
PART 2

Part 2: The Material

With the introduction of what an object is, now we are ready to learn the
CONSTRUCTOR concept.

And when we want to make use of this Book class, we do the following:

class Book
{

String title;
String author;
int year;

}

Just to refresh our memory, let’s take a look at what we have learned
in part 1.

A sample class declaration, as far as we have learned, looks like:

Part 2: The Material

class Application

{

public static void main(String args[])

{

Book book1 = new Book();

book1.title = “The Secret”;

book1.year = 2006;

book1.author = “Rhonda Byrne”;

}

}

Let’s say in another application, we want to create more than one
book.

Here is the code that creates two book objects and initializes the fields
of each created object:

Part 2: The Material

class Application

{

public static void main(String args[])

{

Book book1 = new Book(); // Create the object

book1.title = “The Secret”; // initalize the title field

book1.year = 2006; // initialize the year field

book1.author = “Rhonda Byrne”; // initialize the author field

Book book2 = new Book();

book2.title = “Stuff on My Cat”;

book2.year = 2006;

book2.author = “Mario Garza”;

}

}

As you may have already noticed, we have written 8 lines of code just for
creating and initalizing two book objects. What if the Book class had

more than 3 fields? Then, it would be even longer to create and initalize a

book object.

Part 2: The Material

YES, there is! It is done using CONSTRUCTORS!

Enough said, everything will become much clearer with an example.

A constructor is a perfect candidate for initializing the fields of an object.

You may think of constructors as methods that only get executed when
the object gets created. That means, it only gets executed when the

“new” keyword is used.

In the previous examples, what we have done is:
� First create the object by the Book book1 = new Book(); statement

� Then go ahead and initialize the fields of the book object

Constructors will allow us to initialize the fields AS we create the book

object.

Isn’t there a easier and cleanier way to create & initalize the fields of

objects?

Part 2: The Material

With this class declaration in hand, here is how we can make use of the
constructor (the explanation will follow):

class Book

{

String title;

int year;

String author;

// The constructor!

Book(String initialTitle, int initialYear, String initialAuthor)

{

title = initialTitle;

year = initialYear;

author = initialAuthor;

}

}

First let’s add the constructor to our Book class declaration:

class Application

{

public static void main(String args[])

{

// All in one line!

Book book1 = new Book(“The Secret”, 2006, ” Rhonda Byrne”);

}

}
Part 2: The Material

OK, now it is time to analyze what we have done.
First the constructor declaration:

• The first thing you will notice is the way you define a constructor. The
name of the constructor should be identical to the class name. Since our

class name was Book, the constructor name also gets to be Book.

• The second thing is the parameters of the constructors. The Book class
has three fields that may be initalized. In correspondance with the

number of fields, the constructor also takes in 3 parameters that will be
initalized to the fields of the class.

• The third thing is that the constructors do not have any return type.
That is a good way to distinguish constructors from methods:

constructors cannot have a return type.

Book(String initialTitle, int initialYear, String initialAuthor)

{

title = initialTitle;

year = initialYear;

author = initialAuthor;

}

Part 2: The Material

Now, let’s see how the constructor is used from an application. The
following line is enough to execute the constructor:

This single line says a lot.
i) First, create a brand new book object.

ii) And at the same time, make sure that the fields of the object are

initialized to what I indicate in the parameters.

Book book1 = new Book(“The Secret”, 2006, ” Rhonda Byrne”);

So, it must be fairly easy to guess the output of the following code:

class Application

{

public static void main(String args[])

{

Book book1 = new Book(“The Secret”, 2006, ” Rhonda Byrne”);

System.out.println(book1.title);

}

}

The Secret

The constructor concept may have raised certain questions. Here are
some sample questions and answers.

Part 2: The Material

Q: What does actually happen when the
Book book1 = new Book(“The Secret”, 2006, ” Rhonda Byrne”);

line is executed?

A: Let’s try to trace the code when the line gets executed.

1) Book book1 = new Book(“The Secret”, 2006, “Rhonda Byrne”);

The new keyword here should remind you of a new object construction. Therefore, the

constructor of the object will be executed.

2) Book(String initialTitle, int initialYear, String initialAuthor) // in the class declaration
The parameters of the constructors get their values. So,

initialTitle = “The Secret”

initialYear = 2006;

initialAuthor = “Rhonda Byrne”

3) title = initialTitle;

The title field of the object, gets the value of the initialTitle variable. Since initialTitle variable was

previously set to “The Secret” in the second step, the title field of the object gets set to “The

Secret”.

