
Implementing, Optimizing, and Compiling Concurrent Languages

COMP 599

McGill University, Fall 2012

Course Details

Time: Tuesday, Thursday, 9:35am–10:55am
Place: ENGMC 103

Instructor: Professor Clark Verbrugge
Office: McConnell, room 230
Office hours: Tuesday 11:00–12:30, Friday 10:00–11:30, or by appointment.
Phone: 514-398-2411
Email: clump@cs.mcgill.ca

Email, Website

Students are expected to monitor their McGill email account for course-related news and information.
The course website is: http://www.sable.mcgill.ca/~clump/comp599

Pre-requisites

• An undergraduate OS course, such as COMP 310 (Computer Systems and Organization) or ECSE 427
(Operating Systems).

• An interest in design and implementation of concurrent languages.

Previous experience or courses in concurrent programming, parallel programming, or advanced operating
systems is helpful, but is neither required nor assumed.

Textbook

There is no required text for this course. For basic issues, the following text is recommended, but material
will be primarily drawn from research papers:

The Art of Multiprocessor Programming (Revised First Edition) by Maurice Herlihy and Nir Shavit.

Description

This course will focus on concerns, problems, and techniques related to the implementation of modern,
shared-memory concurrent programming languages. This includes consideration of core parallel program-
ming idioms, safety concerns, implementation design, and efficiency. The course will focus on practical,
low-level implementation issues, but will also include discussion of theoretical properties and programming
models.
Upon completion of the course, students should have a good understanding of current and research-based
concurrent programming models and their related implementation, correctness, and efficiency concerns.

1



Evaluation

3 presentations: 50%
Participation : 10%
Project proposal : 5%
Project report: 35%

In accord with McGill University’s Charter of Students’ Rights, students in this course have the right to
submit in English or in French any written work that is to be graded.

Project and Presentation Policy: All work must be submitted on time. Late work will only be accepted
in highly-exceptional circumstances and only with written permission of the instructor.
McGill University values academic integrity. Therefore all students must understand the meaning and
consequences of cheating, plagiarism and other academic offenses under the Code of Student Conduct and
Disciplinary Procedures (see http://www.mcgill.ca/integrity/ for more information).
More specifically, work submitted for this course must represent your own efforts. Copying course
work, or allowing others to copy your work, will not be tolerated. Note that introducing syntactic changes
into a copied program or project is still considered plagiarism.

2



Course Content

Note: changes to dates/topics will be announced in class.

Sept 6 Introduction
Expressiveness

Sept 11, 13 Atomicity
Mutual exclusion
Presentation signups: Sept. 14

Race conditions
Synchronization

Sept 18, 20 Lock design
Linearization
Deadlocks
Dependency

Presentations begin

Sept 25, 27, Oct 2 Wait-freedom
Lock-freedom
Race detection

Oct 4, 9, 11 Memory consistency
Memory models: Java, C++
Consistency concerns
Project Proposals due Oct.15

Oct 16, 18, 23 Concurrent languages
PGAS languages

Oct 25, 30, Nov 1 Work-stealing
Automated locking
Transactional programming

Nov 6, 8, 13, 15 Thread-level speculation
Hardware speculation
Software speculation & RVP
Optimizing speculation

Nov 20, 22, 27 Optimistic parallelism
Measuring parallelism

Nov 29, Dec 4 (Note: optional, as time permits)
Process algebra
True concurrency

3


