
In Proceedings of the 1996 International Conference on Compiler Construction

(CC '96), Link�oping, Sweden, April 24-26, 1996. LNCS 1060, Springer-Verlag.

Copyright (c) 1996 Clark Verbrugge, Laurie Hendren, Phong Co.

Generalized Constant Propagation

A Study in C

Clark Verbrugge

?

and Phong Co and Laurie Hendren

??

fclump, phaedrus, hendreng@cs.mcgill.ca

School of Computer Science

McGill University

Montr�eal, Qu�ebec, Canada H3A 2A7

Abstract. Generalized Constant Propagation (GCP) statically esti-

mates the ranges of variables throughout a program. GCP is a top-down

compositional compiler analysis in the style of abstract intepretation. In

this paper we present an implementation of both intraprocedural and

interprocedural GCP within the context of the C language. We compare

the accuracy and utility of GCP information for several versions of GCP

using experimental results from an actual implementation.

1 Introduction

Generalized Constant Propagation (GCP) is a top-down compositional compiler

analysis based on the style of abstract interpretation [CC77]. A GCP analysis

statically approximates the possible values each variable could take at each point

in the program. As an extension of constant propagation (CP), GCP estimates

ranges for variables rather than their precise value: each variable at each point

is associated with a minimum and maximum value.

We have implemented GCP for the full C language, in both intraprocedural

and interprocedural forms. We have tested the accuracy of our method both

by assessing the quality of GCP information, and by measuring the amount of

information which could be useful to subsequent analyses. Our experiments have

show GCP to be e�cient and viable; programs with many procedures obviously

bene�t more from an interprocedural analysis, but surprisingly high accuracy

can be achieved with just an intraprocedural analysis. The use of read/write

sets and points-to analysis also enhance the accuracy of GCP, particularly when

constants cross procedure calls.

GCP information has several uses. Since it is an extension of CP, the same

reasons for using it apply: elimination of dead code, arithmetic optimizations,

static range-checking, etc. Naturally, GCP will tend to be more powerful in these

respects; the value of a variable may not be constant, but its range might still

allow a conditional to be statically evaluated. Ranges can also be useful for

subsequent analyses, such as various loop transformations. However, it is also

true that GCP locates more exact constants than CP, making GCP valuable

even if range information is not needed.

?

Research supported in part by an NSERC Graduate Fellowship and FCAR.

??

Research supported in part by NSERC and FCAR

In examining the ouput of GCP analysis, we also noticed that the information

could be useful for program understanding. For example, variables determined

by GCP to be bounded can also be transformed to more tightly typed variables,

such as booleans or subranges. This information could be added to the program,

making the program easier to understand and simplifying further analyses.

1.1 Related Work

Constant propagation is a popular analysis that has appeared in numerous forms

over the years [CCKT86, CH95, GT93, MS93, WZ91]. Generalized constant

propagation, however, has not enjoyed as much attention: Harrison's [Har77] ar-

ticle on the range propagation problem is one of the few papers to address this

type of analysis, albeit in a more `traditional' setting based on precomputation

of control-
ow diagrams and def and use sets. GCP information also bears some

resemblance to the attempts by software engineers to produce provably correct

programs. Analyses developed for this goal propagate symbolic information in

an attempt to establish loop and/or program invariants, either for annotation,

or mechanical veri�cation [DM81]. This is a large body of literature with very

di�erent methods, but GCP can in some sense be considered a spawn of such

e�orts. In fact, a paper by Bourdoncle [Bou93] describes a method called ab-

stract debugging , which propagates range information top-down and bottom-up

in order to locate potential program bugs.

More recently, Patterson described an analysis similar to GCP used for static

branch prediction [Pat95]. Here, ranges are augmented with a probability that

the actual value lies uniformly distributed within that range, and sometimes

with symbolic information as well; this allows the results of conditionals to be

estimated with greater accurracy. As with Wegman and Zadeck's constant prop-

agation, this is based on a Static Single Assignment (SSA) representation.

In any range analysis, computing the values within loops will tend to be

expensive |the domain of ranges tends to be quite large, and it can take a long

time for ranges to converge. Patterson deals with this problem by heuristically

matching templates to loop carried expressions, resorting to brute force for the

unrecognized cases. The approach we develop in section 3.3 is the notion of

stepping, or arti�cially moving the range up in the domain. This has also been

addressed by Bourdoncle, and is similar to the widening/narrowing tactic of

Cousot and Cousot [CC92].

1.2 Overview

Our analysis relies on an Abstract Syntax Tree intermediate representation of

the program. In Sect. 2 we describe this structure, and how we can augment it

to support interprocedural analyses as well as intraprocedural ones. Section 3

explains the semantic basis for our analysis and gives rules for the intraproce-

dural version. Using the framework of Sect. 2, we extend our analysis to a full

interprocedural GCP in Sect. 4. We then give experimental results in Sect. 5,

comparing GCP with CP and contrasting the e�ects of intraprocedural GCP,

GCP with Read/Write sets, and the complete interprocedural GCP.

