
C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 1

COMP 202
Building Your Own Classes

CONTENTS:
• Anatomy of a class
• Constructors and Methods (parameter passing)
• Instance Data

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 2

COMP 202

• We've been using predefined classes. Now we will
learn to write our own classes to define new objects.

• This week we focus on:
– Objects: attributes, state and behaviour
– Anatomy of a Class: attributes and methods
– Classes as Types
– Creating new objects
– Parameter passing

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 3

Part 1

About Objects

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 4

Objects
• An object has:

– state - descriptive characteristics
– methods - what it can do (or what can be done to it)

» services, actions, behavior, ….

• For example, consider a bank client with a checking
and a savings account.

• The state of the client is the balance of the checking
and saving accounts.

• Methods are withdrawal, deposit and transfer,
querying the balance etc.

• Some methods might change the state

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 5

Classes
• A class is a blueprint of an object

• It is the model or pattern from which objects are created

• For example, the String class is used to define String
objects:

String x = “Bob”;

• Each String object contains specific characters (its state)

• Each String object has methods such as toUpperCase:
x = x.toUpperCase();

• In the case of String, the methods don’t change the object
itself; but this is very specific to strings

Class

Object Variable

State

Object

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 6

Classes
• The String class was provided for us by the Java

standard class library

• But we can also write our own classes that define
specific objects that we need

• For example, suppose we wanted to write a bank
program that manages the clients and their saving
and checking accounts.

• We could write a Client class to represent client
objects with the two associated accounts.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 7

Part 2

The Anatomy of a Class

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 8

The Anatomy

• A class can be considered to be a cardboard box
containing items (called members in Java):
– Constants
– Variables
– Methods

• constructor methods (that help creating an object of the class)
• other useful methods (withdraw, transfer)
• possibly a main method

• Each item (data and method) in the box can be
accessed and modified by using the DOT operator

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 9

Classes
• A class contains data declarations and method declarations

(collectively called members of the class)

int x, y;
char ch; Data declarations

Method declarations

Our cardboard box ~ the class

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 10

The Idea Behind A Class

• A class builds objects
• Each class, generally, represents a real thing,

for example:
– Class Client represents the properties and

behaviour of a Client of a bank.
– Object X of class Client represents an actual

particular client.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 11

Classes
• A client has a checking account and a savings account

– Each is represented by its balance
• We can perform withdrawals, deposits, transfers…

double balCheckings;
double balSavings;

withdraw

deposit

transfer

Data declarations

Method declarations

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 12

Java Methods
 Method: A set of statements that build a logical unit of action.

● Class method: (more about this later)
● Instance method: (let us focus on this one today)

● Any method that is invoked with respect to an instance of a class. Also
called simply a method.

 Many methods need input (e.g. System.out.println(“xxx”);)
● The inputs of a method are called its parameters.

● Each parameter is of a certain type
 Many methods return output (e.g. scan.nextInt());

● The output of a method is called its return value.
● The return value is of a certain type

● A method in Java does not have to return a value,
● declare the return type as void (as in the main method).

 String replace(char oldChar, char newChar)

Signature

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 13

Writing Methods
• A method declaration specifies the code that will be

executed when the method is invoked (or called)

 public static void main(String args[])
 {

int x = 5;
System.out.println(x);

 }

Type of return value Input parameter

Method
declaration

Code
body

M
ethod H

eader

optional
Modifiers

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 14

Method Invocation

• When a method is invoked, the flow of control
jumps to the method and executes its code

• When complete, the flow returns to the place where
the method was called and continues

• If the methods has a return value
– we can assign this value to a variable of the appropriate

type
– we can use the method call as an operand in an expression

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 15

boolean equals(String s)

s.equals(s1);

main

Method Calls
Syntax:

● OBJECT.METHOD(PARAMETERS);
● X = OBJECT.METHOD(PARAMETERS);

obj s

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 16

Method Locations

• Methods only exist within classes
• When you invoke a method, we say that the method

is being called.
• Assume you are in main method of class X, then

– you can call a method from another class Y
• static method on class name (e.g. Math.abs(int i))
• other methods on objects of class Y (e.g., scan.nextInt())

– you can call other methods of class X
• we haven’t seen this so far (comes later)
• has slightly different syntax

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 17

Constructors
• When we create an object from a class the first thing we need

to do is initialize all the member variables (the variables
defined within the object).

