
C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 1

COMP 202
Recursion

CONTENTS:
• Recursion
• Recursion vs Iteration
• Indirect recursion
• Runtime stacks

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 2

Recursive Thinking

• A recursive definition is one which uses the
word or concept being defined in the
definition itself
– GNU

• Gnu's Not Unix

– LAME
• Lame Ain't an MP3 Encoder

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 3

Recursive Definitions
• Consider the following list of numbers:

24, 88, 40, 37

• Such a list can be defined as

 A LIST is a: number
 or a: number comma LIST

• That is, a LIST is defined to be a single number, or a
number followed by a comma followed by a LIST

• The concept of a LIST is used to define itself

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 4

Recursive Definitions
• The recursive part of the LIST definition is used

several times, terminating with the non-recursive part:

 number comma LIST
 24 , 88, 40, 37

 number comma LIST
 88 , 40, 37

 number comma LIST
 40 , 37

 number
 37

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 5

Infinite Recursion
• All recursive definitions have to have a non-recursive

part

• If they didn't, there would be no way to terminate the
recursive path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop

• The non-recursive part is often called the base case

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 6

Recursive Definitions
• N!, for any positive integer N, is defined to be the

product of all integers between 1 and N inclusive

• This definition can be expressed recursively as:

 1! = 1
 N! = N * (N-1)!

• The concept of the factorial is defined in terms of
another factorial

• Eventually, the base case of 1! is reached

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 7

Recursive Definitions

 5!

 5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

2

6

24

120

1

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 8

Recursive Programming
• A method in Java can invoke itself; if set up that

way, it is called a recursive method

• The code of a recursive method must be structured to
handle both the base case and the recursive case

• Each call to the method sets up a new execution
environment, with new parameters and local variables

• As always, when the method completes, control
returns to the method that invoked it (which may be
an earlier invocation of itself)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 9

Recursive Programming

• Consider the problem of computing the sum of all the
numbers between 1 and any positive integer N

• Sum of 5 = 5 + 4 + 3 + 2 + 1

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 10

Recursive Programming
main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

int sum(int n)

{

 int result = 0;

 if (n == 1) //base case

result = 1;

 else //recursive part

result = n + sum(n-1);

 return result;

}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 11

Recursive vs. Iterative
int sum_recursive(int n)

{

 int result = 0;

 if (n == 1) // base case

result = 1;

 else if (n > 1) // recursive part

result = n + sum_recursive(n-1);

 return result;

}
int sum_iterative(int n)

{

 int result = 0;

 for (int i = 1; i <=n; i++)

 result += i;

 return result;

}

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 12

Recursive Programming

• Note that just because we can use recursion to solve a
problem, doesn't mean we should (there is a lot of
overhead: method calls, variable declarations, etc.)

• For instance, we usually would not use recursion to
solve the sum of 1 to N problem, because the iterative
version is easier to understand

• However, for some problems, recursion provides an
elegant solution, often cleaner than an iterative version

• You must carefully decide whether recursion is the
correct technique for any problem

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 13

public class PalindromeTesters {

 public static boolean iterativeTester (String str) {
 boolean result = false;
 int left = 0;
 int right = str.length() - 1;

 while (left < right && str.charAt(left) == str.charAt(right)) {
 left++;
 right--;
 }

 if (left >= right) result = true;

 return result;
 }

 public static boolean recursiveTester (String str) {

 boolean result = false;

 if (str.length() <= 1) result = true;
 else result = (str.charAt(0) == str.charAt(str.length() - 1)) &&
 recursiveTester(str.substring(1,str.length()-1));

 return result;

 }
}

Palindrome Testing

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 14

When to use recursion…

• Notice that we have many ways to iterate:
– Do…while
– While
– For
– Recursion

• They all do the same thing, so selecting between then
should be based on some benefit:
– Easier to program using that loop
– Runs faster with that particular loop

• Ideally you want to optimize on both criteria

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 15

Designing For Recursion
• Solution requires iteration
• Algorithm always looks like this:

– Base Case
• The part of the loop that has the stop condition. It also returns the default

(simplest case) result

– Incrementing Part
• The part of the program that moves us on to the next data value.

– Incrementing variable
– Reading data
– Moving to a new data item in a structure (like array)

– Recursion Part
• The part of the program that initiates the iteration

• Note that the Incrementing and Recursion Parts are often
together in the same statement (but not always so)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 16

Indirect Recursion
• A method invoking itself is considered to be direct

recursion

• A method could invoke another method, which invokes
another, etc., until eventually the original method is
invoked again

• For example, method m1 could invoke m2, which
invokes m3, which in turn invokes m1 again

• This is called indirect recursion, and requires all the
same care as direct recursion

• It is often more difficult to trace and debug

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 17

Indirect Recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 18

Part 2

The Run-Time Stack

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 19

An Executing Program in RAM

Static
Code

Static
Data

Dynamic
Memory

Run-time Heap: used for dynamic data (more next week)

Run-time Stack: stores local variables and function call management

Your compiled code

All non-local data and all literals

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 20

Function Call “Frame”

Return Address

Local Variables

Parameters

Return Value

A Frame

• At every call to a function a frame is
 added to the TOP of the stack. This is
 referred to as a PUSH.
• When the function terminates the frame
 is removed from the top of the stack.
 This is referred to as a POP.
• Stacks function much like a stack of
 plates. You put them on the top and
 you remove them from the top.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Recursion 21

Problem

Write the factorial program recursively and then construct the
run-time stack. Write a main method that invokes the method
factorial. Now draw the run-time stack from the moment the
main method is invoked to the moment the main method
terminates. Show how it updates and how it produces the
correct results.

