
Abstract

Finite element methods in computation physics often require the domain of interest to be

discretized, or tiled in some manner with primitive shapes. When the domain itself has an

irregular or unknown shape, �nding a satisfactory tesselation can be a demanding task: the grid

to be generated must conform to an arbitrary (polygonal) boundary, satisfy certain numerical

requirements imposed by the �nite element method, and in many cases must be adaptive|locally

re�ne or coarsen on demand. In this paper a practical algorithm is described for generating grids

which satisfy the desired conformal and numerical requirements of the �nite element method in

two dimensions. Unlike existing algorithms, this algorithm also admits local grid modi�cations

with a bounded e�ect; a small upper bound on cost exists for maintaining grid requirements

following a small local increase or decrease in grid density. The way the grid is constructed,

and the guaranteed locality of changes make this algorithm highly amenable to parallelization.

Experimental results for a sequential implementation are presented.
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1 Introduction

Until recently, algorithms in computational physics have largely focussed on using regular geometric

�gures as the basis of domain discretization. For physical situations where the geometry is irreg-

ular, and more importantly where the physics requires a dynamically adaptive grid, such regular

tesselations are obviously inadequate. One can fairly easily develop data structures that express

irregular grid structures and, with rather more e�ort, develop satisfactory algorithms that create

irregular grids consistent with the requirements of the numerical aproximations being used. Fairly

sophisticated grid-generation algorithms have been developed for use with �nite element methods;

see for example the recent book by P. L. George [11], the lecture notes by Weatherill [16] or the

review article by Bern and Eppstein [6].

There is a basic problem with all these schemes if one attempts to use them in conjunction with

an adaptive algorithm. In physical applications, one adapts the grid in response to some local

criterion (typically the gradient of one of the physical variables exceeds a prescribed bound), and

thus one wants to re�ne (or coarsen) a grid locally. With existing Delaunay-based algorithms,

though, even such local changes can cause the entire grid to be scrapped and recomputed|an

expensive procedure for large grids. It is of interest therefore to develop an algorithm that allows

incremental recomputation of the grid while maintaining the geometrical exigencies of the �nite

element method. This is what we do in the present paper.

In 1988, Baker, Grosse and Ra�erty [2] described an algorithm for grid generation which satis�es

the speci�c numerical constraints of grid generation for the �nite element method (no obtuse

angles), while still conforming to an arbitrary polygonal boundary. Here, we develop an incremental

algorithm. We build on some of the geometric insights of their algorithm but we are forced to deal

with a variety of new problems. These are a signi�cant explosion in the number and intricacy

of the cases that need to be analyzed and the need to maintain \balance" conditions on the tree

structures used with an eye to future parallel implementation.
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A two-dimensional mesh in the context of the �nite element method consists of a discretization

of the domain into a non-overlapping set of triangles, connected edge to edge. Discretization into

squares is also possible, but in order to have the mesh conform to the arbitrary polygonal boundaries

(formed from straight line segments) found in unstructured (irregular) domains, triangles are to be

preferred. A mesh, though, need not remain a static object throughout the entire computation.

An adaptive �nite element method accelerates convergence by dynamically changing the grid to

place more grid points in the regions of greatest interest/variability, and fewer grid points in the

more stable regions. The same accuracy as a much �ner grid can then be obtained with fewer grid

points; for instance, a moving shock wave can be adaptively tracked with an accuracy otherwise

achievable only with a very �ne grid covering the entire path of the shock wave. The mesh, then,

should e�ciently support adaptive recon�guration.

1.1 Physical Background

The �nite element method computes an approximate solution to a di�erential equation in the

following way. One breaks the region into small subregions called \elements." The solution to the

di�erential equation is approximated by some standard function, depending on a few parameters,

across the element. Often one uses linear or constant functions. One matches the solution in

neighbouring elements across their boundaries and obtains in this way a set of algebraic equations

that partially constrain the approximate solution. The iteration to the solution proceeds by using

the approximate solution in the di�erential equation and successively re�ning the approximation.

This method imposes some basic requirements on the mesh. In order to ensure that the linear

interpolation across the boundary of each element leaves the system consistent (i.e. the system is

not overconstrained by imposing matching at three points on a linear function), the �nite elements

must be connected edge-wise, with no vertices located along any edge except at its endpoints. It

also imposes the condition that the �nite elements completely and disjointly cover the domain of

interest.

Unfortunately, not just any triangular mesh will do. For many uid ow and heat conduction

problems, the �nite element method demands that the cosine of every angle in the triangulation

be positive. Obtuse triangles, ones containing angles larger than �=2, can cause the generation

of physically unrealistic results|such as an increase in temperature given a decrease in energy

input|and are therefore undesireable in the mesh.

1.2 Computational Background

In practice one tries to construct a Delaunay triangulation. A Delaunay triangulation is a mesh

where the circumscribing circle of each triangular element is free of any grid points in its interior.

It also has the advantage that the minimum angle in the mesh is itself minimized over all possible

triangulations of the same point set [1], and this tends to reduce the number of obtuse triangles.

A Delaunay triangulation, however, despite its otherwise very nice properties does not guarantee

that the mesh will not contain obtuse triangles.

If the mesh is to be dynamically adapted, it must be able to e�ciently increase and decrease the

density of grid points in a speci�ed area. Since this problem is being investigated with respect
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to parallel computation, particularly distributed-memory machines, these operations should be

both e�cient and as local as possible, to minimize any inherent communication costs. In other

words, any changes made to the grid due to adaptivity should have a localized e�ect, not requiring

the reconstruction of the entire grid. This is actually a requirement only for a coarse-grained

parallelization strategy, where the grid itself is distributed among a relatively small number the

processors. However, given that the �nite element method requires only local computation at each

grid point, and has a great deal of dependency between adjacent elements, surface-to-volume ratio

arguments suggest that a coarse-grained approach is the most workable.

Unfortunately, the more popular Delaunay algorithms, like Watson's [15], and Bowyer's [10] are

not certain to modify a triangulation with only bounded e�ect. The \edge ipping" technique of

Watson, while guaranteed to terminate, is not guaranteed to restrict its locus of activity, and can

spread throughout the entire mesh. Bowyer's algorithm has a similar problem: inserting a single

point can (in the worst case) require a complete retriangulation of the domain. A dynamic adaptive

scheme cannot a�ord such expensive operations, particularly when the grid is large.

1.3 The Baker, Grosse and Ra�erty Algorithm

The algorithm of Baker et al [2] works by overlaying a regular square grid of su�cient resolution

over the domain. As long as each vertex of the domain coincides with a grid-point, and the grid is

�ne enough to ensure no more than one edge of the domain intersects a given square, it is possible

to triangulate the domain. Each square can be triangulated separately with only acute triangles,

including squares with an input edge intersecting them. Some extra e�ort is needed to deal with

acute angles in the domain description|acute angles also constrain the minimum grid resolution.

The complete details can be found, of course, in [2].

At �rst glance this algorithm does not seem to have any special advantages when considering

adaptivity; a �xed resolution is certainly not amenable to local changes. However, as they mention

(but do not develop) in their discussion of the algorithm, quadtrees can be used to allow for some

local variation in grid size. This permits guaranteed local grid re�nements, and a signi�cant overall

reduction in number of triangles in the grid too.

2 Outline of Our Algorithm

To summarize, the mesh and/or mesh generation algorithm should have the following properties:

1. The mesh should be a triangulation, and all vertices must be only at the corners of the

triangles.

2. All triangles should be non-obtuse.

3. The density of grid points within a speci�ed region should be dynamically adjustable.

4. Grid modi�cations should be as localized as possible.

The grid generation algorithm presented here, described in the next section, possesses the following

features:

4



1. It generates a triangulation respecting arbitrary polygonal boundaries.

2. No triangle has an internal angle larger than �=2.

3. Starting from a \base" triangulation, the grid can be increased in density (within a speci�ed

region), and subsequently reduced as needed.

4. Modi�cations have a small and greatly-restricted non-local e�ect.

It should also be noted that since the grid generated has no obtuse angles, it is also automatically

a Delaunay triangulation [1], and so it inherits the well-established numerical properties thereof.

The algorithm consists of two main stages. First, the quadtree structure itself is generated|

a square large enough to contain the entire domain is recursively decomposed into four smaller

squares, until a base level is reached. This base level will depend on the geometry of the input

domain, the choice of input vertices, and the necessity of being able to generate acute triangles. In

order to ensure this base level can be reached, a number of conditions need to be guaranteed; in

section 3 we describe the desired conditions, and how they can be ensured during or by the end of

the quadtree generation.

During this construction, the domain exterior is progressively identi�ed and removed from further

processing. Most algorithms ignore this facet of grid generation, a variety of means for mathemati-

cally distinguishing domain interior from exterior already being in existence (see for example [14]).

However, we are required to be e�cient, avoid numerical error, and keep computations within the

quadtree as locally-contained as possible. We also cannot demand that all input vertices lie in

\general position" (no 3 points on a line, no 4 on a circle), as is often assumed in computational

geometry algorithms. Hence, in section 4 we develop an algorithm for �ltering the domain exterior

from the quadtree as we construct it, using only the information contained within an individual

quad.

Once the quadtree has been constructed to a base level, the leaves of the quadtree are triangulated.

The vertices forming the corners of each quad are added to the domain, and (acute) triangles are

generated respecting the individual boundaries of each quad. Once each quad is consistently and

completely triangulated with acute triangles, so will be the entire domain. Completing this process

for each of the possible quad leaves forms the bulk of the e�ort in implementing the algorithm; in

section 5 we describe the general approach, and provide detailed proofs and descriptions of each of

the individual cases.

