
Generating Irregular Partitionable Data

Structures

Prakash Panangaden

McGill University, 3480 University St., Montréal, Québec, Canada. H3A 2A7.
Email: prakash@cs.mcgill.ca

Clark Verbrugge

IBM Toronto Labs, 1150 Eglinton Ave., Toronto, Ontario, Canada. M3C 1H7.
Email: clarkv@ca.ibm.com

Abstract

A fundamental problem in parallel computing is partitioning data structures in
such a way as to minimize communication between processes while keeping the loads
balanced. The problem is particularly acute when the underlying data structures are
irregular, pointer-based structures. Here we present a methodology for partitioning a
general class of dynamic data structures with guaranteed bounds on load-balancing
and communication costs. Our method is based on a form of graph grammar, which
specifies only families of graphs for which a “good” partitioning must exist. By
modeling the construction and changes in a data structure using our formalism, one
can quickly derive a good partitioning for a wide variety of common data structures.
Moreover, expressing the structure updates in our grammars is generally a trivial
operation with little overhead; this makes our approach particularly well-suited to
dynamic situations.

1 Introduction

A fundamental problem in parallel computing is partitioning data structures
in such a way as to minimize communication between processes while keep-
ing the loads balanced. The problem is particularly acute when the underly-
ing data structures are irregular, pointer-based structures. Here we present a
methodology for partitioning a general class of dynamic data structures with
guaranteed bounds on load-balancing and communication costs. Our method
is based on a form of graph grammar, which specifies only families of graphs
for which a “good” partitioning must exist. By modeling the construction and
changes in a data structure using our formalism, one can quickly derive a good

Preprint submitted to Elsevier Preprint 18 September 1998

partitioning for a wide variety of common data structures. Our approach is
also particularly well-suited to dynamic situations—structures can be both
constructed and updated by the same sort of grammar rules. The method is
illustrated by first giving a precise definition of “good” partitionability as it
pertains to parallelism, then proving all the graphs we generate do indeed have
good partitions, and finally by showing how a wide variety of useful graphs
can be produced using our formalism.

Our partitioning technique has a number of advantages over existing meth-
ods, which can be slow and/or require significant programmer interaction. The
grammar is usually trivial to produce given a particular data structure and
associated update methods, and we have observed little overhead in gram-
mar specification. Our method is also very fast: once the structure has been
constructed, the cost of partitioning for an arbitrary number of processors
is at most linear in the number of graph nodes. Moreover, the partitionings
so produced have a guaranteed quality, with specific bounds on the resultant
communication cost and load balance. This makes our method quite viable,
combining the speed and cost-guarantees of a problem-specific approach with
the generality of heuristics, while maintaining a simple and straightforward
specification and implementation.

Naturally, if graphs or data structures are restricted to being amenable to
partitioning, then not all data structures will be expressible, and this is in-
tended. The grammars we define, though, are general enough to express many
common data structures: trees of course, threaded trees, trees where the leaves
have sibling pointers, structured compiler control flow graphs, and with some
extension, rectangular grids and other less “tree-like” structures. In fact, while
the graphs we generate are more general than trees, the grammar specifica-
tion defines an upper limit on tree-width [90]; thus they are all “tree-like” in a
mathematical sense, and in a manner correlated with the grammar definition.

In the following section we formalize the notion of “partitionability” and de-
scribe the criteria we will use for measuring quality. Section 3 develops the
basis for the grammars in which we are interested. In Section 4 we prove
that weighted k-ary trees can be partitioned with guaranteed bounds on load-
balancing. This result is used in Section 5, where we relate the derivation tree
of any graph produced by our grammars to the actual graph. By partitioning
this weighted tree we also partition the graph, and the bounds on cost and
balance of the graph partitioning follow from the tree partitioning; this is our
main result. Section 6 extends this result to a larger class of graphs, showing
how we can generate denser graphs with a corresponding sacrifice in parti-
tionability. Section 7 illustrates the expressibility of our formalism; we show
several different grammars defining several different graphs commonly used in
computer science applications. Contrasting this are the results in Section 8,
where we establish limits on the “tree-width” of all graphs we generate. Fi-

2

nally, Section 9 contextualizes our method; we describe other approaches to
managing irregular data structures for parallelism, and provide an overview
of related work on graph grammars.

2 What is a Good Partition?

It is a platitude to say that a “good” partition should not cut too many links.
We need a quantitative notion of what this means. The paradigmatic example
of an easily decomposed structure is a tree and an easily partitioned structure
should be, roughly speaking, as easy to partition as a tree. Thus, we define a
strong partitionability through the following series of definitions.

Definition 1 A p-partitioning of a graph D = (V,E) is an equivalence
relation ∼= on the vertices of D such that there are exactly p equivalence classes.

A p-partitioning induces a communication cost from a partition to the rest of
the graph (and of course to any other partition), which is simply the number
of edges “cut” to isolate any partition. For a given partitioning P let Vi be
the set of nodes associated with the ith piece.

Definition 2 The communication cost of Vi is defined as:

Cost(Vi) = |{(v, v′) ∈ E| v ∈ Vi ∧ v′ 6∈ Vi}|

In parallel computing, processors are not usually viewed as a resource fixed at
compile-time. Accordingly, partitionability should be a property which pro-
vides bounds on communications costs no matter how many partitions are
envisaged.

Definition 3 Given some function f of n, an f-partitionable graph of n
vertices is a graph that can be partitioned into p pieces of size (n/p) ± c for
any 1 ≤ p ≤ n and some constant c, such that the communication cost of any
piece is no more than f(n).

Arbitrary, undirected graphs without loops or multiple edges are trivially n2-
partitionable, since each node in a partition of n/p ± c nodes can connect to
no more than n other nodes. Graphs with a bound k on the degree of each
node are kn-partitionable.

O(1)-partitionable graphs are clearly ideal. Unfortunately, this category only
includes lists and small variations; for instance, the class of trees with bounded
fanout k has a lower bound on communication cost of Ω(k log(n)/ log(k)) (see
the discussion of Theorem 3.2 in Diks et al. [21]). Since trees are certainly a

3

log(n)log(n)log(n)

Fig. 1. A reasonably partitionable graph.

data structure we would like to represent, any general partitioning strategy
will have a similar lower bound.

Square grids of
√
n × √

n vertices form another interesting class of graphs,
ones which have a lower bound on partitionability of

√
n. Dense structures

such as these, though, are often more efficiently represented by arrays than by
pointer-based structures. Nevertheless, and despite the relatively high lower
bound on partitionability, it is sometimes desirable to generate such graphs
explicitly.

If we are to quantitatively evaluate partitioning it is necessary to commit
ourselves to some hard distinction as to what is reasonable and what is not.
Certainly trees are necessary, and with simple extensions can be made to en-
compass the bulk of computer science data structures. Similarly, grids are often
better dealt with using array-based methods. The fundamental dichotomy is
therefore embodied in the following definition:

Definition 4 Let G be an f -partitionable graph. Then G is reasonably par-

titionable if f ∈ O(log(n)).

Remarks: Almost all data structures fall into this category, other than di-
rect representations of densely-connected data (such as grids or triangula-
tions). Obviously, this also excludes any graph with a node having degree
in ω(log(n)); for example, a tree with each leaf connected to the root is not
k log(n)-partitionable for any constant k, since some partition piece must in-
clude the root (of degree n). An example of a reasonably-partitionable graph
is in Figure 1; here a linked list of nodes is divided into n/ log(n) pieces each
of length log(n), where the head of each piece is connected to every node in
its piece. This example is noteworthy for demonstrating that a reasonably-
partitionable graph can include an unbounded number of vertices with degree
log(n).

The definition of partitionability is relatively straightforward; it is a consid-
erably more complex task to algorithmically detect or specify reasonably-
partitionable graphs. In the subsequent sections, however, we develop a class
of non-trivial graph grammars which do only express reasonably-partitionable

4

graphs.

3 Dangling Graph Grammars

Graph grammars in general are rewrite systems. Given a graph, a graph gram-
mar specifies how to locally change the graph into another graph, based on the
existence of a certain subgraph. The rules which govern this transformation
are termed productions, and the graph to which the productions are (initially)
applied is the axiom. This process is usually iterated, generating a sequence
of graphs, which collectively constitute the language of the grammar.

3.1 Dangling Graphs

The usual definition of labelled graphs involves sets of nodes, edges, labels
and functions associating edges with nodes, nodes with labels, and edges with
labels. The nature of graph partitioning, which requires “splitting” edges to
form partitions, makes it more convenient to use so-called dangling graphs.
The essential idea is to form the graph from nodes and half-edges, or edges
associated with just a single node:

Definition 5 A dangling graph, D is an 8-tuple (V,E, ν, φ, ψ,ΣV ,ΣE , C),
where:

V is a set of vertices (or nodes),
E is a set of 1

2
-edges,

ν : E → V is an injective function returning the vertex associated with a
given 1

2
-edge.

ΣV is a finite set of node labels,
ΣE is a finite set of 1

2
-edge labels,

φ : V → ΣV is a node labelling function,
ψ : E → ΣE is a 1

2
-edge labelling function, with the property that no two

1
2
-edges connected to the same vertex have the same label:

∀ e, e′ ∈ E, ν(e) = ν(e′) ⇒ ψ(e) 6= ψ(e′)

C ⊆ E ×E is a connection relation between 1
2
-edges, such that:

∀ (e, e′) ∈ C, ¬∃ (e, e′′) ∈ C for e′′ 6= e′, and (e′, e) ∈ C

In other words, C describes the connected pairs of 1
2
-edges, and is sym-

metric.

5

Remarks: Like most definitions of graph, a dangling graph is based on nodes,
and connections between them. In the above definition, the connections are
managed by a connection relation; each connection between two nodes is
formed from two “1

2
-edges,” where each such 1

2
-edge is individually associ-

ated with a node through the ν function. The connection is then actually
established by pairing 1

2
-edges in the connection relation C. Any 1

2
-edge not

involved in a connection relation is considered a dangling edge (hence the
moniker). More formally, the set of dangling edges of a dangling graph D
(described as above) is given by a function Ξ, where:

Ξ(D) = {e ∈ E | ¬∃ e′ ∈ E, (e, e′) ∈ C}

We are concerned with node and 1
2
-edge-labelled dangling graphs. Thus, there

is an alphabet for both (ΣV and ΣE), and functions to map each node or 1
2
-

edge to a node or half-edge label, φ and ψ respectively. Note that each 1
2
-edge

has a label, including dangling ones, and thus each connection between nodes
will have two labels, one for each 1

2
-edge forming the connection.

The degree of a vertex n in a dangling graph D is defined in the same way as
for regular graphs; Degree(n) = |{e| ν(e) = n}|. If there exists a natural
number k such that

∀ n ∈ V, degree(n) ≤ k

then D is called a k-bounded dangling graph. It should be noted that since the
set of 1

2
-edge labels, ΣE is finite, and no two 1

2
-edges attached to the same

vertex have the same label, all dangling graphs as described above are already
|ΣE|-bounded.

Bounded-degree dangling graphs are meant to model doubly-connected data
structures, as they might be found in a procedural language like C. Each
vertex corresponds to a data structure with a bounded number of pointers,
and is attached to other vertices by a two-way connection, corresponding to
two data records/nodes having individually-named pointers directed at each
other. Dangling edges, 1

2
-edges not involved in a connection relation, can then

be viewed as nil-pointers. To convert a dangling graph to a “regular” graph
we merely dispose of the dangling edges, a process known as trimming.

Definition 6 A trimmed dangling graph is a dangling graph with the dangling
edges removed: if D is a dangling graph then the trimmed version is given by
the function ξ, where ξ(D) = D[ED − Ξ(D)/ED].

A graph grammar that operates on the domain of node and edge-labelled
dangling graphs is termed a dangling graph grammar . Such grammars form
the basis of our method of generating partitionable graphs.

6

3.2 Productions

Productions are rules which define a mapping between two dangling graphs,
and thereby define possible ways of modifying any other graph. By locating
an image of the first graph within a given graph, and replacing that image
with a copy of the second graph the given graph can be changed. This can be
formalized.

Definition 7 A production is a pair of dangling graphs, a (connected) source

and a target, along with a partial mapping between dangling edges. If S and
T are dangling graphs, then (S, T, δ) is a production if both δ : Ξ(S) → Ξ(T)
and δ−1 : Ξ(T) → Ξ(S) are partial functions.

Intuitively, a production is pattern-matched with the graph according to its
source. When a matching subgraph is found, that subgraph is excised from
the graph and the target is inserted in its stead. How the target is connected
to the graph is specified by the embedding relation, a partial mapping δ. This
sequence of steps can be described formally using the following definitions:

Definition 8 A dangling graph S is a subgraph of another dangling graph D
if:

VS ⊆ VD ES ⊆ ED|VS
νS = νD|ES

ΣS,V ⊆ ΣD,V ΣS,E ⊆ ΣD,E φS = φD|VS

ψS = ψD|ES
CS ⊆ CD|ES

Remarks: The subgraph relation is as one might expect; one defines a sub-
set of the nodes, 1

2
-edges and connection relations, and restricts the various

functions to these subsets. A more constrained form of subgraph is one where
one must include all 1

2
-edges of each node included in the subgraph:

Definition 9 An induced subgraph of a dangling graph D is a subgraph D of
D′, such that:

∀v ∈ V ′, ∃e ∈ E, ν(e) = v ⇒ e ∈ E ′

An induced subgraph D′ is an induced strict subgraph if D′ 6= D. In symbols,
D′⊆iD and D′⊂iD

′ respectively.

Any subgraph or induced subgraph is a partition of the containing graph, and
the number of connections from the subgraph to the rest of the graph is the

7

cost associated with that partition.

Definition 10 Let G1 and G2 be disjoint subgraphs of some dangling graph
G. Then the connectivity of G1 and G2 is the number of connection relations
linking vertices in G1 with vertices in G2. If:

CSet(V1, V2) =

{(e, e′) ∈ C| (ν(e) ∈ V1 ∧ ν(e′) ∈ V2) ∨ (ν(e) ∈ V2 ∧ ν(e′) ∈ V1)}

then the connectivity of G1 and G2 is given by: Con(V1, V2) = |CSet(V1, V2)|/2.
We will sometimes express this as CSet(G1, G2), or Con(G1, G2) respectively.

There is a natural order on dangling graphs, similar to the usual (subgraph)
ordering on regular graphs:

Definition 11 If D1, D2 are two dangling graphs, then D1 ⊑ D2 iff there exist
two label-preserving injections, α : V1 −→ V2 and β : E1 −→ E2, such that:

∀e ∈ E1, ν1(e) = v ⇒ ν2(β(e)) = α(v)

(e, e′) ∈ C1 ⇒ (β(e), β(e′)) ∈ C2

And if D1 ⊑ D2 and D2 ⊑ D1, then D1 ≡ D2. In this latter situation, α and
β would be bijections.

This ordering on graphs and the induced subgraph relation can be combined
to formalize what it means for a given graph D′ to be “in” another graph D,
even if D′ is not actually a subgraph of D:

Definition 12 A dangling graph D′ occurs in another dangling graph D if
there existsD′′⊆iD, such that D′′ ≡ D′. The graphD′′ is then the occurrence of
D′ in D. The set of all such occurrences is given by the function Occurs(D′, D).

Finally, we can now define how productions are used to rewrite the given
graph:

Definition 13 The application of a production ρ = (S, T, δ) to a dangling
graph G involves locating an occurrence, S ′ of S within G, and replacing S ′

with (a copy 1 of) T . The function δ describes how to modify the connec-
tion relation so T is embedded in G − S ′, utilizing only the connections in
CSet(S ′, G−S ′). A production ρ then derives a dangling graph H from a dan-
gling graph G if ρ can be applied to G, and H is the result once dangling edges
are suitably replaced.

1 In order to simplify concepts and notation, where safe we ignore the distinction
between the “template” T and the copy of T actually embedded into G.

