
C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 1

COMP 202
More on OO

CONTENTS:
• static revisited
• this reference
• class dependencies
• method parameters
• variable scope
• method overloading

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 2

Static member variables

• So far: Member variables were instance variables
• Every object instance has its own set of these variables

• Member variables can also be static
– static variables are also called class variables
– Shared by all objects/instances of a class
– i.e., there is only one copy of this variable
– If one object changes the value of a static variable, all other

objects see and access the new value
 private static int count = 0;
– Example use:

• Increase count whenever the Constructor is called
• Keeps track of the number of objects created;

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 3

Static methods

• Static methods can be executed without an
object of the class instantiated

• Static methods
– can not access member variables because they always

belong to a specific object/instance
– can access static variables and local variables

• All methods of Math class are static
– Math.abs(-5);

• main method is static

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 4

Calling Methods

• A method calls a method m1 of the same class:

– Only indicate method name: m1(…);
• A method calls a static method m1 of another class

AnotherClass:
– AnotherClass.m1();

• A method calls a non-static m1 of another object
which is referred to by the variable objVariable
– objVariable.m1();

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 5

The calculator as a class with only
static methods

import java.util.Scanner;

public class CalcMain {
 public static void main(String[] args) {
 int op;
 double v1,v2,result;
 scan = new Scanner(System.in);
 System.out.println(“Enter 0 to exit, 1 to add, 2 to subtract”);
 op=scan.nextInt();
 if (op==1 || op==2) {
 System.out.print(“Enter number: ”);
 v1=scan.nextDouble();
 System.out.print(“Enter number: ”);
 v2=scan.nextDouble();
 if (op==1)
 result = CalcMain.add(v1,v2);
 else
 result = subtract(v1,v2);
 System.out.println(“Result: ”+result);
 }
 }

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 6

The calculator as a class with only
static methods

 public static double add(double d1,double d2) {
 return d1+d2;
 }
 public static double subtract(double d1,double d2) {
 return d1-d2;
 }
 // etc
}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 7

Class dependencies

• Stand-alone
– Classes that do not depend or need other classes to run

• Dependencies
– When a program calls methods of other classes and/or

instantiates objects of other classes.
– eg. Bank uses Client class
– eg. use of String and Scanner classes

• Aggregate Classes
– A class that is composed from multiple other classes

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 8

Aggregate Classes

• A class that defines an object as one of its
class variables has created a dependency
between the class they are building and the
object variable

• Aggregate classes are classes that use other
classes as variables, these can be:
– Built-in library classes (e.g. String)
– Your own classes
– Purchased / downloaded library classes

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 9

Student example
public class Student {
 private long id;
 private String name;
 private ArrayList courses;
 public Student(String name,long id) {
 this.name =name;
 this.id = id;
 courses = new ArrayList();
 }
}

id

name

courses

Student

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 10

Parameter Passing
• Parameters in a Java method are passed by value

• This means that a copy of the actual parameter (the
value passed in) is stored into the formal parameter
(in the method header) – i.e. not the real/original
value

• Changing the local copy does not affect the original

• Not true of objects: when an object is passed to a
method, the actual parameter and the formal
parameter become aliases of each other

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 11

ParamPassTest.java
public class ParamPassTest {

public static void main (String args[]) {
int param = 3;
addOne(param);
System.out.println("main param is " + param);

}
public static void addOne(int p) {

p = p + 1;
System.out.println("addOne param is " + p);

}
}

Example of a standard copy pass of an integer parameter:
How does it look in memory while executing?

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 12

Assignment Revisited
• The act of assignment takes a copy of a value and

stores it in a variable

• For primitive types:

num2 = num1;

Before

num1

5

num2

12

After

num1

5

num2

5

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 13

Object References
• Recall that an object reference holds the memory

address of an object

• Rather than dealing with arbitrary addresses, we often
depict a reference graphically as a “pointer” to an
object

 ChessPiece bishop1 = new ChessPiece();

bishop1

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 14

Reference Assignment
• For object references, assignment copies the memory

location:

bishop2 = bishop1;

Before

bishop1 bishop2

After

bishop1 bishop2

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 15

Parameter Passing with Objects
 In a Java statement such as Cat curly = new Cat(); the variable

curly is not an object, it is simply a reference to an object (hence the
term reference variable).

 Consider a method declared as
public void veterinarian(Cat theCat) {...}

 If we call this method passing as a reference to a Cat object, what
happens exactly?