• The constructor is the method used to do this.
• Constructors are optional. If not present then the member

variables need to get initialized somewhere else.
• You can identify the constructor because is has no return type

(not even void) and it has the same name as the class.
• Its parameters and code body behave in the same way as

regular methods.
• Constructors are only invoked when you initially create the

object.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 18

Client.javapublic class Client
{
 private double balChecking; //member variables
 private double balSavings;

public Client (double checkingBalance, double savingsBalance){
 balChecking = checkingBalance;
 balSavings = savingsBalance;
 }

public boolean withdrawalChecking (double amount) {
 if (amount < 0 || balChecking < amount)
 {
 System.out.println(“Incorrect amount”);
 return false;
 }
 else
 {
 balChecking -= amount;
 return true;
 }
 }
 public boolean withdrawalSavings (double amount) {

 // similar to withdrawalChecking
 }

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 19

public double depositChecking(double amount) {
 balChecking += amount;
 return balChecking;
}

public double depositSavings(double amount) {} // similar to depositChecking

public void transfer (char fromAccount, double amount) {
 switch(fromAccount) {

 case ‘c’:
 balChecking -= amount;

 balSavings += amount;
 break;

 case ‘s’:
 balSavings -= amount;

 balChecking += amount;
 break;
default:
 System.out.println(“Incorrect input to transfer”);

 }
 }

public double balanceChecking () {
 return balChecking;

 }

 public double balanceSavings () {
 return balSavings;
}

}

Client.java

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 20

Bank.java
public class Bank {
 public static void main (String[] args) {

Client c1 = new Client(100,0);
Client c2 = new Client(0,0);

 double amount;

amount = c1.depositChecking(100);
System.out.println(“c1’s checking is now: “ + amount);
c1.transfer(‘c’,50);

 if (c2.withdrawalSavings(20))

System.out.println(“Withdrawal successful”);
else

System.out.println(“Withdrawal not successful”);

System.out.println (”checking 1: " + c1.balanceChecking());
System.out.println (”checking 1: " + c1.balanceSavings());
System.out.println (”checking 2: " + c2.balanceChecking());
System.out.println (”checking 2: " + c2.balanceSavings());

 }
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 21

The Client Class

• Once the Client class has been defined, we
can use it again in other programs as needed

• For instance, we have used it in the Bank
program.

• However, the Bank program has not used all
methods provided by the Client class

• A program will not necessarily use every
service provided by an object

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 22

Part 2

Some Object Details

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 23

Instance Variables
• The balChecking and balSavings variables in the

Client class are called instance variables because each
instance (object) of the Client class has its own values for
these variables

• A class declares the type of the data, but it does not reserve any
memory space for it

• Every time a Client object is created, a new balChecking
variable and a new balSavings variable is created as well

• The objects of a class share the method definitions, but they
have unique data space for their instance variables
– This allows two objects to have separate states

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 24

Instance Data

balChecking
balSavings

150.0

c1

double balChecking;
double balSavings;

class Client

c2

An instance

Another instance

Notice
only data
hereMethods

are shared

50.0

0.0

0.0

balChecking
balSavings

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 25

Method Declarations Revisited
• A method declaration begins with a method header

• The parameter list specifies the type and name of each
parameter
– names can be freely chosen (similar to variable names)

• The names of parameters in the header are called formal
parameters

• Formal parameters can be used in the method body in the
same way variables are used

public char calc (int num1, int num2, String message)
method
name

return
type parameter list

modi-
fier

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 26

Method Declarations

• The method header is followed by the method body
char calc (int num1, int num2, String message)
{
 int sum = num1 + num2;
 char result = message.charAt (sum);
 return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 27

Local Data

• A method can declare its own variables
• These variables are local to the method
• Local variables are created (memory allocated) each

time the method is called and discarded when the
method finishes execution

• This is different to member variables
– Member variables are declared in the class but not inside

any particular method
– Member variables exist throughout the lifetime of an

object

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 28

The return Statement

• The return type of a method indicates the type of
value that the method sends back to the calling
location

• A method that does not return a value has a void
return type

• The return statement specifies the value that will be
returned

• Its expression must conform to the return type

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 29

Example
public class Calc {
…
 int add(int x, int y) {

int sum = x + y;
return sum;

 }
}

 public static void main(String args[])
 {

int result;
Calc mycalc = new Calc();
result = mycalc.add(5,2);

 }

Describe the flow and result

What would happen if the
type was not int?