8

Assuming a production ρ = (S, T, δ), a dangling graph G to which ρ applies,
an image, S ′ of S in G, and that the 1

2
-edges and vertices of T are disjoint

from G, the derived graph H can be defined as follows:

VH = (VG − VS′) ∪ VT EH = (EG −ES′) ∪ ET

νH = νG|EG−ES′ ∪ νT ΣH,V = (ΣG,V ∪ ΣT,V)

ΣH,E = (ΣG,E ∪ ΣT,E) φH = φG − φS′ ∪ φT

ψH = ψG − ψS′ ∪ ψT

The connection relation is somewhat more complicated; if

R = {(e, e′)| ∃e′′. (e, e′′) ∈ CSet(VS′, VG − VS′) ∧ δ(e′′) = e′}

and R̂ is the symmetric closure of R, then

CH = CG − CS′ − CSet(VS′, VG − VS′) ∪ CT ∪ R̂

Generally, the derivation of H from G will be designated by a single arrow
subscripted by the production used: G→ρ H, and an n-step derivation using a
set of productions Υ by G

n→Υ H. The transitive closure is of course G
∗→Υ H.

Remarks: An application involves locating an occurrence matching the source
of the production, removing the occurrence, and attaching a distinct copy of
the target by reassigning connection relations involving dangling edges of the
occurrence to dangling edges of the (copy of the) target. There are restrictions
on the occurrence—the pattern matching of the source graph must result in
a label and structure-preserving bijection h between the nodes and 1

2
-edges in

the source graph and the nodes and 1
2
-edges in its occurrence in the graph. As

well, if a node in the graph is included in the occurrence, then there must be
corresponding matches in the source for every 1

2
-edge attached to that node.

An example of a production being applied is shown in Figure 2; the input
graph (axiom) is on the top left, the output is on the top right, and the
production is shown on the bottom. Dotted arrows indicate the δ mapping
for the production, and the the region enclosed on the input graph is the
occurrence being rewritten. Node labels are illustrated by colour (shade), but
1
2
-edge labels are not shown. Note that the other two white nodes (marked

with x’s) cannot be rewritten by this production; even if all labels matched,
they do not form an exact image of the source graph (both x-marked nodes
have degree 4, whereas the source requires one node with degree 4 and one
with degree 3).

9

XX X X

Fig. 2. A production (bottom) is applied to a graph.

Once the occurrence is located, the nodes and 1
2
-edges of the occurrence are

removed and a distinct copy of the target graph is inserted. If within the
graph a dangling edge e of the occurrence is paired with some other dangling
edge e′ to form a connection c = e × e′, then the 1

2
-edge designated by δ of

the corresponding 1
2
-edge of the source graph, δ(h(e)), is substituted into c in

place of e. If δ(h(e)) is undefined for e, the connection relation c is discarded.
In the example in Figure 2, three connection relations are transferred from the
source to the target graph (indicated by dotted arrows), and any connections
involving the other three 1

2
-edges are deleted by the rewrite.

Within a single derivation, because of the restrictions on how the target is
embedded, the number of connection relations linking the embedded target to
the rest of the graph can be no more than the number of connection relations
linking the occurrence to the rest of the graph. This property will prove critical
to partitionability:

Proposition 14 Given a production ρ = (S, T, δ) and a graph G to which
ρ applies, G →ρ H, with S ′ the image (occurrence) of S in G as above, the
number of connection relations linking the embedded target to the rest of H is
no more than the number of connection relations linking S ′ to G.

10

3.3 Grammars

A collection of productions acting on a given dangling graph constitutes a
dangling graph grammar. Such a system consists of a pair of objects: a collec-
tion of productions, Υ, and an initial graph, the axiom. All the graphs that
can be derived from this axiom using only the given productions collectively
form the language generated by the grammar:

Definition 15 The language generated by a graph grammar G = (A,Υ) is
the set of all dangling graphs which can be derived from A using productions
in Υ:

L(G) = {B| A ∗→Υ B}

3.4 Grammar Properties

Our ability to partition the graphs generated by our grammars will depend
on the grammars having a property based on a concept of overlap between
dangling graphs. This same concept, applied in a different manner, is often
used to ensure concurrent rule applications can be done independently, and
without conflict. While both overlap properties are restrictions on grammars,
the combination has the benefit of being sufficient to sensibly extend our
grammars to parallel grammars—ones wherein more than one production can
be applied concurrently.

Definition 16 Two dangling graphs D and S overlap if there exist induced
subgraphs of each, D′ and S ′ respectively, a non-empty dangling graph W such
that W ≡ D′ and W ≡ S ′, and such that every dangling edge of W is mapped
by the ≡ relation to either a dangling edge of D or a dangling edge of S (or
both). The set of all such maximal (in number of nodes and connections) W
form the actual overlap of S and S ′.

In a parallel model of application, we may have more than one production
applying at once. If two productions are applied at the same time, however,
and their occurrences are not completely disjoint, the two form a critical pair—
conflicting behaviour might be specified for nodes in the intersection of the
two occurrences.

Fortunately, it easy to restrict a class of grammars to ones admitting con-
current application while still being deterministic. If all occurrences must be
disjoint, then the rewrite of each node and 1

2
-edge is determined by only one

production, and there can be no conflict in specification. This is precisely the

11

no overlap property between all production source graphs:

Definition 17 If G = (A,Υ) is a dangling graph grammar, and for all ρ1, ρ2 ∈
Υ, ρ1 = (S1, T1, δ1) and ρ2 = (S2, T2, δ2) it is the case that Overlap(S1, S2) = ∅
or ρ1 = ρ2 and Overlap(S1, S2) is just the trivial overlap, then G is SS-

overlap free.

Proposition 18 If (A,Υ) is SS-overlap free, then the grammar is determin-
istic even if some productions are applied simultaneously.

PROOF. Let G = (A,Υ) be a non-deterministic grammar. Then for some
dangling graph D there must exist some node n included in each of the si-
multaneous occurrences O and O′ of two productions ρ and ρ′. Let s and s′

be the images of n in S and S ′ (the source graphs of ρ and ρ′) respectively;
it must be that the complete subgraph consisting just of n and its 1

2
-edges

is isomorphic to s and to s′. Let W be the largest complete subgraph of D
including n which has an isomorphic image in S and S ′.

Let e be a dangling edge of W , and suppose e is not mapped by the isomor-
phism to any dangling edge of S or S ′. Let d and d′ be the 1

2
-edges in S and

S ′ to which e is mapped, and let r and r′ be the nodes attached to the other
1
2
-edges involved in the connection relation with d and d′. Both r and r′ must

be included in their occurrences, but the connection to them is not included
in W ; either W is not maximal, or the occurrence of one of S or S ′ does not
include a match for r or r′ (and so one of S or S ′ does not in fact occur),
either of which is a contradiction.

If there is no such e then W ≡ S1 ≡ S2, and either there is certainly over-
lap, or ρ = ρ′ and W is the trivial overlap, in which case there is no non-
determinism. ✷

Lack of overlap between source graphs is useful for parallelism, but it does
not ensure partitionability. To guarantee that the tree-based method we will
develop below applies, it is necessary that the overlap between source and
target graphs (rather than between source and source) be restricted.

Definition 19 Let G = (A,Υ) be a dangling graph grammar, and let T =
{T | (S, T, δ) ∈ Υ}. G is ST-overlap free if for all (S, T, δ) ∈ Υ, we have:

∀τ ∈ T , ∀O ∈ Overlap(S, τ), (O ≡ ∅ ∨ O ≡ S)

Remarks: The ST-overlap free property specifies that given any combination
of production source S and target τ , either S actually occurs in τ , or S and τ

12

do not overlap. This simple property will prove critical when we describe the
partitioning method. Note that this definition implies that if every production
in a graph grammar has a source consisting of just one node, then the grammar
is trivially ST-overlap free (the overlap of a single-node graph and any other
can only be an identical single-node graph, or empty).

3.5 Contexts

The development of many dynamic data structures depends on the nature of
the graph locally surrounding the update site. The process of changing the
data structure requires rewriting only a small area, but the decision to do
so may depend on the surrounding neighbourhood; a binary tree in which
right-child leaves are to be expanded into subtrees only after left-child leaves
have already been rewritten into subtrees, for example, requires this sort of
local information. This can be modelled with our grammars, but it would
require rewriting the entire context for the rewrite—the update site, and its
neighbourhood. Doing so, however, often introduces undesired overlap between
productions that depend on the same sort of neighbourhood.

This problem can be alleviated by including contexts along with the source of
each production. A context is just a dangling graph which includes the source
within it; the entire context must occur in order for the production to be
applied, but only the source is actually rewritten. In this way the application
of a production can be restricted to a given graph configuration. We therefore
define grammars with contexts as one of the possible variations we will be
considering with respect to partitionability.

Definition 20 A production with context is one ρ = (S, T, δ) with a context
I as defined above, with the property that each occurrence of S must be included
in an occurrence of I. If a grammar G includes a production with context then
the grammar is with context.

4 Partitioning Trees

Our method for generating partitionable structures relies on being able to
efficiently partition trees. Here we prove that weighted trees, trees with a non-
negative weight wi assigned to each node, with a total weight of W and a
bound b on the fanout of each node are O(log(W))-partitionable.

Lemma 21 Given a natural number n, and a set N of any other m natural
numbers which sum to n, it must be that if ni is the ith largest number in N

13

then ni ≤ n/i.

PROOF. By contradiction; assume ni is strictly larger than n/i for some n,
N and i. Since ni is the ith largest, there are i − 1 ≥ 0 other numbers in N ,
each of which is at least as large as ni. These i numbers then necessarily sum
to a value strictly greater than n. ✷

We will use Lemma 21 to prove a cost bound on a certain kind of partitioning
of trees. First, we define some essential terminology.

Definition 22 Let T = (N,E) be a tree with nodes N and edges E ⊂ N×N .
Then Subtree(n) for n ∈ N is the set of all nodes in N which are in the subtree
rooted at n, including n itself, and Fanout(n) is the number of children of a
given node n.

Definition 23 A postorder tree traversal is a total ordering of the vertices
of a tree such that if vi represents the ith vertex in the ordering, then vj is a
vertex in the subtree rooted at vi only if j < i.

A postorder search of a tree is most often discussed in the context of recursion,
where it corresponds to a recursive search of a tree, examining each child node
before examining the parent node. In such a non-backtracking procedure, each
stage of the enumeration implies a separation of the vertices of the tree into
two groups: those which have been enumerated, and those which have not,
with movement always from the latter group to the former. If this grouping
serves as a basis for partitioning, the communication cost can be bounded
for bounded-degree trees. Let ∼=s represent the equivalence class based on the
enumerated/not-enumerated division, when s vertices have been enumerated.

Lemma 24 Let T be a tree of n nodes with maximum fanout b, with a positive
integer weight wi assigned to each node vi, such that

∑
i wi = W ≥ 1. Let Wi

be the total weight of all nodes in the subtree rooted at vi; we also require that
Wi is at least 1 for all subtrees. If a postorder search is performed where the
child nodes are examining in decreasing order of total subtree weight, ordering
the vertices as v1, . . . , vn, then for any partition of T into two parts, ∼=i=
{{v1, . . . , vi}, {vi+1, . . . , vn}}, it must be that Cost(∼=i) ≤ (b−1) log2(W)+ b.

PROOF. By induction on n, the number of nodes in the tree. The base case,
with just a single node is trivially true. Since there are no edges, cost is 0.
Assume true for all n′ < n, and let T be an n-node tree, each node having
maximum fanout b, and with t1, . . . , tb′ as the b′ ≤ b child trees, ordered by
decreasing total subtree weight.

14

If the root of T is enumerated in a postorder search, then the entire tree T
has been enumerated, and partition cost is 0. Assume, then, that the root of
T has not been enumerated.

The cost of the partitioning ∼=i will be at most one for each of the children
that have been fully enumerated (to account for the edge connecting the child
to the root), plus the cost of the partial enumeration of any single child. When
no children are partially enumerated, total cost cannot be more than b′ ≤ b.
So, assume at least one child tree is only partially visited, and that it is the
jth largest in terms of total weight. Let wr be the weight of the root node.

If j = 1, then no other subtrees have been enumerated, and so the total cost is
just the cost of the partial enumeration of t1, which is by inductive assumption
bounded by (b− 1) log2(W − wr) + b.

Assume, then, that j > 1. By definition of the search strategy, the j − 1 > 0
subtrees with larger weights have already been enumerated, and so the cost
must include the j − 1 links to the parent. By Lemma 21, the jth subtree can
have weight no more than (W −wr)/j. Hence, using the inductive hypothesis,
partially enumerating tj can cost no more than (b− 1) log2((W − wr)/j) + b,
or equivalently (b− 1) log2(W − wr) − (b− 1) log2(j) + b.

Adding in the cost of severing the j − 1 links to the parent for the fully-
enumerated subtrees, the entire cost can be no more than (b − 1) log2(W −
wr)−(b−1) log2(j)+j−1+b. By assumption 1 < j ≤ b, and hence log2(j) ≥ 1
and j − 1 ≤ b − 1. Thus, the term j − 1 − (b − 1) log2(j) ≤ 0. Since wr is
non-negative, the total cost is then upper bounded by (b−1) log2(W)+ b. ✷

This lemma establishes an upper bound on the cost of partitioning. However,
bounds on load-balancing do not directly follow; for load-balancing we need
to assume bounds on the sizes of the weights associated with each tree node.

Corollary 25 If T is a tree with total weight W as described in Lemma 24
with the extra condition that for all weights wi, wi ≤ m for some m > 0, then
for any 0 ≤ ω ≤ W , there exist two partitionings, ∼=s and ∼=′

s, of T into two
parts T1, T2 and T ′

1, T
′
2 respectively such that T1 has total weight ω − m′ for

some 0 ≤ m′ ≤ m, T ′
1 has total weight ω+m′′ for some 0 ≤ m′′ ≤ m, and and

the total cost of either partitioning is no more than (b− 1) log2(W) + b.

PROOF. Let v1, . . . , vn be the n vertices of T ordered as per a post-order
search examining child trees in order of decreasing total weight. Since no vertex
has weight larger than m, there must exist some i such that w1 + · · · + wi =
ω − m′ for some 0 ≤ m′ ≤ m. Similarly, there must exist some j such that

15

w1+· · ·+wj = ω+m′′ for some 0 ≤ m′′ ≤ m. By Lemma 24, both partitionings
have cost no more than (b− 1) log2(W) + b. ✷

Lemma 24 and Corollary 25 establish an upper bound on the cost of a par-
titioning and the maximum difference between partition sizes, respectively.
Partitioning, however, is into p pieces where p can be anywhere between 1 and
W , the total weight of the tree. We would like, then, bounds on the cost and
size of partitions when dividing the tree into p pieces for any 1 ≤ p ≤W . Given
a tree T as in Lemma 24, and a post-order search of its weighted vertices, we
can consider the problem of producing such a weight-balanced p-partitioning
T to be equivalent to the problem of p-partitioning an ordered sequence of
non-negative integers summing to W , each of which is no more than m.

Lemma 26 Given an ordered list of n integers, N = w1, . . . , wn such that
0 ≤ wi ≤ m and W =

∑
wi, N can be partitioned into 1 ≤ p ≤ W disjoint,

contiguous and covering sets, such that each partition has sum W/p±m.

PROOF. The total weight, W , can be rewritten as Wx/p ± m, for x = p.
Under this syntax, N should be partitioned into contiguous and covering pieces
totalling W/p±m.

We perform an induction on x. Assume N is contiguous and has sum W ′ =
Wx/p±m, for some positive p and positive x ≤ p, and that we wish to split
N into x pieces, each of sum W/p±m.

The base case, x = 1, is trivially true; the lone partition is all of N , and has
by assumption a total of W/p±m.

