
A PARALLEL SOLUTION STRATEGY FOR IRREGULAR,

DYNAMIC PROBLEMS

by

Clark Verbrugge

School of Computer Science

McGill University, Montr�eal

Qu�ebec, Canada

August 1996

a thesis submitted to the School of Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Copyright

c

 1996 by Clark Verbrugge

ii

Abstract

Parallelizing irregular, dynamic data structures can be a very di�cult problem.

An e�cient solution often demands that work on the data structure be divided up

among processors, yet despite the large and growing number of such applications

there has been little work done on general approaches to such situations. In part

this is due to the extreme di�culty of ensuring enough generality to be useful, while

still e�ciently addressing each individual problem; irregular and dynamic problems

can vary dramatically, and direct, e�cient solutions simply do not exist. Most

attempts have therefore either concentrated on problem-speci�c areas, where good

results can be obtained at the expense of generality, or have defaulted to heuristic

methods applicable to almost any possible situation.

In this thesis we present a hybrid method, combining a direct and problem-

speci�c approach with a system general enough to be applicable to the majority

of applications. Our method is based on local graph transformations; if the data

structure does not change dramatically, then the parallelization should not need to

either. By reecting data structure manipulations in a particular graph grammar

formalism, we can show deterministic bounds on the quality of the resulting division

of work. Thus, since our formalism is reasonably general and accommodates many

of the more common data structures (and also allows for considerable variation), we

have a general strategy for dealing with problems requiring dynamic, pointer-based

structures.

The utility of our technique is then established by a non-trivial application of it

to a realistic problem: grid generation for irregular domains in the Control Volume

Finite Element Method used in computational uid dynamics. We �rst illustrate an

algorithm solving the problem, and then show the use of our approach. Theoretical

bounds on the partitioning issues pertinent to parallelization are then given, and

supported by experimental measurements. We also compare our method to existing

iii

heuristic methods to ensure our results are competitive. Our method turns out

to produce good quality results, with a number of distinct advantages over other

techniques, particularly when applied to dynamic situations.

iv

R�esum�e

La parall�elisation de structures de donn�ees dynamiques et irr�eguli�eres peut être un

probl�eme plutôt di�cile. Une solution e�cace demande souvent que le travail sur

la structure soit distribu�e parmi les di��erents processeurs. En d�epit du nombre

croissant de telles applications, peu de recherche a �et�e men�ee sur les approches

g�en�erales �a utiliser dans de tels cas. C'est dû en partie �a l'extrême di�cult�e d'assurer

assez de g�en�eralit�e en tenant conte de l'utilit�e et en s'assurant que chaque probl�eme

est trait�e d'une fa�con e�cace. Les probl�emes irr�eguliers et dynamiques varient

�enorm�ement, et les solutions directes et e�caces n'existent tout simplement pas. La

plupart des tentatives par cons�equent, se sont concentr�ees sur les champs sp�eci�ques

�a un probl�eme particulier o�u de bons r�esultats peuvent être obtenus en sacri�ant la

g�en�eralit�e, ou bien sont retomb�ees sur les m�ethodes heuristiques qui s'appliquent �a

plus ou moins n'importe quelle situation.

Cette th�ese pr�esente une m�ethode hybride qui combine une approche ax�ee sur le

probl�eme et un syst�eme assez g�en�eral pour être applicable dans la majorit�e des cas.

Notre m�ethode se base sur les transformations locales de graphes; si la structure de

donn�ees ne change pas de fa�con majeure, la parall�elisation ne devrait pas non plus.

En repr�esentant les manipulations de la structure de donn�ees par un formalisme de

grammaire de graphe particulier, nous pouvons montrer des bornes d�eterministes

sur la qualit�e de la division du travail qui en r�esulte. Cependant, parce que notre

formalisme est raisonnablement g�en�eral et peut accommoder plusieurs des struc-

tures de donn�ees communes (et permet une variation consid�erable), nous avons une

strat�egie g�en�erale pour attaquer les probl�emes n�ecessitant des structures dynamiques

et bas�ees sur des pointeurs (pointer-based).

L'utilit�e de notre technique est �etablie par son application non-triviale �a un

probl�eme vraisemblable: la g�en�eration de grilles pour les domaines irr�eguliers dans

la m�ethode \Control Volume Finite Element" qui est utilis�ee dans la dynamique

v

de uides de calcul (computational uid dynamics). D'abord nous d�emontrons un

algorithme qui trouve la solution au probl�eme, et ensuite nous d�emontrons notre

approche. Les bornes th�eoriques pour les issues concernant la division pertinente �a

la parall�elisation sont ensuite donn�ees, et appuy�ees par les mesures exp�erimentales.

Nous comparons notre m�ethode aux m�ethodes heuristiques qui existent d�ej�a pour

assurer que nos r�esultats soient comp�etitifs. Notre m�ethode nous donne des r�esultats

de bonne qualit�e avec un nombre d'avantages �a comparer avec autres techniques,

particuli�erement quand elle s'applique aux situations dynamiques.

vi

Acknowledgements

I would like to thank my advisor, Prakash Panangaden, for his support (�nancial

and otherwise), encouragement and invaluable advice; I have learned a great deal

from him, and would certainly have never �nished this without his guidance. I

would also like to thank Rabi Baliga and Nabil Elkouh for tutoring me on uid

dynamics, and all their help. I also thank Laurie Hendren, who has helped me at

many of the more di�cult times. I am eternally grateful for the �nancial support

provided by Natural Sciences and Engineering Research Council (NSERC), Fonds

pour la formation de chercheurs et l'aide �a la recherche de Qu�ebec (FCAR), Centre

de recherche informatique de Montr�eal (CRIM), Centre de Recherche en Calcul

Appliqu�e (CERCA), and Denis Th�erien.

Finally, I thank my parents, without whom absolutely nothing would ever have

existed, existentially speaking; I thank Michel and Miller for their tireless e�orts,

and Liz Breier for her timely help. My wife, Carrol Dufault, deserves the highest

praise for her endless support, putting up with my incoherent ramblings, and for

keeping me from going mad these last few years.

vii

viii

Contents

Abstract iii

R�esum�e v

Acknowledgements vii

1 Introduction 1

1.1 Goals . 1

1.2 Requirements . 2

1.3 Simpli�ed Model . 3

1.4 Methodology . 4

1.5 Outline of Thesis . 5

2 Outline of Contributions 7

2.1 Partitionability Using Grammars . 7

2.2 Parallel Languages . 8

2.3 Grid Generation . 9

3 Partitionable Data Structures 11

3.1 Introduction . 11

3.2 What is a Good Partition? . 12

3.3 Dangling Graph Grammars . 14

3.3.1 Dangling Graphs . 14

3.3.2 Productions . 16

3.3.3 Grammars . 20

3.3.4 Grammar Properties . 21

3.3.5 Contexts . 23

ix

3.4 Partitioning Trees . 23

3.5 Graph Partitioning . 27

3.5.1 Tree Partition Schemes . 28

3.6 Denser Graphs . 34

3.6.1 Path Expressions . 36

3.6.2 Path-Expressions in Productions 40

3.6.3 Determinism and Overlap . 42

3.6.4 Modi�cations to the Tree Partition Scheme 44

3.7 Expressibility . 47

3.7.1 Reasonably-partitionable Structures 48

3.7.2 Path-Extended Grammars . 51

3.7.3 Contexts . 52

3.8 Tree Width . 52

3.9 Conclusions . 56

4 A Graph Grammar Language: eL 59

4.1 Language De�nition . 60

4.1.1 Blocks . 60

4.1.2 Rules . 62

4.2 Operational Semantics . 63

4.2.1 Rules . 64

4.2.2 Blocks . 65

4.3 Grammar . 66

4.4 Complexity . 68

4.4.1 Sequential Complexity . 68

4.4.2 Parallel Complexity . 69

4.5 Implementations . 70

4.5.1 Partitionability . 73

4.6 Conclusions . 74

5 Experimental Work: Grid Generation 75

5.1 Introduction to CVFEM . 76

5.1.1 Physical Background . 77

5.1.2 Computational Background 77

5.1.3 The Baker, Grosse and Ra�erty Algorithm 78

x

5.2 Outline of Our Algorithm . 79

5.3 Generating the Quadtree . 80

5.3.1 Vertex Condition . 81

5.3.2 Edge Condition . 81

5.3.3 Balance Condition . 82

5.4 Triangulating the Quadtree Leaves 83

5.4.1 Interior Quads . 85

5.4.2 Case 1a: An Input Edge Intersects Adjacent Sides 86

5.4.3 Case 1b: Opposing Intersections 102

5.4.4 Case 2a: Two Input Edges With Non-Intersecting Domains . . 106

5.4.5 Case 2b: Two Input Edges forming a Two-Edge Case 106

5.5 Adaptivity . 108

5.5.1 Adapting On a Budget . 109

5.5.2 Unadapting . 116

5.6 Runtime Analysis . 116

5.7 Experimental Results . 118

5.8 Partitioning CVFEM . 122

5.8.1 The Data Structure . 125

5.8.2 A Dangling Graph Grammar for Partitioning 127

5.8.3 Partitioning Bounds . 129

5.9 Conclusions . 135

6 Related Work 139

6.1 Partitionability . 139

6.2 Analyzing Irregular Data Structures 141

6.3 Graph Grammars . 142

6.3.1 Using Graph Grammars . 145

6.4 CVFEM Grid Generation . 147

7 Conclusions 151

7.1 Future Work . 154

A eL Programs 155

A.1 Sorting Program . 155

xi

Bibliography 164

xii

List of Tables

4.1 Comparison of partitionings of a threaded binary tree by eL and Jostle. 73

5.1 Comparison of total number of edges cut by our algorithm, Jostle and

Metis in level-threaded quadtree partitioning. 131

5.2 Comparison of total number of edges cut by our algorithm, Jostle and

Metis in grid partitioning. 132

5.3 Our repartitioning costs for unit square when adapting. 133

5.4 Our repartitioning costs for wrench when adapting. 133

5.5 Jostle repartitioning costs for unit square when adapting. 133

5.6 Jostle repartitioning costs for wrench when adapting. 133

xiii

xiv

List of Figures

3.1 A reasonably partitionable graph. 14

3.2 A production (bottom) is applied to a graph. 20

3.3 A graph embedded into a tree partition scheme. 29

3.4 A schematic rectangular grid. 34

3.5 One of an in�nite family of rules. 35

3.6 Another of an in�nite family of rules. 35

3.7 A schematic rule, representing an in�nite family of rules. 35

3.8 A grammar generating trees. 48

3.9 A grammar generating inorder threaded (binary) trees. 49

3.10 A grammar generating leaf-threaded trees. 49

3.11 A grammar generating linked lists. 50

3.12 A grammar generating circular linked lists. 50

3.13 A grammar generating compiler control ow graphs. 51

3.14 A path-extended grammar generating rectangular grids. 52

3.15 A grammar requiring contexts; right leaves are expanding only if the

left sibling is not a leaf. 53

4.1 Editing a rule in Tuna. 71

4.2 De�ning a computation within a rule in Tuna. 72

4.3 De�ning a postblock list in Tuna. 72

5.1 Enforcing the balance condition on the two-edge case causes in�nite

recursion. 83

5.2 If c is not within the shaded region, (a; b; c) is acute. 84

5.3 Splitting an obtuse triangle into 2 right-angle triangles. 84

5.4 Possible triangulations of interior quads. 86

5.5 Labelling for individual quad diagrams. 87

5.6 Height y is de�ned by y = x(w � x)=z 88

xv

5.7 Subcases for adjacent below-left intersections with zero or one midpoint. 89

5.8 Subcases for adjacent below-left intersections with two midpoints. . . 90

5.9 Remaining BL and all BL' subcases. 91

5.10 Subcase BL-2.6b detail. 95

5.11 Subcases for adjacent below-right intersections. 97

5.12 A necessarily acute angle in subcase BR-2.1b. 99

5.13 Subcases for adjacent above-right intersections. 101

5.14 Subcases for opposing below-above intersections. 103

5.15 Subcases for opposing below-below intersections. 105

5.16 Triangulating the two-edge case when edges intersect the same side. . 108

5.17 Triangulating the two-edge case when the edges intersect di�erent sides.108

5.18 Possible positioning of q as a child. 110

5.19 Legal quadtrees when p is a child and q unbalances only one neighbour.111

5.20 Legal quadtrees when p is a child and q unbalances two neighbours. . 111

5.21 Further expansion of 2-BR. 112

5.22 Further expansion of 2-BL. 113

5.23 Further expansion of 2-BL-UR. 113

5.24 Patterns of growth when two quads are unbalanced. 114

5.25 A schematic 2-BR-BR, one step further. 115

5.26 A schematic 2-BL-BR, one step further. 115

5.27 Triangulation of Wrench. 119

5.28 Triangulation of Hammer & Sickle. 119

5.29 Triangulation of Square. 120

5.30 Vertices versus Precision for Wrench. 120

5.31 Vertices versus Precision for Hammer & Sickle. 121

5.32 Vertices versus Precision for Square. 121

5.33 Triangulation of Arch. 122

5.34 Initial triangulation of unit square. 123

5.35 First adaptation of unit square. 123

5.36 Second adaptation of unit square. 124

5.37 Third adaptation of unit square. 124

5.38 A level-threaded quadtree. 126

5.39 Possible positioning of q as a child, expressed as a rule. 127

5.40 Schematic path expression for rebalancing. 128

xvi

5.41 Fragment of Rebalancing Rule for 1-UL. 129

xvii

Chapter 1

Introduction

Organizing data into structures in order to optimize data access patterns has become

one of the dominant paradigms of computer algorithm development. Most modern

computer languages include some method for constructing and dynamically altering

data aggregates: in C or Pascal this is provided through recursive struct or record

speci�cations and pointers, in Lisp by cons cells, and in object-oriented languages

almost by de�nition. Despite the success of this approach, however, there have

been remarkably few attempts to incorporate dynamic data structures into parallel

applications with any amount of generality. In fact, while there is a large body

of work on generic approaches to algorithms using arrays and small variations|so-

called \regular" data structures|almost every attempt at parallelizing an algorithm

involving dynamic data structures has required a painstakingly hand-crafted solution

to achieve reasonable e�ciency. Of course such a problem-speci�c approach to

algorithm development is far too labour-intensive to be useful; we need e�cient,

general methods for working with dynamic data structures in a parallel environment.

1.1 Goals

Unfortunately, it is evident that practical and truly general approaches to dynamic,

or irregular, data structures do not exist; algorithms capable of dealing with the

myriad of diverse possibilities would simply be much too computationally expensive

to be e�ective. It is our contention, however, that general methods do exist for

the e�cient expression of large classes of useful algorithms employing irregular data

structures: we do not need to be able to deal with all irregular data structures, just

1

enough to encompass the bulk of \useful" ones. This is the focus of this thesis: by

concentrating on data structures which can be e�ciently parallelized and exploring

their commonality, we are able to show a general method for using a wide variety

of irregular data structures in a parallel setting, including most of the structures

regularly employed by computer scientists.

1.2 Requirements

A parallel implementation of an algorithm reduces execution time by having several

processes work on independent subproblems. Simply �nding such a division is not

di�cult in most cases, since few algorithms necessarily have a totally linear pattern

of computation; there are almost always enough subtasks for parallel execution.

Unfortunately, this problem is not really so straightforward; even fewer algorithms

decompose into completely independent subtasks, and communication cost, the extra

time required for distinct processors to exchange information, is a factor in the

parallelization of any problem. Indeed, the time for one processor to send data to

another is often several orders of magnitude more expensive than a local machine

instruction, and so communication cost can be a critical factor.

Of course the speed-up, the decrease in time exhibited by a parallel program

compared with an equivalent sequential program, will also be a�ected by the dis-

tribution of tasks. If one processor is given more work than others, then not all

processors will complete their work at the same time, and some processors will be

idle waiting for slower processors to catch up, e�ectively reducing the intended par-

allelism. Thus, an e�cent parallel implementation should minimize communication

cost while ensuring a balanced workload for all processors.

One approach to the problem of �nding a balanced, low-communication division

of work is to divide up the associated data structure, and assume that work is

divided as a consequence. Communication cost is then reected in the number of

connections/communications in our structure between data elements belonging to

di�erent partitions, and load-balancing is given by the number of data elements in

each partition. This reduces the problem to one of graph partitioning, and is the

tactic employed by parallel languages such as Fortran-90 and C*, though primarily

toward regular data structures. In these languages syntactic \array distribution

directives" are used to specify which processor \owns" array elements, and hence

2

which processor executes a given operation on its data. Similarly, the popular Single

Processor Multiple Data (SPMD) paradigm [CK88] expresses parallelism by creating

(and locating) multiple instances of a datum: operations are performed in parallel

only by having each processor work on a distinct datum. The programmer in these

cases is responsible for designating ownership to ensure a minimal communication

strategy, and usually for load-balancing as well (though heuristic automatic load-

balancers are sometimes included). A general method, however, should be able

to automatically partition the graph in accordance with both load-balancing and

communication cost constraints, and without extra human intervention.

We need a simpli�edmodel of our problem. Finding a partitioning of a graph that

minimizes the number of \cut edges" (edges between rather than within partitions) is

provably hard (NP-complete; see problem ND14 in [GJ79]), so we cannot reasonably

hope to compute an e�cient, fully-general answer in practice. Fortunately, the bulk

of dynamic data structures used in computer science do not span the gamut of

possible graphs to partition: we do not need to be able to partition all graphs to

have a practical solution. It will be su�cient if we can show a method applicable

to some large class of graphs encompassing many of the more common and useful

graphs. Our method should include trees for certain, various threaded-trees, grids,

lists and most combinations, and as many others as possible. In particular our

method should be robust in the face of \minor" variations in these structures|

many algorithms rely on small di�erences in a structure from its general form, and

this should not force us to abandon our approach.