Once the triangulation has been constructed, it may be necessary to increase (and subsequently

decrease) the density of the grid within a speci�ed region, in accordance with the physical criteria

discussed above. In section 6, we illustrate how incremental modi�cations can be made to the grid

without necessitating a retriangulation of the entire domain.

In section 7, we prove some upper bounds on the size of the grid generated by our algorithm. Since

our algorithm is highly dependent on the exact geometry of the input, experimental results can give

a more accurate assessment of the algorithm's e�cacy. Thus, in section 8 we provide experimental

results for several di�erent domains of varying complexity.
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3 Generating the Quadtree

The quadtree can be generated in one of two fashions; either depth-�rst or breadth-�rst. The

former involves generating the branches of the quadtree one at a time, making each branch as deep

as needed before moving on to the next branch. The latter generates the quadtree level-by-level,

building all branches at an equal rate. While each version attempts to minimize the consumption

of di�erent resources (space and time, respectively), for reasons that will become clear shortly, the

breadth-�rst approach is preferred.

Part of the algorithm for generating the quadtree requires a de�nition:

De�nition 1 A two-edge case is a pair of edges meeting at the corner of a quad that form an acute

interior angle to the domain.

We begin with an initial square large enough to contain the entire input polygon. We will then

recursively divide a given square s, at depth d in the quadtree, into four squares of depth d+ 1 if

any of the following properties hold.

Vertex Condition An input vertex of the polygon is contained within s (including

the boundaries), and is not coincident with one of the four corners of s.

Edge Condition More than one input edge of the domain properly intersects s, and

the half-planes (domain side) determined by edges of at least one pair of such edges

intersect within s, and such a pair is not a two-edge case.

Balance Condition Any square at depth d

0

with d

0

> d+1 shares a side with s, and

s does not contain only two-edge cases, nor is s entirely external to the domain.

3.1 Vertex Condition

The vertex condition is self-explanatory|it merely ensures that each input vertex lies on the corner

of a grid square, which is the primary operating assumption for this algorithm. Note that since

the quadtree recursively divides itself in two with respect to both the x and y axes, in order for

the algorithm to terminate the input vertices must have some �nite base-2 representation. The

maximum base-2 precision will then be a lower bound on the maximum depth of the quadtree.

3.2 Edge Condition

The edge condition is necessary to keep the number of quad con�gurations that must be triangulated

small. It is not possible to demand that each quad be triangulated acutely when one might be

intersected by an arbitrary number of input edges, each of which must be taken into account.

Hence, quads are generally restricted to just a single input edge. However, even if there are

multiple input edges intersecting a quad, when the domains to be triangulated (as indicated by the

interior half-plane of each input edge) do not intersect, there can be no conict if each such domain

is triangulated separately.
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There is one exception to the edge condition. If two edges meet at a corner of the quad and form

an acute interior angle (to the domain), the two-edge case, it will still be possible to triangulate

the acute region, and so this situation need not cause the quad to be deepened.

Note that while it is possible to triangulate a quad containing more than two edges, it is also

possible to demand that no more than two edges properly intersect any quad. Quads containing

more than two edges can be forced to be subdivided, and the algorithm will still terminate. This

follows because in a simple polygon (or even one with holes) only pairs of lines can intersect, and

between any non-intersecting pair of lines is a minimum distance. Once quads are smaller than that

minimum distance, the two non-intersecting lines cannot be in the same quad. Thus, at a cost of

slightly more triangles in complex regions, the task of generating the tree can be made signi�cantly

easier.

1

3.3 Balance Condition

The �nal condition, the balance condition, is the one that makes triangulating the quadtree leaves

possible. By ensuring each quad is adjacent to another quad of no more than one level deeper,

one can be certain to �nd an acute triangulation of each quad that places no new points on the

boundary of the quad. If the balance condition is not enforced, a quad s may exist that is adjacent

to arbitrarily deeper quads. The corners of each such adjacent deeper quad will then lie on the

boundary of s, and so will need to be considered when triangulating s|and an arbitrary multiplicity

of boundary points makes it quite di�cult to generate an acute triangulation that does not change

the boundary of the quad. By enforcing the balance condition it can be guaranteed that s will have

to consider no more than a single such side point, and moreover that this side point, if it exists,

will be precisely midway along the side. Such regular conditions do allow acute triangulations to

be independently generated.

Thus, each quad can be triangulated individually and it is still certain that the triangulations within

quads sharing a side will match up. Note that the condition has some caveats; if a quad lies entirely

external to the domain then it will not need to be triangulated, and so the balance condition does

not have to apply, saving some memory and e�ort. For reasons of correctness, though, the balance

condition cannot apply to the two-edge case. To do so would create an in�nite recursion (see

�gure 1), as the balance requirements force the quad containing the two-edge case to be recursively

subdivided, the result of which will be a smaller but identically unbalanced situation.

It is also the balance condition that makes a breadth-�rst approach more viable than depth-�rst.

In order to ensure no neighbour of a quad is adjacent to a neighbour more than one level deeper,

a depth-�rst approach would require multiple traversals|each time a branch is built, all its neigh-

bours must be checked to ensure the balance condition is not violated. Retaining the balance

condition during a level-by-level construction is somewhat simpler.

Once the above properties are not satis�ed by any of the leaves of the quadtree, the tree construction

terminates, and a case-by-case triangulation of the leaves ensues.

1

Easier in that deciding when to subdivide a quad is simpler|otherwise, all edges would have to be checked each

time to verify no two non-two edge cases have intersecting domain sides, which is an expensive operation.
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Figure 1: Enforcing the balance condition on the two-edge case causes in�nite recursion.

4 Avoiding the Domain Exterior

Given the irregularity of the domains to which this algorithm is intended to apply, it is unlikely

the domain will completely �ll out the bounding square. In general, one can expect the bounding

square to include some amount of domain exterior.

This can result in a signi�cant waste of processing. No quads formed exterior to the domain are of

interest, but without a method to distinguish interior from exterior, extra quads demanded by the

balance condition cannot be pruned from construction. It is reasonably simple to eliminate these

quads after the tree has been constructed by searching outside the domain from the vertices, but

a more e�cient method would be to prevent the construction of unneeded quads in the �rst place.

Each time a leaf quad is subdivided into its four children, we would like to know which quads are

interior or exterior, and in this way we can avoid processing quads that will never be used in the

triangulation.

The following test can be used to determine which child quads of a parent quad are inside, outside or

straddle the boundary of the region. We assume that every quad is provided with a list of (directed)

input edges that lie within the quad boundary, and that the orientation of the domain with respect

to the edges is known (that is, the domain is speci�ed by either a clockwise or counterclockwise

list of edges). Since this test is applied recursively, we can also assume that the parent quad has

already been classi�ed as interior, exterior or boundary.

We will need the following de�nitions:

De�nition 2 The anchor of a child quad Q in its parent quad P is de�ned to be the corner of the

quad P contained in Q.

De�nition 3 B(P ) is the set of points forming the border of the quad P .

De�nition 4 S

Q

(P ) � B(P ) is the set of points marking where an edge enters the region of P ,

but not the region of Q.
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De�nition 5 E

Q

(P ) � B(P ) is the set of points marking where an edge leaves the region of P, but

not the region of Q.

Given a subquad Q of P (i.e. P is the parent quad of Q), de�ne the following order v

Q

P

on B(P ).

De�nition 6 a v

Q

P

b () starting from the anchor of Q in P , and following the border of P in

the clockwise direction, we encounter a before b.

De�nition 7 Given a subset S of B(P ), Max

v

Q

P

(S) is the sup of S with respect to the v

Q

P

order

on B(P ) restricted to S.

Now, we present the actual test that allows us to determine whether a quad Q in P is internal or

external, or contains some portion of the boundary. Obviously, if P is internal (resp. external),

then all of its children quads will be internal (resp. external). So the only non-trivial case is when

P contains the boundary. If Q also contains the boundary, then Q is neither internal nor external.

If Q does not contain the boundary, we need the following fact and the following theorem.

Fact 1 Given a point p not on a simple polygon C oriented clockwise, p is inside the region delimited

by C i� 9 a point b on C s.t. the directed tangent

2

of C at b (call it

~

bt) is \to the left" of the segment

~

bp (i.e.,

~

bp�

~

bt � 0) and

~

bp does not intersect C (except at b).

Since C is a simple polygon, it's interior is connected|p is inside C i� a curve can be drawn from

p to every other point inside C without intersecting the boundary of C. The clockwise orientation

of C implies an interior point somewhere in�nitesimally to the right of any tangent, and so p will

be interior i� an uninterrupted line can be drawn from b to p keeping t to the left.

The proof of this fact is a direct translation of what it means for a point to be \inside" a region,

and what it means for a curve to be oriented clockwise.

Theorem 1 Given a simple polygon C oriented clockwise, and given Q a child quad of P . If P

is a boundary quad (i.e., P contains the curve C), and Q is not a boundary quad, then Q is an

internal quad i� Max

v

Q

P

(S

Q

(P )) v

Q

P

Max

v

Q

P

(E

Q

(P )).

Proof: (() We shall show that the anchor of Q in P is inside the curve C (thereby showing

that the full quad Q is internal, since Q does not contain any piece of the boundary). First, with

suitable rotation of the quad P , we can always place the child quad Q as the upper right child quad

of P (the anchor of Q in P will then become the upper right corner of P ). This rotation does not

a�ect the internal/external quality of Q. Assume Max

v

Q

P

(S

Q

(P )) v

Q

P

Max

v

Q

P

(E

Q

(P )). Let e be

Max

v

Q

P

(E

Q

(P )). Consider the following four cases:

1. e is located on the upper boundary of the quad P . Then e is a point on the boundary,

with tangent \to the left" of the vector ~ep, where p is the anchor of Q in P . The vector ~ep

does not intersect the curve, by the maximality of e. Hence p is inside the region, and Q is

internal.