Assume true then for x − 1, and let x > 1. Let the actual weight of N be
W ′ = Wx/p+m′, for some 0 ≤ m′ ≤ m (the other case, W ′ = Wx/p−m′, is
symmetric). By Corollary 25, N can be split either at ω +m1 or ω −m2, for
any given 0 ≤ ω ≤ W ′ and some 0 ≤ m1, m2,≤ m, so remove from the front
a contiguous partition N1 of size W/p + m1. The remaining partition, N2 is
also contiguous and has weight W ′ −W/p − m1 = W (x − 1)/p ± m, so by
inductive hypothesis N2 can be partitioned into x−1 pieces, each with weight
W/p±m.

Since no partitions overlap, and the base case consumes the entire remaining
list, the partitions must be covering. Each partition is also a contiguous portion
of a contiguous list, and so the partitioning satisfies the given criteria. ✷

Remarks: Although the above lemma proves that N can be partitioned into
p pieces for any 1 ≤ p ≤W , if p ≥W/m then some partitions may exist which

16

contain no vertices at all. Still, these partitions fall within the ±m bounds on
partition size.

Corollary 27 If T is a b-ary tree, as per Lemma 24 with an upper bound
m on the weight associated with each vertex, then T can be partitioned into
1 ≤ p ≤W pieces, each of which has total weight W/p±m, and total cost no
more than 2(b− 1) log2(W) + 2b.

PROOF. By Lemma 26, T can be partitioned into p pieces such that each
partition has weight W/p ± m. Each such partition is completely separated
from the rest of the tree by no more than two cuts, each of which can be seen
as a split of T into two pieces. Hence, by Corollary 25, each partition can have
cost no more than twice (b− 1) log2(W) + b. ✷

Thus, it is possible to partition b-ary weighted trees with an O(log(W)) bound
on partition cost, and the load-balance of the partitions will be a function of
the bound on the weight assigned to each tree node.

5 Graph Partitioning

The ST-overlap property is sufficient to give the history of production appli-
cations a general “tree-like” shape, which can be exploited for partitioning the
graphs generated. The nature of the graph embedding, combined with these
properties, ensures that this tree-like aspect remains tree-like throughout the
derivation of each graph in the grammar language. Since contexts merely re-
strict the application of a rule, this property remains true even if we include
contexts, and if we also include SS-overlap, then we find we can partition the
graphs even if rule application proceeds in parallel.

5.1 Tree Partition Schemes

The partition strategy we will evince for graphs will be based on a method for
partitioning trees, and a mapping from the nodes of the graph to the nodes
of the tree and from the connection relations of the graph to the edges of the
tree. For any tree let the relation a ≤ b applied to nodes a and b indicate that
a is contained in the subtree rooted at b. Then,

Definition 28 A tree partition scheme for a dangling graph D with nodes
V , 1

2
-edges E and connection relations C ⊂ E × E is a tree T with nodes N

17

Fig. 3. A graph embedded into a tree partition scheme.

and directed links L, together with a function ν : V → N and a relation 2

τ ⊆ C × L such that:

(1) ∀v ∈ V , if ν(v) = n and ℓ : n′ → n and v′ ∈ V \
⋃

n≤n

ν−1(n) and e = (v, v′)

then eτℓ.
(2) ∀n ∈ N , |

⋃

n≤n

ν−1(n)| > 0.

(3) ∀v, v′ ∈ V , if ν(v) = ν(v′) and e = (v, v′) then τ(e) = ∅.

Remarks: Several connection relations may be associated with a given link.
If all these connection relations are cut, then the set of graph vertices corre-
sponding to the nodes of the detached subtree become disconnected from the
rest of the graph. Note that the relationships between tree links and graph
connection relations do not reflect connectivity in any simple way; i.e., one
does not in general have a homomorphism.

An example of a graph embedded in a tree partition scheme is shown in
Figure 3. Dashed ovals indicate the graph nodes mapped to each tree node,
and all the edges between two ovals are mapped to the corresponding tree
link. Cutting all the edges mapped to a given link is guaranteed to disconnect
all graph nodes mapped into the subtree from the rest of the graph.

The nature of the mapping and the tree will of course be critical to the success
of the method. A tree consisting of just one node to which every graph node
is mapped satisfies the above requirements, but clearly does not further the

2 We will often use the functional notation, i.e.,τ(e) = {ℓ ∈ L| eτℓ}, with the
converse τ c(ℓ) = {e ∈ C| eτℓ}.

18

task of partitioning.

Definition 29 A tree partitioning scheme (T, ν, τ) of a dangling graph D is
said to be bounded if there exist three positive integers, β, µ, λ, where:

(1) β is a bound on the branching factor of T .
(2) µ is a bound on the size of ν−1(n), ∀n ∈ N .
(3) λ is a bound on the size of τ c(ℓ), ∀ℓ ∈ L.

Bounded tree partitioning schemes permit the graph to be partitioned with
cost and size bounds determined by the three numbers β, µ, and λ.

Lemma 30 Let T (ν, τ, β, µ, λ) be a bounded tree partitioning scheme of n
nodes for some dangling graph D of |V | nodes, as detailed above. Then D
can be partitioned into p pieces each of size |V |/p ± µ with maximum cost
2λ(β − 1) log2(|V |) + 2λβ.

PROOF. This follows directly from Corollary 27. ✷

In order to describe how these tree partitioning methods and structures ap-
ply to dangling graph grammars, it is first necessary to define bounds which
depend on the grammar specification itself.

Definition 31 The bounds of a dangling graph grammar G = (A,Υ) are
three positive integers,m, g, and k such that |A| ≤ m, ∀n ∈ VA, Degree(n) ≤ k,
and ∀ (S, T, δ) ∈ Υ we have |T | ≤ m, |S| ≤ g, and Degree(v) ≤ k for all
vertices v in T .

We can associate a bounded tree partition scheme with each graph generated
by the grammar. Inductively, each time the grammar is iterated generating a
new graph from an old, a new bounded tree partition scheme is also created
from the old scheme. The ST-overlap properties ensure that the tree partition
scheme remains a tree after every set of concurrent rewrites.

Lemma 32 Let G = (A,Υ) be an ST-overlap free dangling graph grammar,
with no node rewritten by more than one production at once, and with bounds
(m, g, k). Then for any non-empty dangling graph D where A

s−→Υ D for some
s, there exists a bounded tree partition scheme T (ν, τ, β = m,µ = m,λ = gk)
such that ∀n ∈ N, Fanout(n) + wn ≤ m, where wn is the weight of node n.
Moreover, let O be an occurrence of a production in Υ in D; then if v, v′ are
graph vertices in O, ν(v) = ν(v′).

PROOF. By induction on the size of s. Let T = (N,L), where N is the set

19

of tree nodes and L is the set of tree edges (or links). In all cases we will let
wn = |ν−1(n)|, and total weight W will be the number of graph vertices.

The base case is trivial; when s = 0, D = A, and T can be a single node tree,
T = ({n1}, {}), with ν defined as the constant function with ∀v ∈ VG, ν(v) =
n1 and τ undefined everywhere. Two of the three required integers are trivial,
β and λ certainly exist at the indicated levels, since there are no tree edges,
and since |A| ≤ m, |ν−1(n1)| ≤ m, giving the third required bound. Since
there is only one node in T and it corresponds to the axiom, necessarily each
graph vertex is mapped to n1, and so the vertices v, and v′ of any occurrence
must be both mapped to n1.

Assume true for any D′ such that A
s−1−→Υ D′, and let D be such that A

s−1−→Υ

D′ 1−→Υ D. By inductive hypothesis, there exists a bounded tree partition
scheme T ′(ν ′, τ ′, β ′, µ′, λ′) for D′ with the above properties; we will show how
to extend T ′ to a bounded tree partition scheme T for D.

The graph D is the rewrite of D′ by the productions in Υ. Hence, there is a set
O of all occurrences that transformed D′ to D. As well, and because no node is
rewritten by more than one production, a function exists κ : O → {Z|Z⊆iD},
which returns the embedded target of a given occurrence.

By inductive assumption, each occurrence O ∈ O in D′ must rewrite only
vertices mapped to the same tree node, and so a function σ : O → N ′ exists
associating occurrences with the tree node containing the vertices forming the
occurrence.

We define ν and τ to be the same as ν ′ and τ ′ for all nodes and connections
not changed by the rewrite. We now construct T from T ′ with the following
changes:

Add new nodes For each O ∈ O create a new node nO in T , and for each
such O extend ν to map the image of every graph vertex v in κ(O) to nO.
Note that each κ(O) thereby has a corresponding target node, nO in T , and
so a function exists ζ : O → N . By assumption, |κ(O)| ≤ m, and since each
nO has fanout 0, it is still true that Fanout(n) + wn ≤ m.

Connect new nodes For each ζ(O) created in the above step which is not
already connected to the rest of T , add an edge in T from σ(O) to ζ(O),
and delete all nodes in O from the function ν. Since each production must
rewrite at least one graph node, and the same graph node can never be
rewritten by more than one production, if T ′ had the property that each
tree node n is such that Fanout(n) + wn ≤ m, then this will surely be
the case in T ′ after adding these edges and deleting these nodes from the
node-mapping function.

Include new edges in τ Let CO = {(e, e′) ∈ CD| (e, e′) ∈ CSet(κ(O), D −

20

κ(O))}. Increase the relation τ to map each connection in CO to the tree
edge (σ(O), ζ(O)).

Each κ(O) is linked to the rest of D only by modifications to the original
connection set between O andD′ (see Proposition 14). Since each occurrence
consists of at most g graph nodes, of degree at most k (by assumption),
there can be at most gk distinct 3 connection relations between κ(O) and
D − κ(O). Hence, τ maps no more than gk graph edges to the tree edge
(σ(O), ζ(O)). Note that all other differences between τ ′ and τ result from the
deletion of connections (due to rewrites), and so the number of connections
mapped to an existing edge in the tree can only decrease.

Fix-up τ for existing edges Consider the set of all connection relations
(e, e′) in C such that there exists (f, f ′) in C ′ with either (e = f, e′ = δ2(f

′)),
(e = δ1(f), e′ = f ′), or (e = δ1(f), e′ = δ2(f

′)), for some δ1 and/or δ2 (of
two productions ρ1 and ρ2). These are all the connection relations which are
have been altered by a substitution using some δ operator(s). Increase τ to
map (e, e′) onto τ ′(f, f ′). This process does not alter the mappings of any
newly created tree edge, and only replaces a former mapping ((f, f ′) will
not exist in D) with a corresponding new one, so any bounds on the size or
claims about connectivity for T ′ will continue to hold in T .

It remains to verify that the generated tree T is indeed a bounded tree partition
scheme with the desired integers and properties as described in the statement
of the lemma.

As detailed in the above steps, the constructions of ν from ν ′ and τ from τ ′ are
such that |ν−1(v)| ≤ m, and |τ c(ℓ)| ≤ gk. Also by construction, severing the
edges mapped to any (σ(O), ζ(0)) disconnects κ(0) from the rest of the graph,
so τ certainly possesses the desired disconnection property for all κ(0). To see
that τ retains this property for the rest of the tree, we can simply note that
in the last step if (e, e′) is a connection relation in D′ which is altered by the
rewrite, then the rewritten connection will replace the previous connection,
and all connections untouched by the rewrite are retained.

Let e = (v, v′) be a connection relation in D. If both v and v′ existed in D′,
then if ν(v) = ν(v′) by inductive assumption τ(e) = ∅. If v existed in D′ and
v′ did not, then by construction it cannot be that ν(v) = ν(v′), and if neither
v nor v′ existed in D then also by construction if ν(v) = ν(v′) then both v
and v′ are mapped by ν to the same newly-introduced node, and so τ(e) will
not be defined on e.

The third integer bound for a bounded tree partition scheme is trivial to verify.
Because of the invariant Fanout(n) + wn ≤ m, for all tree nodes n, a bound
m exists on the branching factor of T .

3 In fact, there are at most 2gk such connection relations, but since connection
relations are symmetric we need only be concerned with distinct pairs.

21

It is necessary to ensure that any future occurrences of these productions will
have all their graph vertices mapped by ν to the same tree node. Consider
an occurrence O of some production ρ = (Sρ, Tρ, δρ) ∈ Υ in D. Trivially, if
all vertices in O are mapped by ν to the same tree node n ∈ N , then the
property is satisfied. If O includes vertices only mapped by ν to tree nodes in
N ′, then the inductive hypothesis ensures the desired property—vertices are
never added to existing tree nodes, so if an image of Sρ exists in D using just
vertices from D′, then Sρ also occurred in D′.

Assume, then, that O includes some vertices mapped to a node in N which is
not in N ′; let v be such a vertex, ν(v) = n 6∈ N ′, and let v′ be another vertex
in O such that ν(v′) 6= ν(v). Because n is a tree node we just inserted, the
vertices in ν−1(n) are the embedded copies of some production target graph
τ . Let Ov be a maximal (strictly) induced subgraph of O including v with
every vertex in Ov mapped by ν to ν(v). It must be that Ov ∈ Overlap(Sρ, τ);
every 1

2
-edge of Ov is either a 1

2
-edge of O ≡ Sρ, or it matches a 1

2
-edge of τ—a

1
2
-edge e of Ov which is not in Ξ(O) and is connected to some other 1

2
-edge e′

and vertex v′ in O. If there is a corresponding match for e′ and v′ in τ , then Ov

is not maximal; if there is not and the image of e is not dangling in τ , then it
cannot be that O is an occurrence. Thus, there is a member of Overlap(Sρ, τ)
which is neither ∅, nor the same as Sρ (Ov includes v but not v′), and the
grammar cannot be ST-overlap free.

The only remaining property to check is the assertion that no subtree of T
exists with total weight 0. The above construction generates tree nodes for
each embedded target, even if the target is the empty graph, and so after the
indicated steps some branches of T might exist which have 0 weight. However,
such “dead branches” can be removed without altering any of the desired
properties. Numerical bounds on tree branching, the maximum number of
connection relations mapped to tree edge, or the maximum number of vertices
mapped to nodes are trivially preserved. Since there are no vertices mapped to
any node in such a dead branch, all conditions specified for tree partitioning
schemes, and the extra conditions in the lemma statement too, continue to
apply after removing all dead branches. ✷

This lemma leads directly to our main result:

Theorem 33 Let G = (A,Υ) be an ST-overlap free dangling graph grammar
with constant bounds (m, g, k). For any dangling graph D such that A

∗→Υ D,
it must that D is (2gk(m− 1) log2(|V |) + 2gkm)-partitionable.

PROOF. This follows trivially from Lemma 32 and Lemma 30. By the for-
mer, for each dangling graph generated by G there is a corresponding bounded

22

tree partition scheme T (ν, τ,m,m, gk), and by the latter such a tree can
be partitioned into pieces of size |V |/p ± m with maximum cost 2gk(m −
1) log2(|V |) + 2gkm, for any 1 ≤ p ≤ |V |. ✷

6 Denser Graphs

There are often situations where one wants a schematic rewrite rule; that is
to say, an infinite family of rewrite rules which exhibit a regular or repetitive
pattern. For instance, we may wish to generate the family of rectangular grids
(see Figure 4).

c− −a− −a− . . . −a− −a− −c
| | | . . . | | |
c− −a− −a− . . . −a− −a− −c
| | | . . . | | |
c− −a− −a− . . . −a− −a− −c
...

...
...

...
...

...
...

Fig. 4. A schematic rectangular grid.

If we build it row-by-row, then in order to ensure all the connections in the
next row can be made (without overlapping rules) we would need an infinite
family of rules, one for each of the possible number of a’s. We would need one
rule as in Figure 5, one as in Figure 6, and so on. It would certainly be easier
to write one rule just indicating the pattern, as in Figure 7.

| | | | | |
c− −a− −c ⇒ c− −a− −c

| | |
c− −a− −c

Fig. 5. One of an infinite family of rules.