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 30

Parameters
• Each time a method is called, the actual parameters

in the invocation are copied into the formal
parameters

char calc (int num1, int num2, String message)
{
 int sum = num1 + num2;
 char result = message.charAt (sum);
 return result;
}

ch = obj.calc (2, count, "Hello");

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 31

Constructors Revisited
• Recall that a constructor is a special method that is

used to set up a newly created object
• When writing a constructor, remember that:

– it has the same name as the class
– it does not return a value
– it has no return type, not even void
– it often sets the initial values of instance variables

• The programmer does not have to define a
constructor for a class

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 32

Examples for Client
public Client (double startChecking, double startSavings) {
 balChecking = startChecking;

 balSavings = startSavings;
}

public Client () {
 checking = 0;
 saving = 0;
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 33

Private and Public

• In our example, we declared
– member variables as private
– Member methods as public

• In general, each member (variable, method) can be
either declared private or public

• public
– the member can be accessed externally (from outside the

object) using the DOT operator
• private

– the member cannot be accessed externally. Only during
execution within the object can the member be accessed.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 34

Accessing an instance Variable

• Assume Client declares its instance variables public
public double balChecking; //member variables
public double balSavings;

• Assume the Bank has created a client
Client c1 = new Client(0,0);

• There are two options to access the instance variables of c1:
double balance = c1.balChecking;
vs.
double balance = c1.balanceChecking();
– In the first case, the balChecking variable is directly accessed via

the DOT operator
– In the second case, a getter or accessor method of the Client is called

that returns the value of the variable

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 35

Modifying an Instance Variable

• There are two options to modify the data of the c1:
c1.balChecking = 100;
vs.
c1.depositChecking(100);
– In the first case, the balChecking variable is directly modified. It is

accessed via the DOT operator and a value is assigned to it.
– In the second case, a setter or mutator method of the Client object is

called that performs the modification

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 36

Encapsulation
• Most instance data should only be accessed via getter and

setter methods
– Guarantees data is only accessed through one way: easy to control

• In order to protect against direct access,
– instance variables should be declared private
– all access and modifications to variables should be done via getter

and setter methods
• Constants might or might not be made public depending on

the application
• For instance, assume that each deposit and withdrawal is

associated with a fee
– we want to make sure that each modification of the balance includes

the fees

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 37

Considering Fees
public class Client
{
 private double balChecking; //member variables
 private double balSavings;

public final double FEE = 1.5;
…
public boolean withdrawalChecking (double amount) {
 if (amount < 0 || checking < amount)

 {
System.out.println(“Incorrect amount”);
return false;

 }
 else

 {
balChecking -= amount + FEE;
return true;

 }
 }

 public double depositChecking (double amount) {

 checking += amount - FEE;
 }

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 38

Private vs. Public Methods

• We declare methods that should be publicly
accessible as public
– they are the services
– they are the interface with which objects of the class can

be accessed and manipulated
• We might have some helper methods used for

internal decomposition
– they support other methods in the class
– they should be declared private

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 39

Classes with and without Main

• So far, we have seen two types of classes
– classes that contain

• a main method, no instance data, no other methods
• examples: bank, calculator, and nearly all classes we

programmed so far
– classes that contain

• no main method, a set of other methods, maybe some
instance data

• examples: Client, Scanner and other library classes

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 40

Classes with main
• These are classes that typically start an application
• main is declared static and returns void

– Also has a special input argument
– The keyword static indicates that the method is a class method
– It can be called without the requirement to instantiate an object

of the class.
– (Other methods can be static, too. For example the methods in

the Math class)
• When we start a program (run in DrJava), the interpreter

invokes the main method of the class.
• A class X that does not contain a main method cannot

execute on its own. We need at least one class with a
main in our application

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 41

Application

• In theory, each application could be written as
one big Java class.

