
C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 1

COMP 202
The Linked List

CONTENTS:
● Aliases as pointers
● Self-referencing objects
● Abstract Data Types

Thinking Like A Programmer:
When to use Dynamic Programming

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 2

Static vs. Dynamic Structures

• A fixed data structure has a fixed size
– Arrays: once you define the number of elements it

can hold, this number can’t be changed anymore

• A dynamic data structure grows and shrinks
as required by the information it contains

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 3

Object References
• Recall that an object reference is a variable that

stores the address of an object

• A reference can also be called a pointer

• They are often depicted graphically:

Climber
Reinhold
Messner
1944
Italy

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 4

Linked List of Climbers

head info next

Reinhold
Messner
1944
Italy

info next

Tenzing
 Norgay
1914
Nepal

info next

Mario
Puchoz
1918
Italy

null

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 5

Initializations
• Empty List head

null

• List with one climber

head info next

Reinhold
Messner
1944
Italy

null

one element or “node” of list

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 6

Adding a node at front

head info next

Reinhold
Messner
1944
Italy

null

Tenzing
 Norgay
1914
Nepal

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 7

Adding a node at end

head info next

Reinhold
Messner
1944
Italy

null

Tenzing
 Norgay
1914
Nepal

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 8

Return first node and remove it
from list

head info next

Reinhold
Messner
1944
Italy

info next

Tenzing
 Norgay
1914
Nepal

info next

Mario
Puchoz
1918
Italy

null

result to be returned

result

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 9

Return a node with certain
property and remove it from list

• Example: Remove climber Tenzing Norgay
and return it

• go through list
– for each node

• if info points to the specific climber
– adjust pointers to remove climber
– return climber

– once at end, return empty climber

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 10

public class Climber
{
 private String name;
 private int birthYear;
 private String nationality;

 public Climber (String name, int birth, String country)
 {
 this.name = name;
 birthYear = birth;
 nationality = country;
 }

 public String toString ()
 {
 return name + ", born in " + birthYear + " in " + nationality;
 }

 public boolean equals (String name)
 {
 return (this.name).equals(name);
 }
}

Climber Example

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 11

class ClimberNode {
 public Climber info; // points to climber of this node
 public ClimberNode next; // points to next node

 public ClimberNode (Climber climber) {
 info = climber;
 next = null;
 }
}

Climber Example

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 12

public class ClimberList {
 private ClimberNode head;

 // constructor: create empty list
 public ClimberList() { head = null; }

 // add to front
 public void addFront (Climber newClimber) {
 ClimberNode node = new ClimberNode (newClimber);
 node.next = head;
 head = node;
 }

 // add to end
 public void addEnd (Climber newClimber) {
 ClimberNode node = new ClimberNode(newClimber);
 // pointer to a node in list
 ClimberNode current;
 // list is empty; this is the first node to enter
 if (head == null) head = node;
 else {
 current = head; // go through the list until end
 while (current.next != null)
 current = current.next; // move forward
 current.next = node; // make node the last node of list
 }
 }

1 of 3

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 13

public Climber remove (String climberName) {
 ClimberNode current = head; // initialize pointer
 ClimberNode previous = null; // track last position of pointer
 Climber result = null;

 if (current == null) // empty list
 return result;

 do {
 if (current.info.equals(climberName)) { // climber found
 // found the climber
 result = current.climber;
 if (previous==null) // slightly different if first climber
 head = current.next; // reassign head pointer
 else
 previous.next = current.next; // reassign ptr of previous
 return result;
 } else { // current one is not the climber
 previous = current; // the current becomes previous
 current = current.next; // move forward to the next
 }
 } while (current != null);
 // no climber with name found
 return result;
}

2 of 3

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 14

 public String toString () {
 String result = "";
 ClimberNode current = head;
 while (current != null) {
 result += current.climber.toString() + "\n";
 current = current.next;
 }
 return result;
 }

 public Climber removeFirst() {
 Climber result;
 if (head == null)
 result = null;
 else {
 result = head.info;
 head = head.next;
 }
 return result;
 }
}

3 of 3

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 15

public class K2Ascent {
 public static void main (String[] args) {
 ClimberList expedition1954 = new ClimberList();

 expedition1954.addFront (new Climber("Ardito Desio",1897,"Italy"));
 expedition1954.addFront (new Climber("Mario Puchoz",1918,"Italy"));
 expedition1954.addFront (new Climber("Lino Lacedelli",1925,"Italy"));
 expedition1954.addFront (new Climber("Achille Compagnoni",1914,
 "Italy"));