4) year = initialYear; // Same idea

5) author = initialAuthor; // Same idea

Part 2: The Material

Q: Now I remember one of the first examples that I had done. I was able
to create a book object using the

Book book1 = new Book();

statement, but I am sure Book class didn’t have any constructors or

anything like that. How was that possible?

A: An excellent point! Here is the story behind that:

Java is a very clever language. For creating a new object, you definitely
need a constructor. Knowing that, if you did not put in any constructor,

Java inserts a default (no additional functionality) constructor for your

object.

That means, when you did your exercise, your Book class declaration
actually looked like:

Part 2: The Material

class Book
{

String title;
int year;
String author;

// The default constructor
Book()
{

// no effect at all
}

}

Thanks to this default constructor, you were able to create a new Book
object. However, obviously, this default constructor does not initalize

any fields of the class. That was why previously you had to do it yourself.

Part 2: The Material

Q: What about the number of constructors in a class?

A: There is no limit on the number of constructors of a class. You could

have as many as you want.
Furthermore, it is a good idea to provide various options. For example,

for the Book class you could also have these constructors:
class Book
{

String title;
int year;
String author;

Book(String initialTitle, int initialYear, String initialAuthor)
{

title = initialTitle;
year = initialYear;
author = initialAuthor;

}

Book(String initialTitle)
{

title = initialTitle;
year = 0;
author = “”;

}
}

Part 2: The Material

In the class declaration, you will notice the second constructor. It only
asks for the title of the book and initalizes the title. Other fields will be

initialized to default values.

Here is how we may make use of the second constructor:

class Application

{

public static void main(String args[])

{

// We don’t know the author or the year of the book yet

Book book1 = new Book(“The Secret”);

...

// We now learn the author and the year of the book

book1.year = 2006;

book1.author = “Rhonda Byrne”;

}

}

Our new constructor gave us an option. We have created the book

object, assuming that we had only known the title of the book in the
beginning. Therefore, we have used the constructor that solely initalizes

the title of the book.

Part 2: The Material

As a review, let’s make a comparison:

Before Constructors

class Application
{

public static void main(String args[])
{

Book book1 = new Book();

book1.title = “The Secret”;
book1.year = 2006;
book1.author = “Rhonda Byrne”;

Book book2 = new Book();

book2.title = “Stuff on My Cat”;
book2.year = 2006;
book2.author = “Mario Garza”;

}
}

class Application
{

public static void main(String args[])
{
Book book1 = new Book(“The Secret”, 2006, ” Rhonda Byrne”);
Book book2 = new Book(“Stuff on My Cat”, 2006, “Mario Garza”);

}
}

After Constructors

Part 2: The Material

We have come a long way! We know have a good idea of what an object
is and furthermore we know how to make use of the constructors of

objects.

Although it is relatively easy to grasp the notion of an object, one can

easily get lost when examples get a little complicated. There is one

specific example that seems to be the most confusing for the beginners:
the idea of composition: having an object inside another object.

The next 7-8 slides do not contain any new material. Instead, they are
there to expand your vision about objects by working on a little more

sophisticated problem.

Knowing that, there will be an emphasis on this topic. The following
slides will come up with examples in order to make sure that this

example is well-understood.

Part 2: The Material

So, what does it mean to have an object in an object? It would be best to
explain this concept with an example.

Imagine that you are taking an introductory object orientation course and

you have received a new assignment from your professor.

The assignment asks you to create a Person class. Here are the properties

of the requested Person class:
• The name of the person,

• The age of the person,

• The job/occupation of the person
• The favorite book of the person

Furthermore, the assignment provides the Book class implementation

that we have seen in many parts of the tutorial. The specifications require

you to make use of this Book class in your implementation of the Person
class.

Part 2: The Material

At first glance, the specifications may seem confusing. How can one
make the connection between two different classes?

Let’s start building our Person class without really thinking about the
Book class implementation.

It would look like:

class Person

{

String name;

int age;

String occupation;

// the book part that we are not sure of yet

// of what type should it be? Simply a String? Or something else?

??? favoriteBook;

}

At this point, referring back to the box analogy would be a great idea!

Part 2: The Material

As a reminder, here is the box analogy that we have used in part 1:

author

Book Class

Basically, the book class encapsulates three different information: title of the book,
author of the book and the year of the book.
The same idea will apply for the Person class. This time the Person class will actually
include a reference a book object (explanation will follow).

title

favoriteBook

Person Class

occupation

name

year

age

author
title

year

Part 2: The Material

According to the figure, here is the hiearchy:

� Person
� A name (String)

� An occupation (String)
� An age (int)

� A favorite Book

� A title (String)
� An author (String)

� The year (int)

With the figure and the hiearchy in hand, let’s try to write the

code for the Person class.