2

Note that tangents are not unique at vertices; any will do in this case.
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2. e is located on the left boundary of the quad P . Then by the same argument as above,

the upper left corner of P is inside the region. But since the curve does not intersect the

upper boundary of P (by maximality of e), we have that the anchor of Q in P must be inside

the region too, and Q is internal.

3. e is located on the lower boundary of the quad P . By the same argument, the lower

left corner, the upper right corner and the anchor of Q in P are inside the region, and Q is

internal.

4. e is located on the right boundary of the quad P . By the same argument, the lower

right corner, the lower left corner, the upper left corner and the anchor of Q in P are inside

the region, and Q is internal.

()) We shall prove the contrapositive. Again, rotate the quad P until the child quad Q becomes

the upper right child quad of P . Assume Max

v

Q

P

(E

Q

(P)) v

Q

P

Max

v

Q

P

(S

Q

(P )). Now, reverse the

orientation of the curve, so that the inside becomes the outside (and vice versa), and so that

Max

v

Q

P

(S

Q

(P )) is a point where the curve leaves the quad C. By maximality of that point, we

can apply the �rst part of the proof to get that the anchor of Q in P is inside the region, and

hence that Q is internal with respect to the curve with the reverse orientation. Hence, Q

is external with respect to the original curve.

Note that if the boundary is speci�ed counterclockwise, the same argument applies with clockwise

and counterclockwise and left and right reversed.

5 Triangulating the Quadtree Leaves

It is not a priori clear that once the quadtree has been constructed according to the above criteria,

every resulting leaf/square of the tree has a non-obtuse triangulation. Indeed, most of the subtlety

of the algorithm is in the cases, and there are many of them. Below, all possible cases are illustrated,

as well as arguments about each triangle's acuteness. The following two concepts will be required.

De�nition 8 If some triangle (a; b; c) is such that a vertex c lies on or between lines drawn perpen-

dicular to ab from a and from b, and c also lies on or outside the circle with diameter jabj centered

midway along ab, then (a; b; c) is not obtuse, and c is in acute position with respect to edge ab. The

circle/disk de�ned by two points a and b will be speci�ed as Disk(a; b) (see �gure 2).

Note 1 An obtuse triangle can always be decomposed into two right-angle triangles by drawing a

line intersecting the obtuse vertex which is perpendicular to the opposing edge (see �gure 3).

Each one of our leaf-squares created by the above quadtree construction falls into one of the

following mutually-exclusive and exhaustive categories:

1. Exterior; the quad is entirely outside the domain.

2. Interior; the quad is entirely inside the domain.

10



a b

c

r

t

Figure 2: If c is not within the shaded region, (a; b; c) is acute.

c

C

a b

Figure 3: Splitting an obtuse triangle into 2 right-angle triangles.
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3. Boundary; the quad contains some portion of the domain boundary.

The last case, boundary quads, includes a large number of subcases. It itself is then subdivided

into cases based on the manner in which a quad can intersect the boundary:

1. One-Edge properly intersects the quad:

(a) The edge intersects adjacent quad sides

(b) The edge intersects opposing quad sides

2. Two-edges intersect the quad:

(a) Domain side of edges do not intersect

(b) The two-edge case

For each of the above cases, the balance condition forces the consideration of the possibility that

each of the four quad leaf sides may or may not have a vertex at its midpoint. If a quad shares a

side with another quad of depth one greater, then there will be a vertex midway along the same

side corresponding to a corner of the smaller square. Each side that the square shares with another

square that is at the same or higher depth will not have such a midpoint. Fortunately, this same

property also ensures that there is no possibility of there being any other additional vertices on the

sides of a quad. Thus, there are at most 16 possible con�gurations of midpoints for each subcase.

As it will turn out, there are far fewer cases than this would indicate|symmetries, as well as not

being concerned with the exterior domain allow for many combinations to be ignored.

Naturally, quads that are entirely exterior to the domain of interest do not need to be triangulated.

5.1 Interior Quads

When no input edges intersect, the task of triangulating the square is much simpli�ed. Beyond

the four corner vertices, there are only four possible other vertices (a midpoint on each side) to

consider. Symmetries reduce the number of cases to a mere six (see �gure 4). In each case, the

triangles are trivially not obtuse.

5.2 Case 1a: An Input Edge Intersects Adjacent Sides

If an input edge enters from one side, s, of a square, and exits from one of the two sides that share

a corner with s, it can be classi�ed into one of four cases. The edge enters either above or below the

midpoint on s, and exits similarly (though to keep things straight, instead of `above' or `below' the

two halves of the exit side are called `left' and `right'). Of course there are symmetries; the edge can

be assumed to enter from the left and exit on the bottom, and then any above-left con�guration is

a counter-clockwise rotation by �=2 of a below-right con�guration. Thus, there are actually only 3

subcategories to consider: above-right, below-left and below-right.

A note about numbering within the diagrams: the three cases, below-left, below-right and above-

right are indicated by the pre�xes \BL," \BR" and \AR" respectively. This is followed by a number,
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Figure 4: Possible triangulations of interior quads.

0 to 4, indicating the number of midpoints, then a decimal point and then a number indexing the

possible combinations of midpoints. When the other \side" of the edge is being triangulated, the

cases follow the same pattern, with the pre�x being followed by a prime (e.g., \BL

0

-2.1" instead of

\BL-2.1").

Individual diagrams also have a consistent labelling scheme. Corners of the quad are labelled c

1

to

c

4

, going clockwise starting from the lower-left corner. The edge typically enters from the left at

point e

1

and exits to the right at point e

2

. Points added to the interior are labelled a, b, p or q, with

the intention that a always lies at the center of the quad, b is usually the point corresponding to

the third corner of a right-angle triangle (interior to the domain) made with e

1

and e

2

, and p and

q are individually placed. Midpoints along the sides of the quad are labelled m

1

to m

4

, clockwise

beginning with the left side (see �gure 5). Finally, the horizontal line bisecting the quad is referred

to as the horizontal bisector, and similarly the vertical line bisecting the quad is referred to as the

vertical bisector. By center we mean the center of the quad.

2
c

1
c

3
c

4
c

1
e

2
e

m
4

m
3

m
1

m
2

Figure 5: Labelling for individual quad diagrams.
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5.2.1 Below Left Intersections

When the input edge intersects the square below the midpoint on the left side, and left of the

midpoint on the bottom, there are either 16 cases or one case. If the domain of interest lies to one

\side" of the directed input edge then there are 4 midpoints which may or may not be present, for

a total of 16 possibilities. If the domain lies to the other \side," then there is only one trivial case

(a below-left intersection cuts o� a right-angle triangle corner, which can contain no midpoints).

Here the 16 non-trivial cases are presented.

Note that for this case the input edge can be constrained such that jc

1

e

1

j � jc

1

e

2

j. If this is not

true, the quad can be transformed by a vertical reection followed by a counter-clockwise rotation

by �=2, and then this constraint will hold.

The discussions that follow frequently make reference to the following simple results. Though some-

times intricate, none of these proofs require math more sophisticated than high school trigonometry.

Lemma 1 Given a rectangle of size w�z, let a be the upper-right corner, and let the origin, O, be

the lower-left corner (see �gure 6). If a line is drawn from a to some point e

2

on the bottom side,

and a perpendicular to ae

2

is projected from e

2

, intersecting the left side at e

1

, then the vertical

distance of e

1

from O is y = x(w � x)=z, and this value is maximal for 0 � x � w at x = w=2,

whereupon y = w

2

=(4z).

Proof: Note that � =

6

e

2

am and that � =

6

e

1

e

2

O. Thus, tan(�) = (w � x)=z. We can compute

the value of y then as y = x tan(�) = x(w � x)=z.

To establish that this is maximal for 0 � x � w, we simply take the derivative of the function for

y with respect to x and note that y is 0 at x = 0 and x = w.

e
2

e
1

θ

θ

m

a

w

w-xx

z

O

x(w-x)/z

Figure 6: Height y is de�ned by y = x(w� x)=z

Corollary 1 If

6

ae

2

e

1

is not acute, then y � x(w � x)=z, and if angle

6

ae

2

e

1

is not obtuse,

y � x(w� x)=z.

Proof: This follows trivially from lemma 1.
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BL-0 See �gure 7. Only two triangles are not right angle, (c

2

; c

3

; b) and (c

3

; c

4

; b). However, the

construction of b forces b to lie in the lower left quarter of the quad. According to de�nition 2, then,

b must be in acute position with respect to c

2

c

3

and c

3

c

4

, and so both triangles must be acute.

BL-1.1 See �gure 7. Point p is located as the point closest to the center along the horizontal

bisector between m

1

and the center, such that

6

e

1

e

2

p is no larger than �=2. Note that p will

lie horizontally somewhere between e

2

and the center. Because je

1

c

1

j is no bigger than jc

1

e

2

j,

a perpendicular to e

1

e

2

extended from e

1

will always intersect left of the center and left of the

intersection of a similar perpendicular extended from e

2

, and so

6

e

2

e

1

p will be acute as long as

je

1

e

2

j > 0. Since p is to the right of e

2

, the angle

6

e

1

pe

2

is contained in the �=2-angle formed

between the horizontal bisector and a vertical passing through p, and hence is certainly not obtuse.