1.3 Simpli�ed Model

Our problem model will therefore consist of an irregular graph, which must be par-

titioned with balancing and communication cost constraints. We will make two fur-

ther reductions: bounded-degree and doubly-connected. Neither of these conditions

is strictly necessary in order to �nd an acceptable partitioning, but the combina-

tion reduces the number of situations which are di�cult to partition, and generally

make the computation of partitionings and costs simpler. Even with these extra

constraints we can still include almost all of the data structures in which we are

interested, so these reductions do not dramatically reduce the utility of our method.

The degree of a node in a graph is the number of edges attached to it. Graphs

3

containing nodes with any number of attached edges, i.e., unbounded degree, can

easily become unmanageable from a partitioning perspective|if all nodes in a tree

point to the root, then whichever partition contains the root will have an inherently

high communication cost. If our general method makes any worst-case approxima-

tions, then structures such as these will seriously dilute the e�cacy of our approach.

Thus, we avoid these situations by demanding that each node have a �xed maximum

number of attached edges (bounded-degree).

Edges in a graph may be directed (one-way), or undirected (two-way). Verifying

the bounded-degree property in the presence of directed graph edges would require

non-trivial bookkeeping|each time we add an edge somewhere, we have to ensure

that we have not violated the bounded-degree property for both the source and

the target of the edge. This could be solved by keeping a count of the number of

incoming edges for each node; however, in order to e�ciently provide the complete

partitioning we also need to know which edges are directed at a particular node. The

use of undirected graphs makes this whole process considerably easier, and for these

reasons we have focussed on undirected graphs, corresponding to doubly-connected

data structures.

We are therefore representing the data by a graph, with edges between nodes for

communication paths; by partitioning this graph we partition the data, and hence

the work. Of course some communication paths will be used more often then others,

and the usual technique for expressing this is to add \weights" to edges representing

relative communication costs, and then solve the edge-weighted graph partitioning

problem. For simplicity, though, we consider only the \unweighted" problem, where

all edges and nodes are considered equivalent with respect to partitioning. For

large graphs with computation reasonably evenly-distributed throughout the data

structure this is an adequate model, and given the generality of data structures and

algorithms we hope to include, an acceptable approximation. It may also be possible

to extend our methods to weighted graphs, though we do not explore this here.

1.4 Methodology

Our method will be based on enforcing the locality of operations. Intuitively, if we

have a graph which we already know we can partition e�ciently, and we alter it in

4

some small way we should be able to discover the new partition with a correspond-

ingly small e�ort. This is the basis for our technique: if the changes to a graph

are both small and local|i.e., changes occur within only a bounded region of the

graph|and we know the partitioning of the graph before the change, then we can

incrementally compute the partitioning for the changed graph. Our method will

therefore rely on a formalism for maintaining a graph while expressing updates in a

local manner, allowing for the quick and e�cient computation of partitionings.

We must of course also show that this allows us to produce the kinds of graphs

we would like to include in a general method. There are no precise characterizations

of \useful" data structures, and the large number of subtle variations make it a

di�cult concept to capture, so our primary means for showing expressiveness will

be by example. We will show how to express a number of common data structures

used in applications, and give corresponding bounds on partitioning. Such examples

will provide evidence of the broad applicability of our technique, but not how one

might use it in a real application. For this reason we also include an extended

example of a non-trivial problem (irregular grid generation for the �nite element

method, as used in computational uid dynamics) and show the application of our

technique.

Our method would seem to su�er from the same drawback as many other data

partitioning techniques: including it into an algorithm requires a signi�cant amount

of additional programming, increasing the di�culty and complexity of program de-

sign. For this reason we have also developed a new, explicitly parallel language,

called \eL." This language merges our partitioning model with a model of computa-

tion, producing a single linguistic formalism which automatically and transparently

incorporates partitioning requirements. Any programs written in our language must

be partitionable with speci�c and easily-calculable upper bounds on balancing and

communication cost.

1.5 Outline of Thesis

We begin with Chapter 2, which outlines the major contributions of this work. We

describe our original results and methods and give reasons for the signi�cance of our

results. We also point out the areas in which we have suggested further potentially-

useful areas of investigation.

5

Our main result is described in Chapter 3. Here we develop our primary method-

ology for partitioning data structures where the operations on the data structure all

have only local e�ects. This method relies on the dual generation and manipulation

of the data structure using a particular kind of graph grammar . If a data struc-

ture and its operations can be expressed in this formalism, then a simple method

exists which will guarantee bounds on the communication cost of the resultant data

structure.

This approach is further explored in Chapter 4, where a novel parallel computing

language based on the ideas of the previous chapter is developed. By limiting

the computations which can be expressed to ones which can be retained in a data

structure representing the locality of interaction, the language essentially forces all

algorithms to be e�ciently parallelizable (provided some straightforward conditions

are met). Non-trivial examples of algorithms written in this language are discussed,

and upper bounds on the cost of both sequential and parallel implementations of

the language are examined.

In Chapter 5, we illustrate a complex example of the application of our ideas

on partitioning. Here we develop an algorithm for generating adaptive grids for

the Control Volume Finite Element Method (CVFEM) on unstructured domains.

This algorithm produces the domain decompositions required by the method, and

implements a solution algorithm as well. Moreover, it maximizes the local nature

of adaptations and computations on the grid, and hence is eminently suitable for

parallelization by our method. We give a detailed explication of the structure of

the algorithm, followed by results from an actual (sequential) implementation of

the algorithm. Upper-bounds on related partitioning problems (for parallelism) are

discussed in the context of an implementation of the algorithm using our graph

grammar formalism.

The relation of our work to existing results is described in Chapter 6. Here

we present the various facets of our method: graph partitioning, graph grammars

and associated applications, and CVFEM, and situate our results in relation to the

myriad of other approaches to the same problems. Finally, in Chapter 7 we draw

some conclusions about our method. We �nd that the formalism we have developed

is adequate for many non-trivial problems; our extended example demonstrates both

the feasibility and applicability of our method.

6

Chapter 2

Outline of Contributions

The primary contribution of our work has been to develop a general model of graphs

which we are certain can be e�ciently partitioned, and yet is general enough to be

applicable to a wide variety of algorithms. The key idea is to permit all graphs that

can be generated by a certain class of rewrite systems called graph grammars. One

can then use the intermediate structures that arise in the generation|the so-called

parse-tree|to guide the partitioning. The grammars are su�ciently general as to

allow many useful families of graphs to be expressed. Below we describe the relevant

aspects of our approach and how each forms a distinct contribution.

2.1 Partitionability Using Grammars

In the beginning of Chapter 3 we develop the notion of \partitionable" graphs to

describe the demands of parallelism on dynamic data structures. This concept allows

for a quantitative attack on the problem of partitioning dynamic data structures.

Our model is more realistic than existing quantitative approaches|we deal with

an unknown number of processors, and require load-balancing to within a constant

additive factor. The \traditional" approach is to balance within a multiplicative

factor, and provide communication costs for just k partitions, for a �xed k. By

providing a well-de�ned model with realistic criteria, we have created one of the

very few approaches to partitioning dynamic problems for parallelism with any real

hope of producing useful solutions.

7

Our de�nition of dangling graph grammars is unique, and has a number of prac-

tical advantages over existing graph grammar models. Most results on graph gram-

mars have been theoretical, due to the various NP-complete problems (subgraph

isomorphism in particular) associated with their de�nition. By combining strict

labelling requirements on our graphs with a speci�c and realizable graph matching

algorithm, we are able to de�ne a feasible execution model for our grammars|

something neglected in most other de�nitions of graph grammars. This is what

permits us to actually use our grammars in our partitioning algorithm.

In order to be able to derive our partitionings from the actions of graph gram-

mars, we impose a restriction on overlap between parts of graph grammar rules.

Overlap properties to avoid critical pairs during parallel rule application are not

new in rewrite systems; our form of overlap, however, is designed to impose a spe-

ci�c structure on the graph grammar derivation sequence, in order to facilitate

partitioning. Moreover, our overlap property is distinct from the overlap typically

used to ensure the resulting grammars are context-free. Since the majority of signif-

icant results on graph grammars are based on the use of context-free grammars, our

result is one of the few results on graph grammars that applies to context-sensitive,

as well as context-free grammars.

Our partitioning algorithm relies on being able to partition trees. The cost

bounds we derive for this purpose are not surprising, and both upper and lower

bounds on this problem are well-known. Nevertheless, our solution has the ad-

vantage of being simple and constructive, by which mean that we give a precise

algorithm for producing the partitions rather than just a proof of existence.

Finally, we also prove upper bounds on the tree-width of the graphs we generate.

Computing tree-width is a very di�cult problem, and no general techniques exist.

By showing bounds on the large class of graphs we produce, we have demonstrated

a feasible method for calculating upper-bounds on tree-width for certain kinds of

graphs.

2.2 Parallel Languages

The language we develop in Chapter 4 is the only explicitly parallel language to

include a non-trivial guarantee related to parallel performance. It is also one of

the few parallel languages to explicitly deal with dynamic data structures|other

8

languages, such as many of the parallel C hybrids, require one to use communica-

tion and synchronization primitives in order to build an e�cient program in such

situations. Alternatively, as with Linda [CGL86, CG90] or the Chemical Abstract

Machine (CHAM) [BB90], arbitrary data accesses may be supported but with no

attempt to retain structure. Our language allows for relatively e�cient access based

on the structure itself while retaining a simple conceptual model.

In creating a working prototype for the language we found it more convenient

to use a graphical editing environment, where the data structure is represented and

manipulated visually. This graphical user interface emphasizes the qualities of eL

as a visual language, in the tradition of LabView, and various dataow models.

By graphically incorporating both computation and control ow in a manner quite

distinct from such models, eL can be seen as a contribution to this �eld as well.

2.3 Grid Generation

Our example of CVFEM grid generation described in Chapter 5 is itself a novel

algorithm. Although the problem of producing non-obtuse triangular grids has been

solved in an optimal sense [BMR94], dealing with the extra demands of adaptivity

and practical implementation with an eye to parallelism has not been addressed.

Our algorithm produces non-obtuse grids and allows for incremental updates, all

while ensuring calculations and modi�cations are as local as possible. This makes

our algorithm an ideal candidate for parallelization, and certainly one of the very

few that attempts to deal with adaptive irregular meshes in a practical manner. By

using our algorithm as an example application for our partitioning method, we have

demonstrated a method for e�ciently dealing with irregular grids in CVFEM, as

well as a new algorithm for adaptive grid generation itself.

9

10

Chapter 3

Partitionable Data Structures

3.1 Introduction

In this chapter we propose a linguistic mechanism, based on graph grammars, that

generates families of graphs for which a \good" partitioning must exist. Moreover,

this method is constructive, and the resultant partitionings are quite simple to

produce once the graph family has been speci�ed. The e�cacy of this scheme is

illustrated by �rst giving a precise de�nition of \good" partitionability, then proving

all the graphs we generate do indeed have good partitions, and �nally by showing

how a wide variety of useful graphs can be produced using our formalism.

Naturally, if graphs or data structures are restricted to being amenable to par-

titioning, then not all data structures will be expressible, and this is intended. The

grammars we de�ne, though, are general enough to express many common data

structures: trees of course, threaded trees, trees where the leaves have sibling point-

ers, structured compiler control ow graphs, and with some extension, rectangular

grids and other less \tree-like" structures. In fact, while the graphs we generate

are more general than trees, the grammar speci�cation de�nes an upper limit on

tree-width [RS86]; thus they are all \tree-like" to some degree, and in a manner

correlated with the nature of the grammar.

In designing a data structure one usually thinks about how the data structure

will be updated. This usually translates into grammar rules for generating the

structure. In our experience, there was little overhead in developing a grammar for

data structures of interest.

In the following section we formalize the notion of \partitionability." Section 3.3

11

develops the basis for the grammars in which we are interested. In Section 3.4

we prove that weighted k-ary trees can be partitioned with guaranteed bounds on

load-balancing. This result is used in Section 3.5, where we relate the derivation

tree of any graph produced by our grammars to the actual graph. By partitioning

this weighted tree we also partition the graph, and the bounds on cost and balance

of the graph partitioning follow from the tree partitioning; this is our main result.

Section 3.6 extends this result to a larger class of graphs, showing how we can

generate denser graphs with a corresponding sacri�ce in partitionability. Section 3.7

illustrates the expressibility of our formalism; we show several di�erent grammars

de�ning several di�erent graphs commonly used in computer science applications.

Contrasting this are the results in Section 3.8, where we establish limits on the

\tree-width" of all graphs we generate.

3.2 What is a Good Partition?

It is a platitude to say that a \good" partition should not cut too many links. We

need a quantitative notion of what this means. The paradigmatic example of an

easily decomposed structure is a tree and an easily partitioned structure should

be, roughly speaking, as easy to partition as a tree. Thus, we de�ne a strong

partitionability through the following series of de�nitions.

De�nition 3.2.1 A p-partitioning of a graph D = (V;E) is an equivalence rela-

tion

�

=

on the vertices of D such that there are exactly p equivalence classes.

A p-partitioning induces a communication cost from a partition to the rest of the

graph (and of course to any other partition), which is simply the number of edges

\cut" to isolate any partition. For a given partitioning P let V

i

be the set of nodes

associated with the i

th

piece.

De�nition 3.2.2 The communication cost of V

i

is de�ned as:

Cost(V

i

) = jf(v; v

0

) 2 Ej v 2 V

i

^ v

0

62 V

i

gj

In parallel computing, processors are not usually viewed as a resource �xed at

compile-time. Accordingly, partitionability should be a property which provides

bounds on communications costs no matter how many partitions are envisaged.

12

De�nition 3.2.3 Given some function f of n, an f-partitionable graph of n

vertices is a graph that can be partitioned into p pieces of size (n=p) � c for any

1 � p � n and some constant c, such that the communication cost of any piece is

no more than f(n).

Arbitrary, undirected graphs without loops or multiple edges are trivially n

2

-

partitionable, since each node in a partition of n=p � c nodes can connect to no

more than n other nodes. Graphs with a bound k on the degree of each node are

kn-partitionable.

O(1)-partitionable graphs are clearly ideal. Unfortunately, this category only

includes lists and small variations; for instance, the class of trees with bounded

fanout k has a lower bound on communication cost of
(k log(n)= log(k)) (see the

discussion of Theorem 3.2 in Diks et al. [DDSV93]). Since trees are certainly a data

structure we would like to represent, any general partitioning strategy will have a

similar lower bound.

Square grids of

p

n�

p

n vertices form another interesting class of graphs, ones

which have a lower bound on partitionability of

p

n. Dense structures such as

these, though, are often more e�ciently represented by arrays than by pointer-

based structures. Nevertheless, and despite the relatively high lower bound on

partitionability, it is sometimes desirable to generate such graphs explicitly.

If we are to quantitatively evaluate partitioning it is necessary to commit our-

selves to some hard distinction as to what is reasonable and what is not. Certainly

trees are necessary, and with simple extensions can be made to encompass the bulk

of computer science data structures. Similarly, grids are often better dealt with

using array-based methods. The fundamental dichotomy is therefore embodied in

the following de�nition:

De�nition 3.2.4 Let G be an f-partitionable graph. Then G is reasonably par-

titionable if f 2 O(log(n)).

Remarks: Almost all data structures fall into this category, other than direct rep-

resentations of densely-connected data (such as grids or triangulations). Obviously,

this also excludes any graph with a node having degree in !(log(n)); for example, a

tree with each leaf connected to the root is not k log(n)-partitionable for any con-

stant k, since some partition piece must include the root (of degree n). An example

of a reasonably-partitionable graph is in Figure 3.1; here a linked list of nodes is

divided into n= log(n) pieces each of length log(n), where the head of each piece is

13

log(n)log(n)log(n)

Figure 3.1: A reasonably partitionable graph.

connected to every node in its piece. This example is noteworthy for demonstrating

that a reasonably-partitionable graph can include an unbounded number of vertices

with degree log(n).

The de�nition of partitionability is relatively straightforward; it is a consider-

ably more complex task to algorithmically detect or specify reasonably-partitionable

graphs. In the subsequent sections, however, we develop a class of non-trivial graph

grammars which do only express reasonably-partitionable graphs.

3.3 Dangling Graph Grammars

Graph grammars in general are rewrite systems. Given a graph, a graph grammar

speci�es how to locally change the graph into another graph, based on the existence

of a certain subgraph. The rules which govern this transformation are termed pro-

ductions, and the graph to which the productions are (initially) applied is the axiom.

This process is usually iterated, generating a sequence of graphs, which collectively

constitute the language of the grammar.

3.3.1 Dangling Graphs

The usual de�nition of labelled graphs involves sets of nodes, edges, labels and

functions associating edges with nodes, nodes with labels, and edges with labels.

The nature of graph partitioning, which requires \splitting" edges to form partitions,

makes it more convenient to use so-called dangling graphs. The essential idea is to

form the graph from nodes and half-edges, or edges associated with just a single

node:

14

De�nition 3.3.1 A dangling graph, D is an 8-tuple (V;E; �; �; ;�

V

;�

E

; C),

where:

V is a set of vertices (or nodes),

E is a set of 1/2-edges,

� : E ! V is an injective function returning the vertex associated with

a given 1/2-edge.

�

V

is a �nite set of node labels,

�

E

is a �nite set of 1/2-edge labels,

� : V ! �

V

is a node labelling function,

 : E ! �

E

is a 1/2-edge labelling function, with the property that no

two 1/2-edges connected to the same vertex have the same label:

8 e; e

0

2 E; �(e) = �(e

0

)) (e) 6= (e

0

)

C � E � E is a connection relation between 1/2-edges, such that:

8 (e; e

0

) 2 C; :9 (e; e

00

) 2 C for e

00

6= e

0

; and (e

0

; e) 2 C

In other words, C describes the connected pairs of 1/2-edges, and

is symmetric.

