McGill

N\

COMP 202
The Linked List

CONTENTS:
* Aliases as pointers
* Self-referencing objects
* Abstract Data Types

Thinking Like A Programmer:
When to use Dynamic Programming

COMP 202 - Linked Lists

N\ 4

Object References

» Recall that an object reference is a variable that
stores the address of an object

* A reference can also be called a pointer

* They are often depicted graphically:

Climber

COMP 202 - Linked Lists

McGill

\

Static vs. Dynamic Structures

* A fixed data structure has a fixed size

— Arrays: once you define the number of elements it
can hold, this number can’t be changed anymore

* A dynamic data structure grows and shrinks
as required by the information it contains

COMP 202 - Linked Lists

N {

Linked List of Climbers

head

info next info next info next

COMP 202 - Linked Lists

McGill

N\

* Empty List

Initializations

head

* List with one climber

COMP 202 - Linked Lists

N\ 4

Adding a node at end

head

COMP 202 - Linked Lists

info next

J

McGill

Adding a node at front
head info next

Return first node and remove it
from list

info next info next

result f

result to be returned

COMP 202 - Linked Lists

McGill

N\

Return a node with certain
property and remove it from list

« Example: Remove climber Tenzing Norgay
and return it

* go through list

— for each node

« if info points to the specific climber
— adjust pointers to remove climber
— return climber

— once at end, return empty climber

COMP 202 - Linked Lists

N\

Climber Example

class ClimberNode {

public Climber info; // points to climber of this node
public ClimberNode next; // points to next node
public ClimberNode (Climber climber) {

info = climber;

next = null;

COMP 202 - Linked Lists

McGill

\

.

Climber Example

public class Climber

{

private String name;
private int birthYear;
private String nationality;

public Climber
{

(String name, int birth, String country)
this.name =
birthYear =

nationality

name;
birth;
= country;

}

public String toString ()
{
return name + ", born in " + birthYear + " in " + nationality;

}

public boolean equals

{

return

}

(String name)

(this.name) .equals (name) ;

COMP 202 - Linked Lists

\

public class ClimberList {

private ClimberNode head; 1 Of‘3
// constructor: create empty list
public ClimberList() { head = null; }

// add to front

public void addFront
ClimberNode node =
node.next = head;
head = node;

(Climber newClimber) {
new ClimberNode (newClimber);

}

// add to end
public void addEnd (Climber newClimber) {
ClimberNode node = new ClimberNode (newClimber) ;
// pointer to a node in list
ClimberNode current;
// list is empty; this is the first node to enter
if (head == null) head = node;
else {
current = head; // go through the list until end
while (current.next != null)
current = current.next; // move forward
current.next = node; // make node the last node of list

COMP 202 - Linked Lists

McGill

7
20of 3
public Climber remove (String climberName) {
ClimberNode current = head; // initialize pointer
ClimberNode previous = null; // track last position of pointer
Climber result = null;
if (current == null) // empty list
return result;
do {
if (current.info.equals(climberName)) { // climber found
// found the climber
result = current.climber;
if (previous==null) // slightly different if first climber
head = current.next; // reassign head pointer
else
previous.next = current.next; // reassign ptr of previous
return result;
} else { // current one is not the climber
previous = current; // the current becomes previous
current = current.next; // move forward to the next
}
} while (current != null);
// no climber with name found
return result;
}
COMP 202 - Linked Lists 13
7
E le Main
public class K2Ascent {
public static void main (String[] args) {
ClimberList expeditionl954 = new ClimberList();
expeditionl954.addFront (new Climber ("Ardito Desio",1897,"Italy"));
expeditionl954.addFront (new Climber ("Mario Puchoz",1918,"Italy"));
expeditionl954.addFront (new Climber ("Lino Lacedelli",1925,"Italy"));
expeditionl954.addFront (new Climber ("Achille Compagnoni", 1914,
"Italy"));
System.out.println ("original team to attempt the first successful ascent of K2:\n");
System.out.println (expeditionl954);
expeditionl954.remove ("Ardito Desio");
expeditionl954.remove ("Mario Puchoz");
System.out.println("\nAscenders to summit K2 (8611lm):\n");
System.out.println (expeditionl954);
}
}
COMP 202 - Linked Lists 15

