
C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 1

COMP 202
Conditional Programming

CONTENTS:
• The IF statement
• The SWITCH statement

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 2

Flow of Control
• Default Flow: the order of statement execution

through a method is linear: one after the other in the
order they are written (top of page, downwards to end
of page)

• Some programming statements modify that order,
allowing us to:
– decide whether or not to execute a particular statement, or
– perform a statement over and over repetitively (while)

• The order of statement execution is called the flow of
control

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 3

Conditional Statements

• A conditional statement lets us choose which
statement will be executed next

• Therefore they are sometimes called selection
statements

• Conditional statements give us the power to make
basic decisions

• Java's conditional statements are the if statement, the
if-else statement, and the switch statement

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 4

Part 1

The IF Statement

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 5

The if Statement

• The if statement has the following syntax:

if (condition)
 statement;

if is a Java
reserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 6

Logic of an if statement

condition
evaluated

false

statement

true

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 7

Boolean Expressions

• A condition often uses one of Java's equality
operators or relational operators, which all return
boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• Note the difference between the equality operator
(==) and the assignment operator (=)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 8

The if-else Statement
• An else clause can be added to an if statement to

make it an if-else statement:

if (condition)
 statement1;
else
 statement2;

• If the condition is true, statement1 is executed; if the
condition is false, statement2 is executed

• One or the other will be executed, but not both

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 9

Logic of an if-else statement

condition
evaluated

statement1

true false

statement2

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 10

Block Statements

• Several statements can be grouped together into a
block statement

• A block is delimited by braces ({...})

• A block statement can be used wherever a statement
is called for in the Java syntax

• For example, in an if-else statement, the if portion, or
the else portion, or both, could be block statements

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 11

Nested if Statements

• The statement executed as a result of an if statement
or else clause could be another if statement

• These are called nested if statements

• Indentation does not determine which IF and ELSE
matches with. It is determined by syntax (ie. Order or
{})

• Note: DrJava might not perform proper indentation
for nested statements
– solution: use {}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 12

MinOfThree.java
 int num1, num2, num3, min = 0;
 Scanner scan = new Scanner(System.in);

 System.out.println ("Enter three integers: ");
 num1 = scan.nextInt();
 num2 = scan.nextInt();
 num3 = scan.nextInt();

 if (num1 < num2)
 if (num1 < num3)
 min = num1;
 else
 min = num3;
 else
 if (num2 < num3)
 min = num2;
 else
 min = num3;

 System.out.println ("Minimum value: " + min);

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 13

MinOfThree.java
 int num1, num2, num3, min = 0;
 Scanner scan = new Scanner(System.in);

 System.out.println ("Enter three integers: ");
 num1 = scan.nextInt();
 num2 = scan.nextInt();
 num3 = scan.nextInt();

 if (num1 < num2) {
 if (num1 < num3)
 min = num1;
 else
 min = num3;
 } else {
 if (num2 < num3)
 min = num2;
 else
 min = num3;
 }
 System.out.println ("Minimum value: " + min);

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 14

More than two execution branches

• Nested statements are needed when there are not only two
branches.

• An if-(else-if)-else statement allows several execution
branches.

if (condition)
 statement1;
else if (condition)
 statement2;
else
 statement3;

if (condition)
 statement1;
else
 if (condition)
 statement2;
 else
 statement3;

same as

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 15

Comparing Characters
• We can use the logical operators on character data
• The results are based on the Unicode character set
• The following condition is true because the character

'+' comes before the character 'J' in Unicode:

if ('+' < 'J')
 System.out.println ("+ is less than J");

• The uppercase alphabet (A-Z) and the lowercase
alphabet (a-z) both appear in alphabetical order in
Unicode

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 16

Comparing Strings

• Remember that a character string in Java is an object

• We cannot use the logical operators to compare objects

• The equals method can be called on a String to determine if
two strings contain exactly the same characters in the same
order (even constants)

• The String class also contains a method called compareTo to
determine if one string comes before another alphabetically (as
determined by the Unicode character set)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 17

Comparing Floating Point Values
• We also have to be careful when comparing two floating point

values (float or double) for equality

• You should rarely use the equality operator (==) when
comparing two floats

• In many situations, you might consider two floating point
numbers to be "close enough" even if they aren't exactly equal

• Therefore, to determine the equality of two floats, you may
want to use the following technique:

if (Math.abs (f1 - f2) < 0.00001)
 System.out.println ("Essentially equal.");

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 18

Try These Out
• Write a program called BuyStuff.java that

asks the user for two amounts, adds them
and calculates tax at 15%, shows this to user
and asks for money. It then compares if the
person gave enough money. If so, it
displays the amount of change to return
otherwise it displays a message asking for
more money.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 19

Part 2

The SWITCH Statement

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 20

The switch Statement
• The switch statement provides another means to

decide which statement to execute next

• The switch statement evaluates an expression, then
attempts to match the result to one of several possible
cases

• Each case contains a value and a list of statements

• The flow of control transfers to the case associated
with the first value that it matches with (first come
first serve)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 21

The switch Statement

• The general syntax of a switch statement is:
switch (expression)
{
 case value1 :
 statement-list1
 case value2 :
 statement-list2
 case value3 :
 statement-list3
 case ...

}

switch
and
case
are

reserved
words

If expression
matches value2,
control jumps
to here

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 22

The switch Statement

• Often a break statement is used as the last statement
in each case's statement list

• A break statement causes control to transfer to the
end of the switch statement

• If a break statement is not used, the flow of control
will continue into the next case

• Sometimes this can be helpful, but usually we only
want to execute the statements associated with one
case

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 23

Example

 int age;
 age = scan.nextInt();

 switch(age)
 {
 case 5:

System.out.println(“Five years old”);
break;

 case 10:
age++;

case 20:
age--;

 }
What happens when:
• AGE is 5, 10 or 20?
• AGE is 3, or any other number?