Thus, instead of specifying source and target graphs precisely, we would like
to specify source and target patterns. Patterns allow the generation of a larger
class of graphs; including, for example, the class of rectangular grids shown in
Figure 4. This class of graphs cannot be expressed using any bounded number
of rules all of which have fully-specified source and target graphs without

23

| | | | | | | |
c− −a− −a− −c ⇒ c− −a− −a− −c

| | | |
c− −a− −a− −c

Fig. 6. Another of an infinite family of rules.

|
c−

|
−a−

∗

|
−c ⇒

|
c−
|
c−

|
−a−
|

−a−

∗

|
−c
|
−c

Fig. 7. A schematic rule, representing an infinite family of rules.

introducing overlap. Naturally there is a tradeoff; the use of schematic rules
implies an increase in the bound on partitioning cost—square grids are Ω(

√
n)-

partitionable, a bound much higher than our previous O(log(n)) limit. The
following formalism for schematic graphs, called path expressions is designed
to permit the increase in cost to be easily calculable.

6.1 Path Expressions

A formalism for specifying the schematic representation of a family of graphs
must be such that occurrences and the various forms of overlap between pro-
ductions are still recognizable. For this reason path expressions are based on
an algorithmic model, similar to regular expressions on strings.

Path expressions are built up inductively from graphs and operators repre-
senting connection, choice and repetition. Each inductive operation indicates
how one or two families of graphs with a given set of available unconnected 1

2
-

edges (or “free edges”) can be combined to generate another family of graphs.
Note that this means that the operators must not only specify the appropri-
ate action—connection, choice, repetition—but exactly which 1

2
-edges are to

be connected to which others to actually form the desired structure. In the

24

definition below, this function is provided by the partial bijection λ.

Definition 34 A path expression is defined inductively as follows:

(1) A dangling graph G of one node is a path expression. All 1
2
-edges are

considered free.
(2) If G and H are path expressions with free edges E = {e1, . . . , en} and

F = {f1, . . . , fn}, and λ : E ↔ F is a partial bijection, then (G ◦λ H) is
a path expression with free edges {x| (x ∈ E ∧ 6 ∃y ∈ F. λ(x) = y) ∨ (x ∈
F ∧ 6 ∃y ∈ E. λ(y) = x)}.

(3) If G and H are path expressions with free edges E = {e1, . . . , en} and
F = {f1, . . . , fn}, and λ : E ↔ F is a partial bijection, then (G|λH) is a
path expression with free edges: {(e|f)| λ(e) = f}.

(4) If G is a path expression with free edges E = {e1, . . . , en}, and λ : E ↔ E
is a partial bijection, then (G+λ) is a path expression with free edges E.
Note that in this iterated graph there will actually be as many copies of
each 1

2
-edge not involved in λ as there are replications of G, but that there

will be only one copy of each 1
2
-edge which is involved in λ. For instance,

if we have an expression like:

|p
n

l/\r

+r→p

(which indicates a sequence of 1 or more nodes labelled n, connected r to
p), then in any such sequence there is exactly one 1

2
-edge labelled p, one

labelled r, and as many labelled l as there are nodes in the sequence.
The free set will be used below to establish bounds on the partitionability

of graphs indicated by this method. For this reason it is essential that
an unbounded number of 1

2
-edges does not get included in the definition.

Thus, the free set for an iterated expression is defined to only include the
(single) copies of each 1

2
-edge involved in λ, and the very first copy of any

1
2
-edge not involved in λ of the sequence.

The set of graphs indicated by a given path expression P forms the language
of P , and is designated by L(P).

Note that we have not defined the usual “?” (match 0 or 1 instance of a graph)
and “*” (0 or more repetitions) operators. Except for the the ability to match
the empty graph, this does not alter the expressiveness of the scheme. We
have also not included “.” (match any singleton); this could be included, but
is simple syntactic sugar for the collection of all singleton graphs cascading

25

|-ed together.

Example 35 Consider the following path expression.

|p
n

l/\r

∣∣∣∣∣∣∣∣∣∣∣ p→ p

l → r

|p
n

l/\r

+(l|r)→p

This expression generates a list of nodes, connected either l to p or r to p—the
set of all paths in a binary tree from the root to any node.

The base case of a path expression is just a single dangling node. However, a
path expression can also be thought of as composed from the three operators
applied to fully-defined graphs, which are themselves constructed only from
nodes and the ◦-operator. The next two definitions formalize this concept:

Definition 36 A path expression P is concrete if P consists entirely of dan-
gling nodes and the ‘ ◦’ operator.

Definition 37 The skeleton of a path expression P is a function formed ac-
cording to the syntactic expression of P with all concrete subexpressions re-
moved. The skeleton of P , designated by “ ∂P ,” takes concrete path expressions
as input, substituting them for the concrete expressions extracted from P . In
order to ensure ∂P is unique, it must be that if a minimum of c concrete ex-
pressions must be removed from P so there are no more concrete expressions
in P , then ∂P is a c-ary function, or of order c. The (ordered) list of c con-
crete expressions extracted from P is given by [P], such that ∂P ([P]) = P ,
with the ith element in [P] addressable by [P]i.

Example 38 As an example, consider the following path expression 4 and its
associated skeleton:

P = (a ◦ b)|(((d ◦ e)+)|((f)+)) ◦ ((g)+)

∂P (#1,#2,#3,#4)= (#1)|(((#2)+)|((#3)+)) ◦ ((#4)+)

Hence, [P] = (a ◦ b, d ◦ e, f, g) where [P]1 = a ◦ b, [P]2 = d ◦ e and so on, and
∂P is of order four.

Some properties of path expressions should be immediately clear. For instance,

4 1
2 -edges and 1

2 -edge labels are not shown.

26

any path expression normally written down by a human will have some con-
stant bound on the size of the free set dictated by the “length” of the path
expression. The length of a path expression is simply the number of nodes in
the parse tree corresponding to the inductive definition; it can also be defined
directly:

Definition 39 Given a path expression P , the length of P , given by |P | is
defined inductively:

(1) If P is a one node dangling graph, then |P | = 1.
(2) If P = (G ◦λ H), then |P | = |G| + |H|.
(3) If P = (G|λH), then |P | = max(|G|, |H|) + 1.
(4) If P = (G+λ), then |P | = |G| + 1.

Path expressions are adequate for describing simple linear structures, with
limited branching. For instance, a path expression cannot be used to describe
the class of binary trees. In fact, path expressions are all O(1)-partitionable;
this is established using the following series of results.

Proposition 40 Let P be a path expression of length ℓ over nodes with bounded
degree k. Then the free set F of P is such that |F | ≤ kℓ.

PROOF. By induction on |P | = ℓ. If ℓ = 1, then P matches only a single
node of bounded degree k, and hence the free set is of size k.

Assume then that the hypothesis holds for all path expressions of length no
more than ℓ− 1 ≥ 1, and let P be a path expression of length ℓ.

If P is of the form (P1 ◦λ P2), then ℓ1 = |P1| and ℓ2 = |P2| where ℓ1 + ℓ2 = ℓ.
By inductive assumption then, P1 and P2 have free sets of size kℓ1 and kℓ2
respectively, and by definition of ‘◦’ the free set of P is no more than the
combination of the free sets of P1 and P2, which is of size kℓ1 + kℓ1 = kℓ.

If P is of the form (P1|λP2), then by definition of ‘|’ the free set of P can be
no larger than the smaller free set between P1 and P2; both of which are by
inductive assumption of size no more than k(ℓ− 1).

Finally, if P is of the form (P1+λ), then the free set of P is identical in size to
the free set of P1, which by inductive assumption is no more than k(ℓ−1). ✷

Lemma 41 Let P be a path expression of length ℓ over nodes with bounded
degree k. Then any graph G ∈ L(P) is kℓ2-partitionable.

PROOF. By induction on ℓ.

27

If ℓ = 1, then P is a single dangling node n, and partitioning is trivial. Assume
then that the inductive hypothesis is true for all path expressions of length
≤ ℓ− 1, and let P be a path expression of length ℓ > 1.

If P is of the form (P1 ◦λ P2), then the length of P1 and P2 will be ℓ1 and ℓ2
respectively, where 1 ≤ ℓ1, ℓ2 ≤ ℓ−1. By inductive assumption then, any graph
specified by P1 or P2 is k(ℓ− 1)2-partitionable. Moreover, by Proposition 40,
there are no more than k(ℓ−1) free edges emanating from (any graph specified
by) P1 to connect to P2, and vice versa. To partition any graph specified by
P it is sufficient to partition P1 and then P2; this can cost no more than the
cost of partitioning the graphs specified by P1 and P2 plus the cost of severing
the k(ℓ − 1) free edges between the two subgraphs at each partition. This is
k(ℓ − 1)2 + k(ℓ − 1), which reduces to k(ℓ2 − ℓ), which is certainly no more
than kℓ2.

If P is of the form (P1|λP2), then to partition any graph specified by P it is
sufficient to partition either P1 or P2. The bounds therefore follow trivially
from the inductive assumption.

If P is of the form (P1+λ), then by inductive assumption P1 can be partitioned
with cost no more than k(ℓ− 1)2. Since each copy of a graph specified by P1

is connected to the next copy (if one exists) in the sequence by no more than
k(ℓ− 1) connections, and to the previous copy (if one exists) in the sequence
by no more than k(ℓ−1) connections, any subsequence of images of P1 can be
disconnected from the rest of the sequence with cost no more than 2k(ℓ− 1).
To disconnect any portion of an image of P1 from the rest of its image can
cost no more than k(ℓ− 1)2, so disconnecting any portion of the graph has a
maximum cost of k(ℓ − 1)2 + 2k(ℓ− 1), which reduces to k(ℓ2 − 1), which is
certainly no more than kℓ2. ✷

Theorem 42 Let P be a path expression with length and maximum degree
bounded by a constant. Then any graph G ∈ L(P) is O(1)-partitionable.

PROOF. This follows immediately from Lemma 41. ✷

6.2 Path-Expressions in Productions

As with a normal graph specification, path expressions can be included as the
source and target of productions. However, some structure is required if such
a specification is to be sensible. It is not meaningful, for instance, for there to
be a rule like:

(a ◦ b) −→ (e|f)

28

In this case it is certainly not clear what the rule is telling us to do—should
we replace the a ◦ b graph with an e node or an f node? Similarly, a rule such
as:

(a ◦ b) −→ (d ◦ e)+

does not provide enough information—how many iterations of (d ◦ e) should
(a ◦ b) be replaced with?

Such problematic interpretations can be avoided by restricting the structure of
the target path expression to be related to the path expression of the source.
As long as the structure of the target is essentially the “same” as the source
structure, modulo the specification of actual graphs, the transformation can
be unambiguously based on the actual graph matched by the source.

Suppose we restrict the free sets at each inductive level of a path expression so
only the 1

2
-edges actually used by an enclosing ◦, |, or +-operator are contained

in the free sets. This way the free set at each level only includes “used” edges;
any other 1

2
-edge not included in a free set is then certain to be dangling.

Productions using path expressions will then be formed from a collection of
mappings between corresponding concrete subexpressions of the source and
target expressions. The 1

2
-edges not found in the free set around each concrete

expression (and which are therefore dangling) are used by the δ function in the
same way as normal productions would. By splitting up the δ function among
the individual mappings an effect similar to an interconnected collection of
productions can be achieved, though it is also necessary to ensure these δ
mappings do not conflict. The following definition formalizes these concepts:

Definition 43 Let S and T be path expressions, such that ∂S = ∂T . Let
[S] = (C1, . . . , Cc) and [T] = (D1, . . . , Dc), for some c, with F1, . . . , Fc and
G1, . . . , Gc their corresponding free sets. Let δ1, . . . , δc be a sequence of c partial
bijections, such that δi : Ξ(Ci) ↔ Ξ(Di), where ∀i, 6 ∃e. (δi(e) ∈ Gi) ∨
(δ−1

i (e) ∈ Fi). Then if ∀G ∈ L(S) G is connected, (S, T, δ1, . . . , δc) form a
path-extended production.

Remarks: A skeleton, such as ∂S, specifies an algorithm. When S is actually
matched with a graph, the choices made (such as which side of an | to use, or
how many iterations of a +-expression are needed) can be used to guide the
actions of the ∂T algorithm, since ∂S = ∂T . This establishes the correspon-
dence between concrete expressions in the source and in the target. One can
view a path-extended production, then, as an interconnected series of regular
productions between corresponding concrete subexpressions of the source and
target.

29

6.3 Determinism and Overlap

In order to ensure no two productions are attempting to rewrite the same
node at the same time, the sources of any two productions must not overlap.
Fortunately, a conservative answer is easily determined—although there is a
concomitant reduction in expressibility.

A path-extended production can be viewed as a collection of regular produc-
tions between corresponding concrete subexpressions of the source and target.
If for each path-extended production P we build such a set of regular produc-
tions P̂ , then no two distinct productions in our original set of path-extended
productions will rewrite the same node if all of P̂ is SS-overlap free. In other
words, we have to extend the concept of “SS-overlap free” to path-extended
productions.

Definition 44 Let P be a set of (path-extended) productions. Then P is SS-
overlap free if the set:

P̂ = {([S]i, [T]i, δi)| 1 ≤ ı ≤ |[S]| ∧ ∃(S, T, δ1, . . . , δ|[S]|) ∈ P}

is SS-overlap free.

Ensuring the SS-overlap free property for path-extended productions means
that no two different productions will attempt to rewrite the same graph
node. However, this is still insufficient for actually ensuring determinism; the
use of the iteration operator has not yet been fully-defined. For instance, the
following path-extended production for a linear chain of a-nodes can match
just one a, two a’s, three a’s, etc.

(−a−)+

Given a chain of a’s as an axiom, we do not know how many this expression
should match, or where it should begin. We can alleviate some of the prob-
lem by demanding that there be only one occurrence of each path-extended
rule at any one time. This ensures no node is rewritten more than once, but
introduces the problem of picking which of all possible occurrences of a given
path-extended production we should use. Even choosing the largest (in some
order) occurrence possible, does not solve the problem—when matching our
example to an axiom with a circular chain of a’s, we still do not know where to
start the occurrence. This can be dealt with by, for example, demanding each
path-extended production include at least one node (in all possible graphs
specified by the path-extended expression) which only appears once in each
graph in the grammar language; this way a largest occurrence does constrain
the possible matchings of a path-extended production.

30

The existence of such “anchors” can be ensured in a number of ways. Runtime
resolution, dynamically verifying that no path-extended productions conflict,
is the simplest, though most error-prone. To statically determine the existence
of an anchor we first demand that the anchor, call it a, be identified in the
path-extended production. Then, as long there is at most one a in the axiom
or in the target of any production (in P̂), and each time a appears in the
target of a production it also appears in the source, there will surely be only
one a in any graph in the grammar language.

Proposition 45 Let P be a set of (path-extended) productions. Then P is de-
terministic if P is SS-overlap free, path-extended productions match the largest
possible occurrence (under some deterministic matching strategy), and each
path-extended production includes a unique anchor in its source.

PROOF. This follows directly from the definitions of path-extended produc-
tions, anchors, and SS-overlap free. Because each path-extended production
is anchored at a unique vertex and the matching is done deterministically,
there is only one largest occurrence of each in the graph at any one time. The
SS-overlap free property then ensures no two productions, path-extended or
otherwise, interact. ✷

Remarks: Note that the expression in Example 35 could not appear in the
source of any production in an SS-overlap free set of productions. There are
two concrete expressions,

|p
n

l/\r

and

|p
n

l/\r

which trivially overlap.

In order to state the partitioning properties of path-extended grammars, it
will be convenient to reuse the ST-overlap free concept defined for regular
grammars. This notion can be defined in a manner similar to that just used
for SS-overlap free:

Definition 46 Let P be a set of (path-extended) productions. Then P is ST-
overlap free if the set:

P̂ = {([S]i, [T]i, δi)| 1 ≤ ı ≤ |[S]| ∧ ∃(S, T, δ1, . . . , δ|[S]|) ∈ P}

is ST-overlap free.

