
C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 1

COMP 202 – File Access

CONTENTS:
●I/O streams
●Reading and writing text files

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 2

I/O Streams
• A stream is a sequence of bytes that flow from a

source to a destination

• In a program, we read information from an input
stream and write information to an output stream

• A program can manage multiple streams at a time

• The java.io package contains many classes that
allow us to define various streams with specific
characteristics

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 3

I/O Stream Categories

• The classes in the I/O package divide input
and output streams into other categories

• An I/O stream is either a
– character stream, which deals with text data
– byte stream, which deal with byte (binary) data

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 4

Standard I/O
• There are three standard I/O streams
• The System class contains three object reference

variables (in, out, err)
– declared public and static (can be accessed via class

name).
• System.in

– standard input (typically keyboard)
– we give System.in as input to Scanner constructor

to read from keyboard
• System.out

– standard output (typically a window on screen)
– println is method of out output stream, thus to print to

standard output we call System.out.println

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 5

The Standard Input Stream

• We’ve used the standard input stream to create a
Scanner object to process input read interactively
from the user:

Scanner scan = new Scanner (System.in);

• The Scanner object converts bytes from the
stream into characters, and provides various methods
to access those characters (by line, by word, by type,
etc.)

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 6

Reading Text Files
• We can read a text file sequentially using the file as

the input stream for our scanner object:
– Assume you have a file: test.txt
– Alternative 1:

• Construct a FileReader object and use that as input for the
Scanner constructor

• FileReader reader = new FileReader("test.txt");
• Scanner scan = new Scanner(reader);

– Alternative 2:
• Construct a File object and use that as input for the Scanner

constructor
• Scanner scan = new Scanner(new File("test.txt"));

• You can then use the Scanner operators (next, nextLine,
nextInt, …)to read the file sequentially.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 7

Reading Text Files
• Many things can go wrong with file access

– many operations require checked exceptions
• All file related access must be enclosed in a try/catch

block

• or the method must indicate that it can “throw” a
java.io.IOException

try {
 FileReader fin = new FileReader("foo.txt");
 int x = fin.read();
 ...
} catch (java.io.FileNotFoundException fne) {
 System.out.println("Can't open file foo.txt");
} catch (java.io.IOException ioe) {
 System.out.println("Error reading from foo.txt");
}

public char readChar(FileReader fin) throws IOException {
 int i = fin.read();
 return (char)i;
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 8

Line Numbering
// reprint lines in input file and prefix them with line numbers
import java.io.*;
import java.util.Scanner;
public class LineNumberer {
 public static void main (String[] args)
 {
 int lineNumber = 1; // line number initialized to 1
 try {

 Scanner fileScan = new Scanner (new File("test.txt"));
// reprint every line with number prefixed

 while (fileScan.hasNextLine())
 {
 System.out.println("/* " + (lineNumber++)
 + " */" + fileScan.nextLine());
 }
 } // you must catch the exception
 catch (IOException ex)
 {
 System.out.println("Error processing file: " + ex);
 }
 }
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 9

Writing to a Text File
• To write output to a file, construct a PrintWriter object with the

given file name
– PrintWriter out = new PrintWriter("output.txt");
– If the output file already exists, it is emptied before the new data is written

into it (overwrite)
– if it doesn’t exist, it will be created.

• Use the print and println methods to send numbers, objects an
strings to a PrintWriter object
– out.print(29.95 + "\t");
– out.println("Hello World");

• When you are done writing to a file close the corresponding
PrintWriter.
– out.close();

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 10

Line Numberer 2:
// reprint lines in input file and prefix them with line numbers
import java.io.*;
import java.util.Scanner;
public class LineNumberer2 {
 public static void main (String[] args) throws IOException {
 int lineNumber = 1; // line number initialized to 1
 String inputFile = "test.txt"; // default input
 String outputFile = "output.txt"; // default output

 // input and output could be given through command line
 if (args.length >= 1)
 inputFile = args[0];
 if (args.length >= 2)
 outputFile = args[1];

 Scanner fileScan = new Scanner (new File(inputFile));
 PrintWriter out = new PrintWriter(outputFile);
 // output every line with number prefixed
 while (fileScan.hasNextLine()) {
 out.println("/* " + lineNumber++ + " */" + fileScan.nextLine());
 }
 // close the file
 out.close();
 }
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 11

Processing structured text files
• Scanner

– The usual delimiter for next of Scanner class is “ ” (whitespace)
• other delimiters can be chosen (e.g., “;”)
• Scanner.useDelimiter(String pattern)