Cat curly = new Cat();
veterinarian(curly);

curly Cat
object

Reference variable Object

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 16

Parameter Passing with Objects
 The value of the variable curly is passed by value, and the variable

theCat within veterinarian() receives a copy of this value.

 Variables curly and theCat now have the same value.
 However, what does it mean to say that two reference variables have

the same value ?
 It means that both variables refer to the same object:

 Within veterinarian() you can now update the Cat object via
variable theCat.

curly

theCat

Cat
object

Reference variable Object

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 17

Parameter Passing with Objects
 An object can have multiple references to it.
 In this example, we still have just the one object, but it is being

referenced by two different variables.
 But if you change the value of the variable theCat within

veterinarian() so that it refers to a different object:
theCat = new Cat();

 Then the value of variable curly within the calling method remains
unchanged, and variable curly will still refer to the same Cat object
that it always did:

curly Cat
object

theCat another
Cat

object

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 18

Aliases

• Two or more references that refer to the same object
are called aliases of each other

• One object (and its data) can be accessed using
different variables

• Aliases can be useful, but should be managed
carefully

• Changing the object’s state (its variables) through one
reference changes it for all of its aliases

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 19

Passing Objects to Methods Example

• In this example notice the following:
– What you do to a parameter inside a method may

or may not have a permanent effect (outside the
method)

– Note the difference between changing the
reference and changing the object that the
reference points to

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 20

ParameterPassing.java
public class ParameterPassing
{
 public static void main (String[] args)
 {
 ParameterTester tester = new ParameterTester();

 int a1 = 111;
 Num a2 = new Num (222);
 Num a3 = new Num (333);

 System.out.println ("Before calling changeValues:");
 System.out.println ("a1\ta2\ta3");
 System.out.println (a1 + "\t" + a2 + "\t" + a3 + "\n");

 tester.changeValues (a1, a2, a3);

 System.out.println ("After calling changeValues:");
 System.out.println ("a1\ta2\ta3");
 System.out.println (a1 + "\t" + a2 + "\t" + a3 + "\n");
 }
}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 21

ParameterTester.java

public class ParameterTester
{
 public void changeValues (int f1, Num f2, Num f3)
 {
 System.out.println ("Before changing the values:");
 System.out.println ("f1\tf2\tf3");
 System.out.println (f1 + "\t" + f2 + "\t" + f3 + "\n");

 f1 = 999;
 f2.setValue(888);
 f3 = new Num (777);

 System.out.println ("After changing the values:");
 System.out.println ("f1\tf2\tf3");
 System.out.println (f1 + "\t" + f2 + "\t" + f3 + "\n");
 }
}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 22

Num.java
public class Num
{
 private int value;

 public Num (int update)
 {
 value = update;
 }

 public void setValue (int update)
 {
 value = update;
 }

 public String toString ()
 {
 return value + "";
 }
}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 23

Garbage Collection

• When an object no longer has any valid references to
it, it can no longer be accessed by the program

• It is useless, and therefore called garbage

• Java performs automatic garbage collection
periodically, returning an object's memory to the
system for future use

• In some other languages, the programmer has the
responsibility for performing garbage collection

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 24

Data Scope

• The scope of data is the area in a program in which
that data can be used (referenced)

• Member variables (instance variables and static
variables) can be used by all methods of the class
– restriction: static methods can only use static variables

• Data declared within a method can only be used in
that method
– Data declared within a method is called local data

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 25

Scope

• A variable's scope is the region of a program
within which the variable can be referred to
by its simple name.

• Secondarily, scope also determines when the
system creates and destroys memory for the
variable.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 26

Scope• The location of the variable declaration
within your program establishes its scope
and places it into one of these 3 categories:
– member variables
– method parameter
– local variable

 ...

 member variable declarations

 ...

public void aMethod(method parameters)
 {

 ...

}

class MyClass

{

}

local variable declarations

...

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 27

Scope
• Member Variables

– A member variable is a member of a class.
– It is declared within a class but outside of any method.
– A member variable's scope is the entire declaration of the class.

• Local Variables (local data)
– You declare local variables within a block of code.
– In general, the scope of a local variable extends from its declaration

to the end of the code block in which it was declared. Normally
defined by the close curly bracket (}).

• Parameter Variables (local data)
– Parameters are formal arguments to methods and are used to pass

values into methods.
– The scope of a parameter is the entire method for which it is a

parameter. It is treated just like a local variable.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 28

Scope Example 1
• Consider the following example:

for (int i = 0; i < 100; i++)
{
 ...

}
System.out.println("The value of i = "+i);

 The final line won't compile because the local variable i is
out of scope.