2 Background and Setting

The GCP analysis has been implemented within the context of the McCAT op-

timizing/parallelizing compiler[HDE

+

92]. As illustrated in Fig. 1, the �rst phase

of the compiler takes multiple C �les as input and creates a SIMPLE intermediate

representation of the complete program[Sri92]. This phase consists of a symbolic

linker that combines all of the input C �les into one complete representation of

the program, a simpli�cation phase that translates the higher-level intermedi-

ate representation to SIMPLE, and a restructuring phase that eliminates goto

statements[EH94]. The overall objective is to create an intermediate form that

is structured and simple to analyze. Typical transformations performed in the

simpli�cation phase include: compiling complex statements into a series of basic

statements, simplifying all conditional expressions in if and while statements

to simple expressions with no side-e�ects, structuring switch statements, sim-

plifying procedure arguments to either constants or variable names, and moving

variable initializations from declarations to statements in the body of the appro-

priate procedure. Fig. 2(a) gives an example C program, while Fig. 2(b) gives

the equivalent simpli�ed program.

.c .c .c...

symbolic linker, simplify,

Read/Write Sets

SIMPLE + Initial Inv. Graph

+ Complete Inv Graph + Points-to Info.

+ Read/Write Sets

+ Generalized Constant Prop. Ranges

Points-to analysis

Dead-Code Elimination Array Dependence Tester

Generalized Constant Prop.

 restructure (goto-elim)

...

Fig. 1. Overview

GCP analysis also uses the output of points-to analysis and read/write set

analysis. Points-to analysis is a context-sensitive interprocedural analysis that

approximates the points-to relationships at each program point [EGH94]. For

each indirection of the form *x, points-to information can be used to �nd the set

of named locations pointed-to by x. Named locations include globals, parameters,

locals, and special symbolic names that represent names that are not visible

within the scope of a function, but are accessible via pointers. An example of a

symbolic name is the name

3

1-x that is used to represent the location accessed

via *x in the procedure incr in Fig. 2(b).

3

We use 1-x to denote the �rst dereference of x, 2-x for the second dereference, etc.

void init_glob()

{ g1 = 1; }

void incr(int *x, int delta)

{ *x = *x + delta; }

main()

{ int a,b=3,c=4;

 g2 = 2;

 init_glob();

 scanf("%d",&a);

 incr(&a,c);

 incr(&b,g1);

 a,b,c,g1,g2);

}

 printf("%d %d %d %d %d \n",

main

incr incr

1-x,a 1-x,b

{b}

{c}

{g2}

{g1}

{t1}

{a}

{t2}

{a}

{t2}

{b}

int g1,g2;

(a) Example C Program

int g1,g2;

void init_glob()

{ g1 = 1; }

void incr(int *x, int delta)

{ int t0;

 t0 = *x;

 *x = t0 + delta;

}

main()

 b = 3;

 c = 4;

 g2 = 2;

 init_glob();

 t1 = &a;

 scanf("%d",t1);

 incr(t2,c);

 t3 = &b;

 incr(t3,g1);

 a,b,c,g1,g2);

}

 t2 = &a;

(c) invocation graph and mapping information

{t0}

{1-x}

 printf("%d %d %d %d %d \n",

{g1}

a:[-oo..oo] b:[4..4] c:[4..4]
 g1:[1..1] g2:[2..2]

{}

(b) SIMPLE represenation with Write Sets
and interprocedural GCP ranges

t0:[-oo..oo] delta:[1..4]

g1:[1..1]

c:[4..4]

{ int a,b,c,*t1,*t2,*t3;

Fig. 2. Example Program, Write Sets and Invocation Graph

Points-to analysis also computes a complete invocation graph which captures

all invocation contexts and the mapping information that is used to map location

names in calling context to location names in called contexts. Fig. 2(c) shows the

invocation graph for the example program. The root of the invocation graph is

always main, and all calling chains are explicitly represented.

4

This is completely

general; in the case of recursion (even mutual recursion), implicit cycles are

introduced between matching recursive node and approximate nodes for the

same function in order to represent all possible unwindings of the recursion;

in the case of indirect function calls via function pointers, the list of functions

pointed-to by the function pointer is given. Note that calls to library functions

such as scanf and printf are not included in the invocation graph. The arcs

in the invocation graph store the mapping information that was computed by

points-to analysis. In our example, the �rst invocation of incr is represented

4

There are several strategies for reducing the actual size of the invocation graph by

sharing subtrees. However, it is conceptually simpler to think of the full unfolding

of the invocation graph.

by left arc, and the mapping information indicates that the location name a in

main corresponds to the symbolic name 1-x in incr. Whereas, in the second

invocation (right arc), the name b in main corresponds to 1-x in incr. This

mapping allows us to use one name within incr without losing the context-

speci�c information from each invocation site. A more detailed description of

the interprocedural environment, including the invocation graph can be found

in [HEGV93].

Read/write set analysis uses the points-to information to calculate the lo-

cations read and written by each basic and compositional statement.

5

For the

purposes of GCP, we only use the write sets calculated for procedure calls. Note

that read/write sets include all local, symbolic, and global locations written by

a procedure call.

6

Figure 2(b) gives the write set for each statement in our ex-

ample program (shown in bold italics). Note that the second assignment in incr

shows that the symbolic location 1-x is written. Also note that the write sets for

procedure calls are quite precise as both points-to and read/write set analysis

are context-sensitive interprocedural analyses.