Remarks: Like most de�nitions of graph, a dangling graph is based on nodes, and

connections between them. In the above de�nition, the connections are managed by

a connection relation; each connection between two nodes is formed from two \1/2-

edges," where each such 1/2-edge is individually associated with a node through

the � function. The connection is then actually established by pairing 1/2-edges in

the connection relation C. Any 1/2-edge not involved in a connection relation is

considered a dangling edge (hence the moniker). More formally, the set of dangling

edges of a dangling graph D (described as above) is given by a function �, where:

�(D) = fe 2 E j :9 e

0

2 E; (e; e

0

) 2 Cg

We are concerned with node and 1/2-edge-labelled dangling graphs. Thus, there

is an alphabet for both (�

V

and �

E

), and functions to map each node or 1/2-edge

to a node or half-edge label, � and respectively. Note that each 1/2-edge has a

15

label, including dangling ones, and thus each connection between nodes will have

two labels, one for each 1/2-edge forming the connection.

The degree of a vertex n in a dangling graph D is de�ned in the same way as for

regular graphs; Degree(n) = jfej �(e) = ngj. If there exists a natural number k

such that

8 n 2 V; degree(n) � k

then D is called a k-bounded dangling graph. It should be noted that since the set of

1/2-edge labels, �

E

, is �nite, and no two 1/2-edges attached to the same vertex have

the same label, all dangling graphs as described above are already j�

E

j-bounded.

Bounded-degree dangling graphs are meant to model doubly-connected data

structures, as they might be found in a procedural language like C. Each vertex

corresponds to a data structure with a bounded number of pointers, and is attached

to other vertices by a two-way connection, corresponding to two data records/nodes

having individually-named pointers directed at each other. Dangling edges, 1/2-

edges not involved in a connection relation, can then be viewed as nil-pointers. To

convert a dangling graph to a \regular" graph we merely dispose of the dangling

edges, a process known as trimming.

De�nition 3.3.2 A trimmed dangling graph is a dangling graph with the dangling

edges removed: if D is a dangling graph then the trimmed version is given by the

function �, where �(D) = D[E

D

� �(D)=E

D

].

A graph grammar that operates on the domain of node and edge-labelled dan-

gling graphs is termed a dangling graph grammar . Such grammars form the basis

of our method of generating partitionable graphs.

3.3.2 Productions

Productions are rules which de�ne a mapping between two dangling graphs, and

thereby de�ne possible ways of modifying any other graph. By locating an image

of the �rst graph within a given graph, and replacing that image with a copy of the

second graph the given graph can be changed. This can be formalized.

De�nition 3.3.3 A production is a pair of dangling graphs, a (connected) source

and a target, along with a partial mapping between dangling edges. If S and T

are dangling graphs, then (S; T; �) is a production if both � : �(S) ! �(T) and

�

�1

: �(T)! �(S) are partial functions.

16

Intuitively, a production is pattern-matched with the graph according to its

source. When a matching subgraph is found, that subgraph is excised from the

graph and the target is inserted in its stead. How the target is connected to the

graph is speci�ed by the embedding relation, a partial mapping �. This sequence of

steps can be described formally using the following de�nitions:

De�nition 3.3.4 A dangling graph S is a subgraph of another dangling graph D

if:

V

S

� V

D

E

S

� E

D

j

V

S

�

S

= �

D

j

E

S

�

S;V

� �

D;V

�

S;E

� �

D;E

�

S

= �

D

j

V

S

S

=

D

j

E

S

C

S

� C

D

j

E

S

Remarks: The subgraph relation is as one might expect; one de�nes a subset of

the nodes, 1/2-edges and connection relations, and restricts the various functions to

these subsets. A more constrained form of subgraph is one where one must include

all 1/2-edges of each node included in the subgraph:

De�nition 3.3.5 An induced subgraph of a dangling graph D is a subgraph D of

D

0

, such that:

8v 2 V

0

; 9e 2 E: �(e) = v) e 2 E

0

An induced subgraph D

0

is an induced strict subgraph if D

0

6= D. In symbols, D

0

�

i

D

and D

0

�

i

D

0

respectively.

Any subgraph or induced subgraph is a partition of the containing graph, and

the number of connections from the subgraph to the rest of the graph is the cost

associated with that partition.

De�nition 3.3.6 Let G

1

and G

2

be disjoint subgraphs of some dangling graph G.

Then the connectivity of G

1

and G

2

is the number of connection relations linking

vertices in G

1

with vertices in G

2

. If:

CSet (V

1

; V

2

) = f(e; e

0

) 2 Cj (�(e) 2 V

1

^ �(e

0

) 2 V

2

) _ (�(e) 2 V

2

^ �(e

0

) 2 V

1

)g

then the connectivity of G

1

and G

2

is given by: Con(V

1

; V

2

) = jCSet(V

1

; V

2

)j=2.

We will sometimes express this as CSet(G

1

; G

2

), or Con(G

1

; G

2

) respectively.

There is a natural order on dangling graphs, similar to the usual (subgraph)

ordering on regular graphs:

17

De�nition 3.3.7 If D

1

;D

2

are two dangling graphs, then D

1

v D

2

i� there exist

two label-preserving injections, � : V

1

�! V

2

and � : E

1

�! E

2

, such that:

8e 2 E

1

; �

1

(e) = v) �

2

(�(e)) = �(v)

(e; e

0

) 2 C

1

) (�(e); �(e

0

)) 2 C

2

And if D

1

v D

2

and D

2

v D

1

, then D

1

� D

2

. In this latter situation, � and �

would be bijections.

This ordering on graphs and the induced subgraph relation can be combined to

formalize what it means for a given graph D

0

to be \in" another graph D, even if

D

0

is not actually a subgraph of D:

De�nition 3.3.8 A dangling graph D

0

occurs in another dangling graph D if there

exists D

00

�

i

D, such that D

00

� D

0

. The graph D

00

is then the occurrence of D

0

in

D. The set of all such occurrences is given by the function Occurs(D

0

;D).

Finally, we can now de�ne how productions are used to rewrite the given graph:

De�nition 3.3.9 The application of a production � = (S; T; �) to a dangling

graph G involves locating an occurrence, S

0

of S within G, and replacing S

0

with (a

copy

1

of) T . The function � describes how to modify the connection relation so T is

embedded in G�S

0

, utilizing only the connections in CSet(S

0

; G�S

0

). A production

� then derives a dangling graph H from a dangling graph G if � can be applied to

G, and H is the result once dangling edges are suitably replaced.

Assuming a production � = (S; T; �), a dangling graph G to which � applies,

an image, S

0

of S in G, and that the 1/2-edges and vertices of T are disjoint from

G, the derived graph H can be de�ned as follows:

V

H

= (V

G

� V

S

0

) [V

T

E

H

= (E

G

� E

S

0

) [E

T

�

H

= �

G

j

E

G

�E

S

0

[�

T

�

H;V

= (�

G;V

[�

T;V

) �

H;E

= (�

G;E

[�

T;E

) �

H

= �

G

� �

S

0

[�

T

H

=

G

�

S

0

[

T

The connection relation is somewhat more complicated; if

R = f(e; e

0

)j 9e

00

: (e; e

00

) 2 CSet(V

S

0

; V

G

� V

S

0

) ^ �(e

00

) = e

0

g

and

b

R is the symmetric closure of R, then

C

H

= C

G

� C

S

0

� CSet (V

S

0

; V

G

� V

S

0

) [C

T

[

b

R

1

In order to simplify concepts and notation, where safe we ignore the distinction between the

\template" T and the copy of T actually embedded into G.

18

Generally, the derivation of H from G will be designated by a single arrow sub-

scripted by the production used: G !

�

H, and an n-step derivation using a set of

productions � by G

n

!

�

H. The transitive closure is of course G

�

!

�

H.

Remarks: An application involves locating an occurrence matching the source of

the production, removing the occurrence, and attaching a distinct copy of the target

by reassigning connection relations involving dangling edges of the occurrence to

dangling edges of the (copy of the) target. There are restrictions on the occurrence|

the pattern matching of the source graph must result in a label and structure-

preserving bijection h between the nodes and 1/2-edges in the source graph and the

nodes and 1/2-edges in its occurrence in the graph. As well, if a node in the graph is

included in the occurrence, then there must be corresponding matches in the source

for every 1/2-edge attached to that node.

An example of a production being applied is shown in Figure 3.2; the input

graph (axiom) is on the top left, the output is on the top right, and the production

is shown on the bottom. Dotted arrows indicate the � mapping for the production,

and the the region enclosed on the input graph is the occurrence being rewritten.

Node labels are illustrated by colour (shade), but 1/2-edge labels are not shown.

Note that the other two white nodes (marked with x's) cannot be rewritten by this

production; even if all labels matched, they do not form an exact image of the source

graph (both x-marked nodes have degree 4, whereas the source requires one node

with degree 4 and one with degree 3).

Once the occurrence is located, the nodes and 1/2-edges of the occurrence are

removed and a distinct copy of the target graph is inserted. If within the graph a

dangling edge e of the occurrence is paired with some other dangling edge e

0

to form

a connection c = e � e

0

, then the 1/2-edge designated by � of the corresponding

1/2-edge of the source graph, �(h(e)), is substituted into c in place of e. If �(h(e)) is

unde�ned for e, the connection relation c is discarded. In the example in Figure 3.2,

three connection relations are transferred from the source to the target graph (in-

dicated by dotted arrows), and any connections involving the other three 1/2-edges

are deleted by the rewrite.

Within a single derivation, because of the restrictions on how the target is em-

bedded, the number of connection relations linking the embedded target to the rest

of the graph can be no more than the number of connection relations linking the

19

XX X X

Figure 3.2: A production (bottom) is applied to a graph.

occurrence to the rest of the graph. This property will prove critical to partition-

ability:

Proposition 3.3.1 Given a production � = (S; T; �) and a graph G to which �

applies, G !

�

H, with S

0

the image (occurrence) of S in G as above, the number

of connection relations linking the embedded target to the rest of H is no more than

the number of connection relations linking S

0

to G.

3.3.3 Grammars

A collection of productions acting on a given dangling graph constitutes a dangling

graph grammar. Such a system consists of a pair of objects: a collection of produc-

tions, �, and an initial graph, the axiom. All the graphs that can be derived from

this axiom using only the given productions collectively form the language generated

by the grammar:

20

De�nition 3.3.10 The language generated by a graph grammar G = (A;�) is the

set of all dangling graphs which can be derived from A using productions in �:

L(G) = fBj A

�

!

�

Bg

3.3.4 Grammar Properties

Our ability to partition the graphs generated by our grammars will depend on the

grammars having a property based on a concept of overlap between dangling graphs.

This same concept, applied in a di�erent manner, is often used to ensure concurrent

rule applications can be done independently, and without conict. While both

overlap properties are restrictions on grammars, the combination has the bene�t of

being su�cient to sensibly extend our grammars to parallel grammars|ones wherein

more than one production can be applied concurrently.

De�nition 3.3.11 Two dangling graphs D and S overlap if there exist induced

subgraphs of each, D

0

and S

0

respectively, a non-empty dangling graph W such that

W � D

0

and W � S

0

, and such that every dangling edge of W is mapped by the �

relation to either a dangling edge of D or a dangling edge of S (or both). The set

of all such maximal (in number of nodes and connections) such W form the actual

overlap of S and S

0

.

In a parallel model of application, we may have more than one production ap-

plying at once. If two productions are applied at the same time, however, and their

occurrences are not completely disjoint, the two form a critical pair|conicting

behaviour might be speci�ed for nodes in the intersection of the two occurrences.

Fortunately, it easy to restrict a class of grammars to ones admitting concurrent

application while still being deterministic. If all occurrences must be disjoint, then

the rewrite of each node and 1/2-edge is determined by only one production, and

there can be no conict in speci�cation. This is precisely the no overlap property

between all production source graphs:

De�nition 3.3.12 If G = (A;�) is a dangling graph grammar, and for all �

1

; �

2

2

�, �

1

= (S

1

; T

1

; �

1

) and �

2

= (S

2

; T

2

; �

2

) it is the case that Overlap(S

1

; S

2

) = ; or

�

1

= �

2

and Overlap(S

1

; S

2

) is just the trivial overlap, then G is SS-overlap free.

21

Proposition 3.3.2 If (A;�) is SS-overlap free, then the grammar is deterministic

even if some productions are applied simultaneously.

Proof: Let G = (A;�) be a non-deterministic grammar. Then for some dangling

graph D there must exist some node n included in each of the simultaneous

occurrences O and O

0

of two productions � and �

0

. Let s and s

0

be the images

of n in S and S

0

(the source graphs of � and �

0

) respectively; it must be that

the complete subgraph consisting just of n and its 1/2-edges is isomorphic to

s and to s

0

. Let W be the largest complete subgraph of D including n which

has an isomorphic image in S and S

0

.

Let e be a dangling edge of W , and suppose e is not mapped by the isomor-

phism to any dangling edge of S or S

0

. Let d and d

0

be the 1/2-edges in S

and S

0

to which e is mapped, and let r and r

0

be the nodes attached to the

other 1/2-edges involved in the connection relation with d and d

0

. Both r

and r

0

must be included in their occurrences, but the connection to them is

not included in W ; either W is not maximal, or the occurrence of one of S

or S

0

does not include a match for r or r

0

(and so one of S or S

0

does not in

fact occur), either of which is a contradiction.

If there is no such e then W � S

1

� S

2

, and either there is certainly over-

lap, or � = �

0

and W is the trivial overlap, in which case there is no non-

determinism. ut

Lack of overlap between source graphs is useful for parallelism, but it does not

ensure partitionability. To guarantee that the tree-based method we will develop

below applies, it is necessary that the overlap between source and target graphs

(rather than between source and source) be restricted.

De�nition 3.3.13 Let G = (A;�) be a dangling graph grammar, and let T =

fT j (S; T; �) 2 �g. G is ST-overlap free if for all (S; T; �) 2 �, we have:

8� 2 T ; 8O 2 Overlap(S; �); (O � ; _ O � S)

Remarks: The ST-overlap free property speci�es that given any combination of

production source S and target � , either S actually occurs in � , or S and � do not

overlap. This simple property will prove critical when we describe the partition-

ing method. Note that this de�nition implies that if every production in a graph

22

grammar has a source consisting of just one node, then the grammar is trivially

ST-overlap free (the overlap of a single-node graph and any other can only be an

identical single-node graph, or empty).

3.3.5 Contexts

The development of many dynamic data structures depends on the nature of the

graph locally surrounding the update site. The process of changing the data struc-

ture requires rewriting only a small area, but the decision to do so may depend

on the surrounding neighbourhood; a binary tree in which right-child leaves are

to be expanded into subtrees only after left-child leaves have already been rewrit-

ten into subtrees, for example, requires this sort of local information. This can be

modelled with our grammars, but it would require rewriting the entire context for

the rewrite|the update site, and its neighbourhood. Doing so, however, often in-

troduces undesired overlap between productions that depend on the same sort of

neighbourhood.

This problem can be alleviated by including contexts along with the source of

each production. A context is just a dangling graph which includes the source within

it; the entire context must occur in order for the production to be applied, but only

the source is actually rewritten. In this way the application of a production can

be restricted to a given graph con�guration. We therefore de�ne grammars with

contexts as one of the possible variations we will be considering with respect to

partitionability.

De�nition 3.3.14 A production with context is one � = (S; T; �) with a context

I as de�ned above, with the property that each occurrence of S must be included in

an occurrence of I. If a grammar G includes a production with context then the

grammar is with context.

3.4 Partitioning Trees

Our method for generating partitionable structures relies on being able to e�ciently

partition trees. Here we prove that weighted trees, trees with a non-negative weight

w

i

assigned to each node, with a total weight of W and a bound b on the fanout of

each node are O(log(W))-partitionable.

23

Lemma 3.4.1 Given a natural number n, and a set N of any other m natural

numbers which sum to n, it must be that if n

i

is the i

th

largest number in N then

n

i

� n=i.

Proof: By contradiction; assume n

i

is strictly larger than n=i for some n, N and

i. Since n

i

is the i

th

largest, there are i� 1 � 0 other numbers in N , each of

which is at least as large as n

i

. These i numbers then necessarily sum to a

value strictly greater than n. ut

We will use Lemma 3.4.1 to prove a cost bound on a certain kind of partitioning

of trees. First, we de�ne some essential terminology.

De�nition 3.4.1 Let T = (N;E) be a tree with nodes N and edges E � N � N .

Then Subtree(n) for n 2 N is the set of all nodes in N which are in the subtree

rooted at n, including n itself, and Fanout (n) is the number of children of a given

node n.

De�nition 3.4.2 A postorder tree traversal is a total ordering of the vertices of a

tree such that if v

i

represents the i

th

vertex in the ordering, then v

j

is a vertex in

the subtree rooted at v

i

only if j < i.

A postorder search of a tree is most often discussed in the context of recursion,

where it corresponds to a recursive search of a tree, examining each child node before

examining the parent node. In such a non-backtracking procedure, each stage of the

enumeration implies a separation of the vertices of the tree into two groups: those

which have been enumerated, and those which have not, with movement always from

the latter group to the former. If this grouping serves as a basis for partitioning, the

communication cost can be bounded for bounded-degree trees. Let

�

=

s

represent the

equivalence class based on the enumerated/not-enumerated division, when s vertices

have been enumerated.

