
PART 3

You have been using static methods in your programs before

and methods are the building blocks of procedural

programming.

In this part of the tutorial we will introduce non-static

methods, i.e. methods that are inside non-static classes.

The idea of having methods in a non-static class can be

confusing at first since we introduced non-static classes as

a way defining new, more elaborate data types called

objects. The ability to put methods inside these classes

means that objects are more than just serving as a new data

type. They are much more powerful.

Part 3: The Material

We will start by explaining why non-static methods are

useful.

In principle, non-static methods do not give programmers

any extra power because anything one can do using non-

static methods can be done using static methods. Then

why do we need non-static methods?

The heart of object-oriented programming is the ability to

reuse someone else’s code without even looking at the

code itself. This is extremely important when developing

big projects. But code reusability would not mean much if

we were not able to reuse someone else’s methods.

Part 3: The Material

The ability to put methods in non-static classes means that

we can use other people’s methods without knowing the

details of how it is implemented. With non-static methods,

object oriented programming gets interesting.

All this will be better understood with an example.

Part 3: The Material

Let’s create a non-static class called Box which has three

fields: int height, int width, int depth.

class Box
{

int height;

int width;

int depth;

Box(int h, int w, int d)

{
height = h;

width = w;

depth = d;

}

}

Part 3: The Material

Now that we have defined this Box class, we can create Box
objects of any dimension.

Suppose we needed to calculate the surface area and the
volume of a number of boxes. For this purpose we can
define two methods which take a Box as a parameter and
return the Box’s surface area and volume respectively.

class Application

{

static void main(String args[])

{

Box b1 = new Box(3,4,5);

Box b2 = new Box(2,1,4);

Box b3 = new Box(2,2,2);

}

}

Part 3: The Material

class Application

{

static void main(String[] args)

{

Box b1 = new Box (2,3,4);

Box b2 = new Box (1,3,2);

System.out.println(“The surface area of the first box is ” + calculateSurfaceArea(b1) + “.”);

System.out.println(“The volume of the second box is ” + calculateVolume(b2) + “.”);

}

static int calculateSurfaceArea(Box b)

{

return 2 * b.height * b.width + 2 * b.height * b.depth + 2 * b.width * b.depth;

}

static int calculateVolume(Box b)

{

return b.height * b.width * b.depth;

}

}

Part 3: The Material

The surface area and volume methods are very natural

methods that any Box object should come equipped with.

In other words, any person who has downloaded the Box

class should not have to write the code for these methods.

Somehow, these methods should reside in the Box object

and any person should be able to use them without even

knowing the details of the code inside them.

This is accomplished by putting these methods inside the

Box class. When we do this, we will get rid of the “static”

keyword and these methods will become non-static

methods.

Part 3: The Material

class Box

{

int height;

int width;

int depth;

Box(int h, int w, int d)

{

height = h;

width = w;

depth = d;

}

int calculateSurfaceArea()

{

return 2 * height * width + 2 * height * depth + 2 * width * depth;

}

int calculateVolume()

{

return height * width * depth;

}

}Part 3: The Material

The careful reader will notice a difference in the

calculateSurfaceArea and the calculateVolume non-static

methods. For example let’s look at the

calculateSurfaceArea method.

To understand why such a difference exists, it is a good idea

to look at how we call the non-static methods in our static

class.

static int calculateSurfaceArea(Box b)

{

return 2 * b.height * b.width +

2 * b.height * b.depth +

2 * b.width * b.depth;

}

int calculateSurfaceArea()

{

return 2 * height * width

+ 2 * height * depth

+ 2 * width * depth;

}

Part 3: The Material

In this code, we create two Box objects b1 and b2. Each of
these objects has its own fields: int height, int width, int
depth. On top of these, they come with two methods:
calculateSurfaceArea and calculateVolume. Recall that we
use the dot operator to access these objects’ fields.
Similarly, we use the dot operator to access the objects’
methods.

class Application

{

static void main(String[] args)

{

Box b1 = new Box (2,3,4);

Box b2 = new Box (1,3,2);

System.out.println(“The surface area of the first box is ” + b1.calculateSurfaceArea() + “.”);

System.out.println(“The volume of the second box is ” + b2.calculateVolume() + “.”);

}

}

Part 3: The Material

Now let’s go back to the non-static vs. static comparison.

In the static version, we have to give the object as a
parameter since a static method does not belong to a
particular object. In the non-static version, we do not need
to do this since the method is attached to an object already.

Also note that in the static version we have to access the
fields of the object using the dot operator. In the non-
static version, we directly use the names of the fields
because the non-static method has direct access to the
fields of the object that it belongs to.

static int calculateSurfaceArea(Box b)

{

return 2 * b.height * b.width +

2 * b.height * b.depth +

2 * b.width * b.depth;

}

int calculateSurfaceArea()

{

return 2 * height * width

+ 2 * height * depth

+ 2 * width * depth;

}

Part 3: The Material

class Box{

int height;
int width;
int depth;

Box(int h, int w, int d){
height = h;
width = w;
depth = d;

}
}

class Application
{

static void main(String[] args)
{

Box b1 = new Box (2,3,4);
Box b2 = new Box (1,3,2);
System.out.println(
calculateSurfaceArea(b1));
System.out.println(
calculateVolume(b2));

