Programming Languages and Paradigms
COMP 302, Winter 2018

Assignment 2

Due date: Wednesday, February 28, 2018
6pm

This assignment focuses on building and validating a parser for the WML language within Scala. Your code
must run without error or modification using Scala 2.12.

Note that you must follow the given naming, input, and output requirements precisely. All code should be
well-commented, in a professional style, with appropriate variables names, indenting (uses spaces and avoid
tabs), etc. The onus is on you to ensure your code is clear and readable. Marks will be very generously
deducted for bad style, lack of clarity, or failing to follow the required instructions.

Your code should endeavour to follow a pure functional programming style. In particular, and unless specifically
stated otherwise, all data types must be immutable, and data may not be modified once assigned or bound. Note
that this means you may not use var declarations, while or do-loops, ArrayBuffers or other mutable
structures, nor may you reassign Array element values after creation.

The goal of this assignment is to be able to successfully parse the WML language described in class, and
presented as an explicit grammar in the accompanying grammar.txt file.

1. (a) For each of the non-constant tokens in the WML grammar define a regular expression (Regex
object) that would match it precisely at the start of a string. Bind your regular expressions to val’s,
named as per the token name, with a capital starting letter and all other letters lowercase.

Note that “anything” in some of the token descriptions includes whitespace (and newlines too!).

Answer this question by providing a file gla.scala that contains only the requested val defini-
tions (as something you could cut-and-paste into the REPL), without any outer wrappers.

(b) Using Scala’s RegexParsers framework, define a WMLParser. Define all tokens in the WML
grammar, making use of your regular expressions from the above question.

Provide a file g1b. scala with the class definition.

2. Your parser will need to be able to construct an AST. Define an appropriate class hierarchy for represent-
ing your nodes. Your class hierarchy should be rooted at an abstract class, ASTNode, and it should be
designed to capture all the non-terminals and non-constant/parametric terminals.

Include t oSt ring functions for each of your definitions that emit the corresponding name of the termi-
nal token. For non-terminals, the string emitted should start with the terminal name, an opening bracket,
and then the entire substructure, all single-space separated, terminated by a closing bracket. Do not print
out optional elements that are absent or null. For example, invoking t ost ring on the instantiated root
of your tree based on parsing

"abc def {{ xxx | bar uuuu }}"

should return the string

"PROGRAM (OUTERTEXT INVOKE (ITEXT (INNERITEXT) TARGS (ITEXT (INNERITEXT))))"

Provide a file g2 . scala with the hierarchy definition.
3. Add grammar rules to your parser, following the grammar specified. The starting non-terminal should be
called program, and you should generate a tree of ASTNode objects.

You can answer this with a single codebase that parses the entire grammar. You may find it helpful to
split up the task, however.

Page 1 of 2

(a) Ensure you can parse basic OUTERTEXT with no template invocations or definitions.
(b) Additionally incorporate the presence of template invocations (ignoring variables and definitions).
(c) Additionally incorporate the potential for variable references (ignoring definitions).
(d) Additionally incorporate template definitions.
For this question you need to define a main (or extend App)—provide a complete scala program that
accepts one command line argument which specifies the name of a file that contains a WML program.

As output your program should emit to the console the result of invoking toString on the root node
of your parsed AST.

Provide 4 such program in separate files, g3a.scala, g3b.scala, g3c.scala, g3d.scala, each
containing a parser that can handle the required input structures, but which you can assume will not be
tested on inputs that contain other language elements. Note that these files can be identical, as a solution
to part b is also a solution to part a, and the solution to part c is a solution to both a and b, and the solution
to d subsumes a, b, and c.

What to hand in

Submit your assignment to MyCourses. Note that clock accuracy varies, and late assignments will not be
accepted without a medical note: do not wait until the last minute. Assignments must be submitted on the
due date before 6pm.

This assignment is worth 10% of your final grade.

Page 2 of 2

® AN