The other triangles are simple to establish: because point p is on the horizontal bisector, p is

necessarily in acute position to e

2

c

4

and c

2

c

3

. Because p is left of the center, p is also in acute

position to c

3

c

4

.

BL-1.2 See �gure 7. If

6

ae

2

e

1

is not obtuse, then this con�guration can be triangulated as per

subcase BL-1.2a. In such a case point a, being the center of the quad, is trivially in acute position

relative to all of e

2

c

4

, c

3

c

4

and e

1

c

2

. Angle

6

e

2

e

1

a is acute for the same reasons as in BL-1.1, and

angle

6

e

1

ae

2

is acute because e

1

and e

2

lie in the lower-left quadrant.

Alternatively, if

6

ae

2

e

1

is obtuse, then if

6

m

2

e

2

e

1

is acute and e

2

is horizontally at least 1=4 of

the way along the bottom side, the quad can be triangulated as per BL-1.2b. Point m

2

is then

guaranteed to be in acute position relative to e

2

c

4

. Because of the constraints on the vertical

coordinate of e

1

imposed by corollary 1, the angle

6

c

1

e

1

e

2

varies between approximately 1:1 and

�=2 radians within the allowed range of e

2

. Angle

6

m

2

e

1

c

2

only varies between 0:46 and 0:52

radians, but in any case the two angles sum to more than �=2, leaving

6

e

2

e

1

m

2

less than �=2.

Finally, because e

1

and e

2

lie in the lower-left quadrant,

6

e

1

m

2

e

2

is acute.

Finally, if

6

m

2

e

2

e

1

is also obtuse or e

2

is horizontally within the leftmost 1=4 of the bottom side,

point b can be introduced and the quad triangulated as in BL-1.2c. Point b is then in acute position

relative to edge m

2

c

4

: b is certainly within perpendiculars to m

2

c

4

extended from m

2

and c

4

, and

(within its horizontal bounds) b necessarily lies below a tangent to Disk(m

2

; c

4

) at halfway along

the bottom side (Disk(m

2

; c

4

) intersects the bottom side at the bottom right corner, and midway

along the bottom side).

BL-1.3 See �gure 7. If

6

ae

2

e

1

is acute, the triangulation is similar to BL-1.2a, as shown in

subcase BL-1.3a.

If

6

ae

2

e

1

is obtuse, triangulation follows BL-1.3b. Here, point p is located along the horizontal

bisector to the right of the center. Thus, p is in acute position relative to c

2

c

3

. In order to ensure

that triangle (b; c

2

; p) is acute, p is placed outside Disk(b; c

2

), but inside the right angle formed by

extending a perpendicular to bc

2

out from b. That this can always be done is established by the

following lemma.
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Lemma 2 The perimeter of Disk(b; c

2

) intersects the horizontal bisector of the square (strictly) to

the left of the right side.

Proof: Because point b must be located in the region designated by corollary 1, the line segment

c

2

b reaches a maximum length in the degenerate case wherein b is coincident with the bottom

midpoint. Thus, jc

2

bj �

p

5 (assuming the square is 2 � 2, with origin at the lower-left corner).

As well, the furthest to the right that the midpoint along c

2

b can be located occurs in the same

degenerate situation, where by similar triangles the center of the circle can be determined to be at

coordinates (1=2; 1). Hence, the intersection of the circle and the horizontal bisector of the square

can be no further to the right than

p

5=2 + 1=2, which must be to the left of the right side of the

2� 2 square.

Hence, by lemma 2 and the simple observation that a perpendicular to c

2

b from b never intersects

the horizontal bisector inside the square, it is certain p can be placed in acute position relative to

both c

2

c

3

and c

2

b. The only triangle in doubt is (p; b; c

4

). Corollary 1 implies that the height of

b is bounded by x(1� x) (within our 2� 2 square), and thereby b always lies below the diagonals

c

2

c

4

and c

1

c

3

. Thus, b must lie within perpendiculars to pc

4

from p and from c

4

. Furthermore,

Disk(p; c

4

) does not intersect the curve x(1� x) within 0 < x < 1, so b is in acute position to pc

4

.

BL-1.4 See �gure 7. Once again, if

6

ae

2

e

1

is acute, the triangulation is similar to BL-1.2a, as

shown in subcase BL-1.4a.

If

6

ae

2

e

1

is obtuse, BL-1.4b is used instead. Point p here is located as the intersection of a

perpendicular to c

2

b at b and the vertical bisector; point p must be in acute position relative to

c

3

c

4

. Since the location of b is constrained as per corollary 1, point p certainly can never be higher

than the horizontal bisector, and so p is in acute position to c

2

c

3

. By construction, b must lie below

p and above the bottom side, so angles

6

pm

4

b and

6

bpm

4

must be acute . As well, the placement

of b implies that

6

m

4

bc

2

must be no larger than �, and �=2 of that angle is \used up" by the

right-angle

6

pbc

2

. Hence

6

m

4

bp must be smaller than �=2.

BL-2.1 See �gure 8. Again, if

6

ae

2

e

1

is acute, the triangulation is similar to BL-1.2a, as shown

in subcase BL-2.1a.

Otherwise subcase BL-2.1b applies; point p is located as the intersection of the horizontal bisector

and a vertical extended up from b. Since e

2

is by de�nition left of the center, so will be p. The

only triangle that is not a right-angle triangle is then (b; a; c

4

). But since b is constrained as per

corollary 1, b must be in acute position to ac

4

: b must lie within perpendiculars to ac

4

extended

out from a and c

4

, and the center of Disk(a; c

4

) maintains a distance of at least 1=

p

2 (which is the

same as its radius) away from any possible position of b.

BL-2.2 See �gure 8. This situation is very similar to BL-1.1.

BL-2.3 See �gure 8. This triangulation trivially follows.
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BL-2.4 See �gure 8. Since point b here is constrained to lie in the lower-left quadrant of the

quad, b must be in acute position to m

3

m

4

, m

3

c

4

, and c

2

m

3

.

BL-2.5 See �gure 8. Once more, if

6

ae

2

e

1

is acute, the triangulation is similar to BL-1.2a, as

shown in subcase BL-2.5a.

Alternatively, the triangulation is a trivial modi�cation of the pattern shown in BL-1.4b, which is

illustrated in BL-2.5b.

BL-2.6 See �gure 8. Again, if

6

e

1

e

2

a is acute, the triangulation is similar to BL-1.2a, as shown

in subcase BL-2.6a.

Otherwise, assume a 2� 2 square as in BL-2.6b; point e

1

is then constrained by corollary 1 to be

such that if e

2

has x-coordinate x, then e

1

has y-coordinate no bigger than x(1� x). In particular,

if 0:41877 < x < 0:58123, then 0:25 � y � 0:2434. Because of this, Disk(c

2

; e

1

) can have radius

no bigger than 1 � 0:1217, and hence intersects the horizontal bisector strictly to the left of the

point (0:8783; 1). Let p be placed as the intersection of a perpendicular to e

1

e

2

extended from

e

2

and the horizontal bisector, and let v be the horizontal di�erence between p and the center:

v = 1 � p:x. If we show that within the limited range allowed for x (and hence y) v must remain

outside Disk(c

2

; e

1

), then triangle (e

1

; c

2

; p) is surely acute.

e
1

e
2

Horizontal

Bisector

Vertical

Bisector

c
1

m
4

θy

θ
z

p

1-xx

v

Figure 10: Subcase BL-2.6b detail.

Given x and y, we can calculate v as follows (see �gure 10). Let � be the angle

6

c

1

e

1

e

2

; then

tan(�) = x=y. Let z be the length of the bottom side of a right-angled triangle formed from e

2

, p

and the intersection of a vertical through p and the bottom side, and note that � =

6

(x+ z; 0)e

2

p.

From this we can conclude that z = 1= tan(�) = y=x, and thus v = 1�x�z = 1�x�y=x. Distance

v increases as y decreases, so for a y lower-bounded by 0:2343, v is maximal when x =

p

0:2343.

Thus, v is maximal at about v

max

� 0:013288, which is well outside of Disk(c

2

; e

1

).

Also note that because p lies horizontally between e

2

and the center, p is in acute position to both

c

2

c

3

and e

2

m

4

, and m

4

is in acute position to pm

3

.

Alternatively, if y < 0:2343 (which is certainly true if x � 0:41877 or x � 0:58123), then triangula-

tion is as per BL-2.6c (see �gure 9). Here p is located as the intersection of a perpendicular to c

2

b
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at b and the vertical bisector. Note that because of corollary 1,

6

m

4

bc

2

< �, and so if

6

pbc

2

= �=2

then

6

m

4

bp < �=2. Point b is therefore in acute position to pm

4

. Point p will also be in acute

position to m

3

c

4

if p does not rise vertically above the horizontal bisector. However, in order for

6

m

3

pc

2

to be acute p must satisfy the more stringent requirement that p lie outside Disk(c

2

; m

3

).

We can bound the height of p. Let � =

6

e

1

c

2

b, and let q be the point (1; y) (the intersection of a

horizontal passing through e

1

and the vertical bisector). Let z be the y-coordinate of p. Because

� =

6

qbp and tan(�) = x=(2 � y), we can determine z = y + (1 � x)x=(2 � y), and because z

increases as y increases, we can bound the size of z by considering only a maximal y for a given x;

that is, y = x(1� x). By assumption, y is upper-bounded by 0:2343, and so z is upper-bounded

by approximately 0:37. Disk(c

2

; m

3

) is �xed, and intersects the vertical bisector at y-coordinate

1:5�

p

5=2 � 0:382, hence p is outside Disk(c

2

; m

3

). Because p is of course lower-bounded by m

4

,

p must be in acute position to c

2

m

3

and to m

3

c

4

.