• However, it is better to split an application
into different classes that handle different
tasks or sub-concepts of the application.

• In this case a “starter” class with a main
method starts the application, creates objects
of other classes, and coordinates the
execution of the application

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 42

Pretty Printing

• A class often contains a method that provides a
string representation of its variables

• In Class Client
public String toString()
 {
 String check = "Balance Checking: " +

balChecking + "\n";
 String save = "Balance Saving: " +

balSavings + "\n”;
 return(check+save);
 }

• In Class Bank
System.out.println(c1.toString());

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 43

A funny example

• A cat class
– a cat can be fed
– feeding leads to mood swings

• A starter class
– creates cats
– feeds cats and observes behaviour

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 44

Cat.javapublic class Cat {
 private float weight;

private int age; private boolean isFriendly;

 public Cat() {
 weight = 3.8f;
 age = 2;
 moodSwing();
 }
 public String toString(){
 String sWeight = "I weigh " + weight + " kg.\n";
 String sAge = "I'm " + age + " years old.\n";
 String sFriendly = (isFriendly)? "I'm the nicest cat in the world"
 : "One more step and I'll attack.";
 return (sWeight+sAge+sFriendly);
 }
 public float feed(float food){
 weight += food;
 System.out.println("it wasn't Fancy Feast's seafood fillet...");
 wail();
 return weight;
 }
 private void wail() {
 System.out.println("Miiiiaaawwwwwww!");
 moodSwing();
 }

private void moodSwing(){isFriendly = ((int)(Math.random()*2) == 0); }
}

How does this work?

How does this work?

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 45

FeedTheCats.java
public class FeedTheCats
{

public static void main(String args[])
{

 Cat Frisky = new Cat();
 Cat Tiger = new Cat();

 System.out.println(“Frisky: “ + Frisky.toString());
 System.out.println(“Tiger: “ + Tiger.toString());
 System.out.println("We are about to feed the cats...");
 float newWeight = Frisky.feed(1.2f);
 System.out.println(”Frisky should weigh " + newWeight + " kg.");
 newWeight = Tiger.feed(2.4f);
 System.out.println(”Tiger should weigh " + newWeight + " kg.");

 System.out.println(“Frisky: “ + Frisky.toString());
 System.out.println(“Tiger: “ + Tiger.toString());

}
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 46

Method invocation within object

• Note:
– If a class or an object calls a method on another

object referenced by a variable name, the call is
• Variablename.methodname

– If an object calls a method on itself, only the
method name needs to be written:

• wail();

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 47

Two ways to implement
Calculator

1. Application style
• Calculator class

• with methods for addition/division
• no main method

– Starter class
• with main
• creates a calculator object and uses it (the for loop in original

calculator)
• Calculator class with object

– methods for addition/division
– main method

• Creates an object of itself
• Has loop to ask input and redirect to other methods

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 48

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 49

Using Objects

• Sometimes an object has to interact with other
objects of the same type

• For example, we might add two Rational
number objects together as follows:

r3 = r1.add(r2);

• One object (r1) is executing the method and
another (r2) is passed as a parameter

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 50

Rational Numbers Are…

 5

10

=
1

2

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 51

RationalNumbers.javapublic class RationalNumbers{
public static void main (String[] args) {

 Rational r1 = new Rational (6, 8);
 Rational r2 = new Rational (1, 3);

 System.out.println ("First rational number: " + r1);
 System.out.println ("Second rational number: " + r2);

 if (r1.equals(r2))System.out.println ("r1 and r2 are equal.");
 else System.out.println ("r1 and r2 are NOT equal.");

 Rational r3 = r1.add(r2);
 Rational r4 = r1.subtract(r2);
 Rational r5 = r1.multiply(r2);
 Rational r6 = r1.divide(r2);

 System.out.println ("r1 + r2: " + r3);
 System.out.println ("r1 - r2: " + r4);
 System.out.println ("r1 * r2: " + r5);
 System.out.println ("r1 / r2: " + r6);
 }
}

What are we doing here?

What
does
this
mean?

What is going on here?

