McGill

N\

COMP 202

Conditional Programming

CONTENTS:
¢ The IF statement
¢ The SWITCH statement

COMP 202 - Conditional Programming

N\ 4

Conditional Statements

* A conditional statement lets us choose which
statement will be executed next

* Therefore they are sometimes called selection
Statements

* Conditional statements give us the power to make
basic decisions

« Java's conditional statements are the if statement, the
if-else statement, and the switch statement

COMP 202 - Conditional Programming

McGill

\

Flow of Control

* Default Flow: the order of statement execution
through a method is linear: one after the other in the
order they are written (top of page, downwards to end

of page)

* Some programming statements modify that order,
allowing us to:

— decide whether or not to execute a particular statement, or
— perform a statement over and over repetitively (while)

* The order of statement execution is called the flow of
control

COMP 202 - Conditional Programming

N\

Part 1

The IF Statement

COMP 202 - Conditional Programming

McGill

N\

The 1f Statement

» The if statement has the following syntax:
The condition must be a boolean expression.
It must evaluate to either true or false.

/

if (condition)
statement;

|

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

ifisaJava
reserved word

~

COMP 202 - Conditional Programming

N\

Boolean Expressions

* A condition often uses one of Java's equality
operators or relational operators, which all return
boolean results:

== equal to

I= not equal to

< less than

> greater than

<= less than or equal to
>= greater than or equal to

* Note the difference between the equality operator
(==) and the assignment operator (=)

COMP 202 - Conditional Programming

McGill

\

Logic of an 1f statement

true false

COMP 202 - Conditional Programming

\

The 1f-else Statement

* An else clause can be added to an if statement to
make it an if-else statement:
if (condition)
statementl;

else
statement2;

* If the condition is true, statement] is executed; if the
condition is false, statement2 is executed

* One or the other will be executed, but not both

COMP 202 - Conditional Programming

McGill

N\

Logic of an 1f-else statement

true false

COMP 202 - Conditional Programming

N\

Nested if Statements

* The statement executed as a result of an if statement
or else clause could be another if statement

* These are called nested if statements

* Indentation does not determine which IF and ELSE

matches with. It is determined by syntax (ie. Order or

)

* Note: DrJava might not perform proper indentation
for nested statements
— solution: use {}

COMP 202 - Conditional Programming

McGill

\

Block Statements

 Several statements can be grouped together into a
block statement |

|
» A block is delimited by braces ({...})

* A block statement can be used wherever a statement
is called for in the Java syntax

» For example, in an if-else statement, the if portion, or
the else portion, or both, could be block statements

COMP 202 - Conditional Programming

\

MinOfThree.java

int numl, num2, num3, min = 0;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter three integers:

")

(
numl = scan.nextInt();
num2 = scan.nextInt();
num3 = scan.nextInt();
if (numl < num2)

if (numl < num3)
min = numl;

else
min = num3;
else
if (num2 < num3)
min = num2;
else
min = num3;

System.out.println ("Minimum value: " + min);

COMP 202 - Conditional Programming

McGill

N\

MinOfThree.java

int numl, num2, num3, min = 0;
Scanner scan = new Scanner (System.in);

System.out.println ("Enter three integers: ");
numl = scan.nextInt();
scan.nextInt () ;
scan.nextInt () ;

num2

num3
if (numl < num2) {
if (numl < num3)
min = numl;
else
min = num3;
} else {
if (num2 < num3)
min = num2;
else
min = num3;
}
System.out.println

("Minimum value: " + min);

COMP 202 - Conditional Programming

N\

Comparing Characters

* We can use the logical operators on character data
* The results are based on the Unicode character set

* The following condition is true because the character
'+' comes before the character 'J' in Unicode:

if ('+' < 'J")
System.out.println ("+ is less than J");

* The uppercase alphabet (A-Z) and the lowercase

alphabet (a-z) both appear in alphabetical order in
Unicode

COMP 202 - Conditional Programming

McGill

\

More than two execution branches

* Nested statements are needed when there are not only two
branches.

* An if-(else-if)-else statement allows several execution
branches.

if (condition) if (condition)

statementl; statementl;
else if (condition) else

statement2; same as if (condition)
else statement2;

else
statement3;

statement3;

COMP 202 - Conditional Programming

\

.