Figure 2(b) also gives the range information that is collected for the program.

Each direct use of a variable has been decorated with the appropriate GCP

information as computed by our interprocedural algorithm.

3 Intraprocedural GCP

Within a procedure, GCP is a straightforward top-down semantic analysis of

the SIMPLE AST. The semantic domain is �rst speci�ed; in our case we will

be concerned with the domain of scalar ranges. A corresponding semantic func-

tion is then developed for every possible type of node, and the semantic analysis

proceeds by pattern matching on the AST node type and branching to the ap-

propriate function. This is complicated somewhat by the presence of indirection;

whenever a pointer is dereferenced, the ranges for every possible target variable

have to be merged. Information is further diluted by function calls, which can

side-e�ect not just global variables, but local ones indirectly referred to by point-

ers. The success of GCP would thus seem to hinge on the accuracy of how it

handles procedure calls, and on the accuracy of the points-to analysis.

3.1 Semantic Domains

GCP estimates the value(s) a variable can assume at each point in the pro-

gram by estimating the minimum and maximum values each variable can reach.

Our semantic domain is then the domain of ranges: closed (scalar) intervals,

partially-ordered by inclusion with both a smallest element (? = [], the empty

range) and a largest (> = [�1 : : :1], where by1 we mean the largest machine

representable scalar). Note that most every data type in C �ts comfortably into

this paradigm; chars, shorts, ints, longs (signed and unsigned) of course, but

also floats and doubles, as discrete approximations to real numbers, structs

5

This is similar to MOD/REF analysis.

6

The actual sets calculated are divided into the de�nite write set for those locations

de�nitely written and the possiblewrite set for those locations which may be written.

as aggregate scalars, and even pointers as unsigned integers. Arrays are approx-

imated as the merge of their contents.

Ranges form a nice semantic domain. If [a; b] and [c; d] are (inclusive, closed)

ranges, one can consider [a; b] v [c; d] if a � c and b � d. The meet of two ranges

[a; b] and [c; d] is then the range which includes them both: [min(a; c);max(b; d)].

Our ranges are also discrete, even for the representation of real numbers;

every element is �nite, and there exist least upper bounds for arbitrary sets

of elements. In other words, the domain is a Scott Domain. The existence of

�xed-points for monotonic functions, and closure under cross-product are then

guaranteed.

This domain does have one unpleasant property|it is quite `tall,' i.e., one

can form very long chains. This will have implications for how �xed points are

computed during the analysis of loops and recursion, as will be seen later.

3.2 Semantic Functions

As mentioned, every type of statement in the SIMPLE AST (both expression and

control) needs a semantic analogue; we need separate methods for determining

how GCP information is altered by assignments, the various arithmetic opera-

tions, sequencing, conditionals, loops, : : :etc. In order to ensure convergence, it

is also necessary that each semantic function be monotonic in its domain.

We cannot describe all the semantic functions here, but in Figs. 3 and 4 we

show the semantic operations corresponding to a few di�erent kinds of state-

ments in a compositional form. We hope that this will give the reader some

idea of the
avour of the e�ort. Note that the structured nature of our SIMPLE

representation lends itself to concise and relatively compact analysis rules.

Most of these functions are quite obvious; assignment requires locating the

range for the right hand side value, and storing it as the range for the left

hand side variable (the e�ect of pointers is discussed below). Semantic plus is

paradigmatic of most arithmetic functions. The largest range which could result

from the operation being applied to any combination of values in the operand

ranges is computed and returned as the result.

Most semantic functions dilute information, due to the necessity of being con-

servative. Conditionals, though, can generate information. When control passes

through a conditional, it is necessary that the condition be satis�ed (then-part),

or unsatis�able (else-part), and this can be re
ected in the range sets passed

into the corresponding statements. For example, a statement such as if(i<0)

implies that i must be less than 0 when entering the a�rmative branch, and that

i must be at least 0 within the negative branch. Every conditional we encounter

therefore splits the input into two constrained sets (line 13, Fig. 4), which must

be merged after the conditional is completed.

3.3 Loops and Stepping

Loops in a semantic analysis require the computation of a �xed point in the

semantic domain. The process is illustrated starting from line 27 in Fig. 4 (other

loop structures are similar); the GCP information coming out of the body of

the loop is merged with the information entering the loop, and the process is

=* Given statement S, an input GCP set, returns the output GCP set *=

fun process stmt (S,Input) =

if basic stmt(S)

return(process basic stmt(S,Input))

else

case S of

< SEQ(S1,S2) > =>

return(process stmt(S2,process stmt(S1,Input)))

< IF(cond,thenS,elseS) > =>

return(process if(cond,thenS,elseS,Input)) 10

< WHILE(cond,bodyS) > =>

return(process while(cond,bodyS,Input))

...

fun process basic stmt(S,Input) =

case S of

< x = y > =>

=* RangeOf returns the range for the given variable in the given input set *=

return(Input � x:RangeOf(x,Input) + x:RangeOf(y,Input))

< x = *y > => 20

=* MergeRanges returns the smallest range w every range in a given list.