 Either the variable declaration needs to be moved outside of
the if statement block, or the println method call needs to
be moved into the for loop.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 29

Scope Example 2
 class ex2 {
 int x;
 String y;

 int sum(int x, int y) {
 int z = x + y;
 return z;
 }

 String toString() {
 return y + x;
 }

 String message(int y){
 int z = x + y;
 return “Value = ” + z;
 }
}

Who is referencing what?

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 30

this reference

• Allows an object to refer to itself
• Most common use in Constructor method
 public Client (double checkingBalance, double savingsBalance){
 balChecking = checkingBalance;

 balSaving = savingsBalance;
 }

 versus
 public Client (double balChecking, double balSavings){
 this.balChecking = balChecking;

 this.balSavings = balSavings;
 }

• Allows parameters and/or local variables to have same name as member
variables.

• Member variables can always be referred to through this reference.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 31

Encapsulation
• You can take one of two views of an object:

– internal - the structure of its data, the algorithms used by
its methods

– external - the interaction of the object with other objects
in the program (how to call it)

• From the external view:
– an object is an encapsulated entity, providing a set of

specific services
– These services define the interface to the object
– An object is an abstraction, hiding details from the rest of

the system

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 32

Encapsulation
• An object should be self-governing

• Any changes to the object's state (its variables) should
be accomplished ONLY by that object's methods

• We should make it difficult, if not impossible, for one
object to "reach in" and alter another object's state

• The user of an object can request its services, but it
should not have to be aware of how those services are
accomplished

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 33

Encapsulation
• An encapsulated object can be thought of as a

black box
• Its inner workings are hidden to the client, which only

invokes the interface methods

Client Methods

Data

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 34

Visibility Modifiers
• In Java, we accomplish encapsulation through

the appropriate use of visibility modifiers

– public and private

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 35

Overloading Methods

• Method overloading is the process of using the same method
name for multiple methods

• The signature of each overloaded method must be unique

• The signature of a method is built from the method name,
number, type, and order of the parameters

• The compiler must be able to determine which version of the
method is being invoked by analyzing the parameters

• The return type of the method is not part of this signature

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 36

Overloading Methods

float tryMe (int x)
{
 return x+0.375f;
}

Version 1

float tryMe (int x, float y)
{
 return x*y;
}

Version 2

result = tryMe (25, 4.32f)

Invocation

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 37

Overloaded Methods
• The println method is overloaded:

 println (String s)
 println (int i)
 println (double d)

 etc.

• The following lines invoke different versions of the
println method:

 System.out.println ("The total is:");
 System.out.println (total);

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 38

Part 5

Thinking Like A Programmer
(Stepwise refinement & Method decomposition)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 39

Stepwise Refinement
The user wants to be able to input a fixed number of integers
into a program and then have it display a menu where the
user can select between summing or averaging the values.
When the program ends it will write the numbers to the screen
together with the sum and average. The numbers are listed
vertically down with proper titles for the numbers, sum and
average.

How to solve this problem?

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 40

Step 1: Identify the Parts

The user wants to be able to input a fixed number of integers
into a program and then have it display a menu where the
user can select between summing or averaging the values.
When the program ends it will write the numbers to the screen
together with the sum and average. The numbers are listed
vertically down with proper titles for the numbers, sum and
average.

The user wants to be able to input a fixed number of integers
into a program and then have it display a menu where the
user can select between summing or averaging the values.
When the program ends it will write the numbers to the screen
together with the sum and average. The numbers are listed
vertically down with proper titles for the numbers, sum and
average.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 41

Step 2: Order the Parts
The user wants to be able to input a
fixed number of integers
into a program and then have it
display a menu where the
user can select between summing or
averaging the values.
When the program ends it will write
the numbers to the screen
together with the sum and average.
The numbers are listed vertically
down with proper titles for the
numbers, sum and average.

First

Second

Third (choice)

Fifth

Sixth

Fourth

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 42

Step 3: Write Code for A Part

From easy to harder…
Draw flowchart if needed…
Write sub-steps in English if needed…

Use:
• Encapsulation, and
• Method decomposition

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 43

Notes

• Encapsulation
– We have already covered this…

• Objectify things by creating a class that encompasses the desired
characteristics

• Identify state (variables) and activities (methods)

• Method decomposition and parameters
– As you encapsulate, decisions need to be made concerning

the format of your methods and their parameters
– Which methods are service methods
– Which methods are interface methods to clients
– Which should be private and which public

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Week 7 44

Step 4: Now Assemble into a
Program