Lemma 3.4.2 Let T be a tree of n nodes with maximum fanout b, with a positive in-

teger weight w

i

assigned to each node v

i

, such that

P

i

w

i

= W � 1. Let W

i

be the

total weight of all nodes in the subtree rooted at v

i

; we also require that W

i

is at least

1 for all subtrees. If a postorder search is performed where the child nodes are exam-

ining in decreasing order of total subtree weight, ordering the vertices as v

1

; : : : ; v

n

,

then for any partition of T into two parts,

�

=

i

= ffv

1

; : : : ; v

i

g; fv

i+1

; : : : ; v

n

gg, it must

be that Cost(

�

=

i

) � (b� 1) log

2

(W) + b.

24

Proof: By induction on n, the number of nodes in the tree. The base case, with

just a single node is trivially true. Since there are no edges, cost is 0. Assume

true for all n

0

< n, and let T be an n-node tree, each node having maximum

fanout b, and with t

1

; : : : ; t

b

0

as the b

0

� b child trees, ordered by decreasing

total subtree weight.

If the root of T is enumerated in a postorder search, then the entire tree T

has been enumerated, and partition cost is 0. Assume, then, that the root of

T has not been enumerated.

The cost of the partitioning

�

=

i

will be at most one for each of the children

that have been fully enumerated (to account for the edge connecting the

child to the root), plus the cost of the partial enumeration of any single

child. When no children are partially enumerated, total cost cannot be more

than b

0

� b. So, assume at least one child tree is only partially visited, and

that it is the j

th

largest in terms of total weight. Let w

r

be the weight of the

root node.

If j = 1, then no other subtrees have been enumerated, and so the total

cost is just the cost of the partial enumeration of t

1

, which is by inductive

assumption bounded by (b� 1) log

2

(W � w

r

) + b.

Assume, then, that j > 1. By de�nition of the search strategy, the j�1 > 0

subtrees with larger weights have already been enumerated, and so the cost

must include the j�1 links to the parent. By Lemma3.4.1, the j

th

subtree can

have weight no more than (W�w

r

)=j. Hence, using the inductive hypothesis,

partially enumerating t

j

can cost no more than (b� 1) log

2

((W �w

r

)=j) + b,

or equivalently (b� 1) log

2

(W � w

r

)� (b� 1) log

2

(j) + b.

Adding in the cost of severing the j � 1 links to the parent for the fully-

enumerated subtrees, the entire cost can be no more than (b � 1) log

2

(W �

w

r

)�(b�1) log

2

(j)+j�1+b. By assumption 1 < j � b, and hence log

2

(j) � 1

and j � 1 � b� 1. Thus, the term j � 1 � (b� 1) log

2

(j) � 0. Since w

r

is

non-negative, the total cost is then upper bounded by (b�1) log

2

(W)+b. ut

This lemma establishes an upper bound on the cost of partitioning. However,

bounds on load-balancing do not directly follow; for load-balancing we need to

assume bounds on the sizes of the weights associated with each tree node.

25

Corollary 3.4.1 If T is a tree with total weight W as described in Lemma 3.4.2

with the extra condition that for all weights w

i

, w

i

� m for some m > 0, then for

any 0 � ! � W , there exist two partitionings,

�

=

s

and

�

=

0

s

, of T into two parts T

1

; T

2

and T

0

1

; T

0

2

respectively such that T

1

has total weight ! �m

0

for some 0 � m

0

� m,

T

0

1

has total weight ! +m

00

for some 0 � m

00

� m, and and the total cost of either

partitioning is no more than (b� 1) log

2

(W) + b.

Proof: Let v

1

; : : : ; v

n

be the n vertices of T ordered as per a post-order search

examining child trees in order of decreasing total weight. Since no vertex

has weight larger than m, there must exist some i such that w

1

+ � � �+w

i

=

! �m

0

for some 0 � m

0

� m. Similarly, there must exist some j such that

w

1

+ � � � + w

j

= ! + m

00

for some 0 � m

00

� m. By Lemma 3.4.2, both

partitionings have cost no more than (b� 1) log

2

(W) + b. ut

Lemma 3.4.2 and Corollary 3.4.1 establish an upper bound on the cost of a

partitioning and the maximum di�erence between partition sizes, respectively. Par-

titioning, however, is into p pieces where p can be anywhere between 1 and W , the

total weight of the tree. We would like, then, bounds on the cost and size of parti-

tions when dividing the tree into p pieces for any 1 � p � W . Given a tree T as in

Lemma 3.4.2, and a post-order search of its weighted vertices, we can consider the

problem of producing such a weight-balanced p-partitioning T to be equivalent to

the problem of p-partitioning an ordered sequence of non-negative integers summing

to W , each of which is no more than m.

Lemma 3.4.3 Given an ordered list of n integers, N = w

1

; : : : ; w

n

such that 0 �

w

i

� m and W =

P

w

i

, N can be partitioned into 1 � p � W disjoint, contiguous

and covering sets, such that each partition has sum W=p �m.

Proof: The total weight, W , can be rewritten as Wx=p �m, for x = p. Under

this syntax, N should be partitioned into contiguous and covering pieces

totalling W=p �m.

We perform an induction on x. Assume N is contiguous and has sum W

0

=

Wx=p�m, for some positive p and positive x � p, and that we wish to split

N into x pieces, each of sum W=p �m.

The base case, x = 1, is trivially true; the lone partition is all of N , and has

by assumption a total of W=p �m.

26

Assume true then for x � 1, and let x > 1. Let the actual weight of N be

W

0

= Wx=p+m

0

, for some 0 � m

0

� m (the other case, W

0

= Wx=p�m

0

, is

symmetric). By Corollary 3.4.1, N can be split either at ! +m

1

or ! �m

2

,

for any given 0 � ! � W

0

and some 0 � m

1

;m

2

;� m, so remove from the

front a contiguous partition N

1

of size W=p +m

1

. The remaining partition,

N

2

is also contiguous and has weight W

0

�W=p�m

1

= W (x� 1)=p�m, so

by inductive hypothesis N

2

can be partitioned into x � 1 pieces, each with

weight W=p �m.

Since no partitions overlap, and the base case consumes the entire remaining

list, the partitions must be covering. Each partition is also a contiguous

portion of a contiguous list, and so the partitioning satis�es the given criteria.

ut

Remarks:Although the above lemmaproves that N can be partitioned into p pieces

for any 1 � p � W , if p � W=m then some partitions may exist which contain no

vertices at all. Still, these partitions fall within the �m bounds on partition size.

Corollary 3.4.2 If T is a b-ary tree, as per Lemma 3.4.2 with an upper bound m

on the weight associated with each vertex, then T can be partitioned into 1 � p �

W pieces, each of which has total weight W=p � m, and total cost no more than

2(b� 1) log

2

(W) + 2b.

Proof: By Lemma 3.4.3, T can be partitioned into p pieces such that each

partition has weight W=p �m. Each such partition is completely separated

from the rest of the tree by no more than two cuts, each of which can be seen

as a split of T into two pieces. Hence, by Corollary 3.4.1, each partition can

have cost no more than twice (b� 1) log

2

(W) + b. ut

Thus, it is possible to partition b-ary weighted trees with an O(log(W)) bound

on partition cost, and the load-balance of the partitions will be a function of the

bound on the weight assigned to each tree node.

3.5 Graph Partitioning

The ST-overlap property is su�cient to give the history of production applications a

general \tree-like" shape, which can be exploited for partitioning the graphs gener-

ated. The nature of the graph embedding, combined with these properties, ensures

27

that this tree-like aspect remains tree-like throughout the derivation of each graph

in the grammar language. Since contexts merely restrict the application of a rule,

this property remains true even if we include contexts, and if we also include SS-

overlap, then we �nd we can partition the graphs even if rule application proceeds

in parallel.

3.5.1 Tree Partition Schemes

The partition strategy we will evince for graphs will be based on a method for

partitioning trees, and a mapping from the nodes of the graph to the nodes of the

tree and from the connection relations of the graph to the edges of the tree. For any

tree let the relation a � b applied to nodes a and b indicate that a is contained in

the subtree rooted at b. Then,

De�nition 3.5.1 A tree partition scheme for a dangling graph D with nodes

V , 1/2-edges E and connection relations C � E � E is a tree T with nodes N and

directed links L, together with a function � : V ! N and a relation

2

� � C�L such

that:

1. 8v 2 V , if �(v) = n and ` : n

0

! n and v

0

2 V n

[

n�n

�

�1

(n) and e = (v; v

0

) then

e�`.

2. 8n 2 N , j

[

n�n

�

�1

(n)j > 0.

3. 8v; v

0

2 V , if �(v) = �(v

0

) and e = (v; v

0

) then � (e) = ;.

Remarks: Several connection relations may be associated with a given link. If all

these connection relations are cut, then the set of graph vertices corresponding to

the nodes of the detached subtree become disconnected from the rest of the graph.

Note that the relationships between tree links and graph connection relations do

not reect connectivity in any simple way; i.e., one does not in general have a

homomorphism.

An example of a graph embedded in a tree partition scheme is shown in Fig-

ure 3.3. Dashed ovals indicate the graph nodes mapped to each tree node, and all

the edges between two ovals are mapped to the corresponding tree link. Cutting

2

We will often use the functional notation, i.e.,� (e) = f` 2 Lj e�`g, with the converse �

c

(`) =

fe 2 Cj e�`g.

28

Figure 3.3: A graph embedded into a tree partition scheme.

all the edges mapped to a given link is guaranteed to disconnect all graph nodes

mapped into the subtree from the rest of the graph.

The nature of the mapping and the tree will of course be critical to the success

of the method. A tree consisting of just one node to which every graph node is

mapped satis�es the above requirements, but clearly does not further the task of

partitioning.

De�nition 3.5.2 A tree partitioning scheme (T; �; �) of a dangling graph D is said

to be bounded if there exist three positive integers, �, �, �, where:

1. � is a bound on the branching factor of T .

2. � is a bound on the size of �

�1

(n); 8n 2 N .

3. � is a bound on the size of �

c

(`); 8` 2 L.

Bounded tree partitioning schemes permit the graph to be partitioned with cost

and size bounds determined by the three numbers �, �, and �.

Lemma 3.5.1 Let T (�; �; �; �; �) be a bounded tree partitioning scheme of n nodes

for some dangling graph D of jV j nodes, as detailed above. Then D can be partitioned

into p pieces each of size jV j=p�� with maximum cost 2�(��1) log

2

(jV j)+2��.

Proof: This follows directly from Corollary 3.4.2. ut

In order to describe how these tree partitioning methods and structures apply

to dangling graph grammars, it is �rst necessary to de�ne bounds which depend on

the grammar speci�cation itself.

29

De�nition 3.5.3 The bounds of a dangling graph grammar G = (A;�) are three

positive integers, m, g, and k such that jAj � m, 8n 2 V

A

; Degree(n) � k, and

8 (S; T; �) 2 � we have jT j � m, jSj � g, and Degree(v) � k for all vertices v

in T .

We can associate a bounded tree partition scheme with each graph generated

by the grammar. Inductively, each time the grammar is iterated generating a new

graph from an old, a new bounded tree partition scheme is also created from the old

scheme. The ST-overlap properties ensure that the tree partition scheme remains a

tree after every set of concurrent rewrites.

Lemma 3.5.2 Let G = (A;�) be an ST-overlap free dangling graph grammar, with

no node rewritten by more than one production at once, and with bounds (m; g; k).

Then for any non-empty dangling graph D where A

s

�!

�

D for some s, there

exists a bounded tree partition scheme T (�; �; � = m;� = m;� = gk) such that

8n 2 N; Fanout(n) + w

n

� m, where w

n

is the weight of node n. Moreover, let O

be an occurrence of a production in � in D; then if v; v

0

are graph vertices in O,

�(v) = �(v

0

).

Proof: By induction on the size of s. Let T = (N;L), where N is the set of

tree nodes and L is the set of tree edges (or links). In all cases we will let

w

n

= j�

�1

(n)j, and total weight W will be the number of graph vertices.

The base case is trivial; when s = 0, D = A, and T can be a single node tree,

T = (fn

1

g; fg), with � de�ned as the constant function with 8v 2 V

G

; �(v) =

n

1

and � unde�ned everywhere. Two of the three required integers are trivial,

� and � certainly exist at the indicated levels, since there are no tree edges,

and since jAj � m, j�

�1

(n

1

)j � m, giving the third required bound. Since

there is only one node in T and it corresponds to the axiom, necessarily each

graph vertex is mapped to n

1

, and so the vertices v, and v

0

of any occurrence

must be both mapped to n

1

.

Assume true for any D

0

such that A

s�1

�!

�

D

0

, and let D be such that A

s�1

�!

�

D

0

1

�!

�

D. By inductive hypothesis, there exists a bounded tree partition

scheme T

0

(�

0

; �

0

; �

0

; �

0

; �

0

) for D

0

with the above properties; we will show how

to extend T

0

to a bounded tree partition scheme T for D.

The graph D is the rewrite of D

0

by the productions in �. Hence, there is a

set O of all occurrences that transformed D

0

to D. As well, and because no

30

node is rewritten by more than one production, a function exists � : O !

fZjZ�

i

Dg, which returns the embedded target of a given occurrence.

By inductive assumption, each occurrence O 2 O in D

0

must rewrite only

vertices mapped to the same tree node, and so a function � : O ! N

0

exists

associating occurrences with the tree node containing the vertices forming

the occurrence.

We de�ne � and � to be the same as �

0

and �

0

for all nodes and connections

not changed by the rewrite. We now construct T from T

0

with the following

changes:

Add new nodes For each O 2 O create a new node n

O

in T , and for each

such O extend � to map the image of every graph vertex v in �(O) to

n

O

. Note that each �(O) thereby has a corresponding target node, n

O

in T , and so a function exists � : O ! N . By assumption, j�(O)j � m,

and since each n

O

has fanout 0, it is still true that Fanout(n)+w

n

� m.

Connect new nodes For each �(O) created in the above step which is not

already connected to the rest of T , add an edge in T from �(O) to �(O),

and delete all nodes in O from the function �. Since each production

must rewrite at least one graph node, and the same graph node can

never be rewritten by more than one production, if T

0

had the property

that each tree node n is such that Fanout(n) + w

n

� m, then this will

surely be the case in T

0

after adding these edges and deleting these

nodes from the node-mapping function.

Include new edges in � Let C

O

= f(e; e

0

) 2 C

D

j (e; e

0

) 2 CSet(�(O);D �

�(O))g. Increase the relation � to map each connection in C

O

to the

tree edge (�(O); �(O)).

Each �(O) is linked to the rest of D only by modi�cations to the origi-

nal connection set between O and D

0

(see Proposition 3.3.1). Since each

occurrence consists of at most g graph nodes, of degree at most k (by

assumption), there can be at most gk distinct

3

connection relations be-

tween �(O) and D��(O). Hence, � maps no more than gk graph edges

to the tree edge (�(O); �(O)). Note that all other di�erences between �

0

3

In fact, there are at most 2gk such connection relations, but since connection relations are

symmetric we need only be concerned with distinct pairs.

31

and � result from the deletion of connections (due to rewrites), and so

the number of connections mapped to an existing edge in the tree can

only decrease.

Fix-up � for existing edges Consider the set of all connection relations

(e; e

0

) in C such that there exists (f; f

0

) in C

0

with either (e = f; e

0

=

�

2

(f

0

)), (e = �

1

(f); e

0

= f

0

), or (e = �

1

(f); e

0

= �

2

(f

0

)), for some �

1

and/or �

2

(of two productions �

1

and �

2

). These are all the connection

relations which are have been altered by a substitution using some �

operator(s). Increase � to map (e; e

0

) onto �

0

(f; f

0

). This process does

not alter the mappings of any newly created tree edge, and only replaces

a former mapping ((f; f

0

) will not exist in D) with a corresponding new

one, so any bounds on the size or claims about connectivity for T

0

will

continue to hold in T .

It remains to verify that the generated tree T is indeed a bounded tree

partition scheme with the desired integers and properties as described in the

statement of the lemma.

As detailed in the above steps, the constructions of � from �

0

and � from

�

0

are such that j�

�1

(v)j � m, and j�

c

(`)j � gk. Also by construction,

severing the edges mapped to any (�(O); �(0)) disconnects �(0) from the

rest of the graph, so � certainly possesses the desired disconnection property

for all �(0). To see that � retains this property for the rest of the tree, we

can simply note that in the last step if (e; e

0

) is a connection relation in D

0

which is altered by the rewrite, then the rewritten connection will replace

the previous connection, and all connections untouched by the rewrite are

retained.

Let e = (v; v

0

) be a connection relation in D. If both v and v

0

existed in D

0

,

then if �(v) = �(v

0

) by inductive assumption � (e) = ;. If v existed in D

0

and v

0

did not, then by construction it cannot be that �(v) = �(v

0

), and if

neither v nor v

0

existed in D then also by construction if �(v) = �(v

0

) then

both v and v

0

are mapped by � to the same newly-introduced node, and so

� (e) will not be de�ned on e.

The third integer bound for a bounded tree partition scheme is trivial to

verify. Because of the invariant Fanout(n) + w

n

� m, for all tree nodes n, a

32

bound m exists on the branching factor of T .

It is necessary to ensure that any future occurrences of these productions will

have all their graph vertices mapped by � to the same tree node. Consider

an occurrence O of some production � = (S

�

; T

�

; �

�

) 2 � in D. Trivially, if

all vertices in O are mapped by � to the same tree node n 2 N , then the

property is satis�ed. If O includes vertices only mapped by � to tree nodes

in N

0

, then the inductive hypothesis ensures the desired property|vertices

are never added to existing tree nodes, so if an image of S

�

exists in D using

just vertices from D

0

, then S

�

also occurred in D

0

.