31

6.4 Modifications to the Tree Partition Scheme

The ST-overlap free aspect of an ordinary dangling graph grammar ensures
the existence of an associated tree partition scheme (TPS) for any graph in
the language. With some modifications to deal with the 1

2
-edges in the free

sets, this same concept can be used to generate TPS’s for graphs generated
by path-extended dangling graph grammars.

Each time a path-extended production P is applied, it is as if some number of
distinct productions, P̂ (formed between concrete subexpressions of the source
and target of P) were applied simultaneously. If we just consider the actions
of P̂ , then if P̂ is SS and ST-overlap free and has bounds (m, g, k), a bounded
tree partition scheme T (ν, τ, β = m,µ = m,λ = gk) necessarily exists. If P
maps G′ to G then T is constructed from T ′, the TPS of G′. The path ex-
pression operators, though, permit connections also to be established between
the embedded targets of productions in P̂ by linking 1

2
-edges in the free sets.

These connections will not have been taken into account in constructing T .

Let E be the set of connections not considered in the construction of T . E
can be included by modifying τ (the relation mapping connections to tree
links) according to a simple observation about the elements of E. If e ∈ E
is a connection between embedded images of [T]i and [T]j resulting from a
+-operator, then because ∂S = ∂T for all productions and because any graph
specified by S is connected, there is necessarily some connection e′ between
corresponding embedded images of [S]i and [S]j in G′, found as a result of
the application of a corresponding +-operator. The images of [T]i and [T]j
are respective rewrites of the images of [S]i and [S]j , so this implies that
the existence of a connection between embedded images of [S]i and [S]j was
already established in T ′. Since T is an extension of T ′, the modifications
to τ to include connections such as e can be expressed in terms of a simple
expansion of τ ′.

This still leaves e ∈ E which is not a connection between embedded images of
[T]i and [T]j resulting from a +-operator. Fortunately, there can only be a fixed
number of such connections in any graph specified by P , and so the number of
such connections is bounded as a function of the length of P ; specifically, there
can be no more than kℓ such connections. The following results formalize this
argument.

Proposition 47 Let P be a path expression of length ℓ over nodes with bounded
degree k. Let C be the image of any concrete subexpression of P in a given
G ∈ L(P). Then C is connected to G by no more than kℓ connections.

PROOF. Since P is of length ℓ and C is the image of a fully-defined graph

32

within P , C can consist of no more than ℓ nodes, each with degree bounded
by k. Thus, there are no more than kℓ connections emanating from C. ✷

Let G = (A,Υ) be an SS-overlap free and ST-overlap free path-extended
dangling graph grammar with path-extended productions Υ′ ⊆ Υ where u =
|Υ′|. Let k be a bound on the degree of any node, and let ℓ be a bound on
the length of any path expression in Υ′. Let (A, (Υ − Υ′)

⋃
Υ̂′) have constant

bounds (m, g, k), and let d be the maximum number of occurrences of concrete
expressions in the occurrence of any path-extended production.

Lemma 48 Let G = (A,Υ) be a path-extended dangling graph grammar as
just described. Then for any non-empty dangling graph D such that A

s→Υ D
for some s, there exists a bounded tree partition scheme T (ν, τ, β = m,µ =
m,λ ≤ max(∆, kℓ + gk)) for ∆ ≤ min((gk + kℓ)(kℓ)s + u((kℓ)s+1 − 1)/(kℓ−
1)− 1, gk+ kℓ+ ukℓs(d+ 1)) such that ∀n ∈ N, Fanout(n) +wn ≤ m, where
wn is the weight of node n. Moreover, let O be an occurrence of a production
in Υ in D; then if v, v′ are graph vertices in O, ν(v) = ν(v′).

PROOF. By induction on the size of s. Let T = (N,L), where N is the set
of tree nodes and L is the set of tree edges (or links). In all cases we will let
wn = |ν−1(n)|, and total weight W will be the number of graph vertices.

The base case, s = 0, is of course trivial. Assume true for any D′ such that

A
s−1−→Υ D′, and let D be such that A

s−1−→Υ D′ 1−→Υ D. By inductive hy-
pothesis, there exists a bounded tree partition scheme T ′(ν ′, τ ′, β ′, µ′, λ′) for
D′ with the above properties; we will show how to extend T ′ to a bounded
tree partition scheme T for D.

The actions of the regular productions on the TPS have already been de-
termined; assume then that a new TPS, T , has been constructed from T ′

according to the actions of (A, (Υ −Υ′)
⋃

Υ̂′) and as described in Lemma 32,
with two exceptions. First, no dead branch elimination has been performed;
and second, all existing connections in G′ which were identified with a con-
nection established between free sets of any path-extended productions in the
rewrite have been retained in τ . This latter condition means τ is still associ-
ating some connections which do not exist anymore in G with T , but it does
not increase the bound λ.

Such a construction ensures that β does not increase beyond m, µ does not
increase beyond m, and that λ remains bounded by max(λ′, gk+ kℓ); as well,
since dead branches have not been pruned, all nodes and links of T ′ are con-
tained in T . We will now show how to integrate the extra connections implied
through the path-extended productions. There are three separate kinds of

33

connections to establish.

(1) Each time a path-extended production ρ = (S, T, δ1, . . .) is applied, it
is as if all of ρ̂ were applied with extra connections established between
productions in ρ̂. Each one of these productions is between two concrete
subexpressions of ρ, and thus by Proposition 47 the embedded image of
any target in ρ̂ in D can be disconnected with cost at most kℓ. Hence if
O is the image of [S]i for some i and κ(O), nO are the tree nodes (and
by construction κ(O) must exist in both T ′ and T) associated with O
and the corresponding embedded image of [T]i, then τ can be increased
to map the entire connectivity of the embedded image of [T]i to the tree
link (κO, nO). This amounts to λ being no more than kℓ for those links.

(2) If e is a connection established during the rewrite by the actions of a
+-operator of T , then as discussed above there is some corresponding
connection in S, and therefore there is some corresponding connection
e′ in G′. In other words, if e arises from a +-operator and connects the
images of [T]i and [T]j in G, then there exists some e′ connecting the
corresponding images of [S]i and [S]j in G′. Moreover, our second excep-
tional requirement of T stipulates that τ still maps connections like e′ to
links of T . We can replace each such e′ with at most kℓ connections each
application of each path-extended production. This implies a multiplica-
tive increase in λ for any existing link of no more than kℓ. However, it
is also true that no more than ukℓ connections can be introduced to any
tree link in order to connect occurrences of the concrete parts of any oc-
currence of a path expression. Since there are at most d of these concrete
occurrences for each path-extended production, the increase in λ is also
bounded by an additive factor of udkℓ for these connections.

(3) Again, this leaves the consideration of e ∈ E which is not a connection
between embedded images of [T]i and [T]j resulting from a +-operator.
As mentioned there are at most kℓ such connections, and so τ will have to
associate at most kℓ more connections with any given link in T in order
to accommodate them for each of the u path-extended productions.

Thus, all connections can be included in τ with an increase in λ of at most
ukℓ for the latter connections, and either a multiplicative increase by kℓ or an
additive increase by udkℓ. Applying these increases to the inductive hypothesis
results in the described bounds. ✷

Theorem 49 Let G = (A,Υ) be a path-extended grammar as just described.
Then for any dangling graph D such that A

s→Υ D, it must be that D is
O(cs+1 log(|V |))-partitionable, and O(sd log(|V |))-partitionable.

PROOF. Lemma 48 establishes the existence of a tree partition scheme
where λ is bounded as described. By Lemma 30 this TPS can be partitioned

34

r r e n

e e

Axiom Rule 1

n

e e

Rules 2,3

Fig. 8. A grammar generating trees.

with cost O(log(|V |)). ✷

7 Expressibility

There is no guarantee that the class of graphs constructed using the above
methods will be at all interesting. We can, however, demonstrate the express-
ibility of our scheme by showing how to generate a variety of computer science
data structures.

7.1 Reasonably-partitionable Structures

We have evinced two forms of grammar; one where the source and target
of each production must be fully-defined, resulting in O(log(n))-partitionable
graphs, and one where the source and target are specified through path expres-
sions, resulting in O(s log(n))-partitionability for an s-step sequential deriva-
tion. Here we illustrate some possible grammars falling into the former cate-
gory.

7.1.1 k-ary Trees

The class of k-ary trees is trivial to generate. The axiom consists of just a single
node, labelled root. Two rules then suffice to expand either the root or a leaf
into an internal node and k child leaves. In the case of a leaf being rewritten,
the 1

2
-edge connecting the rewritten leaf to its parent is associated with the 1

2
-

edge extending from the internal node. This is illustrated in Figure 5 8; Rule 1
expands the root node, and Rules 2 and 3 (shown as one rule—there should
actually be two rules, one if the e-node is a left child of its parent, and a
symmetric one if e is the right child) expand a left child or a right child.

5 Edge labels and the δ function are not illustrated; they should be obvious from
the geometric positioning of the 1

2 -edges.

35

r r

Rules 4,5

Rule 3

Rule 2

Axiom Rule 1

n

e e

e n

e e

e

e n

e e

n

e e

Fig. 9. A grammar generating inorder threaded (binary) trees.

r r

Rules 4,5

Rule 3

Rule 2

Axiom Rule 1

n

e e

e n

e e

e n

e e

e n

e e

Fig. 10. A grammar generating leaf-threaded trees.

7.1.2 Threaded k-ary Trees

By adding two 1
2
-edges to each node, for left and right threaded neighbours,

threading can be maintained as the leaves are expanded (see Figure 9; thread-
ing is shown using dashed lines). If just the leaves are to be threaded, the
process is similar; expanded leaves generate a leaf-threaded subtree, and the
original threaded neighbours are transferred to the new leaf children (Fig-
ure 10). Our examples illustrate binary trees and inorder threading, but clearly
it is possible to accommodate any recursive threading policy in the same way.

7.1.3 Linked Lists

Normal linked lists can be easily generated by marking the tail and/or head
of the list distinctly, and then generating new entries by expanding the tail or
head into an internal node and a new tail or head (Figure 11). If the list is
intended to be circular, then an extra connection between the head and tail is
maintained through the rewrites (Figure 12). Different orders of application for
the rules then correspond to the different variations on lists—stacks, queues,
double-ended queues, etc.

36

h h n

h t
Axiom

Rule

Fig. 11. A grammar generating linked lists.

h t

h h n

Axiom

Rule

Fig. 12. A grammar generating circular linked lists.

s

s

w

s

s s

c

d

s eb

s s s

Rule 2

Rule 3

Rule 1

Axiom

Fig. 13. A grammar generating compiler control flow graphs.

7.1.4 Compiler Control-Flow Graphs

Structured procedural languages can be modelled by graphs, with linked lists
of nodes representing sequences of statements, and cycles representing loops
and conditionals. The usual directedness of these graphs is simply reflected in
the choice of edge labels.

Such a grammar is shown in Figure 13. The axiom thus consists of a single
statement node bracketed by a begin and end marker. Rules exist to expand
a statement node into a pair (or more) of statement nodes (Rule 1), into a
loop statement consisting of a cycle including a statement node (Rule 2), or
into a conditional, consisting of a cycle with true and false branches, with the
conditional exit continuing control flow out of the conditional (Rule 3).

37

c ca

c ca

c ca ()
+

()+

c

c

c(
)

+
c

c

c

c

c

c()
+

c a

c a

c a

c

c

c

Rule 1

Axiom

Rule 2

Fig. 14. A path-extended grammar generating rectangular grids.

7.2 Path-Extended Grammars

Generating dense graphs is performed with a bound on partitionability propor-
tional to sd log(n), where s is the number of times a path extended production
applied and d is the maximum number of occurrences of concrete subexpres-
sions in any path-extended occurrence, and an exponential bound as well.
Thus the number of times a set of productions can be applied is an important
factor in these grammars. Below are a few interesting graphs which can be
produced with this scheme, along with their actual partitionability bounds.

7.2.1 Rectangular Grids

Rectangular grids are one of the more difficult classes of graphs to express us-
ing graph grammars; generating a rectangular grid requires either overlapped
productions or coordinated action between productions, neither of which is
possible with a normal dangling graph grammar. With path-extended pro-
ductions, though, the process is quite straightforward (see Figure 14). The
axiom is an initial minimal grid, and there are only two rules. Rule 1 expands
the width of a rectangular grid by one column, and Rule 2 rule expands the
height by one row.

Our partitionability bounds as given by Theorem 49 are far from optimal in
this case. Our exponential or length-driven bounds do not compare to the ac-
tual Θ(

√
n) bounds on partitionability. In this case, though, the upper-bound

on partitioning the TPS from which these bounds are derived is misleading.
If the grid is produced by first generating the width and then the height, the

38

r

n

n e n

e e

n

n e n

e e

r n

e e

n

e e

e

Rule 1Axiom

Rule 5Rules 2,3

Rule 4

Fig. 15. A grammar requiring contexts; right leaves are expanding only if the left
sibling is not a leaf.

TPS inductively constructed according to Lemma 32 will look isomorphic to:

|p
n

l/\r

+l→p

+r→p

Each application of the path expression then increase the number of con-
nections mapped to each tree link in the TPS by only a constant amount.
Moreover, since the TPS itself is a path expression, by Theorem 42 the TPS
can be partitioned with cost O(1)—reducing the cost of partitioning the grid
to O(

√
n).

7.3 Contexts

The above examples are all of grammars with the productions having just
single nodes in their source graphs. Data structures which are built based on
the local nature of the surrounding graph require contexts or larger source
graphs to distinguish which vertices are to be expanded. A tree, for example,
where right-child leaves are expanded only if the corresponding leaf-child leaves
have already been expanded would need this sort of local information (see
Figure 15).

39

8 Tree Width

Tree-width is a concept in graph theory meant to model how “close” a given
graph is to a tree. More importantly, a bounded tree-width specifies a large
class of graphs for which polynomial-time (and often linear-time) algorithms
exist for a variety of problems in NP [4,5,13,64,96]. If we can find a tree parti-
tion scheme for a given graph, however, it is possible to adapt the tree parti-
tion scheme into a tree decomposition, and the tree-width is then necessarily
bounded. First, however, we must define tree-width:

Definition 50 Let T = (N,L) be a tree with nodes N and edges L. Then
π : N × N → P(N) is a function returning the set of vertices forming the
loop-free path connecting the two input vertices.

Definition 51 Let G = (V,E) be a graph. A tree-decomposition of G is a
tree T = (N,L) and a function σ : N → P(V) such that:

(1) ∀(v, v′) ∈ E, ∃n ∈ N. v, v′ ∈ σ(n).
(2) ∀n, n′ ∈ N, v ∈ σ(n)

⋂
σ(n′) ⇒ ∀n̂ ∈ π(n, n′) v ∈ σ(n̂)

(3) V =
⋃

n∈N

σ(n).

Let mT be the maximum cardinality of any σ(n) in T ; i.e., mT = max|σ(n)|
over all n in N . Then the tree-width of D is defined as one less than the
minimum mT over all tree-decompositions T .

Lemma 52 Let D = (V,E, νD, φ, ψ,ΣV ,ΣE, C) be a dangling graph, and let
T (νT , τ, β, µ, λ) = (N,L) be a bounded tree partition scheme for D. Necessarily
D has tree-width smaller than 2βλ+ µ.

PROOF. We will construct a function σ which together with (N,L) forms a
tree decomposition of D. Let ℓ(n) be the set of outgoing links attached to a
node n in N . Define σ : N → P(V) as:

σ(n) = {v ∈ V | νT (v) = n}
⋃

{v ∈ V | ∃e, e′ ∈ E, ∃l ∈ ℓ(n). νD(e) = v ∧ (e, e′)τl}

The function σ maps each tree node n in T to the set of vertices which are
mapped by νT to n, or which are included in a connection relation which is
mapped by τ to an outgoing edge attached to n. We now verify that σ has
the tree decomposition properties.