BL-3.1 See �gure 9. Point p is located as the intersection of a vertical extended up from e

2

and

the horizontal bisector. Thus, point p is certain to be left of the center and in acute position relative

to c

2

m

2

, and similarly m

2

will be in acute position to pm

3

. Because b will be located left of the

center, b will also be in acute position relative to m

3

c

4

. All the rest are right-angle.

BL-3.2 See �gure 9. These results are trivial.

BL-3.3 See �gure 9. These results are trivial.

BL-3.4 See �gure 9. Here, point p is located as the intersection of a horizontal extended out

from e

1

and the vertical bisector. Thus, p is in acute position to m

3

c

4

, and m

3

is in acute position

relative to m

2

p. Point b is constrained to lie in the lower left quadrant of the quad, and so point b

is in acute position relative to c

2

m

2

.

BL-4 See �gure 9. These results are trivial.

BL-0' See �gure 9. These results are trivial.

5.2.2 Below Right Intersections

When the input edge enters below the midpoint on the left, and right of the bottom midpoint, the

triangulation follows one of the patterns below. There are only 10 subcases in total here, though|

when triangulated one side of the input edge there are only three midpoints that may or may not

be present. When triangulating the other side, only a single midpoint could exist.

Note that within these cases, the point b within the quad diagrams has no particular signi�cance

(i.e., it is not always the intersection of a vertical from e

2

and a horizontal from e

1

).
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BR-0 See �gure 11. If

6

c

3

e

2

e

1

is acute, triangulation is performed as in BR-0a. Point e

1

must

lie outside Disk(e

2

; c

3

), and so is in acute position to e

2

c

3

.

If this is not the case, point b is located as the intersection of a perpendicular to c

3

e

2

extended

from e

2

and a horizontal extended from e

1

. Since e

1

is certainly below the horizontal bisector, b

will be in acute position to c

2

c

3

. Point p is then located as per note 1.

BR-1.1 See �gure 11. Point b is located as the intersection of a perpendicular to e

1

e

2

extended

out from e

1

and the horizontal bisector. Thus, point b will always be in acute position relative

to edge c

2

c

3

. By lemma 1, jm

1

bj is maximal when e

1

is midway between c

1

and m

1

; assuming a

2� 2 square, jm

1

bj � 1=(4x). Within the allowed range of x, this maximizes at x = 1, whereupon

jm

1

bj = 1=4. Disk(c

3

; e

2

) has radius no larger than

p

5=2, and its center has an x-coordinate no

smaller than 1:5, so it intersects the horizontal bisector no closer to the left than about 0:382. Since

6

e

2

bc

3

decreases as b moves to the left or e

2

moves to the right, and even when b is maximally to

the right and e

2

maximally to the left

6

e

2

bc

3

is acute, triangle (e

2

; b; c

3

) must be acute.

BR-1.2 See �gure 11. Point e

2

is certainly in acute position to m

2

c

3

, and by the constraints on

the positions of e

1

and e

2

(i.e., being a below-right case) e

1

is in acute position to m

2

e

2

.

BR-1.3 See �gure 11. Point b is located as the intersection of a vertical extended up from e

2

,

and the horizontal bisector. Since e

2

is certainly right of the vertical bisector and b is above e

1

, b

must be in acute position relative to e

1

c

2

, and since b is along the horizontal bisector, it is also in

acute position to c

2

c

3

. Point e

1

must lie vertically between c

1

and m

3

so e

1

is in acute position to

e

2

b.

BR-2.1 See �gure 11. Point b is located here as with the bottom left (BL) cases, as the intersection

of a vertical extended from e

2

and a horizontal extended from e

1

. If b lies outside Disk(c

3

; c

4

), then

b is in acute position relative to c

3

c

4

, and triangulation is as per BR-2.1a. Because e

1

is never

higher than the center, b is also in acute position relative to m

2

c

3

. Finally, because b must lie in

the lower right quadrant, b must be in acute position to m

1

m

2

as well.

If b would lie within Disk(c

3

; c

4

), then triangulation proceeds as in BR-2.1b. Let b lie on the inter-

section of a vertical up from e

2

and the perimeter of Disk(c

3

; c

4

), and position p as the intersection

of a perpendicular to be

1

extended from e

1

and the horizontal bisector. Once again assuming a

2� 2 square, we can express the equation describing Disk(c

3

; c

4

) as y = 1�

p

�x

2

+ 4x� 3.

Let x be the x-coordinate of e

2

and y be the y-coordinate of b. Let z be the y-coordinate of e

1

,

w be the x-coordinate of p, and let � =

6

pe

1

m

1

. Thus, it must also be that � =

6

e

1

b(0; y) and

tan(�) = (z � y)=x, and we can compute w from w = (1� z) tan(�) = (1� z)(z � y)=x. In order

to upper-bound w we note that if we assume a �xed x (and hence y), by lemma 1 w is maximized

by placing e

1

precisely midway between y and m

1

; z = (y + 1)=2. Thus, it must be that:

w �

(1�

y+1

2

)(

y+1

2

� y

x

=

(

1�y

2

)

2

x

=

�x

2

+ 4x� 3

4x

23



This function is maximal within our allowed range of x values when x =

p

3, at which point

w

max

= 1�

p

3=2.

m
1

m
2 c

3

c
4

c
2

p

b

φ

φ

r

(2,1)

u

w

Figure 12: A necessarily acute angle in subcase BR-2.1b.

Now, consider a perpendicular to m

2

p extended from p. It intersects the bottom side of the quad

(the y = 0 line) at some point r (see �gure 12). If we establish that pr never intersects Disk(c

3

; c

4

),

then

6

bpm

2

must always be contained in

6

rpm

2

= �=2, and hence must be acute.

The position of r is dependent on p; as p moves to the right, r moves to the right. Thus, if pr

does not intersect Disk(c

3

; c

4

) when w is maximal, neither does p

0

r

0

for any 0 � p:x

0

< w. We can

calculate the x-coordinate of r by noting that if we let � =

6

(w; 2)m

2

p, then tan(�) = 1=(1� w),

and � =

6

(w; 0)pr. Thus, if u is the x-coordinate of r, then u = 1=(1� w) + w. As mentioned, u

is maximal when w is maximal, so:

u

max

=

1

1� w

max

+ w

max

=

1

1�

p

3=2

+ 1�

p

3=2 = 1 +

1

2

p

3

� 1:288

The distance of the center of Disk(c

3

; c

4

) (which is (2; 1)) from the line pr can then be determined

to be

p

7=2, which is certainly larger than the unit radius of Disk(c

3

; c

4

).

Point b can never be located outside of the lower-right quadrant of the square and p must lie along

the horizontal bisector left of the center, and so angles

6

pm

2

b and

6

m

2

bp must both be acute. For

the same reasons, p is in acute position to c

2

m

2

, b is in acute position to m

2

c

3

, and by construction

b is in acute position to c

3

c

4

. The angle

6

e

1

be

2

is obtuse by assumption, so once we locate point q

as per note 1 the remaining triangles are all right-angled.

BR-2.2 See �gure 11. This case is a trivial modi�cation of BR-1.3.

BR-2.3 See �gure 11. Point a, being the center of the quad, is trivially in acute position to e

2

m

3

and e

1

c

2

. Angle

6

ae

2

e

1

cannot be obtuse since e

2

is right of a (and hence

6

c

4

e

2

a is obtuse), and

6

e

2

e

1

a cannot be obtuse since both

6

ae

1

c

2

and

6

c

1

e

1

e

2

must both be at least �=2. The �nal angle,

6

e

1

ae

2

may or may not be obtuse|if it is, then a point b is introduced as per note 1.

BR-3 See �gure 11. This case is virtually identical to BR-2.3.

24



BR'-0 See �gure 11. This case is trivial.

BR'-1 See �gure 11. This case is trivial.

5.2.3 Above Right Intersections

When the input edge enters above the midpoint on the left, and right of the bottom midpoint,

there are only 8 possible subcases|each side of the input edge has two possible midpoints, each of

which may or may not be present.
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Figure 13: Subcases for adjacent above-right intersections.
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AR-0 See �gure 13. This case is trivial; the above right constraints on the input edge mean point

c

3

must be in acute position to e

1

e

2

.

AR-1.1 See �gure 13. Point e

2

must be in acute position relative to m

2

c

3

. Angles

6

e

2

e

1

m

2

and

6

m

2

e

2

e

1

must be acute by the constraints on e

1

and e

2

. And if

6

e

1

m

2

e

2

is not acute, then point b

is added according to note 1.

AR-1.2 See �gure 13. This case is actually a vertical reection followed by a counter-clockwise

rotation of �=2 of case AR-1.1.

AR-2 See �gure 13. Points b and p can always be located along e

1

e

2

as the intersection of a line

coincident with e

1

e

2

and a perpendicular to e

1

e

2

passing through m

2

and m

3

respectively. Because

of the slope constraints on e

1

e

2

implied by this being an above-right case, the projection of m

2

m

3

onto e

1

e

2

has both a non-zero minimal length and is forced to lie entirely along e

1

e

2

; in other

words, b and p necessarily lie along the segment e

1

e

2

, and bm

2

and pm

3

do not cross. The result

is a quadrilateral, (b;m

2

; m

3

; p) containing two �=2-angles; thus, at most one of the remaining two

angles can be obtuse|and even so it cannot be too obtuse, since the slope of e

1

e

2

is constrained.