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 24

The switch Statement
• A switch statement can have an optional default case

• The default case has no associated value and simply uses the
reserved word default

• If the default case is present, control will transfer to it if no
other case value matches

• Though the default case can be positioned anywhere in the
switch, it is usually placed at the end

• If there is no default case, and no other value matches, control
falls through to the statement after the switch

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 25

Example
 char grade;
 String input = scan.next(); // Input A, B, C, F
 grade = input.charAt(0); // Input A, B, C, F

 switch(grade)
 {
 case ‘A’:
 case ‘B’:
 case ‘C’:

System.out.println(“pass”);
break;

case ‘F’:
System.out.println(“fail”);
break;

default:
System.out.println(“Sorry, no other choices!”);

 }

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 26

The switch Statement

• The expression of a switch statement must result in
an integral data type, like an integer or character; it
cannot be a floating point value, nor a String

• Note that the implicit boolean condition in a switch
statement is equality - it tries to match the expression
with a value (it is never <, <=, >, nor >=)

• You cannot perform relational checks with a switch
statement

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 27

Drinks.java
 System.out.println ("Here is the drinks menu : ");
 System.out.println ("1.\tOrange juice");
 System.out.println ("2.\tMilk");
 System.out.println ("3.\tWater");
 System.out.println ("4.\tWine");
 System.out.println ("5.\tBeer");
 System.out.print ("What will it be ? ");
 int choice = scan.nextInt();

 switch (choice)
 {
 case 1:
 System.out.println ("Vitamin C!");
 case 2:
 System.out.println ("Your bones will thank you.");
 break;

1/2

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 28

Drinks.java
 case 3:
 System.out.println ("The classics never die.");
 break;
 case 4:
 System.out.print ("Red or white ? ");
 String type = scan.next();
 boolean isRed = (type.toLowerCase()).equals("red");
 if (isRed)
 System.out.println ("Good for your heart.");
 else
 System.out.println ("Good for your lungs.");
 break;
 case 5:
 System.out.println ("Watch that belly!");
 break;
 default:
 System.out.println ("That's not going to quench your

thirst...");
 }

2/2

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 29

Part 3

About Logical Operators

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 30

Logical Operators

• Boolean expressions can also use the following logical
operators:

! Logical NOT
&& Logical AND
|| Logical OR

• They all take boolean operands and produce boolean results

• Logical NOT is a unary operator (it has one operand), but
logical AND and logical OR are binary operators (they each
have two operands)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 31

Examples

boolean choice = false;
if (!choice) System.out.println(“Go”);
else System.out.println(“Stop”);

if (!(x>5)) …

if ((x>5) && (y<10))
choice = true;

else
choice = false;

Unary

Binary

Unary with expression

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 32

Logical NOT
• The logical NOT operation is also called logical

negation or logical complement

• If some boolean condition a is true, then !a is false;
if a is false, then !a is true

• Logical expressions can be shown using truth tables

a

true
false

!a

false
true

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 33

Logical AND and Logical OR

• The logical and expression

a && b

is true if both a and b are true, and false otherwise

• The logical or expression

a || b

is true if a or b or both are true, and false otherwise

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 34

Truth Tables (revisited)
• A truth table shows the possible true/false

combinations of the terms

• Since && and || each have two operands, there are
four possible combinations of true and false

a

true
true
false
false

b

true
false
true
false

a && b

true
false
false
false

a || b

true
true
true
false

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 35

Logical Operators
• Conditions in selection statements and loops can use

logical operators to form complex expressions

if (total < MAX && !found)
 System.out.println ("Processing…");

• Logical operators have precedence
relationships between themselves and other
operators

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 36

Truth Tables
• Specific expressions can be evaluated using

truth tables

total < MAX

false
false
true
true

found

false
true
false
true

!found

true
false
true
false

total < MAX
 && !found

false
false
true
false

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 37

Part 4

The ?: Operator

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 38

The Conditional Operator

• Java has a conditional operator that evaluates a boolean
condition that determines which of two other expressions to
evaluate

• The result of the chosen expression is the result of the entire
conditional operator

• Its syntax is:

 condition ? expression1 : expression2

• If the condition is true, expression1 is evaluated; if it is false,
expression2 is evaluated

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 39

The Conditional Operator

• The conditional operator is similar to an if-else statement,
except that it is an expression that returns a value

• For example:

 larger = (num1 > num2) ? num1 : num2;

• If num1 is greater that num2, then num1 is assigned to
larger; otherwise, num2 is assigned to larger

• The conditional operator is ternary, meaning that it requires
three operands

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 40

The Conditional Operator

• Another example:

System.out.println ("Your change is " +
count +(count == 1) ? "Dime" : "Dimes");

• If count equals 1, then "Dime" is printed

• If count is anything other than 1, then "Dimes" is
printed

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Conditional Programming 41

Wages2.java
final double RATE = 8.25; // regular pay rate
final int STANDARD = 40; // standard hours in a work week
boolean isProf; // is the worker a professor or not?
double pay = 0.0;
Scanner scan = new Scanner(System.in);

System.out.print ("Enter the number of hours worked: ");
int hours = scan.nextInt();
System.out.print ("Are you a professor (Y/N)? ");
String answer = scan.next();

if (answer.equalsIgnoreCase("Y")) {
 isProf = true;
 System.out.println("Sorry...Overtime does not apply to YOUR kind.");
}
else
 isProf = false;
pay = (hours > STANDARD && !isProf) ?

STANDARD*RATE+(hours-STANDARD)*(RATE*1.5) : hours*RATE;

System.out.println ("Gross weekly earnings: " + pay);