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 52

Questions

• RationalNumbers.java used a class called Rational:
– What do you think the member variables should be in

order to represent rational numbers?
– How would you write the constructor?
– Assuming that the denominator is the same, how would

you write the ADD method?
– If the denominator was not the same, how would you

write the ADD method?
– Assuming the denominator is the same, how would you

write the equal method?

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 53

Part 3

Thinking Like A Programmer

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 54

Why Objects?

• Manageability
– Self-contained (all in a single class)
– Shareable (import .class)
– Security features (private, protected, public)

• Lifelike:
– Maps to real-life entities

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 55

Manageability

• Programs tend to get very long, hard to debug
and difficult to solve in one sitting

• The way to control this is to write small
programs

• Large programs can be reduced to many little
methods that are easy to debug… this is
called method decomposition.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 56

Method Decomposition

• A method should be relatively small, so that it can
be readily understood as a single entity

• A potentially large method should be decomposed
into several smaller methods as needed for clarity

• Therefore, a service method of an object may call
one or more support methods to accomplish its goal

Let’s see an example…

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 57

PigLatin.java
public class PigLatin {

public static void main (String[] args) {
 String sentence, result, another;
 Scanner scan = new Scanner(System.in);

 do {
 System.out.println ();
 System.out.println ("Enter a sentence (no punctuation):");
 sentence = scan.nextLine();

 result = PigLatinTranslator.translate (sentence);
 System.out.println ("That sentence in Pig Latin is:");
 System.out.println (result);

 System.out.print ("Translate another sentence (y/n)? ");
 another = scan.nextLine();
 }
 while (another.equalsIgnoreCase("y"));
 }
}

A potentially large program

What does this do?

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 58

PigLatinTranslator.java
public class PigLatinTranslator
{
 //---
 // Translates a sentence of words into Pig Latin.
 //---
 public static String translate (String sentence)
 {
 String result = "";

 sentence = sentence.toLowerCase();

 Scanner scan = new Scanner (sentence);

 while (scan.hasNext())
 {
 result += translateWord (scan.next());
 result += " ";
 }

 return result;
 }

Built in string method

While still data left in sentence

Take a word outTranslate that word

Notice how all these methods help reduce the problem

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 59

Still decomposing…

• Notice that we have only completed a small
part of the job

• We still need to program:
translateWord

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 60

translateWord
//--
// Translates one word into Pig Latin. If the word begins with a
// vowel, the suffix "yay" is appended to the word. Otherwise,
// the first letter or two are moved to the end of the word,
// and "ay" is appended.
//---
private static String translateWord (String word)
{
 String result = "";

 if (beginsWithVowel(word))
 result = word + "yay";
 else if (beginsWithPrefix(word))
 result = word.substring(2) + word.substring(0,2) + "ay";
 else
 result = word.substring(1) + word.charAt(0) + "ay";

 return result;
}

Notice we are still putting off
work until later … decomposition

Using built-in methods to help us

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 61

And Finally
private static boolean beginsWithVowel (String word) {

 String vowels = "aeiou";
 char letter = word.charAt(0);
 return (vowels.indexOf(letter) != -1);
 }

private static boolean beginsWithPrefix (String str) {
 return (str.startsWith ("bl") || str.startsWith ("pl") ||
 str.startsWith ("br") || str.startsWith ("pr") ||
 str.startsWith ("ch") || str.startsWith ("sh") ||
 str.startsWith ("cl") || str.startsWith ("sl") ||
 str.startsWith ("cr") || str.startsWith ("sp") ||
 str.startsWith ("dr") || str.startsWith ("sr") ||
 str.startsWith ("fl") || str.startsWith ("st") ||
 str.startsWith ("fr") || str.startsWith ("th") ||
 str.startsWith ("gl") || str.startsWith ("tr") ||
 str.startsWith ("gr") || str.startsWith ("wh") ||
 str.startsWith ("kl") || str.startsWith ("wr") ||
 str.startsWith ("ph"));
 }
}

Describe what is going on here

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 62

When thinking about your
problem…

• First: Think of the problem as a whole or think of it
as you would solve it by hand without a computer

• Then: Try to divide the work you did into steps or
parts
– Each of these steps or parts could be a potential little

program contained in a method
• Last: Think of the parameters and return values for

these steps or parts

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - Objects 2 63

If more time, give problems to
solve during class time