If the quadrilateral is then divided into two triangles so as to split the obtuse angle, two acute

triangles must result.

AR'-0 See �gure 13. This case is trivial.

AR'-1.1 See �gure 13. Point b is placed according to note 1.

AR'-1.2 See �gure 13. This is a symmetric variant of AR'-1.1.

AR'-2 See �gure 13. Point p is located as the intersection of the vertical bisector and e

1

e

2

. Since

the center of the quad can never be included in the domain below e

1

e

2

, pmust lie vertically between

the horizontal bisector and m

4

|in other words, in acute position relative to m

1

c

1

. Point b is then

positioned as per note 1.

5.3 Case 1b: Opposing Intersections

An edge entering from one side and exiting from the other can be assumed without loss of generality

to enter from the left side and exit from the right. There are then four possibilities: either the edge

enters above or below the midpoint on the left, and it exits similarly on the right.

However, symmetry reduces the four cases to two. An above-above situation is a vertical reection

of below-below, and above-below is a rotation of below-above. Hence, only below-above and below-

below actually need to be considered.
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5.3.1 Below Above Intersections

When the edge enters from below and exits above, both sides of the input edge can be triangulated

identically|one side is simply a �-rotation of the other. Thus, there are a mere 4 subcases to deal

with here, corresponding to the two possible midpoints.
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Figure 14: Subcases for opposing below-above intersections.

BA-0 See �gure 14. This case is trivial; point e

2

must be located above the midpoint on the

right, and so e

2

must be in acute position relative to c

2

e

1

.

BA-1.1 See �gure 14. Again, point e

2

must be in acute position to c

2

m

1

. Point b is then located

in accordance with note 1. Note that

6

e

1

m

1

e

2

must be obtuse, since e

2

is above m

1

.

BA-1.2 See �gure 14. Being a below-above case forces both

6

e

2

e

1

m

2

and

6

m

2

e

2

e

1

to be acute.

The remaining angle,

6

e

1

m

2

e

2

may or may not be acute, but if it is not, point b is placed according

to note 1.

BA-2 See �gure 14. If the domain to be triangulated contains the center of the quad, then

triangulation proceeds as in BA-2a. Point e

2

is in acute position to am

2

, and point b is located to

split the obtuse angle

6

e

1

ae

2

, as described in note 1.
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If, however, the domain does not contain a, case BA-2b applies. Here, point p is located as the

intersection of the horizontal bisector and e

1

e

2

. Since the center is not contained in the domain,

p must lie to the left of point m

2

, and so p is in acute position to c

2

m

2

. As with case BA-1.2,

6

m

2

e

2

e

1

cannot be obtuse, and since

6

m

2

pm

1

is certainly obtuse,

6

e

2

pm

2

is certainly not (

6

m

1

pe

1

,

6

m

2

pm

1

and

6

e

2

pm

2

must sum to �). Then, if

6

pm

2

e

2

is obtuse, point b is situated as in note 1.

5.3.2 Below Below Intersections

When an edge enters below the midpoint and exits below as well, the edge may or may not have a

positive slope. However, if the edge does not have a positive slope, a horizontal reection converts

it to a case that does. This results in 10 cases: 8 for the side of the input edge that may have up

to three midpoints, and two for the side that can have but one midpoint.

BB-0 See �gure 15. This case is trivial; since the slope of e

1

e

2

is positive, e

2

must be in acute

position to c

2

e

1

.

BB-1.1 See �gure 15. Since point e

2

is bound to be below m

1

, m

1

must be in acute position to

c

3

e

2

, and for the same reason e

2

is in acute position to m

1

e

1

.

BB-1.2 See �gure 15. Since this is a below-below case, e

1

and e

2

are below the horizontal bisector.

Hence, m

2

is in acute position to e

1

e

2

.

BB-1.3 See �gure 15. Point a, being the center, must be in acute position relative to c

2

e

1

. Since

e

1

and e

2

must both lie below the center,

6

e

1

ae

2

is certain to be at least �=2, which implies that

6

e

1

e

2

a and

6

ae

1

e

2

are both acute. By note 1, point b can be placed to split the obtuse angle.

BB-2.1 See �gure 15. Because point e

2

must lie below the center,

6

m

1

m

2

e

2

cannot be larger

than �=2, and because e

2

is along the right side,

6

e

2

m

1

m

2

must be acute as well, putting e

2

in

acute position to m

1

m

2

. As with BB-1.1, e

2

is also in acute position relative to e

1

m

1

.

BB-2.2 See �gure 15. Again, as with BB-1.1, point e

2

is in acute position to e

1

m

1

.

BB-2.3 See �gure 15. This case is a trivial modi�cation of BB-1.3.

BB-3 See �gure 15. This case is a trivial modi�cation of BB-2.2.

BB'-0 See �gure 15. The slope of e

1

e

2

is positive, and so e

1

must be in acute position to e

2

c

4

.
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Figure 15: Subcases for opposing below-below intersections.
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BB'-1 See �gure 15. Since e

1

and e

2

are both bound to be below the horizontal bisector,

6

e

2

m

4

e

1

is necessarily obtuse. Thus, both

6

m

4

e

1

e

2

and

6

e

1

e

2

m

4

must be acute, and point b can be located

as per note 1.

5.4 Case 2a: Two Input Edges With Non-Intersecting Domains

If two edges intersect the quad, and the domain sides of each edge do not intersect within the

quad, then triangulation can proceed separately for each edge. Since only the domain sides will

be triangulated, no conict can result, and the independent triangulations of each edge can be

(disjointly) merged.

5.5 Case 2b: Two Input Edges forming a Two-Edge Case

When two edges intersect a quad, their domain sides intersect within the quad, and they are not

joined at a corner of the quad then the quad is recursively divided. This avoids considering many

more cases, trying to triangulate the domain between two edges of more or less arbitrary orientation.

Unfortunately, as can be seen in �gure 1, recursively dividing such cases results in the quad actually

containing the two edges joined at a corner having more than one \midpoint" along any or all of

its sides.

Fortunately, a few observations and a simple scheme mentioned in Baker et al 's paper [2] make

this problem tractable. Although each side of the quad may have an arbitrary number of points,

since only the interior of the domain is being triangulated only some of these points will have

to be considered. As well, the region being triangulated will have two unconstrained edges|any

number of points can be added to the boundary of the domain (the two input edges), and still the

triangulation of such a quad will not a�ect its neighbouring quads.

Such a situation can have two di�erent con�gurations; either both input edges intersect the same

side of the quad, or they intersect adjacent sides. Without loss of generality the vertex shared by

the two input edges can be assumed to be the upper left corner of the quad, and then the input

edges either both intersect the bottom side, the right side, or one intersects the bottom and one

intersects the right. Once again symmetry reduces the cases|if both edges intersect the right side,

then a simple rotation by �=2 transforms the case so both intersect the bottom side.

5.5.1 Two-Edge Case: Both on the Bottom Side

When both edges intersect the same bottom side of the quad, the resulting �gure is an obtuse

triangle, with the leftmost edge forming an obtuse angle with the bottom side (see �gure 16). Such

a con�guration can be triangulated by adding lines parallel to c

2

e

2

at each of the points along the

bottom side (e.g., line p

1

b

1

). Each such line intersects input edge c

2

e

1

, and at each such intersection

point a line perpendicular to c

2

e

2

is projected out to edge c

2

e

2

. This decomposes the original obtuse

triangle into a collection of rectangles, which can be trivially triangulated, and right-angle triangles.
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Figure 16: Triangulating the two-edge case when edges intersect the same side.

5.5.2 Two-Edge Case: One on the Bottom Side, One on the Right Side

If the input edges do not intersect the same side, the result can be partially triangulated as shown

in �gure 17. Horizontal lines are extended from each point along the right side until they intersect

the leftmost edge, c

2

e

1

. At each such intersection point, and from each point along the bottom

side, a vertical line is extended up to the highest horizontal. This decomposes some of the region

into rectangles and right-angle triangles. The remaining region is similar enough to �gure 16 to be

triangulated in the same manner.

2
c

1
e

2
e

Figure 17: Triangulating the two-edge case when the edges intersect di�erent sides.
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6 Adaptivity

The above construction yields a complete triangulation of the domain computed from the leaves of

the quadtree. This original structure constitutes a \base level," a minimum depth for each branch of

the quadtree, enforced in order to permit independent triangulations of each of the leaves. However,

it is possible to grow the quadtree deeper than needed if greater resolution (i.e., more grid points)

is required in a given region.

A leaf which is \deepened" after reaching the base level of triangulation may cause other leaves to

require deepening, in accordance with the criteria discussed above. Fortunately, as long as the quad

to be deepened is not a two-edge case, the base level construction ensures that no quad deepened

beyond the base level will need to be deepened for any other reason that the balance condition.

Once a quad contains only a single edge, for example, recursively dividing it can never make that

quad contain more edges, and once all input vertices lie at corners of quads, deepening the quads

further cannot move them.

6.1 Adapting On a Budget

An e�cient adaptive algorithm needs to have limited external e�ect when a given region is adapted.

Within the quadtree context, this means deepening a quad beyond the base level should not propa-

gate deepenings throughout the grid, or at least should limit the number. This algorithm, \damp-

ens" the propagation of the balance condition, to the point where the following lemma can be

stated.

Lemma 3 If a non two-edge case leaf at depth d in the quadtree is deepened by one level (after

the base level has been reached), then it will take at most O(d) deepenings to restore the balance

condition throughout the quadtree.