– Useful for reading data separated by other delimiters than whitespace
• actual pattern can be quite complex (but we won't cover it)

• Writing to a file
– By using first a

• FileWriter (provides only minimum support to write to a file)
• and then a BufferedWriter (writes data to disk in chunks)
• and then a PrintWriter

– data is written in a more efficient way to the disk
– this will speed up your program if you write large amounts of data

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 12

MyWorld.java
public class MyWorld {
 public static void main (String[] args) {
 final int MAX = 200;
 Country[] myWorld = new Country[MAX];
 String line, name, fileName="countries.dat";
 int count = 0; long population, area;

 try {
 Scanner fileScan = new Scanner (new File(fileName));
 while (fileScan.hasNext()) {
 line = fileScan.nextLine();
 Scanner lineScan = new Scanner(line).useDelimiter(";");
 try {
 name = lineScan.next();
 population = lineScan.nextLong();
 area = lineScan.nextLong();
 myWorld[count++] = new Country (name, population, area);
 } catch (NoSuchElementException exception) {
 System.out.println ("Error in input. Line ignored:");
 System.out.println (line);
 }
 }
 for (int i = 0; i < count; i++)
 System.out.println (myWorld[i]);
 } catch (FileNotFoundException exception) {
 System.out.println ("The file " + fileName + " was not found.");
 }

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 13

MyWorld.java
 //
 String outName = "world.dat";
 // write out all countries to outName
 try {
 for (int i = 0; i < count; i++)
 myWorld[i].addToFile(outName);
 } catch (IOException ioe) {
 System.out.println ("Can't write to " + outName + ": " +
 ioe);
 System.out.println ("Giving up...");
 }
 }
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 14

Country.java
public class Country {
 private String name;
 private long population; // number of people
 private long area; // geographical area

 public Country (String countryName, long numPeople, long size) {
 name = countryName;
 population = numPeople;
 area = size;
 }
 public String toString() {
 return name + ": " + population + " people on " + area + " sqKms is "
 + (population / area) + " people per sqkm";
 }
 public void addToFile(String fileName) throws IOException {
 FileWriter fw = new FileWriter (fileName,true); // true for appending
 BufferedWriter bw = new BufferedWriter (fw);
 PrintWriter outFile = new PrintWriter (bw);

 outFile.println (name + ";" + population + ";" + area);

 outFile.close();
 }
}

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 15

Advanced Topics
• There are many other ways to read and write to files:

– random access:
• access arbitrary location of file directly
• contrast to sequential access

– read/write byte streams
• binary data, more compressed

– Object streams (serialization)
• write out entire (aggregate) objects to a file
• read in an entire (aggregate) object from a file

• We do not discuss these advanced topics in class but
they are all very useful in specific situations. A good
reference to study all kinds of IO
– http://java.sun.com/docs/books/tutorial/essential/io/

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 16

When to use files…

• In any application that requires information to exist
for a long time:
– Experimental data
– Music
– Databases

• Computer memory is volatile, meaning that once the
computer is shut off the information is gone.

• Information stored in files can remain available even
after the computer is turned off.

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 17

Designing For Files
• Exception Checking

– Input validation checking
– Hardware problems checking

• No floppy disk or storage device present
• Sector error on diskette or device

• Input-Process-Save Methodology
– Get input from user
– Validate user input
– Save it to a file

C
O

M
P 202 – Introduction to C

om
puting 1

COMP 202 - File Access 18

ProductCodes.java
import java.util.Scanner;
public class ProductCodes {
 public static void main (String[] args) {
 String code; char zone;
 int district, valid = 0, banned = 0;
 Scanner scan = new Scanner(System.in);
 System.out.print ("Enter product code (XXX to quit): ");
 code = scan.nextLine();

 while (!code.equals ("XXX")) {
 try {
 zone = code.charAt(9);
 district = Integer.parseInt(code.substring(3, 7));
 valid++;
 if (zone == 'R' && district > 2000)
 banned++;
 } catch (StringIndexOutOfBoundsException exception) {
 System.out.println ("Improper code length: " + code);
 } catch (NumberFormatException exception) {
 System.out.println ("District is not numeric: " + code);
 }
 System.out.print ("Enter product code (XXX to quit): ");
 code = scan.nextLine();
 }
 System.out.println ("# of valid codes entered: " + valid);
 System.out.println ("# of banned codes entered: " + banned);
 }
}

