McGill

COMP 202 Exceptions

CONTENTS:
e Exceptions and Errors
 The try-catch statement
e The try-catch-finally statement
e Exception propagation

COMP 202 - Exceptions




McGill

Exceptions

* An exception 1s an object that describes an
unusual or erroneous situation

— division by zero
— reading the wrong data type from a Scanner

— accessing a non existing array-element
* out of bound

— accessing a null object

COMP 202 - Exceptions




McGill

Exceptions

* When such an unusual situation occurs
— the program throws an exception
— 1t does not continue with the next statement in the program
— so far, the program actually terminates

 Instead of letting the program terminate

— an exception can be caught and handled by another part of the
program

— that 1s, the programmer writes special code that 1s executed whenever
an exception 1s thrown

* A program can therefore be separated into a normal execution
flow and an exception execution flow

* An error 1s also represented as an object in Java, but usually
represents a unrecoverable situation and should not be caught

COMP 202 - Exceptions

\,




McGill

* Exceptions:

— Java.

— Java.

Jjava.

e FErrors:

java.
Jjava.
Jjava.

Jjava.

lang.
lang.
lang.

lang.

lang
lang
lang

COMP 202 - Exceptions

Exceptions

ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException

NullPolinterException

OutOfMemoryError

.ClassFormatError
.InternalError

.VirtualMachineError




McGill

Exception Handling

 [If an exception 1s ignored by the program, the
program will terminate and produce an appropriate
message

* The message includes a call stack trace that indicates
on which line the exception occurred

* The call stack trace also shows the method call trail
that lead to the execution of the offending line

COMP 202 - Exceptions




McGill

Zero.java

public class Zero

{

e
// Deliberately divides by zero to produce an exception
e
public static void main (String[] args)
{

int numerator = 10;

int denominator = 0;

System.out.println (numerator / denominator);

System.out.println (“Will this line be printed?");

COMP 202 - Exceptions




McGill

\,

The trv Statement

* To process an exception when 1t occurs, the line that
throws the exception 1s executed within a #y block

* A try block is followed by one or more catch
clauses, which contain code to process an exception

* Each catch clause has an associated exception type

* When an exception occurs, processing continues at
the first catch clause that matches the exception type

COMP 202 - Exceptions




McGill

Using try—-catch

General format:

try {

// code which may throw an exception
} catch (AException ae) {

// control goes here if an AException occurs
} catch (BException be) {

// control goes here if a BException occurs
} .. .etc

COMP 202 - Exceptions




McGill

ZeroException

public class Zero

{

)/ Deliberately divides by zero o produce an exception.
bublic static void main (stringll args)
{ int numerator = 10;

int denominator = 0;

try {

System.out.println (numerator / denominator);
}
catch (ArithmeticException ex)
{
System.out.println (Y“Arithmetic error: ”“+ex.getMessage());

}
System.out.println (“"Will this line be printed?");

COMP 202 - Exceptions




McGill

\,

The finally Clause

e A try statement can have an optional clause
designated by the reserved word finally

* If no exception 1s generated, the statements in the
finally clause are executed after the statements in the
try block complete

* Also, 1f an exception 1s generated, the statements in

the finally clause are executed after the statements in
the appropriate catch clause complete

COMP 202 - Exceptions

10




McGill

Using try-catch-finally

General format:

try {

// code which may throw an exception
} catch (AException ae) {

// control goes here if an AException occurs
} catch (BException be) {

// control goes here if a BException occurs
} finally {

// this code is always executed before

// control flow leaves the try or any catch

}

COMP 202 - Exceptions 11




McGill

\,

Exception Propagation

« If 1t 1s not appropriate to handle the exception where
it occurs, 1t can be handled at a higher level

* Exceptions propagate up through the method calling
hierarchy until they are caught and handled or until
they reach the outermost level

* A try block that contains a call to a method 1n which

an exception 1s thrown can be used to catch that
exception

COMP 202 - Exceptions

12




McGill

Zero2.java

public class Zero?2

{

public static void main (String[] args)