Let ǫ : N → P(V) be a function returning the subset of V corresponding to a

40

given node (subtree) in T . Note that if and only if n ∈ Subtree(n′) for two tree
nodes n, n′, then ǫ(n) ⊆ ǫ(n′). Also note that by definition of TPS, a vertex v
is in ǫ(n) for a tree node n if and only if ∃n′ ∈ Subtree(n). νT (v) = n′.

By definition of T , every vertex in V is already uniquely mapped by νT to some
node in N , so certainly σ covers the vertices of D. Every connection relation
c in C is either between two vertices both mapped to the same tree node in
T , in which case a node in T must exist containing both endpoints, or c links
two nodes which are not mapped by νT to the same tree node. In the latter
case, let v, v′ ∈ V be the two vertex endpoints. At least one of the subtrees
rooted at νT (v) or νT (v′) must not contain the other, and so c is a connection
relation which must be broken to separate ǫ(νT (v)) from ǫ(νT (v′)). Now, by
definition of T , c is associated by τ to each link along π(νT (v), νT (v′)), which
must be a chain of at least 2 nodes. Thus, by construction of σ, there will be
a node n with both v ∈ σ(n) and v′ ∈ σ(n)

The remaining property to show is that whenever a graph vertex v is contained
in σ(n) ∩ σ(n′) for two tree nodes n, n′, then it is also contained in σ(n̂) for
each n̂ along the simple path between n and n′. Let v, n, n′ be a vertex and
two nodes in such a situation. Vertex v is mapped by σ to node n (and to
node n′) for one of two reasons: 1) νT (v) = n, or 2) some connection to v is
associated by τ to an outgoing link of n.

(1) v ∈ ǫ(n), v ∈ σ(n′) by reason 2). This means that in order to partition
ǫ(m′) for some child m′ of n′ it is necessary to cut a connection c to v;
or, equivalently, only one of v and some neighbour v′ of v is in ǫ(m′).
(a) v ∈ ǫ(m′). Then ǫ(n) ⊆ ǫ(n′) and ∀n̂ ∈ π(n, n′) ǫ(n̂) ⊆ ǫ(n′). The

connection c must then be broken to partition any ǫ(n̂), and is thus
mapped by τ to all links along π(n, n′). By definition of σ, v will then
be mapped by to all nodes in π(n, n′).

(b) v′ ∈ ǫ(m′). Then either ǫ(n′) ⊆ ǫ(n) or ǫ(n) and ǫ(n′) are disjoint.
(i) ǫ(n′) ⊆ ǫ(n). There exists a node n̂ ∈ π(n′, n) such that ∀n̂′ ∈

π(n̂, n) it is the case that v ∈ ǫ(n̂′), and ∀n̂′ ∈ (π(n′, n̂) − {n̂})
we have v 6∈ ǫ(n̂′). Each of the former must be such that either
νT (v) = n̂′ or there is some child m̂′ with v 6∈ ǫ(m̂′) or there
is some child m̂′ with a neighbour v′′ of v outside ǫ(m̂′). In all
situations σ(n̂′) will include v. Each of the latter cases must have
the same connection c between v′ and v cut to partition ǫ(m̂′),
for some child m̂′, and so σ(n̂′) will include v.

(ii) ǫ(n) and ǫ(n′) are disjoint. Then τ must map c to the link be-
tween any n̂ ∈ π(n, n′) and its child m̂ ∈ π(n, n′) where ǫ(m̂)
contains only one of ǫ(n) or ǫ(n′). Hence by definition of σ, v is
in σ(n̂).

(2) v 6∈ ǫ(n), v ∈ σ(n′) by reason 2). Then v ∈ σ(n) by reason 2) as well, and
ǫ(m) for some child m of n contains a neighbour v′ of v. If v ∈ ǫ(n′) then

41

of course the situation is symmetric to case 1, so we can assume v 6∈ ǫ(n′).
Any n̂ ∈ π(n, n′) such that v 6∈ ǫ(n̂) must have a child containing either
(or both) v and v′, so certainly v ∈ σ(n̂). If some n̂ does contain v then
situation is symmetric to a sub-case of case 1.

This establishes that the tree T and function σ represent a valid represen-
tation from which one can derive (an upper bound on) tree-width. Since the
number of outgoing links from any node in T is bounded by β, the number of
connection relations mapped to a given tree link is bounded by λ, and µ is a
bound on the number of vertices mapped by νT to any node, there will never
be more than 2βλ + µ vertices of D mapped by σ to any single tree node in
T . ✷

Theorem 53 Let G be an ST-overlap free dangling graph grammar with con-
stant bounds (m, g, k). Let D = (V,E, ν, φ, ψ,ΣV ,ΣE , C) be a dangling graph
such that A

∗→Υ D, necessarily D has tree-width smaller than 2mgk +m.

PROOF. By Lemma 32 a bounded tree partition scheme T (νT , τ, β = m,µ =
m,λ = gk) exists for D. By Lemma 52 this implies an upper bound on tree-
width of 2mgk +m− 1. ✷

Theorem 54 Let G be an ST-overlap free path-extended dangling graph gram-
mar with path-extended productions Υ′ ⊆ Υ where u = |Υ′|. Let ℓ be a
bound on the length of any path expression in Υ′, let d be the maximum
number of occurrences of concrete subexpressions in any occurrence of a path-
extended production, and let (A, (Υ−Υ′)

⋃
Υ̂′) have constant bounds (m, g, k).

If D = (V,E, ν, φ, ψ,ΣV ,ΣE , C) is a dangling graph such that A
s→Υ D, then

necessarily D has tree-width smaller than 2mmax(∆, kℓ + gk)) + m where
∆ ≤ min((gk+ kℓ)(kℓ)s + u((kℓ)s+1 − 1)/(kℓ− 1)− 1, gk+ kℓ+ ukℓs(d+ 1)).

PROOF. By Lemma 48 a bounded tree partition scheme exists forD with the
given bounds. By Lemma 52 this implies the upper bound on tree-width. ✷

Corollary 55 Rectangular grids of size w × h have tree-width of O(w + h).

PROOF. By construction of the grammar in Figure 14, we find that the
bounds on the grammar are all small constants: m = 9, u = 2, k = 4, ℓ = 9,
g = 2. Since any rectangular grid can be generated by this grammar in w+ h
steps, s = w + h. By Lemma 52, and the construction in section 7.2.1 the
upper bound on tree-width follows. ✷

42

Corollary 55 jibes nicely with existing results; it is known that square grids of√
n×√

n vertices (n ≥ 2) have a tree-width of
√
n [90].

9 Related Work

In the interests of generality, we have investigated graph partitioning under
the assumption that any number of partitions may be demanded. However,
related problems such as determining the minimum number of edges to be
cut to separate a graph into just k partitions for a fixed k, or determining
the smallest set of vertices separating the graph into two partitions with no
edges between them, have been examined extensively. Both problems are NP-
complete in general, but have tractable versions for specific classes of graphs.
In 1979, for instance, Lipton and Tarjan [75] solved the latter problem for
planar graphs, by showing that all planar graphs have a set of O(

√
n) sep-

arator vertices; an extension of this classic result to graphs of fixed genus is
available [97] and other variations have been explored [12,21] from the view-
point of graph embedding. Unfortunately, these results do not easily transfer
to the p-partitioning problem for any arbitrary p, nor do they tend to produce
partitionings with the tight balancing and communication costs we require.

One of the simpler structures to partition is of course trees, and there have been
a variety of different approaches. Lukes gives an efficient algorithm based on
dynamic programming for finding connected partitions of trees [78]. A similar
problem has been looked at by Kundu and Misra, who give a linear algorithm
for finding an optimal cut partitioning, where each subtree contains at most a
given number of nodes, though there may or may not be a total of k partitions
produced [67]. While these algorithms are interesting and have some similarity
to our tree partitioning algorithm of Section 4, we do not necessarily require
connectivity, and we do require there to be a given number of partitions.

Heuristic attacks on partitioning problems abound. Perhaps the most well-
known is the Kernighan-Lin heuristic [62]: a graph is first partitioned arbi-
trarily, and the partitioning is then improved by exchanging vertices between
partitions. This technique was later extended by Fiduccia and Mattheyses [38].
Feo and Khellaf have developed a heuristic based on a recursive pair-wise
grouping of nodes for k-partitioning when k is large [36]. More recent methods
include Spectral Bisection [46], Simulated Annealing [59], and others; heuristic
combinations of such methods have also been quite successful [19,60,98]. We
of course are interested in deterministic methods; recently, direct approaches
that find cuts within a specific bound of the optimal have been investigated;
for instance, Saran and Vazirani find minimum k cuts within at most (2−2/k)
of the optimal [92]. While polynomial (O(np) for some p), direct methods such
as these are still too expensive for dynamic graphs.

43

Data partitioning explicity for irregular problems has also been explored.
Nakanishi et al. [83], for instance, develop a “Heirarchical Data Partition-
ing” graph, incorporating a hierarchical representation of control flow and
control-flow dependencies. This is a general model for partitioning that does
not attempt to utilize any structure-specific information, and does not include
cost bounds. Naturally, better results can be obtained if even general charac-
teristics of such algorithms are known; this is the approach taken by Gautier,
Roch and Villard [41]. They identify several programming paradigms for deal-
ing with irregular problems in order to produce a classification scheme. Their
efforts are meant to facilitate either manual or automatic load-balancing and
not to actually specify such algorithms. Das, Moser and Melliar-Smith [18]
also give a generic approach through the presentation of hardware designed
to support irregular data accesses, called the “Intersecting Broadcast Ma-
chine.” By distributed data randomly, and maintaining multiple copies of data
through broadcasts, they can show (experimentally) very good load-balancing
and processor utilization; however, their method is stochastic, rather than
deterministic. Alternatively, there are many algorithms for tackling specific
problem areas: backtracking search trees [91], Finite Element Methods on ir-
regular domains [9,20,43,98], particle systems [79], etc. Most of these make use
of heuristics or randomized techniques, such as greedy graph clustering [35],
simulated annealing and recursive bisection.

9.1 Analyzing Irregular Data Structures

One possible approach to irregular data structures is to find some way to
express them that makes their actions more predictable. We argue that most
irregular data structures are simple variations on well-known structures; our
graph grammar systems can be seen as a method of making irregular data
structures more “regular,” and hence analyzable. There have been a few similar
approaches, with various goals in mind.

The Abstract Description of Data Structures (ADDS) formalism of Hummel,
Hendren and Nicolau [48] falls into this category. Recursive data structure
definitions are augmented by a set of keywords defining the general shape
(via interacting dimensions), and the intended traversals as well. A doubly-
linked list, for instance, might be specified as consisting of two dimensions,
one uniquely forward along the next pointer and the other backward along the
previous pointer. The emphasis here is on increasing the compiler’s ability to
perform automatic error detection, optimizations, and fine-grain paralleliza-
tion, and not to dictate graph structure.

A similar linguistic approach is given by Gupta [44], with intent to extend
SPMD-style parallelism to dynamic data structures. Data structures may be

44

local or distributed, and distribution and naming strategies are user-specified
(default strategies exist too). While quite flexible, this approach still requires
the programmer to define the partitioning (or accept the default), and is pri-
marily a descriptive rather than prescriptive approach. The emphasis here is
on correct and fast execution of the run-time system, and not on ensuring the
quality of the partitions.

Klarlund and Schwartzbach [63] have developed an extension to data types by
appending routing expressions to recursive type definitions: a spanning tree
is specified using the normal recursive definition, and a regular string expres-
sion over edge labels and simple node predicates (such as “this is a leaf”) is
allowed to dictate further connectivity. This allows the expression of recursive
data structures which do not strictly form trees, but without the generality of
arbitrary and explicit pointers. Like our path expressions, their routing expres-
sions are based on a generalization of regular expressions on character strings,
though their formalism includes logical decision operators as well as simple
pattern matching. This model is directed toward facilitating automated rea-
soning about pointer structures, though and not partitionability—graph types
exist for structures that are relatively expensive to partition, like a binary tree
with all leaves pointing to the root.

9.2 Graph Grammars

We have used graph grammars as the basis for our representation of data
structures. Because of their flexibility and necessary formalization of rewrites,
graph grammars are an attractive model for data structure development; by
eliminating many of the problems associated with pointers, such as the in-
evitable temporary inconsistencies as pointers are updated, graph grammars
are able to represent data structures and modifications in a way that tends to
make analyses and interpretive results considerably more feasible than with
pointers. Our method constitutes a novel use of graph grammars even within
this context; however, we are certainly not the first to use such a formalism
to represent data structures. In the text that follows we offer a brief synopsis
of other work on graph grammars, followed by a description of how they have
been applied to algorithm and data structure development.

A paper by the ESPRIT Basic Research Working Group No. 3299 [84] gives
a history of the different forms and directions of research into graph gram-
mars. There have been a wide variety of approaches. The “algebraic” method
of Ehrig and Schneider and Löwe [8,26–28,77], also known as the “Berlin
Approach,” concentrates on Categorical representations of graph grammars.
This primarily theoretical body of work allows for the specification of prop-
erties that permit concurrent application and amalgamation of rules, in a

45

non-specific setting. Courcelle [13,15] gives another abstract approach based
on the logical interpretation of graphs. By showing that various graph prop-
erties cannot be expressed in certain logical languages, he is able to define an
expressiveness heirarchy, and relates this to a specific form of graph grammar
(hyperedge replacement grammars).

More concrete definitions and results also exist. One of the first and most
successful (i.e., long-lived) forms of graph grammar is the “Node Label Con-
trolled” (NLC) formalism of Janssens and and Rozenberg [50]. Here each pro-
duction rewrites a single node to an arbitrary graph (of fixed size), and con-
nections are established based on a connection (embedding) relation (a set of
pairs of node labels); each time a rewrite is performed, nodes in the newly em-
bedded graph are hooked up to the nodes surrounding the original rewritten
node based on the pairs. There is only one connection relation for all pro-
ductions. Janssens and Rozenberg have shown this model to be quite robust
under many variations [51], and have used this as the basis for an expressive-
ness heirarchy [57,58].

The restricted form of the embedding relation in NLC grammars can be incon-
venient. “Neighbourhood Controlled Embedding” (NCE) grammars generalize
this function, allowing each rule to specify its own embedded relation [53,54].
NCE grammars also permit the left-side of each rule to be an arbitrary graph,
not just a single node. These would seem to be extensions that would make
NCE grammars strictly more powerful than NLC, and this is true of general
NCE; however, if NCE grammars are constrained to have just one node on
the left-side of each rule, “1-NCE” grammars, then it turns out NLC is just
as powerful: NLC = 1 − NCE ⊂ NCE [54]. This makes NCE grammars a
particularly flexible model.

There have been numerous variations on NCE and a readable introduction
to the different forms of NLC and NCE grammars is given by Engelfriet and
Rozenberg [34]. “dNCE” extends NCE to directed graphs [52], and “eNCE” in-
cludes edge-labels into NCE [11,30]; the combination, “edNCE”, having both.
The most useful extension seems to be “C-edNCE”, or Confluent edNCE
grammars [31,32]. Confluence in this context means that the order of rule
applications is unimportant—any order generates the same graph (confluence
is defined formally by Courcelle in [14]). This sort of determinism is useful for
reasoning about expressiveness (and for parallelism in rule applications), and
seems to produce a fairly natural class of grammars; it has been shown that
C-edNCE grammars generate languages which can be characterized in terms
of Monadic Second-Order Logic on Trees [32], “Separated Handle-Rewriting
Hypergraph Grammars” (S-HH) [16], and others.

This last category hints at one of the major dichotomies in graph grammar
theory: the distinction between node-rewriting and edge-rewriting grammars.