Dereference returns a list of variables pointed to by the given variable

at the given statement. RangesOf is the list�version of RangeOf *=

[a..b] = MergeRanges(RangesOf(Dereference(y,S)),Input)

return(Input � x:RangeOf(x,Input) + x:[a..b])

=* Merge pair�wise merges two lists of ranges for the same set of variables.

De�nitelyPointsTo returns true if the given variables have de�nite points-to

relationship at the given program point *=

< *x = y > =>

derefx = Dereference(x,S) 30

if (De�nitelyPointsTo(x,derefx,S))

return(Input � derefx:RangeOf(derefx,Input) + derefx:RangeOf(y,Input))

=* If x does not de�nitely point to a single variable, then the

strategy is to merge the range from the right�hand�side of the

statement with the range of all variables x can possibly point to *=

foreach temp in derefx

Input = Input � temp:Rangeof(temp,Input) +

temp:Merge(RangeOf(temp,Input),Rangeof(y,Input))

return(Input)

< x = y + z > => 40

[a..b] = semantic plus(RangeOf(y,Input),RangeOf(z,Input))

return(Input � x:RangeOf(x,Input) + x:[a..b])

...

Fig. 3. Compositional intraprocedural rules for GCP (continued on next �gure)

fun semantic plus([a..b],[c..d]) =

if (a+c < �1) e = �1 else e = a+c

if (b+d > 1) f = 1 else f = b+d

return([e..f])

=* Given a simple conditional cond, the statements in the then and

else part, and GCP input, return the gcp output set. *=

fun process if(cond,thenS,elseS,Input) =

=* ConstrainConditional splits the input set into two sets; one consistent

with the conditional (to serve as input to the then statement), and one 10

inconsistent (for the else statement). If either set is empty, then

the input is such that the conditional can only have one possible outcome *=

(consistentInput,inconsistentInput) = ConstrainConditional(cond,Input)

=* Do not process the then statement if we've determined that it

cannot be executed! *=

if (consistentInput != fg)

thenOutput = process stmt(thenS,consistentInput)

else

thenOutput = fg

if (inconsistentInput != fg) 20

elseOutput = process stmt(elseS,inconsistentInput)

else

elseOutput = fg

return(Merge(thenOutput,elseOutput))

fun process while(cond,bodyS,Input) =

iterations = 0

Output = oldBodyInput = bodyOutput = fg

do

Input = Merge(Input,bodyOutput) 30

(consistentInput,inconsistentInput) = ConstrainConditional(cond,Input)

converged = (consistentInput == oldBodyInput)

if (not converged and iterations > maxiterations)

=* StepUp arti�cially moves a non�converging range up in the

semantic domain *=

StepUp(consistentInput,oldBodyInput)

iterations = 0

oldBodyInput = consistentInput

bodyOutput = process stmt(bodyS,consistentInput)

Output = Merge(Output,inconsistentInput) 40

iterations = iterations + 1

while (not converged)

return(Output)

Fig. 4. Compositional intraprocedural rules for GCP (continued from previous �gure)

repeated until convergence. The output of the loop is gathered as the merged

result of all sets of ranges which do not satisfy the conditional; in the actual

implementation we also merge the results of break and continue statements

with the Output and Input sets respectively.

Our semantic functions are all monotonic in their individual range-domains,

so we will reach a �xed point eventually. Unfortunately, the domain of ranges

can be quite \tall;" there are monotonic chains of very long length: e.g., [0::0]�

[0::1] � : : : � [�1::1] where 1 is typically 2

31

. In the worst case then, our

monotonicity requirement only ensures convergence after 2

32

steps per variable,

which is clearly unacceptable.

We can, however, speed up this process by sacri�cing the quality of infor-

mation. Ranges for variables that refuse to converge after some �xed number

of iterations can be arti�cially \stepped up" (raised in the semantic domain). If

each range can be stepped only so many times before reaching [�1::1], then

the monotonicity of our semantic operations guarantees convergence in much

less time. By using some heuristics to guide the choice of which variable to step

(e.g., choosing the loop index �rst), we can achieve a reasonable compromise

between e�ciency and accuracy. In our implementation, for instance, we have 2

non-converging iterations for each stepping operation. The �rst four steppings

individually push the non-converging ends of the variables in the loop condi-

tional to the loop bounds (if known), or to1 (or �1). The next step is to push

some (n = 40 in our case) and then all the non-converging ends of all variables to

1, then stepping all non-converging ranges to [�1;1], and �nally stepping all

variables to [�1;1]. Thus, each �xed-point requires at most 14+2n iterations.

3.4 Considerations for C

Almost all languages have loops, and the di�culties they present to semantic

analyses are not unique to C. The C language though does have two distinct

features which greatly impact the e�cacy of GCP: pointers and an abundance

of procedure calls.

Pointers.Whenever a dereferenced pointer is encountered in the code, it is

essential to know which variables might be accessed in order to compute the

correct range information. When a dereferenced pointer appears on the right

hand side of an expression, as an R-value, the semantic function computes the

least upper-bound of all ranges which might be referred to as the result of the

dereference (see the semantic x = �y in Fig. 3). No matter which variable is

actually accessed during runtime, it is then guaranteed to be included in the

range GCP reports for the dereference. When a dereference occurs on the left

hand side of an assignment, as an L-value, correctness requires that the range to

be stored be merged with the existing range values for every variable which might

be indicated by the dereference (see �x = y in Fig. 3). This sort of conservative

estimation can result in very poor information. If the set of variables accessed

by an arbitrary pointer dereference is not known, all referenced variables must

be assumed accessible.