Proof: The proof is inductive, relying on a recursive situation where only a single quad is \out of

balance" with its neighbours. Note that it is not necessary to consider all possible arrangements

of quads of varying depths|a quad at depth d just deepened to four quads of depth d+ 1 cannot

propagate the imbalance to quads at a depth greater than d � 1. In other words, the number of

deepenings required to restore the balance condition will be maximized when quads neighbouring

the unbalanced quad are at as shallow a depth as possible.

Since induction will be on the depth of the unbalanced quad, the base case, depth 0, is trivial|the

root quad cannot be unbalanced with respect to its neighbours, since it does not have any.

Assume, then that there is a single quad, q at depth d > 0 that has just been deepened, and

so is unbalanced with respect to its at least one of its neighbours. The discussion that follows

demonstrates that after some constant number of deepenings, the quadtree will either again contain

a single unbalanced quad with depth less than d, in which case the inductive argument holds, or

will be completely balanced, or will contain two unbalanced quads of depth less than d. The latter

situation will turn out to be closed|it either eventually produces a situation with just a single

unbalanced quad, or it maintains exactly two.

Quad q must have a parent quad since d > 0. Call this parent quad p. Hence, q is an upper-left
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q

p

q
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Figure 18: Possible positioning of q as a child.

child, an upper-right child, a lower-left child, or a lower-right child (see �gure 18). Since these are

all rotationally symmetrical, without loss of generality q can be assumed to be an upper-left child.

The neighbours of p, must all satisfy the balance condition, since q is assumed to be the only

unbalanced quad. Coupled with the fact that p itself has been divided into q and three other

children, it is necessary to conclude that p must be surrounded by quads of depth no less than

p. Of course p must also be the child of some quad (or the same degenerate truth used in the

base case will apply), in one of the four possible child positions. Two situations can then arise|

either the deepening of q will a�ect (unbalance) one or two neighbours of p. All the legal quadtree

decompositions for the �rst case are illustrated in �gure 19

3

and for the second case in �gure 20.

p

q

p

q

p

q

p

q

Figure 19: Legal quadtrees when p is a child and q unbalances only one neighbour.

UL UR BR BL

p

q

p

q

p

q

p

q

Figure 20: Legal quadtrees when p is a child and q unbalances two neighbours.

The �rst case in �gure 19, when p is an upper-left child, is terminal|the quadtree is completely

rebalanced. The inductive assumption applies to the other three cases, since they satisfy the initial

3

The symmetric variation when the other quad adjacent to q is unbalanced is not shown.
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requirement with a smaller depth|a single quad of depth d� 1 or d� 2 is left unbalanced in each

situation, after causing either 1 or 2 quads to require deepening.

Unfortunately, it is not as simple when q unbalances two neighbouring quads. The �rst case in

�gure 20, again when p is assumed to be the upper-left child, results in a single unbalanced quad

of depth d � 2. The other three situations, when p is an upper-right, below-right and below-left

child, require considering p's parent.

UR-BL

UR-UR

UR-BR

UR-UL

p

q

p

q

p

q

p

q

Figure 21: Further expansion of p as an upper-right case.

A further examination of the possibilities is illustrated in �gure 21; p is assumed to be an upper-

right child, and the four positions of p's parent are shown. The �rst and the second (UR-UL and

UR-UR respectively) are eliminated by the inductive argument|a single unbalanced quad of depth

d� 2 is left after 4 further deepenings.

When p is assumed to be a below-right child, the four variations of parent it could have are shown

in �gure 22. Three of the cases, the �rst two and the last (BR-UL, BR-UR, BR-BL), result in a

single unbalanced quad of either depth d�2 or d�3 after either 4 or 5 extra deepenings, and so the

inductive argument can again be applied. The third case, (BR-BR) generates two quads at depth

d� 2.

The third possibility occurs when p is assumed to be a below-left child, and the four possibilities for

its parent are shown in �gure 23. Two of these (BL-UL and BL-BL) result in the familiar recursive

situation, and two result in two unbalanced quads.

Thus, of all the possibilities, only �ve result in a non-terminal, non-recursive situation: UR-BR,

UR-BL, BR-BR, BL-UR, and BL-BR. Two pairs of these, (UR-BL and BL-UR) and (UR-BR and

BL-BR) can be transformed into each other by a rotation and a ip, and so only one of each pair
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Figure 22: Further expansion of p as a below-right case.
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Figure 23: Further expansion of p as a below-left case.
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(BL-UR and BL-BR) needs to be considered. The four further possibilities of (BL-UR) are shown

in �gure 24, and all of them result in a single unbalanced quad to which the inductive argument

can be applied, or are terminal.

BL-UR-URBL-UR-UL

BL-UR-BLBL-UR-BR

Figure 24: Further expansion of BL-UR.

This leaves only two possibilities, BR-BR and BL-BR, that might create more than a constant

number of deepenings per level of depth. These two cases, however, can be characterized by the

pattern shown in �gure 25.

BL-BR PatternBR-BR Pattern

Figure 25: Patterns of growth when two quads are unbalanced.

In each case, four quads of depth d

0

containing two unbalanced quads of depth d

0

+1 are subdivided

into quads of at least depth d

0

+ 1 around the perimeter of the depth d

0

� 1 square (note that this

last square may or may not form a quad). Internally, within the depth d

0

� 1 square, all quads

are balanced, and imbalance only occurs between the two indicated quads and quads external to

the square. If these two patterns are then expanded one more level (�gures 26 and 27), it becomes
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apparent that both patterns either repeat exactly at a smaller depth, or are reduced to a single

unbalanced quad at a smaller depth.

Figure 26: A schematic BR-BR, one step further.

Thus, the deepening of a single quad can produce at most 7 further deepenings before a single quad

of a strictly lesser depth remains as the only unbalanced quad, or two unbalanced quads remain in

the aforementioned pattern. Since the latter case either repeats or devolves into the former, the

inductive argument holds.

Also note that the inclusion of arbitrary boundaries or two-edge cases does not change the maximum

e�ects of propagation. Although deepening the latter can generate many more quads (depending

on the angle), the balance condition does not apply to either of these types of quad, and so any

unbalanced quads adjacent to an exterior or two-edge quad will not cause more deepenings in the

direction of the exterior/two-edge quad. The maximum number of deepenings will always occur in

the absence of these special quads.

From this we can extract an \exponential dampening" theorem, demonstrating that adapting has

a guaranteed small bound on non-local e�ects of a local re�nement:

Theorem 2 Let s be a non-two-edge case at depth d in the quadtree and let s

0

be a leaf quad at

depth d

0

< d a�ected by the deepening of s (d, d

0

both greater than or equal to the base level). Then

s

0

is no more than O(d� d

0

) quads distant from s.

Proof: From the proof for lemma 3, it is clear that at most a constant number of quads can require

deepening per level in the chain of deepenings connecting s to s

0

. Thus, if the di�erence in depth

between s

0

and s is d � d

0

, then the chain of a�ected quads between s and s

0

is of length at most

c(d� d

0

) for some constant c.

37



Figure 27: A schematic BL-BR, one step further.

6.2 Unadapting

Once a quad has been deepened beyond the base level, it can be subsequently \undeepened" to

reduce resolution of the grid. Note that these operations are complementary, but not inversive|

even if all four children of a given deepened leaf are subsequently undeepened, it may not restore

the quadtree to its original condition.

In order to undeepen a quad deepened below the base level, the only condition that needs to be

checked is the balance condition, which may propagate undeepenings in a manner similar to the

deepenings. Since an undeepening merely reverses the e�ect of a deepening, and one can can never

undeepen higher than the base level, undeepenings will have the same upper bound on cost as

deepenings.

7 Runtime Analysis

The exact number of triangles/nodes generated by this algorithm is geometry-dependent. While

deepening any single node/square can generate at most a depth-bounded number of further deep-

enings, the number of nodes that will have to be deepened to satisfy the vertex and edge conditions

is not so easily determined. The vertex condition, for example, demands that the depth of a node

is lower-bounded by the length of the binary expression of its input coordinates (with respect to

the bounding square). The edge condition merely implies that there must exist a grid of su�cient

resolution to ensure no two (non two-edge case) edges with a non-empty intersection of interior

domains intersect the same grid square. This is su�cient for termination, but since the resolu-
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tion required will depend on the distance between edges and their orientation with respect to the

bounding square, it is not possible to give very tight a priori bounds. We can, however, give an

upper bound, for which the following de�nition is needed:

De�nition 9 The interior angle between two edges, e

1

and e

2

connected at a vertex v straddles

the x-axis (respectively, the y-axis) if there exists an in�nite ray r, parallel to the x-axis (y-axis)

starting at v with some continuous segment of r including v entirely interior to the domain.

De�nition 10 The smallest feature of a polygon is the smallest distance between any two distinct

vertices, or between any two non-intersecting lines.

Note that the smallest feature is always de�ned for every polygon, and since it is de�ned only on

non-intersecting objects, is always larger than 0.

Lemma 4 Let b be the maximum length of the binary expression of any input vertex (with respect

to the bounding square), f

0

be the smallest feature,

f =

�

log

2

�

f

0

p

2

��

and let � be the smallest angle interior to the domain that straddles neither the x nor the y-axis. If

� does not exist, or equivalently if � � �=2, then the smallest quad has sides of length no smaller

than min(2

�b

; 2

f

).

Proof: The node condition is satis�ed by the 2

�b

; every vertex must lie on the corner of a quad,

since no vertex has binary expansion larger than b. This also helps with the edge condition with

respect to intersecting edges. Since each vertex is required to lie on a quad corner, either the interior

angle is larger than �=2, or the two edges straddle an axis|in either case, intersecting edges must

lie in di�erent quads. Once quads are small enough that no two non-intersecting features can lie

within the same quad, the edge condition must be satis�ed. The balance condition, of course,

cannot cause a quad to be deeper than the maximum depth.

