• What is the order of evaluation in the following
expressions?
a + b + c + d + e

1 432

a + b * c - d / e

3 241

a / (b + c) - d % e

2 341

a / (b * (c + (d - e)))

4 123

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 20

Assignment Revisited

• The assignment operator has a lower
precedence than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest;

14 3 2

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 21

Assignment Revisited
• The right and left hand sides of an

assignment statement can contain the same
variable First, one is added to the

original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 22

TempConvert.java

 class TempConvert
 {

public static void main (String args[])
{
 final int BASE = 32;
 final double CONVERSION_FACTOR = 9.0 / 5.0;
 double fahrenheitTemp;

 int celsiusTemp;

 Scanner scan = new Scanner(System.in);
 celsiusTemp = scan.nextInt();

 farenheitTemp = celsiusTemp * CONVERSION_FACTOR + BASE;

 System.out.println(Celsius Temp = “ + celsiusTemp);
 System.out.println(Farenheit Temp = “ + FarenheitTemp);
}

 }

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 23

Syntactic Sugar:
Increment/Decrement

• increment operator
– unary operator: adds one to its only operand

• counter++;
• ++counter;
• prefix and postfix forms differ when used in larger expression

– equivalent to
• counter = counter + 1;

– total = counter++;
• assign value of counter to total and then increment value of counter

– total = ++counter;
• increment value of counter and then assign the new value of counter to total

• decrement operator
– subtracts one from operand
– counter--;

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 24

Example
import java.util.Scanner;
public class AddArbitrary
{
 public static void main (String [] args)
 {
 double input;

int iterations;
double output = 0;
int counter;

 Scanner scan = new Scanner(System.in);

System.out.println(”Indicate the amount of number:");
iterations = scan.nextInt();
// read in the values in a loop and incrementally perform calculation
counter = 1;
while (counter++ <= iterations)
{

 // counter = counter + 1;
 // counter++;
 System.out.println("Enter number:");
 input = scan.nextDouble();
 output = output + input;
 }
System.out.println("The sum is: " + output);

 }
}

– What are the advantages/disadvantages of the different choices?

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 25

Syntactic Sugar: Assignment
Operators

• Assignment and arithmetic operations
– Example 1:

• total = total + 5;
• total += 5;

– Example 2
• result = result * (count1 + count2);
• result *= count1 + count2

– Evaluate the entire expression on the right-hand
side first, then use the result as the right operand of
the other operation

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 26

Assignment Operators

• There are many assignment operators, including the following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 27

Example
import java.util.Scanner;
public class AddArbitrary
{
 public static void main (String [] args)
 {
 double input;

int iterations;
double output = 0;
int counter;

 Scanner scan = new Scanner(System.in);

System.out.println(”Indicate the amount of number:");
iterations = scan.nextInt();
// read in the values in a loop and incrementally perform calculation
counter = 1;
while (counter <= iterations)
{
 System.out.println("Enter number:");
 input = scan.nextDouble();
 output += input;
 counter++;

 }
System.out.println("The sum is: " + output);

 }
}

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 28

Data Conversion

• Sometimes it is convenient to convert data from one type to
another

• For example, we may want to treat an integer as a floating
point value during a computation

• Conversions must be handled carefully to avoid losing
information

• Widening conversions
– usually go from a data type with X Bytes to a data type with X or Y>X Bytes
– usually no information lost

• Narrowing conversions
– usually go from a data type with X Bytes to a data type with Y < X Bytes
– can lose information (e.g. when converting from int to a short)

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 29

Assignment Conversion

• In Java, data conversions can occur in three ways:
– assignment conversion
– arithmetic promotion
– casting

• Assignment conversion occurs when a value of one type is assigned to a
variable of another
– Only widening conversions can happen via assignment
– Recall: the value of a variable of type int can be assigned to a variable of

type double
//money is double, dollars is int

 money = dollars;
If dollars has value 25, then money has value 25.0 after assignment

– If we attempt a narrowing conversion (assign the value of a variable of type double to a
variable of type int), the compiler issues an error message

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 30

Arithmetic Promotion

• Arithmetic promotion happens automatically when operators in expressions convert
their operands

//mpg is a double, gallons is a float, miles is an int
mpg = miles / gallons;

1) auto
convert to float

2)
divide

3) auto
convert to
double

4) assign
result to
mpg

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 31

Casting

• Most general, but trusts that you to understand the effect
• Both widening and narrowing conversions can be

accomplished by explicitly casting a value
• To cast, the type is put in parentheses in front of the value

being converted
• floating point to integer cast

– truncates fractional part
//money is double, dollars is int

dollars = (int) money;

 If money has value 25.8, then dollars has value 25 after assignment
– cast does not change the value of the casted variable

• money still has 25.8 after the assignment

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 32

Casting

• total and count are integers, result is a float
• result = total / count;

– Integer division and assignment conversion
– e.g., if total is 10 and count is 4, then result is assigned 2.0

• result = (float) total / count;
– cast returns floating point version of value of total
– arithmetic conversion now treats count as floating point
– division is floating point division
– e.g., if total is 10 and count is 4, then result is assigned 2.5
– note 1: cast has higher precedence than /, thus cast operates on value

of total, not on the result of division
– note 2: cast does not change the value in total for the rest of the

program.

C
O

M
P

 202 – Introduction to C
om

puting 1

202 Data and Expressions 33

Conversion Examples

EXPRESSION
 double x = 5.9;
 int y = (int) x;

 int a = 5;
 float b = 7.3;
 double c = 10.03;
 c = b + a;

 int a = 2, b = 5;
 double c = 22;
 c = a / b;

RESULT

 y has 5

 c has 12.3

 c has 0