Points-to analysis limits this sort of conservative dilution. By identifying

target variables for each dereference, it is possible to restrict the number of ranges

which have to be merged, or merged into. In a language like C, where pointers

are ubiquitous, this sort of information is essential for reasonable accuracy.

Procedure Calls. Each time a procedure call is encountered, intraprocedural

GCP must discard all information about any variable which might be altered by

the function call. In the absence of information about where pointers might be

directed, the most naive conservative approach is just to push every range up to

>; a slightly more clever tactic is to just raise all globals and any local variable

which has had its address taken.

Points-to information allows GCP to more precisely determine which vari-

ables could be accessed by a function call. By computing the transitive closure

of the possibly-points-to relation starting from the function call parameters and

globals, the set of all variables which could be accessed can be determined.

Even with points-to this is still overly conservative. Pointers are often passed

in C procedures to avoid copying information onto the stack, and not just to

facilitate side-e�ects; pushing all accessible variables to > is clearly overkill. If

read/write sets are available, though, it is possible to identify which variables

might actually be written to during a function call. By just raising the variables

in this latter set, the number of variables needlessly raised to > can be reduced.

4 Interprocedural GCP

The approximations used for intraprocedural GCP information over procedure

calls are clearly suboptimal; in order to be surely correct, we seem to be forced

to throw away a great deal of information. Even with the more accurate identi�-

cation of altered or aliased variables possible with points-to and read/write sets,

we still have to discard all information about the range of an altered variable.

We cannot know exactly what the function does to the variables it changes, so

it is necessary to assume the variables could be anything after a call.

An interprocedural analysis does not su�er from this limitation. By knowing

the e�ect of each call on both local and global variables, we can determine, for

instance, that a given procedure simply increments its value rather than comput-

ing an arbitrary function. Moreover, by using the invocation graph framework

developed in section 2, we can compute interprocedural information in a context-

sensitive way, avoiding the generalizations (and hence dilution of information)

produced by the calling context problem.

4.1 Using the Invocation Graph

Making GCP interprocedural requires just two functions, map and unmap. As

each function call is recursively traversed, the actual parameters passed to the

callee are mapped to the formal parameters. The mapping information calculated

by points-to analysis is used to map between names in the caller and symbolic

names in the callee. As the function body is processed, the ranges computed

from the current input set are merged with the existing ranges imbedded in

the program from previous calls to the same function. Once the input set has

completed the body, the values it contains are unmapped back to the caller's

variables using the original map information. The ranges stored within the callee

will then represent the merged input of all calls to that function, while the ranges

returned after processing a function call represent the result of the call given the

current input set from the caller (i.e. these values are context-sensitive). The

process is shown functionally in Fig. 5 as a three-way branch on the invocation

graph node (ign) type; non-recursive computations are illustrated in the �rst

case, and map and unmap rules for GCP are shown in Fig. 6.

In the absence of recursion, this process is straighforward. When a recursive

call appears, however, we are required to compute a �xed-point for the call

representing all possible unrollings for the recursive call. This is indicated in our

traversal of the invocation graph by a matching recursive and approximate node

pair (linked by a backedge).

At each recursive node we store an input, an output, and a list of pending

inputs. The input and output pair can be thought of as approximating the e�ect

of the call associated with the recursive function (let us call it f), and the pending

list accumulates input information which has not yet been propagated through

the function. The �xed-point computation generalizes the stored input until it

�nds an input that summarizes all invocations of f in any unrolled call tree

starting at the recursive node for f. Similarly, the output is generalized to �nd a

summary for the output for any unrolling of the call tree starting in the recursive

node for f. The generalizations of the input and output may alternate, with a

new generalization of the output causing the input to change.

Consider the rule for the approximate node in Fig. 5; in this case, the current

input is compared to the the stored input of the matching recursive node. If the

current input is contained in the stored input, then we use the stored output as

the result. Otherwise, the result is not yet known for this input, so the input

is put on the pending list, and bottom (?) is returned as the result. Note that

an approximate node never evaluates the body of a function, it either uses the

stored result, or returns ?.

Now consider the recursive rule. In this case we have an iteration that only

terminates when the input is su�ciently generalized (the pending list of inputs

is empty) and the output is su�ciently generalized (the result of evaluating the

call doesn't add any new information to the stored output).

5 Experimental Results

In order to examine the relative merits of the di�erent
avours of GCP, we

need a qualitative way of measuring the GCP information produced. This is

provided by dividing the ranges GCP can produce into four categories, according

to their potential utility: Exact, an actual constant, like [3..3]; Bounded, a

�nite subrange, like [1...10];Half-open, one end of the range is a number, but

the other is in�nite, like [1..1]; and Total, the range is >, like [�1..1].

We have counted the number of ranges falling into each of the four categories,

for each of three di�erent variations on GCP:

Naive: Intraprocedural GCP only. No points-to information; a pointer deref-

erence returns all variables which have had their address taken. A function

call causes all globals and all variables which have had their address taken

to be set to >.