Assume, then, that O includes some vertices mapped to a node in N which is

not in N

0

; let v be such a vertex, �(v) = n 62 N

0

, and let v

0

be another vertex

in O such that �(v

0

) 6= �(v). Because n is a tree node we just inserted, the

vertices in �

�1

(n) are the embedded copies of some production target graph

� . Let O

v

be a maximal (strictly) induced subgraph of O including v with

every vertex in O

v

mapped by � to �(v). It must be that O

v

2 Overlap(S

�

; �);

every 1/2-edge of O

v

is either a 1/2-edge of O � S

�

, or it matches a 1/2-edge

of �|a 1/2-edge e of O

v

which is not in �(O) and is connected to some other

1/2-edge e

0

and vertex v

0

in O. If there is a corresponding match for e

0

and

v

0

in � , then O

v

is not maximal; if there is not and the image of e is not

dangling in � , then it cannot be that O is an occurrence. Thus, there is a

member of Overlap(S

�

; �) which is neither ;, nor the same as S

�

(O

v

includes

v but not v

0

), and the grammar cannot be ST-overlap free.

The only remaining property to check is the assertion that no subtree of T

exists with total weight 0. The above construction generates tree nodes for

each embedded target, even if the target is the empty graph, and so after

the indicated steps some branches of T might exist which have 0 weight.

However, such \dead branches" can be removed without altering any of the

desired properties. Numerical bounds on tree branching, the maximumnum-

ber of connection relations mapped to tree edge, or the maximum number of

vertices mapped to nodes are trivially preserved. Since there are no vertices

mapped to any node in such a dead branch, all conditions speci�ed for tree

partitioning schemes, and the extra conditions in the lemma statement too,

continue to apply after removing all dead branches. ut

33

This lemma leads directly to our main result:

Theorem 3.5.1 Let G = (A;�) be an ST-overlap free dangling graph grammar

with constant bounds (m; g; k). For any dangling graph D such that A

�

!

�

D, it

must that D is (2gk(m� 1) log

2

(jV j) + 2gkm)-partitionable.

Proof: This follows trivially from Lemma 3.5.2 and Lemma 3.5.1. By the former,

for each dangling graph generated by G there is a corresponding bounded

tree partition scheme T (�; �;m;m; gk), and by the latter such a tree can

be partitioned into pieces of size jV j=p � m with maximum cost 2gk(m �

1) log

2

(jV j) + 2gkm, for any 1 � p � jV j. ut

3.6 Denser Graphs

There are often situations where one wants a schematic rewrite rule; that is to say,

an in�nite family of rewrite rules which exhibit a regular or repetitive pattern. For

instance, we may wish to generate the family of rectangular grids (see Figure 3.4).

c� �a� �a� : : : �a� �a� �c

j j j : : : j j j

c� �a� �a� : : : �a� �a� �c

j j j : : : j j j

c� �a� �a� : : : �a� �a� �c

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.4: A schematic rectangular grid.

If we build it row-by-row, then in order to ensure all the connections in the next

row can be made (without overlapping rules) we would need an in�nite family of

rules, one for each of the possible number of a's. We would need one rule as in

Figure 3.5, one as in Figure 3.6, and so on. It would certainly be easier to write one

rule just indicating the pattern, as in Figure 3.7.

Thus, instead of specifying source and target graphs precisely, we would like to

specify source and target patterns. Patterns allow the generation of a larger class of

graphs; including, for example, the class of rectangular grids shown in Figure 3.4.

This class of graphs cannot be expressed using any bounded number of rules all

of which have fully-speci�ed source and target graphs without introducing overlap.

34

j j j j j j

c� �a� �c) c� �a� �c

j j j

c� �a� �c

Figure 3.5: One of an in�nite family of rules.

j j j j j j j j

c� �a� �a� �c) c� �a� �a� �c

j j j j

c� �a� �a� �c

Figure 3.6: Another of an in�nite family of rules.

j

c�

j

�a�

!

�

j

�c)

j

c�

j

c�

0

B

B

B

@

j

�a�

j

�a�

1

C

C

C

A

�

j

�c

j

�c

Figure 3.7: A schematic rule, representing an in�nite family of rules.

35

Naturally there is a tradeo�; the use of schematic rules implies an increase in the

bound on partitioning cost|square grids are
(

p

n)-partitionable, a bound much

higher than our previous O(log(n)) limit. The following formalism for schematic

graphs, called path expressions is designed to permit the increase in cost to be

easily calculable.

3.6.1 Path Expressions

A formalism for specifying the schematic representation of a family of graphs must

be such that occurrences and the various forms of overlap between productions are

still recognizable. For this reason path expressions are based on an algorithmic

model, similar to regular expressions on strings.

Path expressions are built up inductively from graphs and operators representing

connection, choice and repetition. Each inductive operation indicates how one or

two families of graphs with a given set of available unconnected 1/2-edges (or \free

edges") can be combined to generate another family of graphs. Note that this

means that the operators must not only specify the appropriate action|connection,

choice, repetition|but exactly which 1/2-edges are to be connected to which others

to actually form the desired structure. In the de�nition below, this function is

provided by the partial bijection �.

De�nition 3.6.1 A path expression is de�ned inductively as follows:

1. A dangling graph G of one node is a path expression. All 1/2-edges are con-

sidered free.

2. If G and H are path expressions with free edges E = fe

1

; : : : ; e

n

g and F =

ff

1

; : : : ; f

n

g, and � : E $ F is a partial bijection, then (G �

�

H) is a path

expression with free edges fxj (x 2 E ^ 6 9y 2 F: �(x) = y) _ (x 2 F ^ 6 9y 2

E: �(y) = x)g.

3. If G and H are path expressions with free edges E = fe

1

; : : : ; e

n

g and F =

ff

1

; : : : ; f

n

g, and � : E $ F is a partial bijection, then (Gj

�

H) is a path

expression with free edges: f(ejf)j �(e) = fg.

4. If G is a path expression with free edges E = fe

1

; : : : ; e

n

g, and � : E $ E is a

partial bijection, then (G+

�

) is a path expression with free edges E. Note that

36

in this iterated graph there will actually be as many copies of each 1/2-edge

not involved in � as there are replications of G, but that there will be only

one copy of each 1/2-edge which is involved in �. For instance, if we have an

expression like:

0

B

B

B

@

j

p

n

l

=n

r

1

C

C

C

A

+

r!p

(which indicates a sequence of 1 or more nodes labelled n, connected r to p),

then in any such sequence there is exactly one 1/2-edge labelled p, one labelled

r, and as many labelled l as there are nodes in the sequence.

The free set will be used below to establish bounds on the partitionability of

graphs indicated by this method. For this reason it is essential that an un-

bounded number of 1/2-edges does not get included in the de�nition. Thus,

the free set for an iterated expression is de�ned to only include the (single)

copies of each 1/2-edge involved in �, and the very �rst copy of any 1/2-edge

not involved in � of the sequence.

The set of graphs indicated by a given path expression P forms the language of

P , and is designated by L(P).

Note that we have not de�ned the usual \?" (match 0 or 1 instance of a graph)

and *" (0 or more repetitions) operators. Except for the the ability to match the

empty graph, this does not alter the expressiveness of the scheme. We have also not

included \." (match any singleton); this could be included, but is simple syntactic

sugar for the collection of all singleton graphs cascading j-ed together.

Example 3.1 Consider the following path expression.

0

B

B

B

B

B

B

B

B

B

@

0

B

B

B

@

j

p

n

l

=n

r

1

C

C

C

A

�

�

�

�

�

�

�

�

�
p! p

l! r

0

B

B

B

@

j

p

n

l

=n

r

1

C

C

C

A

1

C

C

C

C

C

C

C

C

C

A

+

(ljr)!p

This expression generates a list of nodes, connected either l to p or r to

p|the set of all paths in a binary tree from the root to any node.

37

The base case of a path expression is just a single dangling node. However, a

path expression can also be thought of as composed from the three operators applied

to fully-de�ned graphs, which are themselves constructed only from nodes and the

�-operator. The next two de�nitions formalize this concept:

De�nition 3.6.2 A path expression P is concrete if P consists entirely of dangling

nodes and the ` �' operator.

De�nition 3.6.3 The skeleton of a path expression P is a function formed accord-

ing to the syntactic expression of P with all concrete subexpressions removed. The

skeleton of P , designated by \ @P ," takes concrete path expressions as input, substi-

tuting them for the concrete expressions extracted from P . In order to ensure @P

is unique, it must be that if a minimum of c concrete expressions must be removed

from P so there are no more concrete expressions in P , then @P is a c-ary function,

or of order c. The (ordered) list of c concrete expressions extracted from P is given

by [P], such that @P ([P]) = P , with the i

th

element in [P] addressable by [P]

i

.

Example 3.2 As an example, consider the following path expression

4

and

its associated skeleton:

P = (a � b)j(((d � e)+)j((f)+)) � ((g)+)

@P (#1;#2;#3;#4) = (#1)j(((#2)+)j((#3)+)) � ((#4)+)

Hence, [P] = (a � b; d � e; f; g) where [P]

1

= a � b, [P]

2

= d � e and so on, and

@P is of order four.

Some properties of path expressions should be immediately clear. For instance,

any path expression normally written down by a human will have some constant

bound on the size of the free set dictated by the \length" of the path expression.

The length of a path expression is simply the number of nodes in the parse tree

corresponding to the inductive de�nition; it can also be de�ned directly:

De�nition 3.6.4 Given a path expression P , the length of P , given by jP j is de�ned

inductively:

1. If P is a one node dangling graph, then jP j = 1.

4

1/2-edges and 1/2-edge labels are not shown.

38

2. If P = (G �

�

H), then jP j = jGj+ jHj.

3. If P = (Gj

�

H), then jP j = max(jGj; jHj) + 1.

4. If P = (G+

�

), then jP j = jGj+ 1.

Path expressions are adequate for describing simple linear structures, with lim-

ited branching. For instance, a path expression cannot be used to describe the

class of binary trees. In fact, path expressions are all O(1)-partitionable; this is

established using the following series of results.

Proposition 3.6.1 Let P be a path expression of length ` over nodes with bounded

degree k. Then the free set F of P is such that jF j � k`.

Proof: By induction on jP j = `. If ` = 1, then P matches only a single node of

bounded degree k, and hence the free set is of size k.

Assume then that the hypothesis holds for all path expressions of length no

more than `� 1 � 1, and let P be a path expression of length `.

If P is of the form (P

1

�

�

P

2

), then `

1

= jP

1

j and `

2

= jP

2

j where `

1

+ `

2

= `.

By inductive assumption then, P

1

and P

2

have free sets of size k`

1

and k`

2

respectively, and by de�nition of `�' the free set of P is no more than the

combination of the free sets of P

1

and P

2

, which is of size k`

1

+ k`

1

= k`.

If P is of the form (P

1

j

�

P

2

), then by de�nition of `j' the free set of P can be

no larger than the smaller free set between P

1

and P

2

; both of which are by

inductive assumption of size no more than k(`� 1).

Finally, if P is of the form (P

1

+

�

), then the free set of P is identical in size to

the free set of P

1

, which by inductive assumption is no more than k(`�1). ut

Lemma 3.6.1 Let P be a path expression of length ` over nodes with bounded degree

k. Then any graph G 2 L(P) is k`

2

-partitionable.

Proof: By induction on `.

If ` = 1, then P is a single dangling node n, and partitioning is trivial.

Assume then that the inductive hypothesis is true for all path expressions of

length � `� 1, and let P be a path expression of length ` > 1.

If P is of the form (P

1

�

�

P

2

), then the length of P

1

and P

2

will be `

1

and

`

2

respectively, where 1 � `

1

; `

2

� ` � 1. By inductive assumption then,

39

any graph speci�ed by P

1

or P

2

is k(` � 1)

2

-partitionable. Moreover, by

Proposition 3.6.1, there are no more than k(`�1) free edges emanating from

(any graph speci�ed by) P

1

to connect to P

2

, and vice versa. To partition

any graph speci�ed by P it is su�cient to partition P

1

and then P

2

; this can

cost no more than the cost of partitioning the graphs speci�ed by P

1

and P

2

plus the cost of severing the k(` � 1) free edges between the two subgraphs

at each partition. This is k(` � 1)

2

+ k(` � 1), which reduces to k(`

2

� `),

which is certainly no more than k`

2

.

If P is of the form (P

1

j

�

P

2

), then to partition any graph speci�ed by P it is

su�cient to partition either P

1

or P

2

. The bounds therefore follow trivially

from the inductive assumption.

If P is of the form (P

1

+

�

), then by inductive assumption P

1

can be partitioned

with cost no more than k(` � 1)

2

. Since each copy of a graph speci�ed by

P

1

is connected to the next copy (if one exists) in the sequence by no more

than k(` � 1) connections, and to the previous copy (if one exists) in the

sequence by no more than k(` � 1) connections, any subsequence of images

of P

1

can be disconnected from the rest of the sequence with cost no more

than 2k(` � 1). To disconnect any portion of an image of P

1

from the rest

of its image can cost no more than k(` � 1)

2

, so disconnecting any portion

of the graph has a maximum cost of k(`� 1)

2

+ 2k(` � 1), which reduces to

k(`

2

� 1), which is certainly no more than k`

2

. ut

Theorem 3.6.1 Let P be a path expression with length and maximum degree bounded

by a constant. Then any graph G 2 L(P) is O(1)-partitionable.

Proof: This follows immediately from Lemma 3.6.1. ut

3.6.2 Path-Expressions in Productions

As with a normal graph speci�cation, path expressions can be included as the source

and target of productions. However, some structure is required if such a speci�cation

is to be sensible. It is not meaningful, for instance, for there to be a rule like:

(a � b) �! (ejf)

40

In this case it is certainly not clear what the rule is telling us to do|should we

replace the a � b graph with an e node or an f node? Similarly, a rule such as:

(a � b) �! (d � e)

+

does not provide enough information|how many iterations of (d � e) should (a � b)

be replaced with?

Such problematic interpretations can be avoided by restricting the structure of

the target path expression to be related to the path expression of the source. As

long as the structure of the target is essentially the \same" as the source structure,

modulo the speci�cation of actual graphs, the transformation can be unambiguously

based on the actual graph matched by the source.

Suppose we restrict the free sets at each inductive level of a path expression so

only the 1/2-edges actually used by an enclosing �, j, or +-operator are contained

in the free sets. This way the free set at each level only includes \used" edges; any

other 1/2-edge not included in a free set is then certain to be dangling.

Productions using path expressions will then be formed from a collection of

mappings between corresponding concrete subexpressions of the source and target

expressions. The 1/2-edges not found in the free set around each concrete expression

(and which are therefore dangling) are used by the � function in the same way as

normal productions would. By splitting up the � function among the individual

mappings an e�ect similar to an interconnected collection of productions can be

achieved, though it is also necessary to ensure these � mappings do not conict.

The following de�nition formalizes these concepts:

De�nition 3.6.5 Let S and T be path expressions, such that @S = @T . Let [S] =

(C

1

; : : : ; C

c

) and [T] = (D

1

; : : : ;D

c

), for some c, with F

1

; : : : ; F

c

and G

1

; : : : ; G

c

their corresponding free sets. Let �

1

; : : : ; �

c

be a sequence of c partial bijections, such

that �

i

: �(C

i

) $ �(D

i

), where 8i; 6 9e: (�

i

(e) 2 G

i

) _ (�

�1

i

(e) 2 F

i

). Then if

8G 2 L(S) G is connected, (S; T; �

1

; : : : ; �

c

) form a path-extended production.

Remarks: A skeleton, such as @S, speci�es an algorithm. When S is actually

matched with a graph, the choices made (such as which side of an j to use, or how

many iterations of a +-expression are needed) can be used to guide the actions of the

@T algorithm, since @S = @T . This establishes the correspondence between concrete

expressions in the source and in the target. One can view a path-extended produc-

tion, then, as an interconnected series of regular productions between corresponding

41

concrete subexpressions of the source and target.

3.6.3 Determinism and Overlap

In order to ensure no two productions are attempting to rewrite the same node at

the same time, the sources of any two productions must not overlap. Fortunately, a

conservative answer is easily determined|although there is a concomitant reduction

in expressibility.

A path-extended production can be viewed as a collection of regular productions

between corresponding concrete subexpressions of the source and target. If for each

path-extended production P we build such a set of regular productions

b

P , then no

two distinct productions in our original set of path-extended productions will rewrite

the same node if all of

b

P is SS-overlap free. In other words, we have to extend the

concept of \SS-overlap free" to path-extended productions.

De�nition 3.6.6 Let P be a set of (path-extended) productions. Then P is SS-

overlap free if the set:

b

P = f([S]

i

; [T]

i

; �

i

)j 1 � � � j[S]j ^ 9(S; T; �

1

; : : : ; �

j[S]j

) 2 Pg

is SS-overlap free.

Ensuring the SS-overlap free property for path-extended productions means that

no two di�erent productions will attempt to rewrite the same graph node. However,

this is still insu�cient for actually ensuring determinism; the use of the iteration

operator has not yet been fully-de�ned. For instance, the following path-extended

production for a linear chain of a-nodes can match just one a, two a's, three a's,

etc.

(�a�)

+

Given a chain of a's as an axiom, we do not know how many this expression should

match, or where it should begin. We can alleviate some of the problem by demanding

that there be only one occurrence of each path-extended rule at any one time. This

ensures no node is rewritten more than once, but introduces the problem of picking

which of all possible occurrences of a given path-extended productin we should use.