}
static int calculateSurfaceArea(Box b)
{

return 2 * b.height * b.width + 2 *
b.height * b.depth + 2 * b.width *
b.depth;

}

static int calculateVolume(Box b)
{

return b.height * b.width * b.depth;
}

}

class Box{
int height;
int width;
int depth;

Box(int h, int w, int d)
{

height = h;
width = w;
depth = d;

}

int calculateSurfaceArea()
{

return 2 * height * width + 2 * height
* depth + 2 * width * depth;

}

int calculateVolume()
{

return height * width * depth;
}

}

class Application
{

static void main(String[] args)
{

Box b1 = new Box (2,3,4);
Box b2 = new Box (1,3,2);
System.out.println(
b1.calculateSurfaceArea());
System.out.println(
b2.calculateVolume());

}
}Part 3: The Material

Now let’s demonstrate how this transition may be useful to

programmers all around the world.

Suppose you are the creator of the Box class and you share

this class with everyone through the internet. Along with

your program, you give a documentation. In the

documentation, you provide the following information.

Constructor

Box(Box(intint h,h, intint w,w, intint d)d)

Creates a box with height h, width w and depth d.

Methods

1) int calculateSurfaceAreaint calculateSurfaceArea()()

Returns the surface area of the box.

2) int calculateVolumeint calculateVolume()()

Returns the volume of the box.

Part 3: The Material

Any person who has downloaded your class can now use it without
even looking at one line of the code. S/he can create Box objects of
any dimension and can calculate the volume or surface area very
easily.

Conveniently, people using this object do not have to know the formula
for calculating the surface area of a box.

On the internet, one can find many many classes along with their
documentation. Some of these classes contain complicated code. But
we do not need to know the code to use this class and its methods.
This is how one creates big projects: by using previously created
classes and not worrying about how it was implemented.

class Application

{

static void main(String args[])

{

Box b = new Box(3,4,2);

System.out.println(“Surface area of the box is ” + b.calculateSurfaceArea() + “.”);

}

}

Part 3: The Material

Non-static methods can be used for many purposes such as

• Altering the state of the object

• Provide some information about the object

• Make a calculation using the fields of the object

Certainly the uses of these methods are not limited to above.

With what Java allows you with object oriented

programming, your imagination is the limit.

Now let’s see an example which demonstrates some of the

different uses of non-static methods.

Part 3: The Material

class Beer{

int amount;

Beer(int a){

amount = a;

}

void drink(int d){

amount = amount – d;

}

void chuck(){

amount = 0;

}

void print_amount(){

System.out.println(amount);

}

boolean is_empty(){

if(amount == 0) return true;

else return false;

}

}

class Application

{

static void main(String[] args)

{

Beer b = new Beer(15);

b.print_amount();

b.drink(5);

if(b.is_empty())

System.out.println(“No more beer.”);

b.print_amount();

b.chuck();

b.print_amount();

if(b.is_empty())

System.out.println(“zzzzz”);

}

}

Part 3: The Material

Review of Concepts

• Apart from the fields and constructors, an object could also include
methods. These methods could be used for a variety of reasons:

• Make a sophisticated calculation using the values of the fields of

the object
• Print out some information about the object

• Modify the values of the fields of the object

• Revisiting the reusability: With the addition of methods, the sharing
of code concept should become more clear.

• Let’s say you implement the Box class. The class has fields,

constructors and methods.
• A friend of yours, who is in need of a Box object in his/her

application, may use this Box class that you have written, without
even knowing the formula to calculate the surface area.

Part 3: The Review

Review of Syntax

• In order to add a method to the class declaration:

returnType methodName(parameters)

{
// your code goes here...

}

Part 3: The Review

Exercise

Write a simple class to represent elevators. An elevator has a current
floor, number of floors, current number of passengers and
maximum number of passengers.

An elevator:

Is constructed by specifying:

– the total number of floors in the building

– the maximum elevator capacity

– that the elevator initially doesn’t have any passengers

– and that the elevator is initially located on the bottom floor.

Can move one floor up if it is not on the top floor.

Can move one floor down if it is not on the bottom floor.

Can accept a certain number of passengers (up to its maximum
capacity).

Can drop off a certain number of passengers (no more than it actually
has).

Can tell us which floor it is on.
Part 3: The Exercise

Solution
class Elevator{

int currentFloor;

int numFloors;

int currentPassengers;

int maxPassengers;

Elevator(int maxFloors, int capacity){

numFloors = maxFloors;

maxPassengers = capacity;

currentFloor = 1;

currentPassengers = 0;

}

void moveUp(){

if(currentFloor < numFloors) currentFloor++;

}

void moveDown(){

if(currentFloor > 0) currentFloor--;

}

Part 3: The Solution

boolean acceptPassengers(int num){

boolean result = true;

int difference = maxPassengers – currentPassengers;

if(difference > 0 && num > 0){

if(num < difference) currentPassengers += num;

else currentPassengers += difference;

}

else result = false;

return result;

}

boolean dropOffPassengers(int num){

boolean result = true;

if(num <= currentPassengers && num > 0) currentPassengers -= num;

else{

if(num > currentPassengers) currentPassengers = 0;

else result = false;

}

return result;

int getCurrentFloor(){

return currentFloor;

}

} // end of class Elevator

Part 3: The Solution