Alternatively, if � < �=2, then some two-edge case will exist in the triangulated domain, and can

result in much smaller quads being generated. Let e

1

; e

2

be a pair of intersecting lines with interior

angle �, and let c be the corresponding cone. Let y

1

; y

2

be the points of intersections of the arms of

c and a line parallel to the y-axis at x-distance 1 away from v, and let x

1

; x

2

be similarly de�ned for

the x-axis. Since � < �=2 and the edges do not lie on nor straddle either axis, these intersections

are uniquely de�ned in both cases.

Lemma 5 Let d

0

be the smaller of the width of c at x

1

, x

2

, y

1

and at y

2

, and let

d =

�

log

2

�

d

0

p

2

��

Then the smallest square will have sides no smaller than min(2

d�b

; 2

d+f

).

Proof: The node condition, and all edge conditions concerning non-intersecting features are sat-

is�ed according to theorem 4. However, even with such bounds it may happen that a two-edge
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case occurs in a quad of minimum size, in which case some of the surrounding quads may then

contain two edges with intersecting domains. A minimum quad size of 2

d

, though, is su�cient to

ensure that the two edges exiting from a two-edge case do not lie within the same quad. Scaling

this down to the minimum quad size for non-two-edge cases provides the given bounds. Note that

two two-edge cases cannot interact; since the two cases do not intersect they are already separated

by the minimum distance between features.

8 Experimental Results

Expected behaviour of our algorithm is di�cult to determine without some model of expected

input. Nevertheless, our initial attempts at quite complex domains are very encouraging, with the

number of nodes being essentially linear in the depth of the quadtree. Here we present the results

from three very di�erent domains: an unsymmetric wrench (�gure 28), a hammer and sickle (�gure

29), and an almost-unit square

4

(�gure 30).

Figure 28: Triangulation of Wrench.

The wrench consists of 40 input nodes. The total number of nodes generated (and including the

input) verses the maximum allowed binary expansion of input coordinates (i.e., binary digits of

input precision) is plotted in �gure 31. For the sickle, consisting of 35 nodes, the results are in

�gure 32, and for the 4 node square in �gure 33. Neither the wrench nor the square contain any

2-edge cases. The sickle contains just one 2-edge case (at the upper tip of the hammer).

4

A true unit square would be adequately triangulated by just two triangles, and hence is uninteresting.
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Figure 29: Triangulation of Hammer & Sickle.

Figure 30: Triangulation of Square.
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Figure 31: Vertices versus Precision for Wrench.
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Figure 32: Vertices versus Precision for Hammer & Sickle.
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Figure 33: Vertices versus Precision for Square.

In each case, most or all of the coordinates have been chosen for their relatively long binary

expansions, overconcentrating quadtree nodes (and hence triangles) around these points. Since

there is usually some freedom in the speci�cation of input vertices

5

it is straightforward to produce

a much smaller and more balanced triangulation. Note that such coordinate selection does not

change the domain|just the location along the domain of the selected vertices. The arch in �gure

34, for instance, reaches its base level with a maximum quadtree depth of just 5 (i.e., 5 digits of

binary precision in input coordinates).

9 Related Work

Till recently the bulk of the work on generation of unstructured grids has been either heuristic,

or has concentrated on generating grids satisfying the Delaunay criterion. A paper by Bern and

Eppstein [6] provides an exhaustive survey of the �eld, particularly as it relates to the �nite element

method in uid dynamics.

Techniques for generating bounded-size grids over arbitrary polygons (and without obtuse angles)

have only begun to appear in the last few years; Baker, Grosse and Ra�erty [2] being perhaps

the very �rst to provide a provably correct algorithm. Their e�orts were focussed on establishing

the existence of an algorithm rather than on demonstrating its usefulness or feasibility in practice.

They did not establish any bounds on the size of the triangulations that they generate nor did they

5

Arti�cial domains are often selected with an eye to the perspicuity of their input coordinates, and actual domains

are rarely so precise that some variation is not possible.
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Figure 34: Triangulation of Arch.

implement their algorithm.

The algorithms that they develop are di�cult to use because of the very high space requirements.

The second algorithm that they give has the important advantage of avoiding small angles; some-

thing which our algorithm does not do, but it is extremely complicated and daunting to implement.

Despite these criticisms this paper clearly opened up a new set of possibilities and demonstrated

the existence of triangulations based on subtle ideas from modern computational geometry.

Further e�orts have demonstrated O(n) size

6

non-obtuse triangulations for point sets, but not so

as to respect given polygonal boundaries [7],[8]. In 1991, Bern and Eppstein invented an algorithm

to generate non-obtuse grids, but using O(n

2

) triangles. Indeed, until recently, the existence of

O(n) size non-obtuse triangulations of polygons was an open problem. This was �nally resolved in

1994, when Bern, Mitchell and Ruppert [9] announced a divide-and-conquer style algorithm based

on circle-packings that generates non-obtuse grids with a number of triangles linear in the input

size.

The papers by Bern, Eppstein and Gilbert [7, 8] describe a family of related algorithms that cover

a variety of cases. In three of them they work with given point sets rather than with given regions.

This means that the boundary of the region is e�ectively the convex hull of the point set and is thus

much more tractable than the regions we work with. Many applications in mechanical engineering

require non-convex and even non-simply-connected regions. In one case they guarantee no small

angles, but some of the angles could be obtuse, in the other two cases they avoid obtuse angles.

6

For these problems, \n" is typically the number of input vertices.
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The basic tradeo� is between the number of triangles and the minimum angle. The algorithm that

does work for polygonal regions does not guarantee that there are no obtuse angles. They also

give some higher dimensional algorithms with similar guarantees. In sum, while these are very

interesting algorithms from the point of view of computational geometry they do not have all the

requirements that one needs in practice.

In another paper by Bern and Eppstein [5] they develop an O(n

2

) triangulation (where n is the

number of sides) which is guaranteed to contain no obtuse angles. The regions could have holes

and certainly need not be convex so this is general enough for most applications. As usual this was

not implemented and the algorithm appears quite tricky to implement in an e�cient way because

of the rather subtle decisions that are made. The main di�culty that we have with this was that

it is not clear how one could modify this algorithm to make it adaptive.

Very recently Bern, Mitchell and Ruppert [9] announced a linear-size nonobtuse triangulation of

polygons. The algorithm uses a very ingenious circle-packing scheme and is recursive in character.

They do have an implementation which however leaves out one of the key steps: instead of comput-

ing the generalized Voronoi diagram they use heuristics for circle placement. While recursive, it is

not clear to us how feasible this algorithm would be for an adaptive grid|the e�ects of replacing a

given circle with some number of smaller ones does not have an easily determined e�ect. They do

discuss parallelization, but only in the context of purely theoretical models; for instance, they show

that their algorithm is in NC, using n

2

processors. Clearly this is not relevant to the feasibility of

coarse-grained parallelization on realistic machines.

Several authors have also investigated the use of quadtrees in mesh generations, both heuristically

(Yerry and Shephard [17]), and deterministically (Bern, Eppstein and Gilbert [8]). The former use

quadtrees to essentially tile the domain with some (�xed) number of patterns, which can then be

triangulated, while the latter extend an (other) algorithm presented in [2] to triangulate point sets

with no obtuse angles.

10 Conclusions

The main contribution of the present paper is the development of an algorithm that e�ciently

constructs two-dimensional triangular grids that conform to polygonal boundaries, not necessarily

simply connected, with the guarantee of nonobtuseness of the triangulation. Furthermore the

quadtree structure permits one to incrementally re�ne or coarsen the grid while ensuring that the

e�ects \fall o� exponentially" as one goes away from the region of interest. This is important

for minimizing the communication costs in parallel implementations, especially those intended for

distributed-memory machines. We have implemented out algorithm and tested it experimentally

on realistic examples.

The main advantage of this algorithm is its ability to adapt with reasonable locality, and its

relative simplicity. It requires data structures no more sophisticated than quadtrees and lists, and

algorithms no more complex than tree traversals. Further, and despite the large theoretical bounds

on size, the algorithm has in practice been very fast and consistently produced triangulations

comparable in size to other methods. The major factor dominating the size of the quadtree seems

to be the vertex condition; input polygons having vertices with small binary expansions result in
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quite small triangulations. Given the intended application domain (grids for the �nite element

method in uid dynamics), even grids containing vertices with long binary expansions can be quite

useful|the physics of uid movement suggests that placing many nodes around corners is very

often desireable.

The heirarchical representation has a number of other advantages too. Not only is adaptivity

localized, but it also suggests some obvious decomposition strategies for parallel construction, and

for the (very expensive) solving of the system of equations. Partitioning a quadtree is a considerably

more regular a problem than partitioning an arbitrary-shaped mesh of triangles. As well, the

quadtree provides an e�cient point location structure, which can be quite useful for attendant grid

problems. User input, for example, is often desireable in order to inspect solution progress or to

guide grid creation/management, but locating the point of a mouse click within a large unstructured

grid can require other non-trivial data structures as well as the ones for grid creation and storage.

The tree structure of a quadtree, coupled with the \semi-balanced" nature provided by the balance

condition, can allow for e�cient point location without any extra structure.

Our current work, jointly with colleagues in mechanical engineering, is focussed on integrating this

grid-generation scheme with an adaptive solver based on the control-volume �nite element method

(CVFEM) due to Baliga and Patankar [3]. We are developing parallel implementations and are

experimenting with a variety of platforms.
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