Even choosing the largest (in some order) occurrence possible, does not solve the

problem|when matching our example to an axiom with a circular chain of a's, we

still do not know where to start the occurrence. This can be dealt with by, for

42

example, demanding each path-extended production include at least one node (in

all possible graphs speci�ed by the path-extended expression) which only appears

once in each graph in the grammar language; this way a largest occurrence does

constrain the possible matchings of a path-extended production.

The existence of such \anchors" can be ensured in a number of ways. Runtime

resolution, dynamically verifying that no path-extended productions conict, is the

simplest, though most error-prone. To statically determine the existence of an

anchor we �rst demand that the anchor, call it a, be identi�ed in the path-extended

production. Then, as long there is at most one a in the axiom or in the target of

any production (in

b

P), and each time a appears in the target of a production it also

appears in the source, there will surely be only one a in any graph in the grammar

language.

Proposition 3.6.2 Let P be a set of (path-extended) productions. Then P is deter-

ministic if P is SS-overlap free, path-extended productions match the largest possible

occurrence (under some deterministic matching strategy), and each path-extended

production includes a unique anchor in its source.

Proof: This follows directly from the de�nitions of path-extended productions,

anchors, and SS-overlap free. Because each path-extended production is

anchored at a unique vertex and the matching is done deterministically, there

is only one largest occurrence of each in the graph at any one time. The

SS-overlap free property then ensures no two productions, path-extended or

otherwise, interact. ut

Remarks: Note that the expression in Example 3.1 could not appear in the source

of any production in an SS-overlap free set of productions. There are two concrete

expressions,

0

B

B

B

@

j

p

n

l

=n

r

1

C

C

C

A

and

0

B

B

B

@

j

p

n

l

=n

r

1

C

C

C

A

which trivially overlap.

In order to state the partitioning properties of path-extended grammars, it will

be convenient to reuse the ST-overlap free concept de�ned for regular grammars.

This notion can be de�ned in a manner similar to that just used for SS-overlap free:

43

De�nition 3.6.7 Let P be a set of (path-extended) productions. Then P is ST-

overlap free if the set:

b

P = f([S]

i

; [T]

i

; �

i

)j 1 � � � j[S]j ^ 9(S; T; �

1

; : : : ; �

j[S]j

) 2 Pg

is ST-overlap free.

3.6.4 Modi�cations to the Tree Partition Scheme

The ST-overlap free aspect of an ordinary dangling graph grammar ensures the ex-

istence of an associated tree partition scheme (TPS) for any graph in the language.

With some modi�cations to deal with the 1/2-edges in the free sets, this same con-

cept can be used to generate TPS's for graphs generated by path-extended dangling

graph grammars.

Each time a path-extended production P is applied, it is as if some number of

distinct productions,

b

P (formed between concrete subexpressions of the source and

target of P) were applied simultaneously. If we just consider the actions of

b

P , then

if

b

P is SS and ST-overlap free and has bounds (m; g; k), a bounded tree partition

scheme T (�; �; � = m;� = m;� = gk) necessarily exists. If P mapsG

0

to G then T is

constructed from T

0

, the TPS of G

0

. The path expression operators, though, permit

connections also to be established between the embedded targets of productions in

b

P by linking 1/2-edges in the free sets. These connections will not have been taken

into account in constructing T .

Let E be the set of connections not considered in the construction of T . E

can be included by modifying � (the relation mapping connections to tree links)

according to a simple observation about the elements of E. If e 2 E is a connection

between embedded images of [T]

i

and [T]

j

resulting from a +-operator, then because

@S = @T for all productions and because any graph speci�ed by S is connected,

there is necessarily some connection e

0

between corresponding embedded images of

[S]

i

and [S]

j

inG

0

, found as a result of the application of a corresponding +-operator.

The images of [T]

i

and [T]

j

are respective rewrites of the images of [S]

i

and [S]

j

, so

this implies that the existence of a connection between embedded images of [S]

i

and

[S]

j

was already established in T

0

. Since T is an extension of T

0

, the modi�cations to

� to include connections such as e can be expressed in terms of a simple expansion

of �

0

.

44

This still leaves e 2 E which is not a connection between embedded images of

[T]

i

and [T]

j

resulting from a +-operator. Fortunately, there can only be a �xed

number of such connections in any graph speci�ed by P , and so the number of such

connections is bounded as a function of the length of P ; speci�cally, there can be

no more than k` such connections. The following results formalize this argument.

Proposition 3.6.3 Let P be a path expression of length ` over nodes with bounded

degree k. Let C be the image of any concrete subexpression of P in a given G 2 L(P).

Then C is connected to G by no more than k` connections.

Proof: Since P is of length ` and C is the image of a fully-de�ned graph within

P , C can consist of no more than ` nodes, each with degree bounded by k.

Thus, there are no more than k` connections emanating from C. ut

LetG = (A;�) be an SS-overlap free and ST-overlap free path-extended dangling

graph grammar with path-extended productions �

0

� � where u = j�

0

j. Let k be

a bound on the degree of any node, and let ` be a bound on the length of any path

expression in �

0

. Let (A; (�� �

0

)

S

c

�

0

) have constant bounds (m; g; k), and let d

be the maximum number of occurrences of concrete expressions in the occurrence

of any path-extended production.

Lemma 3.6.2 Let G = (A;�) be a path-extended dangling graph grammar as just

described. Then for any non-empty dangling graph D such that A

s

!

�

D for some s,

there exists a bounded tree partition scheme T (�; �; � = m;� = m;� � max(�; k`+

gk)) for � � min((gk+k`)(k`)

s

+u((k`)

s+1

�1)=(k`�1)�1; gk+k`+uk`s(d+1))

such that 8n 2 N; Fanout (n)+w

n

� m, where w

n

is the weight of node n. Moreover,

let O be an occurrence of a production in � in D; then if v; v

0

are graph vertices in

O, �(v) = �(v

0

).

Proof: By induction on the size of s. Let T = (N;L), where N is the set of

tree nodes and L is the set of tree edges (or links). In all cases we will let

w

n

= j�

�1

(n)j, and total weight W will be the number of graph vertices.

The base case, s = 0, is of course trivial. Assume true for any D

0

such

that A

s�1

�!

�

D

0

, and let D be such that A

s�1

�!

�

D

0

1

�!

�

D. By inductive

hypothesis, there exists a bounded tree partition scheme T

0

(�

0

; �

0

; �

0

; �

0

; �

0

)

for D

0

with the above properties; we will show how to extend T

0

to a bounded

tree partition scheme T for D.

45

The actions of the regular productions on the TPS have already been de-

termined; assume then that a new TPS, T , has been constructed from T

0

according to the actions of (A; (���

0

)

S

c

�

0

) and as described in Lemma 3.5.2,

with two exceptions. First, no dead branch elimination has been performed;

and second, all existing connections in G

0

which were identi�ed with a con-

nection established between free sets of any path-extended productions in

the rewrite have been retained in � . This latter condition means � is still

associating some connections which do not exist anymore in G with T , but

it does not increase the bound �.

Such a construction ensures that � does not increase beyond m, � does not

increase beyond m, and that � remains bounded by max(�

0

; gk + k`); as

well, since dead branches have not been pruned, all nodes and links of T

0

are

contained in T . We will now show how to integrate the extra connections

implied through the path-extended productions. There are three separate

kinds of connections to establish.

1. Each time a path-extended production � = (S; T; �

1

; : : :) is applied, it

is as if all of

b

� were applied with extra connections established between

productions in

b

�. Each one of these productions is between two concrete

subexpressions of �, and thus by Proposition 3.6.3 the embedded image

of any target in

b

� in D can be disconnected with cost at most k`. Hence

if O is the image of [S]

i

for some i and �(O); n

O

are the tree nodes (and

by construction �(O) must exist in both T

0

and T) associated with O

and the corresponding embedded image of [T]

i

, then � can be increased

to map the entire connectivity of the embedded image of [T]

i

to the tree

link (�O; n

O

). This amounts to � being no more than k` for those links.

2. If e is a connection established during the rewrite by the actions of a

+-operator of T , then as discussed above there is some corresponding

connection in S, and therefore there is some corresponding connection

e

0

in G

0

. In other words, if e arises from a +-operator and connects

the images of [T]

i

and [T]

j

in G, then there exists some e

0

connecting

the corresponding images of [S]

i

and [S]

j

in G

0

. Moreover, our second

exceptional requirement of T stipulates that � still maps connections

like e

0

to links of T . We can replace each such e

0

with at most k`

46

connections each application of each path-extended production. This

implies a multiplicative increase in � for any existing link of no more

than k`. However, it is also true that no more than uk` connections can

be introduced to any tree link in order to connect occurrences of the

concrete parts of any occurrence of a path expression. Since there are at

most d of these concrete occurrences for each path-extended production,

the increase in � is also bounded by an additive factor of udk` for these

connections.

3. Again, this leaves the consideration of e 2 E which is not a connection

between embedded images of [T]

i

and [T]

j

resulting from a +-operator.

As mentioned there are at most k` such connections, and so � will have

to associate at most k` more connections with any given link in T in or-

der to accommodate them for each of the u path-extended productions.

Thus, all connections can be included in � with an increase in � of at most

uk` for the latter connections, and either a multiplicative increase by k`

or an additive increase by udk`. Applying these increases to the inductive

hypothesis results in the described bounds. ut

Theorem 3.6.2 Let G = (A;�) be a path-extended grammar as just described.

Then for any dangling graphD such that A

s

!

�

D, it must be that D is O(c

s+1

log(jV j))-

partitionable, and O(sd log(jV j))-partitionable.

Proof: Lemma 3.6.2 establishes the existence of a tree partition scheme where �

is bounded as described. By Lemma 3.5.1 this TPS can be partitioned with

cost O(log(jV j)). ut

3.7 Expressibility

There is no guarantee that the class of graphs constructed using the above methods

will be at all interesting. We can, however, demonstrate the expressibility of our

scheme by showing how to generate a variety of computer science data structures.

47

r r e n

e e

Axiom Rule 1

n

e e

Rules 2,3

Figure 3.8: A grammar generating trees.

3.7.1 Reasonably-partitionable Structures

We have evinced two forms of grammar; one where the source and target of each

production must be fully-de�ned, resulting in O(log(n))-partitionable graphs, and

one where the source and target are speci�ed through path expressions, resulting

in O(s log(n))-partitionability for an s-step sequential derivation. Here we illustrate

some possible grammars falling into the former category.

k-ary Trees

The class of k-ary trees is trivial to generate. The axiom consists of just a single

node, labelled root. Two rules then su�ce to expand either the root or a leaf into an

internal node and k child leaves. In the case of a leaf being rewritten, the 1/2-edge

connecting the rewritten leaf to its parent is associated with the 1/2-edge extending

from the internal node. This is illustrated in Figure

5

3.8; Rule 1 expands the root

node, and Rules 2 and 3 (shown as one rule|there should actually be two rules,

one if the e-node is a left child of its parent, and a symmetric one if e is the right

child) expand a left child or a right child.

Threaded k-ary Trees

By adding two 1/2-edges to each node, for left and right threaded neighbours,

threading can be maintained as the leaves are expanded (see Figure 3.9; thread-

ing is shown using dashed lines). If just the leaves are to be threaded, the process is

similar; expanded leaves generate a leaf-threaded subtree, and the original threaded

neighbours are transferred to the new leaf children (Figure 3.10). Our examples il-

lustrate binary trees and inorder threading, but clearly it is possible to accommodate

any recursive threading policy in the same way.

5

Edge labels and the � function are not illustrated; they should be obvious from the geometric

positioning of the 1/2-edges.

48

r r

Rules 4,5

Rule 3

Rule 2

Axiom Rule 1

n

e e

e n

e e

e

e n

e e

n

e e

Figure 3.9: A grammar generating inorder threaded (binary) trees.

r r

Rules 4,5

Rule 3

Rule 2

Axiom Rule 1

n

e e

e n

e e

e n

e e

e n

e e

Figure 3.10: A grammar generating leaf-threaded trees.

49

h h n

h t
Axiom

Rule

Figure 3.11: A grammar generating linked lists.

h t

h h n

Axiom

Rule

Figure 3.12: A grammar generating circular linked lists.

Linked Lists

Normal linked lists can be easily generated by marking the tail and/or head of

the list distinctly, and then generating new entries by expanding the tail or head

into an internal node and a new tail or head (Figure 3.11). If the list is intended

to be circular, then an extra connection between the head and tail is maintained

through the rewrites (Figure 3.12). Di�erent orders of application for the rules then

correspond to the di�erent variations on lists|stacks, queues, double-ended queues,

etc.

Compiler Control-Flow Graphs

Structured procedural languages can be modelled by graphs, with linked lists of

nodes representing sequences of statements, and cycles representing loops and con-

ditionals. The usual directedness of these graphs is simply reected in the choice of

edge labels.

Such a grammar is shown in Figure 3.13. The axiom thus consists of a single

statement node bracketed by a begin and end marker. Rules exist to expand a state-

ment node into a pair (or more) of statement nodes (Rule 1), into a loop statement

consisting of a cycle including a statement node (Rule 2), or into a conditional, con-

sisting of a cycle with true and false branches, with the conditional exit continuing

50

s

s

w

s

s s

c

d

s eb

s s s

Rule 2

Rule 3

Rule 1

Axiom

Figure 3.13: A grammar generating compiler control ow graphs.

control ow out of the conditional (Rule 3).

3.7.2 Path-Extended Grammars

Generating dense graphs is performed with a bound on partitionability proportional

to sd log(n), where s is the number of times a path extended production applied

and d is the maximum number of occurrences of concrete subexpressions in any

path-extended occurrence, and an exponential bound as well. Thus the number of

times a set of productions can be applied is an important factor in these grammars.

Below are a few interesting graphs which can be produced with this scheme, along

with their actual partitionability bounds.

Rectangular Grids

Rectangular grids are one of the more di�cult classes of graphs to express using

graph grammars; generating a rectangular grid requires either overlapped produc-

tions or coordinated action between productions, neither of which is possible with

a normal dangling graph grammar. With path-extended productions, though, the

process is quite straightforward (see Figure 3.14). The axiom is an initial minimal

grid, and there are only two rules. Rule 1 expands the width of a rectangular grid

by one column, and Rule 2 rule expands the height by one row.

Our partitionability bounds as given by Theorem 3.6.2 are far from optimal in

this case. Our exponential or length-driven bounds do not compare to the actual

�(

p

n) bounds on partitionability. In this case, though, the upper-bound on par-

titioning the TPS from which these bounds are derived is misleading. If the grid

51

c ca

c ca

c ca ()
+

()+

c

c

c(
)

+
c

c

c

c

c

c()
+

c a

c a

c a

c

c

c

Rule 1

Axiom

Rule 2

Figure 3.14: A path-extended grammar generating rectangular grids.

is produced by �rst generating the width and then the height, the TPS inductively

constructed according to Lemma 3.5.2 will look isomorphic to:

0

B

B

B

B

@

0

B

B

B

@

j

p

n

l

=n

r

1

C

C

C

A

+

l!p

1

C

C

C

C

A

+

r!p

Each application of the path expression then increase the number of connections

mapped to each tree link in the TPS by only a constant amount. Moreover, since

the TPS itself is a path expression, by Theorem 3.6.1 the TPS can be partitioned

with cost O(1)|reducing the cost of partitioning the grid to O(

p

n).

3.7.3 Contexts

The above examples are all of grammars with the productions having just single

nodes in their source graphs. Data structures which are built based on the local na-

ture of the surrounding graph require contexts or larger source graphs to distinguish

which vertices are to be expanded. A tree, for example, where right-child leaves are

expanded only if the corresponding leaf-child leaves have already been expanded

would need this sort of local information (see Figure 3.15).

3.8 Tree Width

Tree-width is a concept in graph theory meant to model how \close" a given graph

is to a tree. More importantly, a bounded tree-width speci�es a large class of graphs

52

r

n

n e n

e e

n

n e n

e e

r n

e e

n

e e

e

Rule 1Axiom

Rule 5Rules 2,3

Rule 4

Figure 3.15: A grammar requiring contexts; right leaves are expanding only if the

left sibling is not a leaf.

for which polynomial-time (and often linear-time) algorithms exist for a variety of

problems in NP [Arn85, ALS88, Cou90a, Klo94, Sli82]. If we can �nd a tree partition

scheme for a given graph, however, it is possible to adapt the tree partition scheme

into a tree decomposition, and the tree-width is then necessarily bounded. First,

however, we must de�ne tree-width:

De�nition 3.8.1 Let T = (N;L) be a tree with nodes N and edges L. Then � :

N �N ! P(N) is a function returning the set of vertices forming the loop-free path

connecting the two input vertices.

De�nition 3.8.2 Let G = (V;E) be a graph. A tree-decomposition of G is a

tree T = (N;L) and a function � : N ! P(V) such that:

1. 8(v; v

0

) 2 E; 9n 2 N: v; v

0

2 �(n).

2. 8n; n

0

2 N; v 2 �(n)

T

�(n

0

)) 8

b

n 2 �(n; n

0

) v 2 �(

b

n)

3. V =

[

n2N

�(n).

Let m

T

be the maximum cardinality of any �(n) in T ; i.e., m

T

= maxj�(n)j over all

n in N . Then the tree-width of D is de�ned as one less than the minimum m

T

over all tree-decompositions T .

Lemma 3.8.1 Let D = (V;E; �

D

; �; ;�

V

;�

E

; C) be a dangling graph, and let

T (�

T

; �; �; �; �) = (N;L) be a bounded tree partition scheme for D. Necessarily

D has tree-width smaller than 2��+ �.