Part 2: The Material

class Person

{

String name;

int age;

String occupation;

Book favoriteBook;

}

class Book

{

String title;

String author;

int year;

}

Now, let’s add constructors for each class so that our solution looks nice.

For the Book class:

class Book

{

String title;

String author;

int year;

Book(String initialTitle, String initialAuthor, int initialYear)

{

title = initialTitle;

author = initialAuthor;

year = initialYear;

}

}
Part 2: The Material

class Person

{

String name;

String occupation;

int age;

Book favoriteBook;

Person(String initialName, String initialOccupation, int initialAge, Book initialFavoriteBook)

{

name = initialName;

occupation = initialOccupation;

age = initialAge;

favoriteBook = initialFavoriteBook;

}

}

Until now, this was the most complicated code that we have written!
We know have two nice classes, let’s use them in an application!

Part 2: The Material

class Application

{

public static void main(String args[])

{

Book book = new Book(“The Secret”, “Rhonda Byrne”, 2006);

Person me = new Person(“Anıl”,”Student”,18,book);

System.out.println(“My name is: “ + me.name);

System.out.println(“I am “ + me.age + “ years old.”);

System.out.println(“I am a “ + me.occupation);

System.out.println(“The title of my favorite book is: ” + me.favoriteBook.title);

}

}

What about creating yourself using the Person class!
Here is an application that does that:

The last line says the following:

“ The title of the favorite book of the person”

Part 2: The Material

Let’s use the following diagram to show how one can access the title of the favorite
book of a person.

� Person
� A name (String)
� An occupation (String)
� An age (int)
� A favorite Book

� A title (String)
� An author (String)
� The year (int)

1

2

So, this was the whole idea behind the object inside an object concept.

There is one last minor detail that has to be covered, before finishing this
second part of the tutorial.

me.favoriteBook

me.favoriteBook.title

Part 2: The Material

Q: There were certain occasions in which we didn’t want to attach any
particular value to a variable/field. For example, we had a name field

which referred to the name of a person. If we didn’t know the name of

the person, then we just typed name = “ ” to indicate that the name is
unkown.

Now with the last example, we could have a case where we have a

person but we don’t really know the favorite book of that person. In that
case, how can we state that the favorite book is unknown? Would

favoriteBook = “ ” help?

A: The suggested syntax, unfortunately, won’t be valid. Instead, we will

make use of a brand new keyword for indicating that the favorite book is
unknown.

The keyword is: null

Part 2: The Material

Let’s again try to create another person. Let this person be a friend of
yours. However this time, unfortunately, you don’t really know the

favorite book of your friend. How would you create your friend?

class Application

{

public static void main(String args[])

{

Person myFriend = new Person(“Anıl”,”Student”,18,null);

System.out.println(“My name is: “ + me.name);

System.out.println(“I am “ + me.age + “ years old.”);

System.out.println(“I am a “ + me.occupation);

}

}

When you create your friend, instead of passing a book object to the
constructor, you type null. That simply means: “I have no idea about the

book, so I am giving you nothing”.

Part 2: The Material

Until now, we have made an introduction to object-oriented
programming and we have made a lot progress on the object concept.

Now, it is a good time to take a step back a little and take a look at the

big picture.

• Why almost every software company in the world makes use of

Object-Oriented programming?

• What makes Object-Oriented programming unique? How is it
different than procedural programming? What capabilities does it

provide?

By the end of this tutorial, you will have complete answers for these
questions.

For right now, let’s just start with one aspect of Object-Oriented

programming: How it helps people to share or re-use the codes that
they have written.

Part 2: The Material

Let’s imagine that your professor wants you to write a small application
for the school library. The users of this application must be able to

browse the books in the library and see if they are available or not.

class Book
{

String title;
String author;
int year;

}

Remember the book example from the first part of the tutorial? Here is
the code for the Book class that we have written previously:

In your library application, you will most probably need to store the
title and author of the books in the library. Since you have already

performed a similar task and created this Book class, it would be a very

good idea to re-use this code.
Part 2: The Material

Or, similarly, let’s say that a friend of yours is asking your help. S/he is
working on a project and s/he knows that you had been working on a

library application. S/he is asking if you have previously written a Book

class so that s/he can use it in his/her project.