46

While the former transform graphs by mapping nodes to graphs (and includes
NLC and NCE), and so edges in the original graph are only manipulated as
a consequence of node transformations, the latter rewrite (hyper)edges 6 to
(hyper)graphs. (Hyper)edge rewriting grammars have been primarily inves-
tigated by Kreowski [45,23], Lautemann [71,70] and Courcelle [13,15], where
they have been successfully used to establish many decidability properties for
graph languages. The extension to handle-rewriting hypergraph grammars is
through the inclusion of the vertices to which the hyperedge is attached in the
rewrite; such a structure is called a “handle.”

There have been attempts to reconcile the two approaches. For instance, the
schematic formalization of graph grammars developed by Kreowski and Rozen-
berg [65,66] encompasses a large variety of grammars in both camps. They
describe the actions of graph grammars in terms of five basic operations:
choose a rule application, check its applicability, remove the designated parts
of the graph, add parts to the graph, and finally connect graph elements. Un-
fortunately, such a high level of abstraction does not engender many useful
results. More specific results, particularly for the context-free/confluent ver-
sions, have begun to appear in the last few years. Node and edge grammars
are united, for instance in the paper (mentioned above) by Courcelle, Engel-
friet and Rozenberg showing that S-HH grammars are expressively equivalent
to C-edNCE [16,17], as well as by Engelfriet and Heyker showing that “Con-
text Free Hypergraph Grammars” (CFHG) have the same expressive power
as C-edNCE when both are restricted to graphs of bounded degree [33].

Our grammars are designed for two goals; to allow for the easy expression
of partitionings and associated problems, and to accurately model (doubly-
connected) data structures. The resulting formalism is distinct from any of
these existing systems; like eNCE we permit more than one node on the left-
side of a production, and have separate embedding relations for each rule,
though our embedding relation more precisely resembles that used by Slisenko,
in a work describing a polynomial-time solution to the Hamiltonian Circuit
problem for certain graphs [96]. However, there are many important differ-
ences, such as the use of 1

2
-edges, and restrictions we have introduced to make

the execution of our model practical: bounded-degree, no node can being al-
lowed to have more than one 1

2
-edge attached with the same label, matching

by bijection, ST-overlap free, etc. This makes comparisons somewhat diffi-
cult to perform, although the overall simularity makes it seem likely that our
grammars have an expressive power somewhere between 1-eNCE and eNCE.
Our model is also not context-free; our basic dangling graph grammars are
permitted to have SS-overlap which can make the resulting language depen-
dent on the order of rule application. When we introduce our parallel graph
grammars we must of course ensure that no two rules overlap, but the use

6 A generalization of edges, hyperedges connect more than two nodes together.

47

of (non-rewritten) contexts again makes the language order-dependent. The
concept of non-rewritten local contexts for productions is well-established in
the theory of L-Systems, a parallel form of string-rewriting grammar [73,86].

9.3 Using Graph Grammars

Graph grammars have been used for a variety of purposes related to paral-
lelism and data structure development. Graph grammars, for instance, have
been used to analyse network reliability [85], solid modeling for CAD/CAM
systems [39], compiler generation [47], and as a syntax for visual representa-
tions [89].

There have also been approaches to data structure manipulation based on
graph grammars, though none have dealt with the partitioning problems aris-
ing from coarse-grained parallelism. One of the earliest was the IPSEN project
of Nagl et al. [81]. The goal here was to give formal methods for software devel-
opment, using graph grammars as a specification system. This project spawned
the well-known “PROGRESS” (PROgrammed Graph Rewriting SyStems)
language of Schürr, a graph rewriting formalism intended for generic soft-
ware development [94,95]. This is a complete system, including language and
(textual) editing environment. As with the original IPSEN project, though,
many of its constructs, such as the use of directed edges and matching rules
through an (unrestrained) graph query sublanguage, make partitioning diffi-
cult, and so they are unsuitable for our purposes. The intermediate language
“Lean” by Barendregt et al. [6] is another generic graph grammar language,
with a similar drawback. There have also been many papers on implement-
ing database queries and transformations using graph grammars [2,3,40], but
again these contain constructs which make partitioning difficult.

Specifically for parallel applications, Janssens and Rozenberg [56] give a the-
oretical result where they model the behaviour of an Actor grammar using
graph transformations. Barthelmann and Schied also use graph grammars as
the semantics of a parallel language, “DHOP” [7], and Glauert, Kennaway and
Sleep have developed “Dactl” as a graph grammar-based common target lan-
guage for a number of other languages [42]. All of these approaches, while in-
teresting and designed to deal with parallelism, take a relatively “fine-grained”
approach to parallelism, essentially rendering the partitioning problem moot.

48

10 Conclusions

Our grammars cannot generate all graphs. A formalism which generates all
graphs with their corresponding partitionings is unlikely to exist given the
plethora of NP problems in the area of graph partitioning. Nevertheless, our
formalism is expressive enough to include a large variety of graphs and struc-
tures commonly used in computer science applications. The grammar-based
method we have defined also includes some capacity for use in incremental
situations. Since the grammar rules used for graph construction can also be
used for updates, the new partitioning can be related to the old in a manner
corresponding to the actual update. Roughly speaking, this means a small
change in the data structure will result in an equally small change in the par-
titioning. Such a natural correlation makes our method especially useful for
dynamically-changing structures, and we are currently investigating the limits
of this approach.

Graphs with bounded tree-width have been recognized as constituting a class
of graphs about which many difficult problems, some in NP, can be solved effi-
ciently [4,5,13,68,69,71,90,96]. We have taken the opposite approach, starting
with a difficult problem and showing that a certain efficient solution implies
an upper bound on tree-width related to the partitionability of the graph.
Nevertheless, it is interesting to find our solution converging to the same class
of graphs. Tree-width is clearly a fundamental property in graphs, and the
connections with complexity theory add credence to our initial assumptions.

A major theoretical question is whether the bounded tree-width of the graphs
generated by our grammars is a requirement for being reasonably-partitionable.
It is straightforward to find examples of the converse—a tree consisting of a
root with n− 1 children has tree-width 1, the same as any other tree, but has
a lower bound on partitionability of n− 1. But if a graph is “as partitionable
as a tree,” is it necessarily tree-like? Of course, an affirmative answer would
still not make partitionability easy to recognize.

Acknowledgement

This research was funded by grants from NSERC of Canada and FCAR of
Quebec. All opinions expressed are those of the authors, and not necessarily
of their respective institutions.

49

References

[1] Noga Alon, Paul Seymour, and Robin Thomas. Planar separators. SIAM
Journal on Discrete Mathematics, 7(2):184–193, May 1994.

[2] Marc Andries and Gregor Engels. Syntax and semantics of hybrid database
languages. In Hans Jürgen Schneider and Hartmut Ehrig, editors, Graph
Transformations in Computer Science: Proceedings of the International
Workshop, number 776 in Lecture Notes in Computer Science, pages 19–36,
Dagstuhl Castle, Germany, January 1993. Springer-Verlag.

[3] Marc Andries and Jan Paredaens. A language for generic graph-
transformations. In G. Schmidt and R. Berghammer, editors, Graph-Theoretic
Concepts in Computer Science: Proceedings of the 17th International Workshop,
WG ’91, number 570 in Lecture Notes in Computer Science, pages 63–74,
Fischbachau, Germany, June 17–19 1991. Springer-Verlag.

[4] Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability—a survey. BIT, 25(1):2–23, 1985.

[5] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for
tree-decomposable graphs. In Timo Lepistö and Arto Salomaa, editors,
Proceedings of the 15th International Colloquium On Automata, Languages and
Programming, number 317 in Lecture Notes in Computer Science, pages 38–51,
Tampere, Finland, July 11–15, 1988. Springer-Verlag. Extended abstract.

[6] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J.
Plasmeijer, and M.R. Sleep. Towards and intermediate language based on graph
rewriting. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors,
Proceedings of PARLE – Parallel Architectures and Languages Europe, volume I
of Lecture Notes in Computer Science 258–259, pages 159–174, Eindhoven, The
Netherlands, June 15–19, 1987. Springer-Verlag.

[7] Klaus Barthelmann and Georg Schied. Graph-grammar semantics of a higher-
order programming language for distributed systems. In Hans Jürgen Schneider
and Hartmut Ehrig, editors, Graph Transformations in Computer Science:
Proceedings of the International Workshop, number 776 in Lecture Notes in
Computer Science, pages 71–85, Dagstuhl Castle, Germany, January 1993.
Springer-Verlag.

[8] Paul Boehm, Hartmut Ehrig, Udo Hummert, and Michael Löwe. Towards
bistributed graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, editors, Proceedings of the 3rd International Workshop on Graph
Grammars and Their Application to Computer Science, number 291 in Lecture
Notes in Computer Science, pages 86–98, Warrenton, Virginia, December 2–6,
1986. Springer-Verlag.

[9] George Horatiu Botorog and Herbert Kuchen. Algorithmic skeletons for
adaptive multigrid methods. In Afonso Ferreira and José Rolim, editors,
Parallel Algorithms for Irregularly Structured Problems: Proceedings of the

50

Second International Workshop, IRREGULAR ’95, number 980 in Lecture
Notes in Computer Science, pages 27–41, Lyon, France, September 4–6 1995.
Springer-Verlag.

[10] Franz J. Brandenburg. The computational complexity of certain graph
grammars. In A. B. Cremers and H. P. Kriegel, editors, Theoretical Computer
Science: 6th GI-Conference, number 145 in Lecture Notes in Computer Science,
pages 91–99, Dortmund, West Germany, January 1983. Springer-Verlag.

[11] Franz J. Brandenburg. On partially ordered graph grammars. In H. Ehrig,
M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of the
3rd International Workshop on Graph Grammars and Their Application to
Computer Science, number 291 in Lecture Notes in Computer Science, pages
99–111, Warrenton, Virginia, December 2–6, 1986. Springer-Verlag.

[12] Thang Nguyen Bui and Andrew Peck. Partitioning planar graphs. SIAM
Journal on Computing, 21(2):203–215, April 1992.

[13] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages
195–241. Elsevier, Amsterdam, 1990.

[14] Bruno Courcelle. An axiomatic definition of context-free rewriting and its
application to NLC graph grammars. Theoretical Computer Science, 55:141–
181, 1987.

[15] Bruno Courcelle. The logical expression of graph properties (abstract). In
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the
4th International Workshop on Graph Grammars and Their Application to
Computer Science, number 532 in Lecture Notes in Computer Science, pages
38–40, Bremen, Germany, March 5–9, 1990. Springer-Verlag.

[16] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Context-free
handle-rewriting hypergraph grammars. In H. Ehrig, H.-J. Kreowski, and
G. Rozenberg, editors, Proceedings of the 4th International Workshop on Graph
Grammars and Their Application to Computer Science, number 532 in Lecture
Notes in Computer Science, pages 253–268, Bremen, Germany, March 5–9, 1990.
Springer-Verlag.

[17] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting
hypergraph grammars. Journal of Computer and System Sciences, 46:218–270,
1993.

[18] A. Das, L.E. Moser, and P.M. Melliar-Smith. A parallel processing paradigm
for irregular applications. In Afonso Ferreira and José Rolim, editors, Parallel
Algorithms for Irregularly Structured Problems: Proceedings of the Second
International Workshop, IRREGULAR ’95, number 980 in Lecture Notes in
Computer Science, pages 249–254, Lyon, France, September 4–6 1995. Springer-
Verlag.

[19] R. Diekmann, R. Lüling, B. Monien, and C. Spräner. A parallel local-search
algorithm for the k-partitioning problem. In Proceedings of the 28th Hawaii

51

International Conference on System Sciences (HICSS ’95), volume 2, pages
41–50, 1995.

[20] Ralf Diekmann, Derk Meyer, and Burkhard Monien. Parallel decomposition
of unstructured fem-meshes. In Afonso Ferreira and José Rolim, editors,
Parallel Algorithms for Irregularly Structured Problems: Proceedings of the
Second International Workshop, IRREGULAR ’95, number 980 in Lecture
Notes in Computer Science, pages 199–215, Lyon, France, September 4–6 1995.
Springer-Verlag.

[21] Krzystof Diks, Hristo N. Djidjev, Ondrej Sýkora, and Imrich Vrťo. Edge
separators of planar and outerplanar graphs with applications. Journal of
Algorithms, 14:258–279, 1993.

[22] W. E. Donat and A. J. Hoffman. Lower bounds for the partitioning of graphs.
IBM Journal of Research and Development, 17(5):420–425, September 1973.

[23] Frank Drewes and Hans-Jörg Kreowski. A note on hyperedge replacement.
In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the
4th International Workshop on Graph Grammars and Their Application to
Computer Science, number 532 in Lecture Notes in Computer Science, pages
1–11, Bremen, Germany, March 5–9, 1990. Springer-Verlag.

[24] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Proceedings of the
4th International Workshop on Graph Grammars and Their Application to
Computer Science, number 532 in Lecture Notes in Computer Science, Bremen,
Germany, March 5–9, 1990. Springer-Verlag.

[25] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. Proceedings of
the 3rd International Workshop on Graph Grammars and Their Application
to Computer Science, number 291 in Lecture Notes in Computer Science,
Warrenton, Virginia, December 2–6, 1986. Springer-Verlag.

[26] Hartmut Ehrig. Tutorial introduction to the algebraic approach of graph
grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rozenberg, editors,
Proceedings of the 3rdInternational Workshop on Graph-Grammars and Their
Application to Computer Science, number 291 in Lecture Notes in Computer
Science, pages 3–14. Springer-Verlag, December 1987.

[27] Hartmut Ehrig, Paul Boehm, Udo Hummert, and Michael Löwe. Distributed
parallelism of graph transformations. In H. Gottler and H. J. Schneider, editors,
Proceedings of the 13th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG ’87), number 314 in Lecture Notes in Computer
Science, pages 1–19. Springer-Verlag, July 1988.

[28] Hartmut Ehrig, Martin Korff, and Michael Löwe. Tutorial introduction to the
algebraic approach of graph grammars based on double and single pushouts.
In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the
4th International Workshop on Graph Grammars and Their Application to
Computer Science, number 532 in Lecture Notes in Computer Science, pages
24–37, Bremen, Germany, March 5–9, 1990. Springer-Verlag.

52

[29] Hartmut Ehrig, Manfred Magl, and Grzegorz Rozenberg, editors. Proceedings
of the 2nd International Workshop on Graph Grammars and Their Application
to Computer Science, number 153 in Lecture Notes in Computer Science, Haus
Ohrbeck, West Germany, October 4–8, 1982. Springer-Verlag.

[30] J. Engelfriet, G. Leih, and E. Welzl. Boundary graph grammars with dynamic
edge relabeling. Journal of Computer and System Sciences, 40:307–345, 1990.

[31] Joost Engelfriet. Context-free NCE graph grammars. In J. Csirik,
J. Demetrovics, and F. Gécseg, editors, Proceedings of the International
Conference on Fundamentals of Computation Theory (FCT ’89), number 380
in Lecture Notes in Computer Science, pages 148–161, Szeged, Hungary, August
1989. Springer-Verlag.

[32] Joost Engelfriet. A characterization of context-free NCE graph languages
by monadic second-order logic on trees. In H. Ehrig, H.-J. Kreowski, and
G. Rozenberg, editors, Proceedings of the 4th International Workshop on Graph
Grammars and Their Application to Computer Science, number 532 in Lecture
Notes in Computer Science, pages 311–327, Bremen, Germany, March 5–9, 1990.
Springer-Verlag.

[33] Joost Engelfriet and Linda Heyker. Hypergraph languages of bounded degree.
Journal of Computer and System Sciences, 48:58–89, 1994.