 System.out.println("Original team to attempt the first successful ascent of K2:\n");
 System.out.println (expedition1954);

 expedition1954.remove ("Ardito Desio");
 expedition1954.remove ("Mario Puchoz");

 System.out.println("\nAscenders to summit K2 (8611m):\n");
 System.out.println (expedition1954);
 }
}

Example Main

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 16

Example

info

null

expedition1954

head

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 17

Example

info

Ardito
Desio
1897
Italy

nextinfo null

expedition1954

head

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 18

Example

info

Ardito
Desio
1897
Italy

nextinfo

Mario
Puchoz
1918
Italy

null

expedition1954

head

nextinfo

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 19

Example

info

Ardito
Desio
1897
Italy

nextinfo

Lino
Lacedelli

1925
Italy

Mario
Puchoz
1918
Italy

null

expedition1954

head

nextinfo nextinfo

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 20

Example

info

Ardito
Desio
1897
Italy

nextinfo

Lino
Lacedelli

1925
Italy

Mario
Puchoz
1918
Italy

null

Achille
Compagnoni

1914
Italy

expedition1954

head

nextinfo nextinfo nextinfo

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 21

Example

info

Ardito
Desio
1897
Italy

nextinfo

Lino
Lacedelli

1925
Italy

Mario
Puchoz
1918
Italy

null

Achille
Compagnoni

1914
Italy

expedition1954

head

nextinfo nextinfo nextinfo

null

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 22

Example

info

Ardito
Desio
1897
Italy

nextinfo

Lino
Lacedelli

1925
Italy

Mario
Puchoz
1918
Italy

null

Achille
Compagnoni

1914
Italy

expedition1954

head

nextinfo nextinfo nextinfo

nullnull

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 23

Abstract Data Type

• Our climber list is kind of an abstract data type
• It provides list functionality

– add at front
– add at end
– remove
– …

• The user has a useful way of collecting data
• The user does not need to know how the methods are

actually implemented
– ClimberList could have also used an ArrayList…

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 24

Other Dynamic Structures
(Only to be aware of – not to code)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 25

Other Dynamic List
Implementations

• It may be convenient to implement as list as a doubly linked
list, with next and previous references:

team

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 26

Other Dynamic List
Implementations

• It may also be convenient to use a separate header node, with
references to both the front and rear of the list

count: 4
front
rear

team

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 27

Trees
• A tree is a data structure that represents a hierarchy, through

internal and external nodes
• Ex: table of contents for a book, OS file system, inheritance

relationship between Java classes, organizational structure of
a corporation, etc.

• A binary tree is a tree where each internal node has exactly 2
child nodes. A Binary tree is either (recursive definition):
– An external node (a leaf)
– An internal node and

two binary trees
(left subtree and
right subtree)

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 28

Linked Tree Implementation

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 29

Queues

• A queue is similar to a list but adds items only to the
end of the list and removes them from the front

• It is called a FIFO data structure: First-In, First-Out

• Analogy: a line of people at a bank teller’s window

enqueue dequeue

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 30

Queues

• We can define the operations on a queue as follows:
– enqueue - add an item to the rear of the queue
– dequeue - remove an item from the front of the queue
– empty - returns true if the queue is empty

• As with our linked list example, by storing generic
Object references, any object can be stored in the
queue

• Queues are often helpful in simulations and any
processing in which items get “backed up”

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 31

Part 4

Thinking like a programmer

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 32

When to use dynamic structures…

• We have two kinds of structures in computers:
– Structures that have a predefined size and never change

(called fixed structures)
– Structures that can be built (or re-formed) at run-time

(called dynamic structures)

• Generally speaking dynamic data is slower to execute
than fixed data
– If you can get away with using fixed structures then do so.
– If you do not know how big your structure should be or if it

requirements change while the program executes then use
dynamic structures.

C
O

M
P

 202 – Introduction to C
om

puting 1

COMP 202 - Linked Lists 33

Designing For Dynamic Structures
• First define the structure of the node

– need a self-referencing pointer to link to other nodes

• Make sure there exists at least one header reference
that points to the beginning of your structure

• Now, determine where in your code the structure
should be:
– Assembled
– Disassembled
– Restructured

• Now create a class that will manage that using
encapsulation