53

Proof: We will construct a function � which together with (N;L) forms a tree

decomposition of D. Let `(n) be the set of outgoing links attached to a node

n in N . De�ne � : N ! P(V) as:

�(n) = fv 2 V j �

T

(v) = ng

[

fv 2 V j 9e; e

0

2 E; 9l 2 `(n): �

D

(e) = v ^ (e; e

0

)� lg

The function � maps each tree node n in T to the set of vertices which are

mapped by �

T

to n, or which are included in a connection relation which is

mapped by � to an outgoing edge attached to n. We now verify that � has

the tree decomposition properties.

Let � : N ! P(V) be a function returning the subset of V corresponding to

a given node (subtree) in T . Note that if and only if n 2 Subtree(n

0

) for two

tree nodes n; n

0

, then �(n) � �(n

0

). Also note that by de�nition of TPS, a

vertex v is in �(n) for a tree node n if and only if 9n

0

2 Subtree(n): �

T

(v) = n

0

.

By de�nition of T , every vertex in V is already uniquely mapped by �

T

to

some node in N , so certainly � covers the vertices of D. Every connection

relation c in C is either between two vertices both mapped to the same tree

node in T , in which case a node in T must exist containing both endpoints,

or c links two nodes which are not mapped by �

T

to the same tree node. In

the latter case, let v; v

0

2 V be the two vertex endpoints. At least one of

the subtrees rooted at �

T

(v) or �

T

(v

0

) must not contain the other, and so

c is a connection relation which must be broken to separate �(�

T

(v)) from

�(�

T

(v

0

)). Now, by de�nition of T , c is associated by � to each link along

�(�

T

(v); �

T

(v

0

)), which must be a chain of at least 2 nodes. Thus, by con-

struction of �, there will be a node n with both v 2 �(n) and v

0

2 �(n)

The remaining property to show is that whenever a graph vertex v is con-

tained in �(n) \ �(n

0

) for two tree nodes n; n

0

, then it is also contained in

�(

b

n) for each

b

n along the simple path between n and n

0

. Let v; n; n

0

be a

vertex and two nodes in such a situation. Vertex v is mapped by � to node n

(and to node n

0

) for one of two reasons: 1) �

T

(v) = n, or 2) some connection

to v is associated by � to an outgoing link of n.

54

1. v 2 �(n), v 2 �(n

0

) by reason 2). This means that in order to partition

�(m

0

) for some child m

0

of n

0

it is necessary to cut a connection c to v;

or, equivalently, only one of v and some neighbour v

0

of v is in �(m

0

).

(a) v 2 �(m

0

). Then �(n) � �(n

0

) and 8

b

n 2 �(n; n

0

) �(

b

n) � �(n

0

). The

connection c must then be broken to partition any �(

b

n), and is thus

mapped by � to all links along �(n; n

0

). By de�nition of �, v will

then be mapped by to all nodes in �(n; n

0

).

(b) v

0

2 �(m

0

). Then either �(n

0

) � �(n) or �(n) and �(n

0

) are disjoint.

i. �(n

0

) � �(n). There exists a node

b

n 2 �(n

0

; n) such that 8

b

n

0

2

�(

b

n; n) it is the case that v 2 �(

b

n

0

), and 8

b

n

0

2 (�(n

0

;

b

n)� f

b

ng)

we have v 62 �(

b

n

0

). Each of the former must be such that either

�

T

(v) =

b

n

0

or there is some child

c

m

0

with v 62 �(

c

m

0

) or there

is some child

c

m

0

with a neighbour v

00

of v outside �(

c

m

0

). In all

situations �(

b

n

0

) will include v. Each of the latter cases must

have the same connection c between v

0

and v cut to partition

�(

c

m

0

), for some child

c

m

0

, and so �(

b

n

0

) will include v.

ii. �(n) and �(n

0

) are disjoint. Then � must map c to the link

between any

b

n 2 �(n; n

0

) and its child

c

m 2 �(n; n

0

) where �(

c

m)

contains only one of �(n) or �(n

0

). Hence by de�nition of �, v

is in �(

b

n).

2. v 62 �(n), v 2 �(n

0

) by reason 2). Then v 2 �(n) by reason 2) as well,

and �(m) for some childm of n contains a neighbour v

0

of v. If v 2 �(n

0

)

then of course the situation is symmetric to case 1, so we can assume

v 62 �(n

0

). Any

b

n 2 �(n; n

0

) such that v 62 �(

b

n) must have a child

containing either (or both) v and v

0

, so certainly v 2 �(

b

n). If some

b

n

does contain v then situation is symmetric to a sub-case of case 1.

This establishes that the tree T and function � represent a valid representa-

tion from which one can derive (an upper bound on) tree-width. Since the

number of outgoing links from any node in T is bounded by �, the number

of connection relations mapped to a given tree link is bounded by �, and �

is a bound on the number of vertices mapped by �

T

to any node, there will

never be more than 2�� + � vertices of D mapped by � to any single tree

node in T . ut

55

Theorem 3.8.1 Let G be an ST-overlap free dangling graph grammar with constant

bounds (m; g; k). Let D = (V;E; �; �; ;�

V

;�

E

; C) be a dangling graph such that

A

�

!

�

D, necessarily D has tree-width smaller than 2mgk +m.

Proof: By Lemma 3.5.2 a bounded tree partition scheme T (�

T

; �; � = m;� =

m;� = gk) exists for D. By Lemma 3.8.1 this implies an upper bound on

tree-width of 2mgk +m� 1. ut

Theorem 3.8.2 Let G be an ST-overlap free path-extended dangling graph grammar

with with path-extended productions �

0

� � where u = j�

0

j. Let ` be a bound on the

length of any path expression in �

0

, let d be the maximum number of occurrences

of concrete subexpressions in any occurrence of a path-extended production, and let

(A; (�� �

0

)

S

c

�

0

) have constant bounds (m; g; k). If D = (V;E; �; �; ;�

V

;�

E

; C)

is a dangling graph such that A

s

!

�

D, then necessarily D has tree-width smaller

than 2mmax(�; k`+ gk))+m where � � min((gk+k`)(k`)

s

+u((k`)

s+1

�1)=(k`�

1)� 1; gk + k`+ uk`s(d + 1)).

Proof: By Lemma 3.6.2 a bounded tree partition scheme exists for D with the

given bounds. By Lemma 3.8.1 this implies the upper bound on tree-width.

ut

Corollary 3.8.1 Rectangular grids of size w � h have tree-width of O(w + h).

Proof: By construction of the grammar in Figure 3.14, we �nd that the bounds

on the grammar are all small constants: m = 9, u = 2, k = 4, ` = 9, g = 2.

Since any rectangular grid can be generated by this grammar in w+h steps,

s = w+ h. By Lemma 3.8.1, and the construction in section 3.7.2 the upper

bound on tree-width follows. ut

Corollary 3.8.1 jibes nicely with existing results; it is known that square grids of

p

n�

p

n vertices (n � 2) have a tree-width of

p

n [RS86].

3.9 Conclusions

Our grammars cannot generate all graphs. A formalism which generates all graphs

with their corresponding partitionings is unlikely to exist given the plethora of NP

problems in the area of graph partitioning. Nevertheless, our formalism is expres-

sive enough to include a large variety of graphs and structures commonly used in

computer science applications.

56

Graphs with bounded tree-width have been recognized as constituting a class

of graphs about which many di�cult problems, some in NP, can be solved e�-

ciently [Arn85, ALS88, Cou90a, Lau88a, Lau88b, Lau90b, RS86, Sli82]. We have

taken the opposite approach, starting with a di�cult problem and showing that a

certain e�cient solution implies an upper bound on tree-width related to the parti-

tionability of the graph. Nevertheless, it is interesting to �nd our solution converging

to the same class of graphs. Tree-width is clearly a fundamental property in graphs,

and the connections with complexity theory add credence to our initial assumptions.

A major theoretical question is whether the bounded tree-width of the graphs

generated by our grammars is a requirement for being reasonably-partitionable. It

is straightforward to �nd examples of the converse|a tree consisting of a root with

n�1 children has tree-width 1, the same as any other tree, but has a lower bound on

partitionability of n�1. But if a graph is \as partitionable as a tree," is it necessarily

tree-like? Of course, an a�rmative answer would still not make partitionability easy

to recognize.

The grammars we have de�ned form an interesting basis for synchronous par-

allel algorithms on irregular graphs. Any graph, and any algorithm which can be

expressed in the grammar formalism, is either reasonably-partitionable or has an

easily computed bound on partitionability, and hence is amenable to paralleliza-

tion through automatic partitioning. The implicit load-balancing and guaranteed

bounds on communication cost mean that as long as computation is reasonably uni-

form throughout the data structure, the computation will be e�ciently parallel. As

well, because the partitioning is often determined incrementally by the derivation,

the e�ciency can sometimes be maintained as the graph is grown and modi�ed. In

the next chapter we illustrate the application of graph grammar generated parti-

tionable data structures through a new explicitly parallel language, called \eL".

57

58

Chapter 4

A Graph Grammar Language: eL

The parallelization of programs involving irregular, dynamic data structures is very

complicated. There are no general techniques that one can apply, and usually one

resorts to an ad hoc solution for each individual problem. However, the grammars

developed in the previous chapter demonstrate that many such structures never-

theless possess enough regularity to permit automated partitioning. If a dynamic

algorithm can be expressed, then, using the prescribed grammar formalismwe should

be able to e�ciently parallelize the algorithm.

There are obstacles to this solution. Primarily, existing parallel languages (and

parallel language hybrids) do not support the necessary constructs. In order to dis-

cover the partitioning in the constructive manner we have indicated, it is necessary

for the programmer to separately design the grammar and generate the associated

TPS, and use this to develop the correct partitioning|a non-trivial amount of extra

work. This also points to another unacceptable aspect; the actions of the grammar

are images of the actions of the program on the data structure: what is done to the

data structure by the program is also done to an equivalent graph by the grammar.

The grammar thus not only requires a signi�cant amount of work, but it seems like

most of that extra work is a duplication of work already done.

Both of these problems can be eliminated if the computation and the grammar

are integrated. This is the basis for the language \eL

1

"; eL is an inherently paral-

lel programming formalism modelling the construction and manipulation of sparse,

doubly-connected dynamic data structures. eL explicitly represents the data struc-

ture and computations/manipulations on it as a graph grammar. In eL the data

1

\The language formerly known as L".

59

structure is the graph, and actual data values are stored in the nodes of the graph.

Connections between nodes then represent bidirectional pointers, and dangling edges

in the graph are meant to represent NULL pointers. Computations are integrated by

allowing productions to rewrite the data in nodes as well as the nodes themselves;

target graphs specify data values using arithmetic expressions involving data in the

source nodes. The execution model is one of synchronous parallelism; the program

runs by iteratively applying all rules concurrently and everywhere possible, in a

manner similar to cellular automata. Thus, all data accesses, all computations and

even the parallelism is subsumed by the graph grammar model.

4.1 Language De�nition

The de�nition of a dangling graph grammar merely requires a graph and some

rules. A programming language, however, requires considerably more structure; for

instance, procedural programs are typically organized as a sequence of \phases."

Each phase includes only a limited number of the total set of computations, and

requires the completion of the previous phase in order to begin. In C and Pascal,

for instance, phases usually correspond to procedures.

In eL, phases are facilitated by grouping rules together into blocks. Each block

is a small, encapsulated graph grammar, iteratively and synchronously applying

the rules in its scope to the current graph. Control is maintained through a stack

of block names; only the rules contained within the block given by the top of the

stack are actively applied. Once the block phase is complete, control transfers to

whichever block is now at the top of the stack. The current state of an eL-program

is completely described by the current graph and the block stack.

4.1.1 Blocks

A block actually consists of a collection of rules, a graph expression (GE), a preblock

list and a postblock list. The GE is a boolean expression on graphs, and determines

when a block phase is over: once a block becomes active, it remains active until its

GE is satis�ed. Each iteration all graphs g in the GE of the active block are replaced

by a boolean (tt or ff), representing their presence or absence in the current graph

(iterated axiom). If after these replacements the GE evaluates to tt then the block

60

terminates and its name is popped from the top of the stack, otherwise another

iteration ensues. The evaluation of the GE is carried out at the same time as the

rules are applied.

Postblock lists and preblock lists are used for manipulating the block stack in

more complex ways. If the current block is terminating and it has a postblock

list, then this list of block names is pushed onto the stack after the current block

is popped; this allows blocks to chain computations. The preblock list is used to

iterate blocks; each iteration that the GE evaluates to ff , the preblock list is pushed

on top of the current block. A preblock allows a sequence of blocks to be iterated

until the GE is met. Note that if we consider the preblock list to always begin with

the current block name then even blocks with an empty preblock are subsumed by

this behaviour.

Example 4.1 Let

B

1

; : : : ; B

n�1

; B

n

be a stack of block names, with B

n

being the top of the stack. Then B

n

is

the active block, and only the rules in block B

n

are applied each iteration.

Suppose B

n

has a preblock list R

1

; : : : ; R

r

and a postblock list O

1

; : : : ; O

o

.

After one iteration, if the GE of B

n

is not satis�ed, then the preblock list is

pushed onto the stack, producing a stack like:

B

1

; : : : ; B

n�1

; B

n

; R

1

; : : : ; R

r

and making R

r

the active block. Alternatively, if the GE of B

n

is satis�ed

the postblock list is pushed, producing:

B

1

; : : : ; B

n�1

; O

1

; : : : ; O

o

making O

o

the active block.

This form of control structure has been chosen to allow easy integration with the

graph-rewriting concept which is the basis for our language. One can imagine an

actual stack of block names being maintained alongside the iterated axiom. Each

rule in a given block includes the block name attached to a \top of stack" marker as

a context, and so is restricted to acting only when the appropriate block is active.

Transfers of control between blocks are then just rules rewriting the active block and

top-of-stack marker to other lists of block names (the preblock and postblock lists).

61

Note that while this metaphor of control conceptually �ts the grammar formalism,

it would require every node in the graph to be connected to every node in the block

stack|our grammars demand bounded-degree, and so this sort of structure would

have to be treated as an exception. Still, the use of a block stack provides a smooth

paradigm for thinking about the grammars.

4.1.2 Rules

Rules are the basis for computation in eL. Each rule speci�es a source graph, which

is pattern-matched to the current graph, a target graph (the intended replacement

for the source graph), and a mapping (�) from the dangling edges of the source to

the target (also known as the \embedding function"). In order to accommodate

data manipulations, each datum in the target graph is allowed to be expressed as

an arithmetic function of the data found in the source. A rule is then applied by

locating an exact replica of the source graph, inserting a (new) copy of the target

in its stead with data values computed from the data in the actual occurrence of

the source, and linking the new target to the rest of the graph by replacing any

half-edge of the source involved in a connection relation with its image under � (or

discarding the connection relation if it has no image under �).

Often it is useful to have several rules apply to the same source graph, but per-

form di�erent rewrites based on the data of the occurrence. Each rule can therefore

include a guard, which is just a boolean expression on any or all data contained in

the nodes of the source graph. If a guard is present then the rule will only apply

if its source matches, and the guard evaluates to tt. Note that this enhancement

can cause conicts with the no SS-overlap requirements of our base dangling graph

grammars; our grammar will not be SS-overlap free if two identical rules can exist,

both of which might be applicable to the same occurrence. For this reason it is

necessary that the guards of any SS-overlapping rules specify mutually exclusive

boolean expressions.

Contexts

When programming, one often �nds that the same datum is altered di�erently

depending on the surrounding context; for instance, in a red-black tree

2

we may wish

2

A self-adjusting binary search tree where each node has an associated colour|red or

black.[CLR90]

62

to rewrite each node to a di�erent colour based on the colours of its neighbours. We

could rewrite the node and its neighbours, but our rules are applied concurrently

and everywhere possible. Each neighbour may therefore be itself being rewritten,

and so we run the risk of two occurrences overlapping, forming a critical pair.

For this reason, eL permits the source graph of any production to be included in

a context graph. This context is not rewritten and is not factored into the embedding

(�) function (though data in the context is accessible to the functions computing

target data), but it must occur (pattern match) in the same way as a regular source

graph; overlap, however, is still determined entirely by the actual rewritten source

graph. This way several rules which all depend on the same local context, but

which rewrite distinct portions of that context, can be applied without introducing

extraneous overlap. Contexts a�ect the graph grammar bounds, but only by a

constant amount|and since their only function is to control rule application, they

do not otherwise need to be factored into the semantics.

4.2 Operational Semantics

A dangling graph is usually represented by several parameters, including labelling

functions. In order to keep the operational semantics uncluttered, we can abbreviate

the de�nition to just three elements: (V

G

; E

G

; C

G

) indicates a dangling graph G with

nodes V

G

, half-edges E

G

and connection relation C

G

� E

X

� E

G

. Also note that

guards and arithmetic functions from source to target will not be described in the

semantics either; these constructs are straightforward language extensions which do

not appreciably change the structure of the semantics.

Each program consists of a collection of graph, node and block de�nitions. The

block de�nitions contain the rules, which de�ne all actual operations on the graph.

By specifying how blocks are brought into existence, and back out again, we can

de�ne the overall operation of the program as a series of block transitions. The

primary operation, though, is the transformation (rewrite) of the graph by the set

of rules.

63

4.2.1 Rules

First, we de�ne an aggregate replacement operation to model the concurrent appli-

cation of some number of rules. Given a dangling graph G, and a set of pairs O,

each pair consisting of a rule r and an occurrence O of r in G, we can de�ne the

result of rewriting all these occurrences simultaneously (G[O]) as follows.

Let R

i

= (S

i

; T

i

; �

i

) be a rule in the current block. It is the intention that

each �

i

: �(S

i

) ! �(T

i

) maps some dangling edges of the source graph to dangling

edges of the target graph. This mapping is used to perform substitutions within

the connection relation for the graph so as to insert (a copy of) the target graph in

place of the (matched) source. Any dangling edges of the matched source which are

not mapped by �

i

have their connection relation (if any) discarded.