=* Given a list of input ranges, parameters (actuals and formals), an invocation

graph node for the function, the function body, and mapping information,

returns the list of ranges resulting from the function call *=

fun process call(Input,actualList,formalList,ign,funcBody,mapInfo) =

funcInput = gcp map(Input,formalList,actualList,mapInfo)

case ign of

< Ordinary > =>

funcOutput = process stmt(funcBody,funcInput)

return(gcp unmap(Input,funcOutput,mapInfo))

10

< Approximate > =>

recIgn = ign.backEdge =* get partner recursive node in invoc. graph *=

=* if this input is contained in stored input, use stored ouput *=

if isSubsetOf(funcInput,recIgn.storedInput)

return(gcp unmap(Input,recIgn.storedOutput,mapInfo))

else =* put this input in the pending list, and return Bottom *=

addToPendingList(funcInput,recIgn.pendingList)

return Bottom

< Recursive > => 20

ign.storedInput = funcInput =* initial input estimate *=

ign.storedOutput = Bottom =* initial output estimate *=

ign.pendingList = fg =* no unresolved inputs pending *=

done = false

do

=* process the body *=

funcOutput = process stmt(funcBody,ign.storedInput)

=* if there are unresolved inputs, merge inputs and restart *=

if (ign.pendingList != fg)

ign.storedInput = Merge(ign.storedInput,ign.pendingList) 30

ign.pendingList = fg

ign.storedOutput = Bottom

=* check to see if the new output is included in old output *=

else if isSubsetOf(funcOutput,ign.storedOutput)

done = true;

else =* merge outputs and try again *=

ign.storedOutput = Merge(ign.storedOutput,funcOutput)

while (not done)

=* return the �xed�point after unmapping *=

return(gcp unmap(Input,ign.storedOutput,mapInfo)) 40

Fig. 5. Compositional interprocedural rules for GCP

fun gcp map(Input,formalList,actualList,mapInfo) =

funcInput = fg

foreach formalI in (formalList) =* formals inherit the range from actuals *=

funcInput = funcInput + formalI:RangeOf(actualI,Input)

foreach globalI in (globalVarList) =* the range of globals remains the same *=

funcInput = funcInput + globalI:RangeOf(globalI,Input)

foreach x in (SymbolicVars(mapInfo))

mappedVars = getMappedVars(x,mapInfo)

funcInput = funcInput + x:MergeRanges(RangesOf(mappedVars,Input))

=* symbolic vars receive the merged range of the variables they represent *= 10

return(funcInput)

fun gcp unmap(Input,funcOutput,mapInfo) =

Output = Input =* initialize the Output of the call to its Input *=

foreach globalI in (globalVarList)

Output = (Output � globalI:RangeOf(globalI,Input) +

globalI:RangeOf(globalI,funcOutput))

=* each global gets the new range from the called function *=

foreach x in (SymbolicVars(mapInfo))

mappedVars = getMappedVars(x,mapInfo) 20

foreach var in (mappedVars)

Output = (Output � var:RangeOf(var,Input) + var:RangeOf(x,funcOutput))

=* each variable represented by a symbolic variable in

the called function gets the range of the symbolic variable *=

return (Output)

Fig. 6. Map and unmap functions for interprocedural GCP

R/W: Intraprocedural GCP that uses interprocedural points-to information,

and read/write sets. Pointer dereferences return just the variables indicated

by points-to. Function calls set all variables in the write set of the call to >.

I-R/W Interprocedural GCP that uses interprocedural points-to information,

and read/write sets. Pointer dereferences return just the variables indi-

cated by points-to. Calls to user functions are evaluated using the using our

context-sensitive strategy, and calls to library functions are approximated

using read/write sets to set all variables in the write set of the call to >.

In each case we only count the \relevant" ranges, by which we mean ranges

for references to non-pointer variables appearing on the right hand side of assign-

ments, as arguments to a function call, or as expressions in a loop or conditional.

These are the ranges which could be of interest to a subsequent analysis. Since

each analysis is run on the same program, each of our three cases gives the same

total number of relevant ranges. The only di�erence is in how many ranges fall

into each of our four categories.

Figure 2(b) indicates the ranges that we would count for our example pro-

gram under the I-R/W strategy. In this case there are 9 uses of non-pointer

variables, so there is a total of 9 relevant ranges, of which 6 are exact, 1 is

bounded and 2 are total. Note how the context-sensitive nature of our interpro-

cedural analysis keeps the two di�erent calls to incr distinct, while still merging

the values of delta within the procedure. The results for this program under the

Naive and R/W strategies are much less precise. With Naive there are only 2

exact ranges corresponding to the 2 uses of the local variable c. With the R/W

strategy one more exact range is found for the use of the global g2. In this case

the R/W sets are used to determine that no procedure call kills the constant

value generated by the assignment g2 = 2.

We have run the three kinds of GCP on the following benchmark set:

Asuite: Compiler test suite from Argonne National Labs.

Chomp: Solves a simple board game.

Circle: An O(n

4

) minimum spanning circle algorithm.

Clinpack: Numerical test routines.