Comparing Strings

* Remember that a character string in Java is an object

* We cannot use the logical operators to compare objects

¢ The equals method can be called on a String to determine if
two strings contain exactly the same characters in the same
order (even constants)

 The String class also contains a method called compareTo to

determine if one string comes before another alphabetically (as
determined by the Unicode character set)

COMP 202 - Conditional Programming

McGill

N\

Comparing Floating Point Values

» We also have to be careful when comparing two floating point
values (f1oat or double) for equality

* You should rarely use the equality operator (==) when
comparing two floats

* In many situations, you might consider two floating point
numbers to be "close enough" even if they aren't exactly equal

* Therefore, to determine the equality of two floats, you may
want to use the following technique:

if (Math.abs (f1 - £2) < 0.00001)
System.out.println ("Essentially equal.");

= COMP 202 - Conditional Programming 17

2

Part 2

The SWITCH Statement

COMP 202 - Conditional Programming 19

McGill

\

Try These Out

Write a program called BuyStuff.java that
asks the user for two amounts, adds them
and calculates tax at 15%, shows this to user
and asks for money. It then compares if the
person gave enough money. If so, it
displays the amount of change to return
otherwise it displays a message asking for
more money.

COMP 202 - Conditional Programming 18

N\

The switch Statement

The switch statement provides another means to
decide which statement to execute next

The switch statement evaluates an expression, then
attempts to match the result to one of several possible
cases

Each case contains a value and a list of statements
The flow of control transfers to the case associated

with the first value that it matches with (first come
first serve)

COMP 202 - Conditional Programming 20

McGill

N\

The switch Statement

* The general syntax of a switch statement is:

i tch switch (expression)
SW1tcC {
and 4.

case valuel :

case statement-listl
are case value2 :
reserved statement-1list2
words case value3 : |

statement-1list3
case

If expression
matches value2,
control jumps

} to here

COMP 202 - Conditional Programming

21

7

Example

int age;
age = scan.nextInt();

switch (age)
{
case 5:
System.out.println (“Five years old”);
break;
case 10:
age++;
case 20:
age--;

What happens when:
/ *« AGE is 5, 10 or 20?

* AGE is 3, or any other number?

COMP 202 - Conditional Programming

23

McGill

\

The switch Statement

» Often a break statement 1s used as the last statement
in each case's statement list

* A break statement causes control to transfer to the
end of the switch statement

» If a break statement is not used, the flow of control
will continue into the next case

* Sometimes this can be helpful, but usually we only
want to execute the statements associated with one
case

COMP 202 - Conditional Programming

22

\

The switch Statement

» A switch statement can have an optional default case

* The default case has no associated value and simply uses the
reserved word default

* If the default case is present, control will transfer to it if no
other case value matches

» Though the default case can be positioned anywhere in the
switch, it is usually placed at the end

 If'there is no default case, and no other value matches, control
falls through to the statement after the switch

COMP 202 - Conditional Programming

24

N\

McGill

Example

char grade;
String input = scan.next(); // Input A, B, C, F
grade = input.charAt(0); // Input A, B, C, F

switch (grade)
{
case
case

‘A

‘B’

‘Ce

System.out.println (“pass”) ;

break;

‘Fo:

System.out.println (“fail”);

break;

default:

System.out.println (“Sorry, no other choices!”);

case

case

COMP 202 - Conditional Programming 25

2

Drinks.java 12

System.out.println ("Here is the drinks menu :
System.out.println ("1.\tOrange juice");
System.out.println ("2.\tMilk");
System.out.println ("3.\tWater");
System.out.println ("4.\tWine");
System.out.println ("5.\tBeer");
System.out.print ("What will it be ? ");

int choice = scan.nextInt();

")

switch (choice)
{
case 1:
System.out.println ("Vitamin C!");
case 2:
System.out.println ("Your bones will thank you.") ;
break;

COMP 202 - Conditional Programming 27

McGill

\

The switch Statement

* The expression of a switch statement must result in
an integral data type, like an integer or character; it
cannot be a floating point value, nor a String

* Note that the implicit boolean condition in a switch
statement is equality - it tries to match the expression
with a value (it is never <, <=, >, nor >=)

* You cannot perform relational checks with a switch
statement

COMP 202 - Conditional Programming 26
7
. .
Drinks.java 22
.
case 3:
System.out.println ("The classics never die.");
break;
case 4:
System.out.print ("Red or white 2 ");
String type = scan.next();
boolean isRed = (type.toLowerCase()) .equals("red");
if (isRed)
System.out.println ("Good for your heart.");
else
System.out.println ("Good for your lungs.");
break;
case 5:
System.out.println ("Watch that belly!");
break;
default:
System.out.println ("That's not going to gquench your
thirst...");
}
COMP 202 - Conditional Programming 28

McGill

N\

About Logical Operators

COMP 202 - Conditional Programming

Part 3

29

7

Unary

Examples

boo&n choice = false;

if (!choice)
else System.out.println (“Stop”):;

if (!

if |

else

/
(x>5)) ..