[34] Joost Engelfriet and Grzegorz Rozenberg. Graph grammars based on node
rewriting: An introduction to NLC graph grammars. In H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, Proceedings of the 4th International
Workshop on Graph Grammars and Their Application to Computer Science,
number 532 in Lecture Notes in Computer Science, pages 12–21, Bremen,
Germany, March 5–9, 1990. Springer-Verlag.

[35] C. Farhat. A simple and efficient automatic FEM domain decomposer.
Computers & Structures, 28(5):579–602, 1988.

[36] Thomas A. Feo and Mallek Khellaf. A class of bounded approximation
algorithms for graph partitioning. Networks, 20:181–195, 1990.

[37] Afonso Ferreira and José Rolim, editors. Parallel Algorithms for Irregularly
Structured Problems: Proceedings of the Second International Workshop,
IRREGULAR ’95, number 980 in Lecture Notes in Computer Science, Lyon,
France, September 4–6 1995. Springer-Verlag.

[38] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving
network partitions. In 19th IEEE Design Automation Conference, pages 175–
181, 1982.

[39] Patrick Fitzhorn. A linguistic formalism for engineering solid modeling. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of
the 3rd International Workshop on Graph Grammars and Their Application to
Computer Science, number 291 in Lecture Notes in Computer Science, pages
202–215, Warrenton, Virginia, December 2–6, 1986. Springer-Verlag.

53

[40] A.L. Furtado and P.A.S. Veloso. Specification of data bases through rewriting
rules. In Hartmut Ehrig, Manfred Magl, and Grzegorz Rozenberg, editors,
Proceedings of the 2nd International Workshop on Graph Grammars and Their
Application to Computer Science, number 153 in Lecture Notes in Computer
Science, pages 102–114, Haus Ohrbeck, West Germany, October 4–8, 1982.
Springer-Verlag.

[41] T. Gautier, J.L. Roch, and G. Villard. Regular versus irregular problems and
algorithms. In Afonso Ferreira and José Rolim, editors, Parallel Algorithms
for Irregularly Structured Problems: Proceedings of the Second International
Workshop, IRREGULAR ’95, number 980 in Lecture Notes in Computer
Science, pages 1–25, Lyon, France, September 4–6 1995. Springer-Verlag.

[42] J.R.W. Glauert, J.R. Kennaway, and M.R. Sleep. Dactl: An experimental graph
rewriting language. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings of the 4th International Workshop on Graph Grammars and Their
Application to Computer Science, number 532 in Lecture Notes in Computer
Science, pages 378–395, Bremen, Germany, March 5–9, 1990. Springer-Verlag.

[43] P.W. Grant, M.F. Webster, and X. Zhang. Solving computational fluid
dynamics problems on unstructured grids with distributed parallel processing.
In Afonso Ferreira and José Rolim, editors, Parallel Algorithms for Irregularly
Structured Problems: Proceedings of the Second International Workshop,
IRREGULAR ’95, number 980 in Lecture Notes in Computer Science, pages
187–197, Lyon, France, September 4–6 1995. Springer-Verlag.

[44] Rajiv Gupta. SPMD execution of programs with dynamic data structures
on distributed memory machines. In Proceedings of the 1992 International
Conference on Computer Languages, pages 232–241, Oakland, California, April
20–23, 1992. IEEE Computer Society Press.

[45] Annegret Habel and Hans-Jörg Kreowksi. May we introduce to you: Hyperedge
replacement. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors,
Proceedings of the 3rd International Workshop on Graph Grammars and Their
Application to Computer Science, number 291 in Lecture Notes in Computer
Science, pages 15–26, Warrenton, Virginia, December 2–6, 1986. Springer-
Verlag.

[46] B. Hendrickson and R. Leland. Multidimensional spectral load balancing.
Technical Report SAND93-0074, Sandia National Laboratory, January 1993.

[47] Berthold Hoffmann. Modelling compiler generation by graph grammars. In
Hartmut Ehrig, Manfred Magl, and Grzegorz Rozenberg, editors, Proceedings
of the 2nd International Workshop on Graph Grammars and Their Application
to Computer Science, number 153 in Lecture Notes in Computer Science, pages
159–171, Haus Ohrbeck, West Germany, October 4–8, 1982. Springer-Verlag.

[48] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. Abstract
description of pointer data structures: An approach for improving the analysis
and optimization of imperative programs. ACM Letters on Programming
Languages and Systems, 1(3):243–260, September 1992.

54

[49] Manfred Jackel. ADA concurrency specified by graph grammars. In Gottfried
Tinhofer and Gunther Schmidt, editors, Proceedings of the 12th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’86),
number 246 in Lecture Notes in Computer Science, pages 41–57, Bernried, West
Germany, June 17–19, 1986. Springer-Verlag.

[50] D. Janssens and G. Rozenberg. On the structure of node-label-controlled graph
languages. Information Sciences, 20:191–216, 1980.

[51] D. Janssens and G. Rozenberg. Restrictions, extensions and variations of NLC
grammars. Information Sciences, 20:217–244, 1980.

[52] D. Janssens and G. Rozenberg. A characterization of context-free string
languages by directed nodel-label controlled graph grammars. Acta
Informatica, 16:63–85, 1981.

[53] D. Janssens and G. Rozenberg. Graph grammars with neighbourhood
controlled embedding. Theoretical Computer Science, 21:55–74, 1982.

[54] D. Janssens and G. Rozenberg. Graph grammars with node-label controlled
rewriting and embedding. In Hartmut Ehrig, Manfred Magl, and Grzegorz
Rozenberg, editors, Proceedings of the 2nd International Workshop on Graph
Grammars and Their Application to Computer Science, number 153 in Lecture
Notes in Computer Science, pages 186–203, Haus Ohrbeck, West Germany,
October 4–8, 1982. Springer-Verlag.

[55] D. Janssens and G. Rozenberg. Hypergraph systems generating graph
languages. In Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg, editors,
Proceedings of the 2nd International Workshop on Graph-Grammars and Their
Application to Computer Science, number 153 in Lecture Notes in Computer
Science, pages 172–185. Springer-Verlag, October 1983.

[56] D. Janssens and G. Rozenberg. Structured transformations and computation
graphs for actor grammars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg,
editors, Proceedings of the 4th International Workshop on Graph Grammars
and Their Application to Computer Science, number 532 in Lecture Notes
in Computer Science, pages 446–460, Bremen, Germany, March 5–9, 1990.
Springer-Verlag.

[57] D. Janssens, G. Rozenberg, and R. Verraedt. On sequential and parallel node-
rewriting graph grammars. Computer Graphics and Image Processing, 18:279–
304, 1982.

[58] D. Janssens, G. Rozenberg, and R. Verraedt. On sequential and parallel
node-rewriting graph grammars, II. Computer Vision, Graphics, and Image
Processing, 23:295–312, 1983.

[59] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
simulated annealing: An experimental evaluation; part 1: Graph partitioning.
Operations Research, 37(6):865–893, 1989.

55

[60] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme
for irregular graphs. Technical Report 96-064, University of Minnesota,
Department of Computer Science, Minneapolis, MN, 55455, August 1995.

[61] Richard Kennaway. On “On graph rewritings”. Theoretical Computer Science,
52:37–58, 1987.

[62] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, pages 291–307, February 1970.

[63] Nils Klarlund and Michael I. Schwartzbach. Graph types. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 196–205, Charleston, South Carolina, January
10–13, 1993.

[64] Tom Kloks. Treewidth: Computations and Approximations. Number 842 in
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.

[65] Hans-Jörg Kreowski and Grzegorz Rozenberg. On structured graph grammars
I. Information Sciences, 52:185–210, 1990.

[66] Hans-Jörg Kreowski and Grzegorz Rozenberg. On structured graph grammars
II. Information Sciences, 52:221–246, 1990.

[67] Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algorithm.
SIAM Journal on Computing, 6(1):151–154, March 1977.

[68] Clemens Lautemann. Decomposition trees: Structured graph representation
and efficient algorithms. In M. Dauchet and N. Nivat, editors, Proceedings
of the 13th Colloquium on Trees in Algebra and Programming, number 299 in
Lecture Notes in Computer Science, pages 28–39. Springer-Verlag, March 1988.

[69] Clemens Lautemann. Efficient algorithms on context-free graph languages. In
Timo Lepistö and Arto Salomaa, editors, Proceedings of the 15th International
Colloquium On Automata, Languages and Programming, number 317 in Lecture
Notes in Computer Science, pages 362–378, Tampere, Finland, July 11–15, 1988.
Springer-Verlag.

[70] Clemens Lautemann. The complexity of graph languages generated by
hyperedge replacement. Acta Informatica, 27:399–421, 1990.

[71] Clemens Lautemann. Tree automata, tree decomposition and hyperedge
replacement. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings of the 4th International Workshop on Graph Grammars and Their
Application to Computer Science, number 532 in Lecture Notes in Computer
Science, pages 520–537, Bremen, Germany, March 5–9, 1990. Springer-Verlag.

[72] Timo Lepistö and Arto Salomaa, editors. Proceedings of the 15th International
Colloquium On Automata, Languages and Programming, number 317 in Lecture
Notes in Computer Science, Tampere, Finland, July 11–15, 1988. Springer-
Verlag.

56

[73] A. Lindenmayer. Mathematical models for cellular interaction in development.
Journal of Theoretical Biology, 18:280–315, 1968.

[74] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193–201, February 1992.

[75] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, April 1979.

[76] Igor Litovsky, Yves Métivier, and Wieslaw Zielonka. The power and the
limitations of local computations on graphs. In E. W. Mayr, editor, Proceedings
of the 18th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG ’92), number 657 in Lecture Notes in Computer Science, pages
333–345, Wiesbaden-Naurod, Germany, June 18–20, 1992. Springer-Verlag.

[77] M. Löwe and H. Ehrig. Algebraic approach to graph transformation based on
single pushout derivations. In R. H. Mohring, editor, Proceedings of the 16th
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG ’90), number 484 in Lecture Notes in Computer Science, pages 338–353.
Springer-Verlag, June 1991.

[78] J. A. Lukes. Efficient algorithm for the partitioning of trees. IBM Journal of
Research and Development, 18(3):217–224, May 1974.

[79] Serge Miguet and Jean-Marc Pierson. Load balancing strategies for a parallel
system of particles. In Afonso Ferreira and José Rolim, editors, Parallel
Algorithms for Irregularly Structured Problems: Proceedings of the Second
International Workshop, IRREGULAR ’95, number 980 in Lecture Notes in
Computer Science, pages 255–260, Lyon, France, September 4–6 1995. Springer-
Verlag.

[80] Ugo G. Montanari. Separable graphs, planar graphs and web grammars.
Information and Control, 16:243–267, 1970.

[81] M. Nagl, G. Engels, R. Gall, and W. Schäfer. Software specification by graph
grammars. In Hartmut Ehrig, Manfred Magl, and Grzegorz Rozenberg, editors,
Proceedings of the 2nd International Workshop on Graph Grammars and Their
Application to Computer Science, number 153 in Lecture Notes in Computer
Science, pages 267–287, Haus Ohrbeck, West Germany, October 4–8, 1982.
Springer-Verlag.

[82] Manfred Nagl. On the relation between graph grammars and graph l-systems.
In Marek Karpinski, editor, Fundamentals of Computation Theory: Proceedings
of the 1977 International FCT-Conference, number 56 in Lecture Notes in
Computer Science, pages 142–151, Poznan-Kornik, Poland, September 1977.
Springer-Verlag.

[83] Tsuneo Nakanishi, Kazuki Joe, Hideki Saito, Constantine D. Polychronopoulos,
Akira Fukuda, and Keijiro Araki. The data partitioning graph: Extending
data and control dependencies for data partitioning. In Keshav Pingali, Uptal
Banerjee, David Gelernter, Alex Nicolau, and David Padua, editors, Proceedings

57

of the 7th International Workshop on Languages and Compilers for Parallel
Computing, number 892 in Lecture Notes in Computer Science, pages 170–185,
Ithaca, New York, August 8–10, 1994. Springer-Verlag. Published in 1995.

[84] ESPRIT Basic Research Working Group No.3299. Computing by graph
transformation: Overal aims and new results. In H. Ehrig, H.-J. Kreowski,
and G. Rozenberg, editors, Proceedings of the 4th International Workshop on
Graph Grammars and Their Application to Computer Science, number 532 in
Lecture Notes in Computer Science, pages 688–703, Bremen, Germany, March
5–9, 1990. Springer-Verlag.

[85] Yasuyoshi Okada and Masahiro Hayashi. Graph rewriting systems and their
application to network reliability analysis. In G. Schmidt and R. Berghammer,
editors, Proceedings of the 17th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’91), number 570 in Lecture Notes in
Computer Science, pages 36–47, Fischbachau, Germany, June 17–19, 1991.
Springer-Verlag.

[86] Przemyslaw Prusinkiewicz and James Hanan. L-systems: From formalism
to programming languages. In G. Rozenberg and A. Salomaa, editors,
Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer
Graphics, and Developmental Biology, pages 193–211. Springer-Verlag, Berlin,
1992.

[87] Jean-Claude Raoult. On graph rewritings. Theoretical Computer Science, 32:1–
24, 1984.

[88] Rüdiger Reischuk. Graph theoretical methods for the design of parallel
algorithms. In L. Budach, editor, Proceedings of the 8th International
Conference on Fundamentals of Computation Theory (FCT ’91), number 529 in
Lecture Notes in Computer Science, pages 61–67, Gosen, Germany, September
1991. Springer-Verlag.

[89] J. Rekers. On the use of graph grammars for defining the syntax of graphical
languages. Technical Report 94-11, Department of Computer Science, Leiden
University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands, 1994. Available
by ftp: ftp.wi.leidenuniv.nl as pub/cs-techreports/tr94-11.ps.gz.

[90] N. Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects of
treewidth. Journal of Algorithms, 7:309–322, 1986.

[91] Peter Sanders. Better algorithms for parallel backtracking. In Afonso
Ferreira and José Rolim, editors, Parallel Algorithms for Irregularly Structured
Problems: Proceedings of the Second International Workshop, IRREGULAR
’95, number 980 in Lecture Notes in Computer Science, pages 333–347, Lyon,
France, September 4–6 1995. Springer-Verlag.

[92] Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal.
SIAM Journal on Computing, 24(1):101–108, February 1995.

[93] Hans Jürgen Schneider and Hartmut Ehrig, editors. Graph Transformations in
Computer Science: Proceedings of the International Workshop, number 776 in

58

Lecture Notes in Computer Science, Dagstuhl Castle, Germany, January 1993.
Springer-Verlag.

[94] Andy Schürr. Introduction to PROGRESS, an attribute graph grammar
based specification language. In M. Nagl, editor, Proceedings of the 15th
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG ’89), number 411 in Lecture Notes in Computer Science, pages 151–165,
Castle Rolduc, The Netherlands, June 1989. Springer-Verlag.

[95] Andy Schürr. PROGRESS: A VHL-language based on graph grammars.
In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the
4th International Workshop on Graph Grammars and Their Application to
Computer Science, number 532 in Lecture Notes in Computer Science, pages
641–659, Bremen, Germany, March 5–9, 1990. Springer-Verlag.

[96] A. O. Slisenko. Context-free grammars as a tool for describing polynomial-time
subclasses of hard problems. Information Processing Letters, 14(2):52–56, April
1982.

[97] Ondrej Sýkora and Imrich Vrťo. Edge separators for graphs of bounded genus
with applications. Theoretical Computer Science, 112(2):419–429, 1993.

[98] C. Walshaw, M. Cross, M.G. Everett, S. Johnson, and K. McManus.
Partitioning & mapping of unstructured meshes to parallel machine topologies.
In Afonso Ferreira and José Rolim, editors, Parallel Algorithms for Irregularly
Structured Problems: Proceedings of the Second International Workshop,
IRREGULAR ’95, number 980 in Lecture Notes in Computer Science, pages
121–126, Lyon, France, September 4–6 1995. Springer-Verlag.

59