If you agree to share your code, then all you have to do is send him/her
the Book.java (the code below) class along with a simple documentation

that describes your implementation of a Book.

This is an example of how you could share your code with someone else.
All your friend has to do right now is to add the Book.java class to

his/her project, read its documentation and start using the Book object.

There isn’t even a need to look at your code!

class Book
{

String title;
String author;
int year;

}

Part 2: The Material

Let’s do some brainstorming and try to imagine what would happen if
you didn’t use Object-Oriented programming. Would you be able to

share your code with your friend?

Without object-orientation your original code would most probably look
like:

class Application
{

public static void main(String args[])
{

String book1Title = “”;
String book1Author = “”;
int book1Year = 0;

// more code here
}

}

Part 2: The Material

This code wouldn’t be a good candidate for sharing. In order to make
use of your code, your friend first has to analyze your code. Then,

s/he has to understand how you have chosen to represent a book.

And even after that, s/he will have to copy and paste those parts that
she is interested in.

As a result, it could be concluded that procedural programming

doesn’t really support sharing / re-using of code in a nice way.

Of course, these were very simple examples that emphasize on how
object-oriented programming facilitates code reuse and code sharing.

Try to imagine how nice it would be if the shared code contained
thousands of lines!

Part 2: The Material

This is indeed how giant projects (for example Microsoft Office) are
implemented!

Speficially, let’s think about the spelling functionality provided by

Microsoft Word. With the help of object-orientation, the same spelling
functionality can be easily re-used in Microsoft Outlook to spell-check

our e-mails.

Millions of people do programming. That means billions of lines of code

are written. One capability of object-orientation is to increase the re-
usability of these codes, so that better and bigger projects could be

implemented.

- End of the Material for Part 2 -

Part 2: The Material

Review of Concepts

� Constructors are useful structures that help to initialize the fields of
an object.

� The constructor of an object is automatically called as the object

gets created.
� A constructor can accept parameters, which may be used to

initialize the fields of the object.
� In order to come up with more complicated data structures, an

object may have another object as one of its field.
� Such a composition allows the construction of bigger and better

classes.

� Object-oriented programming facilitates the code sharing among
the people. An object created by one person, may easily be re-used by

someone else when both people speak in terms of objects.
� The sharing of object-oriented code, supported by a good

documentation, greatly helps the construction of large-scaled projects.

Part 2: The Review

Review of Syntax

� Adding a constructor to a class declaration:

Classname(parameters)

{
// your code goes here

}
1. Constructor name = Class name

2. No return type!

� When the value of an object is unknown, you may use the null

keyword.

e.g. favoriteBook = null

Part 2: The Review

Exercise

�We want you to model an employee, with the following
properties:

� An employee should have a name and surname
� An employee should have a social insurance number

� The birthdate of the employee should be stored for insurance
purposes

� Similarly, the system should also know that date that the

employee is hired
� It is indicated that the dates are very important for this

application. Therefore, the dates will be stored in detail with the
following properties

� The year

� The month
� The day

Part 2: The Exercise

Exercise (continued)

� For each class that you have created, you should have
appropriate constructors.

� To show that you are capable of the classes you have designed,

create a very simple application.

� In the application do the following:

1. Create an employee named Alan Smith.

2. His birth date is 2nd of September 1974.
3. His social insurance number is 231-5632-22.

4. He has been hired by his company on the 8th of March 2005.

Part 2: The Exercise

Solution

class Date

{

// the fields of the Date class

int year;

int month;

int day;

// the constructor that initializes all the fields

Date(int initialYear, int initialMonth, int initialDay)

{

year = initialYear;

month = initialMonth;

day = initialDay;

}

}

Part 2: The Solution

Solution (continued)

class Employee

{

// the fields of the Employee class

String name;

String surname;

String insuranceNumber;

Date birthDate;

Date hireDate;

// the constructor that initializes all the fields

Employee(String initialName, String initialSurname, String initialNumber, Date

initialBirthDate, Date initialHireDate)

{

name = initialName;

surname = initialSurname;

insuranceNumber = initialNumber;

birthDate = initialBirthDate;

hireDate = initialHireDate;

}

}

Part 2: The Solution

Solution (continued)

class Application

{

public static void main(String args[])

{

Date birth = new Date(1974,9,2);

Date hiring = new Date(2005,3,8);

Employee employee = new Employee(“Alan”, “Smith”, “231-5632-22”, birth, hiring)

}

}

Part 2: The Solution