System.out.println (“Go”) ;

Unary with expression

Binary

(x>5) && “(y<10))
choice = true;

choice = false;

COMP 202 - Conditional Programming

31

McGill

\

Logical Operators

* Boolean expressions can also use the following logical
operators.

! Logical NOT

&& Logical AND
|| Logical OR

* They all take boolean operands and produce boolean results
» Logical NOT is a unary operator (it has one operand), but

logical AND and logical OR are binary operators (they each
have two operands)

COMP 202 - Conditional Programming

30

\

Logical NOT

* The logical NOT operation is also called logical
negation or logical complement

« If some boolean condition a is true, then ! a is false;
if a 1s false, then ! a is true

» Logical expressions can be shown using truth tables

a la

true false
false true

COMP 202 - Conditional Programming

32

McGill

N\

Logical AND and Logical OR

» The logical and expression

a && b

1s true if both a and b are true, and false otherwise

* The logical or expression

Il b

a
1s true if a or b or both are true, and false otherwise

COMP 202 - Conditional Programming

33

7

Logical Operators

* Conditions in selection statements and loops can use
logical operators to form complex expressions

if (total < MAX && !'found)

System.out.println ("Processing..");

 Logical operators have precedence
relationships between themselves and other
operators

COMP 202 - Conditional Programming

35

McGill

\

Truth Tables (revisited)

* A truth table shows the possible true/false
combinations of the terms

» Since && and | | each have two operands, there are
four possible combinations of true and false

a b a && b a |l b
true true true true
true false false true
false true false true
false false false false

COMP 202 - Conditional Programming

34

\

Truth Tables

 Specific expressions can be evaluated using
truth tables

total < MAX

total < MAX | found ! found && 'found
false false true false
false true false false
true false true true
true true false false

COMP 202 - Conditional Programming

36

McGill

N\

Part 4

The ?: Operator

COMP 202 - Conditional Programming

37

N\

The Conditional Operator

* The conditional operator is similar to an if-else statement,
except that it is an expression that returns a value

* For example:

larger = (numl

> num2) ? numl : num2;

o Ifnuml is greater that num?2, then num1 is assigned to

larger; otherwise,

num? is assigned to larger

* The conditional operator is ternary, meaning that it requires

three operands

COMP 202 - Conditional Programming

39

McGill

\

The Conditional Operator

 Java has a conditional operator that evaluates a boolean
condition that determines which of two other expressions to
evaluate

* The result of the chosen expression is the result of the entire
conditional operator

* Its syntax is:

condition ? expressionl : expressionZ

 Ifthe condition is true, expressionl is evaluated; if it is false,
expression? is evaluated

COMP 202 - Conditional Programming

38

\

The Conditional Operator

* Another example:

System.out.println ("Your change is " +
count + (count == 1) ? "Dime" : "Dimes");

« If count equals 1, then "Dime" is printed

 If count is anything other than 1, then "Dimes" is
printed

COMP 202 - Conditional Programming

40

N\

McGill

Wages2.java

final double RATE = 8.25; // regular pay rate

final int STANDARD = 40; // standard hours in a work week
boolean isProf; // is the worker a professor or not?
double pay = 0.0;

Scanner scan = new Scanner (System.in);

System.out.print ("Enter the number of hours worked: ");
int hours = scan.nextInt();

System.out.print ("Are you a professor (Y/N)?2 ");

String answer = scan.next();

if (answer.equalsIgnoreCase ("Y")) {
isProf = true;
System.out.println("Sorry...Overtime does not apply to YOUR kind.");
}
else
isProf = false;
pay = (hours > STANDARD && !isProf) ?
STANDARD*RATE+ (hours-STANDARD) * (RATE*1.5) : hours*RATE;

System.out.println ("Gross weekly earnings: " + pay);

COMP 202 - Conditional Programming

41