McGill

\

.

public String toString () {
String result = "";
ClimberNode current = head;

while (current

I'= null) {
result += current.climber.toString/()

current = current.next;

}

return result;

}

public Climber removeFirst() {

Climber result;
if (head == null)

result = null;
else {

result = head.info;
head = head.next;

}

return result;

COMP 202 - Linked Lists

30f3

+ "\n";

7

expeditionl954

COMP 202 - Linked Lists

Example

McGill

N\

expeditionl954

[CvfelrercH]

COMP 202 - Linked Lists

Example

expeditionl954

Example

COMP 202 - Linked Lists

McGill

\

.

expeditionl954

Example

COMP 202 - Linked Lists

7

expeditionl954

Example

COMP 202 - Linked Lists

20

McGill

N\

Example

\ McGill

expeditionl954

|
|| —

& [

COMP 202 - Linked Lists

N\ 4

Abstract Data Type

* Our climber list is kind of an abstract data type

* It provides list functionality
— add at front
— add at end
— remove

* The user has a useful way of collecting data

* The user does not need to know how the methods are
actually implemented
— ClimberList could have also used an ArrayList...

COMP 202 - Linked Lists

23

\

Example

expeditionl954

*

1 (ol
S

COMP 202 - Linked Lists

22

N {

Other Dynamic Structures
(Only to be aware of — not to code)

COMP 202 - Linked Lists

24

McGill

N\

Other Dynamic List
Implementations

It may be convenient to implement as list as a doubly linked
list, with next and previous references:

team

EEEE

COMP 202 - Linked Lists

\ McGill

N\ 4

Trees

* A tree is a data structure that represents a hierarchy, through
internal and external nodes

» Ex: table of contents for a book, OS file system, inheritance

relationship between Java classes, organizational structure of

a corporation, etc.

* A binary tree is a tree where each internal node has exactly 2
child nodes. A Binary tree is either (recursive definition):
— An external node (a leaf)
— An internal node and
two binary trees
(left subtree and
right subtree)

COMP 202 - Linked Lists

27

\

Other Dynamic List
Implementations

« It may also be convenient to use a separate header node, with
references to both the front and rear of the list

team

\
)l> ”

COMP 202 - Linked Lists

26

N {

Linked Tree Implementation

COMP 202 - Linked Lists

28

McGill

N\

Queues

* A queue is similar to a list but adds items only to the
end of the list and removes them from the front

 Itis called a FIFO data structure: First-In, First-Out

* Analogy: a line of people at a bank teller’s window

enqueue dequeue
—_— >

COMP 202 - Linked Lists 29

N\ 4

Part 4

Thinking like a programmer

COMP 202 - Linked Lists 31

McGill

\

Queues

» We can define the operations on a queue as follows:
— enqueue - add an item to the rear of the queue
— dequeue - remove an item from the front of the queue
— empty - returns true if the queue is empty

* As with our linked list example, by storing generic
Object references, any object can be stored in the
queue

* Queues are often helpful in simulations and any
processing in which items get “backed up”

COMP 202 - Linked Lists 30

N\

When to use dynamic structures...

» We have two kinds of structures in computers:
— Structures that have a predefined size and never change
(called fixed structures)
— Structures that can be built (or re-formed) at run-time
(called dynamic structures)
* Generally speaking dynamic data is slower to execute
than fixed data
— If you can get away with using fixed structures then do so.

— If you do not know how big your structure should be or if it
requirements change while the program executes then use
dynamic structures.

COMP 202 - Linked Lists 32

McGill)

Designing For Dynamic Structures

* First define the structure of the node
— need a self-referencing pointer to link to other nodes

» Make sure there exists at least one header reference
that points to the beginning of your structure

* Now, determine where in your code the structure
should be:
— Assembled
— Disassembled
— Restructured

* Now create a class that will manage that using
encapsulation

«

= COMP 202 - Linked Lists 33

Java |\ /

