
PART 1

Part 1: The Material

Whether you knew it or not, all the programming that you

have performed until now was in the boundaries of

procedural programming.

A procedural program is written as a list of instructions,

telling the computer, step-by-step, what to do: Define a

variable, read a number, multiply by 4, display something.

A typical program that you have written probably looks

like:

Part 1: The Material

class Application

{

static double pi = 3.14;

static void main(String args[])

{

int radius = 3;

String color = “red”;

double area = calculate_area(radius);

System.out.println(“The “ + color + “ circle with radius “ + radius + “has area “ + area + “.”);

}

static double calculate_area(int r)

{

return (double) r * r * pi;

}

}

The application starts by the first statement of the main method, and
each line is executed sequentially. If there is a method call, then the
code of the method gets executed. Later, the call again returns to the
main application code.

2
1

3

4

5

Part 1: The Material

class Application

{

static double pi = 3.14;

static void main(String args[])

{

int radius = 3;

String color = “red”;

double area = calculateArea(radius);

System.out.println(“The “ + color + “ circle with radius “ + radius + “has area “ + area + “.”);

}

static double calculateArea(int r)

{

return (double) r * r * pi;

}

}

Notice the use of the keyword static. It is used to define the variables
which are global to the application. Furthermore, it is there in the
declaration of each function.

Global Variable

Part 1: The Material

But, what does static mean?

This will be best understood after you learn what an
object is.

Now we will learn the very basics of object-oriented
programming and objects.

Part 1: The Material

As you know, the program you write in Java is inside a class.

The classes you have been defining so far (the procedural

programs) can be named as static classes since each method

and global variable is defined to be static.

There is also another type of class which we will call a non-

static class.

class Classname

{

// Body of the class

// Your code goes here.

}

Part 1: The Material

Java Classes

static non-static

(this you already know) (this is what you will learn)

Non-static classes will allow you to define objects.

So the question is:

What is an object and why is it useful?

Part 1: The Material

So far you have seen data types such as int, double, String

and boolean.

Although these are essential, they are not convenient to

store complicated data.

What do we mean by this ???

Suppose in your program you wanted to store the title,

author and the year published of a number of books.

How would you do this?

Here are some alternatives:

Part 1: The Material

Solution 1: Create one String variable for each book that

holds the title, author and the year.

(We will call title, author and year the fields of the book.)

Example:

Problem: Accessing each field is not easy. For example,

changing the year would be cumbersome.

String book1 = “Lord of the Rings, J.R.R. Tolkein, 1955”;

Part 1: The Material

Solution 2: For each book, create a String variable for the

title, another String variable for the author and an int

variable for the year.

Example:

Problem: For each book, you need to create three variables!

What if there were 10 fields and you wanted to store 10

books? You would have to define 100 variables.

String book1Title = “Lord of The Rings”;

String book1Author = “J.R.R. Tolkein”;

int book1Year = 1955;

Part 1: The Material

Wanted Solution: “Create” a data type called Book which

encapsulates three variables, String title, String author, int

year, such that the following hold.

1) Accessing each of these variables is easy.

2) We only create one Book variable (object) for each book

we want to store, regardless of the number of fields.

author

Book Class

titleyear

Think of the Book class as

a box that includes three

elements.

Java allows you to do this.

Part 1: The Material

How?

First we have to create the Book data type. This is where we

use the non-static class.

Let’s create a Book data type now.

This is a non-static class. The definitions of the variables do

not contain the word static.

class Book
{

String title;
String author;
int year;

}

Part 1: The Material

By creating this class, we have defined a new data type called Book
which encapsulates three variables: title, author, year.

Now let’s see how we can use this Book data type in our static class

containing the main method.

Defining a Book variable:

The variable is called b1 and it is of type Book

Observe that this is no different from defining an int or a String.

class Application
{

public static void main(String args[])
{

Book b1;
}

}

int s;
String x

Part 1: The Material

Initializing a variable:

Or simply,

Here “new Book();” creates a new Book object which has

initial default values for title, author and year.

These values are title = “”, author = “”, year = 0.

The equality sign represents an assignment. Now the b1

variable points to a new book object.

Book b1;

b1 = new Book();

Book b1 = new Book();

Part 1: The Material

Accessing the fields of the book and modifying their values:

We have to use the dot operator.

b1.title and b1.author are String variables. b1.year is an int

variable. You can play with these variables just like any

other String or int variable.

b1.title = “Lord of the Rings”;

b1.author = “J.R.R. Tolkein”;

b1.year = 1955;

b1.title += “, The Return of the King”;

b1.year++;

System.out.println(b1.title);

System.out.println(b1.year);

Part 1: The Material

Creating another Book object:

Each Book object we create has its own variables title, author

and year. So b1.title has nothing to do with b2.title. Thus

manipulating b1.title would not change b2.title and vice

versa.

String title
String author
int year

String title
String author
int year

b1 b2

Book b2 = new Book();

b2.title = “In Cold Blood”;

b2.author = “Truman Capote”;

b2.year = 1965;

Part 1: The Material

Returning an object:

The return type of a method can be an object and thus you can return
an object in that method.

class Application

{

static void main(String[] args)

{

Book b1 = createBook(“Lord of the Rings”, “J.R.R. Tolkein”, 1955);

System.out.println(b1.title);

System.out.println(b1.author);

System.out.println(b1.year);

}

static Book createBook(String t, String a, int y)

{

Book b = new Book();

b.title = t;

b.author = a;

b.year = y;

return b;

}

}
Part 1: The Material

Passing an object as a parameter:

In an application, you may have objects as parameters.

class Application

{

public static void main(String[] args)

{

Book b1 = new Book();

b1.title = “Lord of the Rings”;

b1.author = “J.R.R. Tolkein”;

b1.year = 1955;

print_info(b1);

}

static void print_info(Book b)

{

System.out.println(“Title: ” + b.title);

System.out.println(“Author: ” +b.author);

System.out.println(“Year: ” + b.year);

}

}

Part 1: The Material

Review of Concepts

• Two types of classes: static and non-static. Non-static

classes enable one to create objects.

• Objects allow you to encapsulate more than one variable in

one object variable.

• The fields of an object are accessed using the dot operator.

• Each object you create has its own fields independent from

the fields of other objects that may be defined.

• Objects can be returned in a method or can be passed to

methods through parameters (just like int or String

variables).

Part 1: The Review

Review of Syntax

• Non-static class (defining a new data type)

• Creating an object

• Accessing the fields of an object using the dot operator

class Book
{

String title;
String author;
int year;

}

Book b1 = new Book();

b1.title = “Lord of the Rings”;

b1.author = “J.R.R. Tolkein”;

b1.year = 1955;
Part 1: The Review

Exercise

• Write a non-static class called Student that has three fields: String
firstName, String lastName and int id.

• Complete the createNewStudent() method below. It is supposed to
create a new student object with the given values of first name, last
name and id number. Then this student should be returned.

class Application

{

static void main(String[] args)

{

Student std = createNewStudent(“James”, “Newsted”, 110231621);

System.out.println(std.firstName + “ ” + std.lastName + “ , ” + id);

}

static Student createNewStudent(String fname, String lname, int i)

{

// your code goes here

}

}
Part 1: The Exercise

Solution

class Student

{

String firstName;

String lastName;

int id;

}

static Student createNewStudent(String fname, String lname, int i)

{

Student s = new Student();

s.firstName = fname;

s.lastName = lname;

s.id = i;

return s;

}

Part 1: The Solution