{

int numerator = 10;

int denominator = 0;

divide (numerator,

System.out.println
}

public static void di

{

System.out.println
System.out.println

COMP 202 - Exceptions

denominator) ;

("Will this line of main be printed?");

vide (int num, int den)

(num / den);

("Will this line of divide be printed?");

13




McGill

Zero2Exception.java

public class Zero?2

L Delimerately divides by zero o produce an exception.
biblic statis vold main (stringll arge
{ int numerator = 10;
int denominator = 0;
try {

divide (numerator, denominator) ;
}
catch (ArithmeticException ex) {
System.out.println (Y“Arithmetic Error: ”"+ex.getMessage())

}
System.out.println (“Will this line of main be printed?");

}

public static void divide (int num, int den) {
System.out.println (num / den);
System.out.println (“Will this line of divide by printed?");

COMP 202 - Exceptions 14




McGill

\,

Three ways to handle Exceptions

* 1gnore the exception
— the program terminates

 handle the exception where 1t occurs

— the exception handling code resides in the method that
throws the exception

 handle the exception at another place in the program

— the exception handling code resides somewhere in the
calling hierarchy (method calls method that calls method...
that calls method that throws the exception)

COMP 202 - Exceptions 15




McGill

WildernessIndex.java

public class WildernessIndex

{

static public void main (String[] args)

{
WorldZoom wildIndex = new WorldZoom() ;
System.out.println ("Picking a country...");

wildIndex.theUS () ;

System.out.println ("\nPicking another country..

wildIndex.canada () ;

System.out.println ("\nDone.");

COMP 202 - Exceptions

.");

16




McGill

WorldZoom.java (1/3)

class WorldZoom {
public void canada () {
System.out.println ("Zooming in to Canada.");

try
{
quebec () ;
}
catch (ArithmeticException problem)
{
System.out.println ();
System.out.println ("The exception message is:
problem.getMessage () ) ;
System.out.println ();
System.out.println ("The call stack trace:");
problem.printStackTrace() ;
System.out.println ();

}

System.out.println ("Zooming out of Canada.");

COMP 202 - Exceptions

_|_

17




McGill

public void quebec () {

System.out.println("Zooming in to Quebec.");
montreal ()
System.out.println("Zooming out of quebec.");

}

public void montreal () {
int numPeople = 3000000, numBears = 0;

System.out.println("Zooming in to Montreal.");
int result = numPeople / numBears;
System.out.println("The wilderness index is: " + result);
System.out.println ("Zooming out of Montreal.");
}
public void alaska () {
System.out.println("Zooming in to Alaska.");
kodiak ()
System.out.println("Zooming out of Alaska.");

}
public void kodiak () {

int numPeople = 13000, numBears = 3000;

System.out.println("Zooming in to kodiak island.");

int result = numPeople / numBears;
System.out.println("The wilderness index is: " + result);
System.out.println ("Zooming out of kodiak island.");

COMP 202 - Exceptions

18




McGill

public void theUS() {
System.out.println ("Zooming in to the US.");

try
{
alaska();
}
catch (ArithmeticException problem)
{
System.out.println ();
System.out.println ("The exception message is:
problem.getMessage () ) ;
System.out.println ();
System.out.println ("The call stack trace:");
problem.printStackTrace() ;
System.out.println ();
}

System.out.println ("Zooming out of the US.");

COMP 202 - Exceptions

"

_I_

3/3

19




McGill

\,

Checked Exceptions

* An exception 1s either checked or unchecked

* So far unchecked exceptions
— they are the default handling procedure
— can but do not need to be caught or propagated but
— 1f not caught anywhere then program simply terminates

* A checked exception

— must be caught within within a try/catch block within the
method 1n which it occurs

— can be propagated to the outer method
 but then the method that throws the exception must declare this
» A throws clause must be appended to the header of the method
* We will see the throws clause when we handle files

— The compiler will complain 1f a checked exception 1s not
handled or declared appropriately

COMP 202 - Exceptions

20