Cluster: Two greedy graph clustering algorithms.

Dhrystone: Standard timing benchmark.

Frac: Computes rational representation of a real number.

Mersenne: Computes n digits of 2

p

� 1 for a given p and n.

Nrcode2-4: Another test suite for vectorizing C compilers.

Numerical: Complex number routines { zroots, laguer.

Stanford: Baby benchmarks suite { 10 small programs.

Tomcatv: A standard Fortran benchmark, ported to C.

Of course the data GCP collects will be greatly in
uenced by many factors.

In the left columns of Table 1, we show the number of SIMPLE statements in the

program, function de�nitions, function calls (includes calls to library functions),

global variables, maximum loop nesting and total number of loops. It should

be expected that programs having more functions, calls and globals will bene�t

more from using read/write sets, and from using an interprocedural GCP.

Benchmark Stmts Funcs Calls Globals Nest Loops F-Ps Avg iter Intra(s) Inter(s)

Asuite 1841 93 299 23 3 218 623 8.10 16.08 20.39

*Chomp 439 20 54 5 2 22 259 6.33 0.89 7.07

Circle 251 4 5 12 4 8 266 6.59 58.91 57.75

Clinpack 909 11 53 23 2 33 1701 8.56 11.13 96.16

Cluster 599 20 63 18 3 53 565 6.08 21.24 28.54

Dhrystone 242 14 20 65 2 7 71 17.30 9.98 55.81

Frac 103 2 3 0 2 3 9 7.00 0.33 0.50

Mersenne 117 8 17 3 2 7 102 7.52 0.18 1.87

Nrcode2-4 405 3 36 28 2 44 82 9.16 6.33 6.44

Numerical 319 11 18 11 2 11 33 3.97 1.29 5.70

*Stanford 998 47 84 67 3 88 4058 5.46 26.93 456.88

Tomcatv 333 2 15 7 3 19 310 4.89 46.09 50.24

Table 1. Benchmarks descriptions. Dynamic measurements are I-R/W. An *" indi-

cates the presence of recursion.

In Fig. 7, we illustrate the relative quality of the analyses based on how ranges

are divided up into the four di�erent kinds, and the relative quality of regular

constant propagation as well. The length of the black bars show the percentage

of exact ranges as found by GCP and CP, and the length of the dark gray bars

shows the extra constants found just by GCP. The total length of the bars show

the percentage of ranges that give at least some information (exact, bounded, or

open). It is interesting to note that a suprisingly large fraction of ranges contain

at least some useful information, and that in several cases (stanford, mersenne,

dhrystone, and marginally clinpack and asuite) GCP locates more constants

than CP. These extra constants are the result of merged information being subse-

quently reduced to a constant, such as a boolean (b=[0::1]) within \if(b) f: : :g."

In comparing the e�ectiveness of naive versus R/W and I-R/W, however, the

results seem to depend very much on the style of the benchmark under analysis.

The naive analyses of circle, cluster. numerical and tomcatv2 give al-

most the same results as the more expensive R/W and I-R/W analyses. For

the latter, there is only one large main function, all scalars are local variables,

and there are no pointers to local variables. Thus, the naive scheme does not

make any overly conservative assumptions, and the results are quite accurate.

In the three former cases, there are almost no constants to speak of, regardless

of the form of the analysis.

Most of the remaining benchmarks show improved results for the I-R/W

method. In these cases constants are propagated through parameters, and so

interprocedural results are substantially better. However, dhrystone, nrcode

and clinpack all show bene�ts from using R/W sets; here, the reduced kill-sets

provided by the R/W analysis (particularly with respect to library functions)

allow more constants to be carried across procedure calls.

GCP is a semantic analysis on a tall domain, so the amount of time needed

by GCP is important to consider. In Table 1 we also show dynamic measure-

ments of the number of loop �xed-points, the average number of iterations for

each �xed-point, and the total time (user time in seconds, on a Sun Sparc 20)

consumed by both R/W GCP and I-R/W GCP. Note that these times are

for our unoptimized code; a reduction in time by a constant factor would be

easy to achieve with a less naive implementation of range sets, and, particularly

in the I-R/W case, by including memoization. Relative relationships, however,

are valid. Intraprocedural GCP takes time roughly proportional to nesting, but

interprocedural GCP can take much longer due to procedure calls imbedded in

loops, and recursion. Also note that, due to the stepping heuristics, the compu-

tation of each �xed-point actually requires very few iterations.

6 Conclusions and Further Work

We have demonstrated the e�cacy of GCP in the context of the full C language.

Moreover, we have shown that while a full interprocedural analysis certainly

improves information for programs with constants passed via parameters, rea-

sonable accuracy can be achieved with just a straightforward intraprocedural

analysis for programs with simpler control structure. GCP also tends to locate

more exact constants than CP.

A common criticism leveled at analyses based on abstract interpretation is

the exponential cost of computing �xed points. GCP has also shown itself to

Tomcatv 502
Tomcatv R/W

Tomcatv I-R/W
Stanford 962
Stanford R/W

Stanford I-R/W
Numerical 357
Numerical R/W

Numerical I-R/W
Nrcode2-4 477
Nrcode2-4 R/W

Nrcode2-4 I-R/W
Mersenne 90

Mersenne R/W
Mersenne I-R/W

Frac 90
Frac R/W

Frac I-R/W
Dhrystone 164
Dhrystone R/W

Dhrystone I-R/W
Cluster 795
Cluster R/W

Cluster I-R/W
Clinpack 1204
Clinpack R/W

Clinpack I-R/W
Circle 291
Circle R/W

Circle I-R/W
Chomp 197
Chomp R/W

Chomp I-R/W
Asuite 2459
Asuite R/W

Asuite I-R/W

0 10 20 30 40 50 60 70 80 90 100

Percentage

Fig. 7. Relevant ranges found for benchmarks. The percentages of the di�erent types

of ranges are show; black and dark gray are for exact constants (regular CP and extras

found by GCP), light gray is bounded, and white for half-open. The remaining ranges

are total. The number next to each benchmark name is the actual total number of

relevant ranges in the program.

be quite reasonable in this respect; by stepping ranges that do not converge,

�xed-points can be calculated in just a few iterations per loop. The inclusion of

a simple heuristic, such as stepping the variable involved in the loop conditional

�rst, permits rapid convergence without overly sacri�cing quality of information.

We are also considering the e�ects of a few simple heuristics to enhance in-

traprocedural GCP. It should be possible to improve naive GCP by identifying

the more common situations where GCP unnecessarily discards information in

order to be safe, such as over selected library calls. The use of stepping also

requires further examination; perhaps accuracy or speed can be improved with

di�erent heuristics. The e�ect of GCP on other analyses that use GCP informa-

tion also remains to be examined: how often are ranges actually useful?

References

[Bou93] Fran�cois Bourdoncle. Abstract debugging of higher-order imperative lan-

guages. In Proc. of SIGPLAN PLDI '93, pages 46{55, Albuquerque, N.

Mex., Jun. 1993.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lat-

tice model for static analysis of programs by construction of approximations

of �xpoints. In Conf. Rec. of POPL-4, pages 238{252, Los Angeles, Calif.,

Jan. 1977.

[CC92] Patrick Cousot and Radhia Cousot. Comparing the galois connection and

widening / narrowing approaches to abstract interpretation. Technical

Report LIX/RR/92/09, Ecole Polytechnique Laboratoire d'Informatique,

91128 Palaiseau Cedex, France, Juin 1992.

[CCKT86] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. In-

terprocedural constant propagation. In Proc. of the SIGPLAN '86 Symp.

on Compiler Construction, pages 152{161, Palo Alto, Calif., Jun. 1986.

[CH95] Paul R. Carini and Michael Hind. Flow-sensitive interprocedural constant

propagation. In Proc. of SIGPLAN PLDI '95, pages 23{31, La Jolla, Calif.,

Jun. 1995.

[DM81] Nachum Dershowitz and Zohar Manna. Inference rules for program anno-

tation. IEEE Transactions on Software Engineering, SE-7(2):207{222, Mar.

1981.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive

interprocedural points-to analysis in the presence of function pointers. In

Proc. of SIGPLAN PLDI '94, pages 242{256, Orlando, Flor., Jun. 1994.

[EH94] Ana M. Erosa and Laurie J. Hendren. Taming control
ow: A structured

approach to eliminating goto statements. In Proc. of the 1994 Intl. Conf.

on Computer Languages, pages 229{240, Toulouse, France, May 1994.

[GT93] Dan Grove and Linda Torczon. Interprocedural constant propagation: A

study of jump function implementations. In Proc. of SIGPLAN PLDI '93,

pages 90{99, Albuquerque, N. Mex., Jun. 1993.

[Har77] William H. Harrison. Compiler analysis of the value ranges for variables.

IEEE Trans. on Software Eng., 3(3):243{250, May 1977.

[HDE

+

92] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan.

Designing the McCAT compiler based on a family of structured intermediate

representations. In Proc. of the 5th Intl. Work. on Languages and Compilers

for Parallel Computing, number 757 in LNCS, pages 406{420, New Haven,

Conn., Aug. 1992. Springer-Verlag. Publ. in 1993.

[HEGV93] Laurie J. Hendren, Maryam Emami, Rakesh Ghiya, and Clark Verbrugge.

A practical context-sensitive interprocedural analysis framework for C com-

pilers. ACAPS Tech. Memo 72, Sch. of Comp. Sci., McGill U., Montr�eal,

Qu�e., Jul. 1993. In ftp://ftp-acaps.cs.mcgill.ca/pub/doc/memos.

[MS93] Robert Metzger and Sean Stroud. Interprocedural constant propagation:

An empirical study. ACM Letters on Programming Languages and Systems,

2(1{4):213{232, Mar.{Dec. 1993.

[Pat95] Jason R. C. Patterson. Accurate static branch prediction by value range

propagation. In Proc. of SIGPLAN PLDI '95, pages 67{78, La Jolla, Calif.,

Jun. 1995.

[Sri92] Bhama Sridharan. An analysis framework for the McCAT compiler. Mas-

ter's thesis, McGill U., Montr�eal, Qu�e., Sep. 1992.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with con-

ditional branches. ACM Trans. on Programming Languages and Systems,

13(2):181{210, Apr. 1991.