It is somewhat easier if we promote each individual �

i

to a full function, returning

a special character 0 for each member of �(S

i

) not mapped to a member of �(T

i

). We

can then compose each of these individual rule functions to build a larger function

representing the synchronous operation of all rules, without confusing half-edges

untouched by the composite transformation (mapped to ?) with half-edges whose

connections should be discarded (mapped to 0).

G;O = f(O

1

; R

j

1

); : : : ; (O

w

; R

j

w

)g

V

81 � i � w;

0

B

B

B

B

@

O

i

�

i

G ^

O

i

�

h

j

i

S

j

i

^ T

e

j

i

�

g

j

i

T

j

i

^

b

�

i

= g

j

i

� �

j

i

� h

j

i

V

� =

G

i

b

�

i

1

C

C

C

C

A

G = (V;E;C)[O]! G

0

= (V

0

; E

0

; C

0

)

(4.1)

where:

V

0

4

= V n (fV

O

i

: 1 � i � wg)

[

fV

T

e

j

i

: 1 � i � wg

E

0

4

= En (fE

O

i

1 � i � wg)

[

fE

T

e

j

i

: 1 � i � wg

C

0

4

= e

1

C

0

e

2

if

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

e

1

Ce

2

^ �(e

1

) = ?; �(e

2

) = ?; e

1

; e

2

2 E; or

e

0

1

Ce

2

^ �(e

0

1

) = e

1

; �(e

2

) = ?; e

2

2 E; or

e

1

Ce

0

2

^ �(e

0

1

) = ?; �(e

0

2

) = e

2

; e

1

2 E; or

e

0

1

Ce

0

2

^ �(e

0

1

) = e

1

; �(e

0

2

) = e

2

; or

9i: e

1

; e

2

2 E

T

e

j

i

^ e

1

C

T

e

j

i

e

2

In other words, we remove all occurrences, add in distinct copies of all associated

target graphs, and modify the connection relation by the composite �. Connection

64

relations are preserved if neither half-edge is touched by any rewrite, or if one half-

edge is mapped to some embedded target half-edge and the other is untouched, or

if both are mapped, or if the two half-edges were introduced as part of a connected

pair in a target graph. Note that if either or both half-edges are mapped to 0, then

the connection relation is discarded.

Of course we need to identify the occurrences before we can apply this operation.

Let �

B

= fR

1

; : : : ; R

r

g be the r rules in block B. Recall that for each rule R

i

=

(S

i

; T

i

; �

i

), there exists a function Occurs

R

i

(G) which returns O�

i

G, such that O �

h

i

S

i

, for some structure and label-preserving isomorphism h

i

. The target itself is not

embedded in the graph, of course, rather a fresh copy T

e

i

is, and T

i

�

g

i

T

e

i

. The

modi�cations to the graph each iteration depend on the aggregated replacement of

all such occurrences of all rules in the block:

(�

B

= fR

1

; : : : ; R

r

g)

V

O =

[

i

f(O;R

i

)j O 2 Occurs

R

i

(G)g

!

V

G[O]) G

0

G)

�

B

G

0

(4.2)

The above semantic rule requires that each occurrence be identi�ed. Each rule

is applied wherever possible, potentially producing several occurrences, so it is also

necessary to retain which rule produced which occurrence. This is encoded by

pairing occurrences and rules.

4.2.2 Blocks

The active block changes according to the evaluation of the associated graph expres-

sion, which is just a boolean combination of graph de�nitions. Let E be such an

expression formed from graphs G

1

; : : : ; G

n

, and let E[b

1

; : : : ; b

n

] be an identical ex-

pression with each G

i

being substituted by the corresponding boolean value b

i

. Let

E[b

1

; : : : ; b

n

]! b represent the evaluation of the boolean expression, either resulting

in b = tt or b = ff . Then:

E

V

(8i; b

i

= (Occurs

G

i

(G) 6= ;))

V

E[b

1

; : : : ; b

n

]! tt

E satis�ed in G

(4.3)

Let B = (E

B

; (B

1

; : : : ; B

n

); (P

1

; : : : ; P

m

);�

B

) be a block. E

B

is the graph ex-

pression which terminates the block, (B

1

; : : : ; B

n

) (for n � 0) is an ordered sequence

65

of block names, forming the preblock, (P

1

; : : : ; P

m

) (for m � 0) is an ordered se-

quence of block names, forming the postblock, and �

B

is the set of rules in B. In

the more usual eL notation, we might write schematically:

block B B

n

� � �B

1

: E

B

! P

n

� � �P

1

f �

B

g

A state in the computation is then just a dangling graph (initially the axiom),

and a stack of blocks (initially just the starting block). The state can be represented

as (B : S;G), where B is name of the active block, S is the rest of the block stack

(possibly empty), and G is the current graph.

Based on the two possible outcomes of the block expression, we then have two

semantic rules to specify the major state changes which occur each iteration of the

grammar. Let the active block, B, have preblock, postblock and graph expression

as above, then:

(B : S;G)

V

(G)

�

B

G

0

)

V

(E

B

satis�ed in G)

(P

1

: P

2

: � � � : P

m

: S;G

0

)

(4.4)

(B : S;G)

V

(G)

�

B

G

0

)

V

(E

B

not satis�ed in G)

(B

1

: B

2

: � � � : B

n

: B : S;G

0

)

(4.5)

4.3 Grammar

eL is inherently visual. The most suitable method for developing an eL program is

to represent it as a graph, and interactively draw and modify graphs. Unfortunately,

most other computer languages are textual in nature; the sort of graphical editing

environment which would be ideal for eL simply does not exist on most platforms.

For this reason, the following text-based grammar has been developed. Note that

because this grammar is from an eL ! C translator, the grammar includes the

ability to embed C-code directly in the eL-code, and in fact requires such embed-

ded code in order to perform arithmetic operations on data. A self-contained eL

grammar would de�ne a complete set of arithmetic and boolean operations on data.

This grammar does not permit the use of path extended productions. All graphs

must be fully-speci�ed, with one exception. Instead of specifying a particular node

type in the source graph of a production, a pair of nodes which are identical except

for type name can be j-ed together, matching either node type. This is a simple

optimization on code size, which does not change any theoretical bounds.

66

program decls ;

decls � j decls decl ;

decl nodetype j graphtype j axiom j ruletype

j blocktype j include String j c code ;

c code `@' c codelines `@' ;

nodetype node Id `f' nodedecls `g' ;

nodedecls � j nodedecls nodedecl ;

nodedecl nodedecltype nidlist `;' j node Id `;' ;

nodedecltype Type j Id j link ;

nidlist Id j nidlist `,' Id ;

graphtype graph idornot `f' graphdecls `g' ;

graphdecls graphdecl j graphdecls graphdecl ;

graphdecl link linkref `,' linkref `;'

j Id gorlist pidlist `;'

j graph Id `;' ;

gorlist � j gorlist `|' Id ;

pidlist Id j pidlist `,' Id ;

linkref Id linkrefend ;

linkrefend � j `.' linkrefenddot ;

linkrefenddot � j Id j link ;

blocktype block Id idseq `:' graphexprornot `->' idseq `f' blockdecls `g'

j start Id c codeornot `;' ;

blockdecls � j blockdecls blockdecl ;

blockdecl ruletype j nodetype j graphtype j c code `;' j Id `;' ;

idseq � j idseq Id ;

ruletype rule idornot `:' idorgraph by ridlist c codeornot

`->' idorgraphornot conlinks c codeornot `;' ;

c codeornot � j c code ;

idornot � j Id ;

ridlist Id j ridlist Id ;

conlinks � j linklist ;

linklist relink j linklist relink ;

relink `(' linkref `=' linkref `)' ;

axiom axiom idorgraph `;' ;

67

idorgraphornot � j idorgraph ;

idorgraph Id j graphtype ;

graphop `&' j `|' ;

simplegraphexpr idorgraph j `!' simplegraphexpr j `(' graphexpr `)' ;

graphexpr simplegraphexpr j graphexpr graphop simplegraphexpr ;

graphexprornot � j graphexpr ;

4.4 Complexity

An eL program is composed of a series of block transitions, each of which is itself

an iteration over a set of rules. Thus, the time complexity for an eL program can be

calculated from the number of rules in each block, the number of times each block

is active, and the size of the graph.

Let P be an eL program. Suppose on a particular run r of P there are

r

b block

transitions, so the sequence of active blocks is

r

B

1

; : : : ;

r

B

b

. Let

r

r

i

be the number

of rules in block

r

B

i

, let

r

b

i

be the number of times block

r

B

i

is iterated while active,

and let

r

e

i

be the number of graphs in the graph expression associated with block

r

B

i

. Finally, let

r

g

i

be the maximum size of the graph during

r

B

i

, and assume that

determining whether any source graph (or graph in a graph expression) occurs at

a particular node in the graph costs at most k time units. Let be the maximum

cost of any rewrite.

4.4.1 Sequential Complexity

For each block

r

B

i

, every iteration

r

r

i

rules must be applied to the graph of at most

size

r

g

i

. Hence, the time complexity of locating all occurrences during

r

B

i

is just

(

r

b

i

)(

r

g

i

)(

r

r

i

+

r

e

i

)k; rewriting will require at most another (

r

b

i

)(

r

g

i

) time units.

Since k,

r

r

i

,

r

e

i

and will all be constant in a normal eL program, time complexity

will be as follows:

Proposition 4.4.1 Let r be a run of P , and let

r

T =

b

X

i=1

(

r

b

i

)(

r

g

i

)

Then the maximum time complexity of P is just the maximum such

r

T over all runs:

time of P = O(max

r

(

r

T))

68

4.4.2 Parallel Complexity

Assume that as well as the other parameters, we have p processors available for

the execution of P . Whether we have a distributed memory or a shared memory

environment, our graph will be divided among the processors according to the tree

partition scheme developed in Chapter 3. With distributed memory there will be

a cost c associated with communicating one graph node from any processor to any

processor; with shared memory the same variable c can be used to represent the

cost of ensuring exclusive access to a given node. Each processor is assumed to have

a complete copy of the code.

With parallel execution, each iteration of each block is divided among the p

processors. However, each iteration also will require the communication of nodes

between processors so rules can be applied to nodes with neighbours on bordering

processors. Load balancing requirements must also be factored in.

Due to the partitioning of the graph, each processor must communicate at most

O(log(

r

g

i

)) nodes with other processors every iteration of the graph. As well, each

processor, having checked the result of the current graph expression in its portion

of the graph, must exchange this information with all other processors in order to

ensure the correct block transition occurs on all processors; with any reasonable

hardware this latter step (a gather followed by a broadcast) can be implemented in

timeO(log(p)). In exchange, however, each processor only iterates over

r

g

i

=p nodes.

Let �(

r

g

i

; p) be the cost of rebalancing the tree partition scheme over the processors;

then:

Proposition 4.4.2 Let r be a parallel run of P , and let

r

T =

b

X

i=1

(

r

b

i

)(

r

g

i

=p + log(p) + c log(

r

g

i

) + �(

r

g

i

; p))

Then the maximum time complexity of P is just the maximum such

r

T over all runs:

time of P = O(max

r

(

r

T))

The partitioning scheme developed in Chapter 3 requires that the tree partition

scheme be divided as a post-order search of the tree, where child subtrees of each

69

node are ordered by subtree weight. Since there is no control over which subtrees

can grow,

3

if perfect load-balancing (modulo a small constant) is to be maintained

for each iteration, then the entire graph may need to be moved each iteration.

Such a high upper bound on rebalancing requires drastic changes in the graph

each iteration. For many algorithms, after an initial building phase, the graph does

not change much between iterations. In these cases rebalancing cost is correspond-

ingly less, and a parallel implementation of an eL program can be quite cost e�cient:

if there are at most n graph nodes, rebalancing is insigni�cant and p 2 O(n), then

cost becomes O(log(n)

P

i

b

i

).

4.5 Implementations

An eL ! C translator has been written, which converts eL code to a C program

which emulates the actions of the grammar. This program, called \el," is written in

ANSI-C and itself can be compiled on almost any operating system with an ANSI-

C compiler, Flex, and Bison (or Lex and Yacc). Code produced by \el" does not

require Flex or Bison, just an ANSI-C compiler.

A more visually interesting implementation is the interpreter, \Tuna," which

currently runs only under OS/2. This program presents the eL program as graphs,

which can be interactively de�ned and manipulated. It also graphically shows the

iterative changes in the axiom as the program progresses, and allows for a graphical

manipulation of the control structure as well. A sample Tuna session is shown in

Figure 4.1. Blocks are edited as units, dividing the window into two main sections;

on the left are vertical lists of the de�ned rules, graphs and nodes, and on the

right is an editing area where these same objects can be constructed and changed.

Figure 4.1 actually shows a production \AA to BB" being edited, which rewrites

an \A" node (dotted boundary) in the context of being connected to another \A"

node (solid boundary) to a \B" node connected to an \A" node. The embedding

function is illustrated by the dashed lines.

Computations are performed at the same time as rewrites, and may determine

values of data on the target side as functions of the data found on the source side.

3

In fact, the entire graph (or any portion of it) can be erased in one iteration by a suitable set

of rules rewriting nodes to the empty graph. Growth is a little more constrained; the graph (or

any portion) can increase in size by at most a constant multiple per iteration.

70

Figure 4.1: Editing a rule in Tuna.

Since there may be several nodes with the same type, we need a method for unam-

biguously referring to a speci�c datum on either side of the rewrite. In the textual

grammar this is accomplished by giving each node on both sides a distinct local

name. To retain the visual air of Tuna, though, it would be preferable to just refer

to \that datum of that node over there" rather than typing in names for all our

nodes. Thus, the references in a computation in Tuna are depicted by coloured lines

connecting the \location" in the equation to the indicated datum. Figure 4.2 shows

what a typical expression might look like (without the bene�t of colour of course;

the actual line is drawn in a bright purple to avoid confusing it with node links).

The control structure itself, the block stack, is also represented visually. Through

another window one can de�ne preblock and postblock lists for each block, as well

as specify which block is de�ned to be the starting block. In Figure 4.3 we illustrate

the process; each block is represented by a shaded rectangle, and two horizontal lists

of other blocks. A copy of any block can then be dragged to any other preblock or

postblock list, and similarly moved or deleted. This way all aspects of de�ning and

running an eL-program in Tuna are visual.

71

Figure 4.2: De�ning a computation within a rule in Tuna.

Figure 4.3: De�ning a postblock list in Tuna.

72

4.5.1 Partitionability

One of the advantages of programming in eL is the guarantee of partitionability

provided by using the graph grammars of Chapter 3. To test this, an eL pro-

gram was developed that generates inorder threaded binary search trees from a

sequence of uniformly-distributed random numbers. The complete program is given

as Appendix A. In Table 4.1, the resultant partitionings are described for an tree

consisting of 2004 nodes and 4003 edges (the few extra nodes and edges are due

to a root marker node, a begin node, and an end node attached to the tree, and a

single unconnected done node). The partitionings induced by eL are compared with

the best partitionings possible generated by a generic, heuristic graph partitioning

program called \Jostle" [WCJE94]. The total number of edges crossing partitions

and the minimum and maximumpartition sizes (number of nodes in a partition) are

illustrated for 2 partitions up to 1000 partitions. Note that the number of edges cut

by the eL partitioning is generally smaller when the number of partitions is small,

and is always more balanced; when the number of partitions gets large, Jostle seems

to trade balance for cuts, something the eL partitioner does not currently do.

Jostle eL

Partitions Cuts Min Max Cuts Min Max

2 28 1002 1002 12 1002 1002

3 29 668 668 23 668 668

4 58 500 502 29 501 501

5 115 399 402 50 400 401

6 68 333 335 53 334 334

7 75 286 287 85 286 287

8 98 249 251 74 250 251

9 106 222 224 79 222 223

10 114 200 201 92 200 201

20 189 97 102 161 100 101

30 259 63 73 243 66 67

100 409 18 22 655 20 21

500 1357 5 2 2081 4 5

1000 2005 1 3 3154 2 3

Table 4.1: Comparison of partitionings of a threaded binary tree by eL and Jostle.

73

4.6 Conclusions

The ability of programs in C to link pointers into an arbitrary topology is di�cult

to match. Unfortunately, this same algorithmic exibility is the very source of

problems in parallelization|if pointers can be directed arbitrarily then we will have

an equally arbitrary problem disentangling the communication costs.

By incorporating the graph grammar model of Chapter 3 into a useable model

of computation, we can ensure that any data structures we develop in the course of

programming an application can be e�ciently partitioned. By including the com-

putation in the system as well, we provide an integrated parallel environment with

speci�c and easily calculable guarantees of parallel e�ciency. To this end we have

given upper-bounds on the cost of both a sequential and a parallel implementation

of the language. We have also developed two environments for our language: a

traditional text-based grammar (el) which compiles eL-code to C, and a more intu-

itive visual interface (Tuna), combining eL-editor and interpreter. Both implement

the same language of course, though the latter provides a much more intuitive user

interface; by expressing computations, rewrites and even control ow visually, we

eliminate much of the complexity and di�culty of working with fundamentally vi-

sual objects (graphs) in a textual manner. This reduces errors in designing graphs

and transformations, and allows for the easy visualization of the actual graph as

it is transformed, making debugging considerably easier too. The Tuna implemen-

tation of eL also emphasizes the qualitites of eL as a visual language|we have

given a complete visual paradigm for computation, in an appealing and practical

environment.

74

Chapter 5

Experimental Work: Grid

Generation

So far we have illustrated the application of generating partitionable data structures

only through small, toy examples. If the technique is to be in any way practical

it needs to be demonstrated through a non-trivial program, preferably one which

would seriously bene�t from parallelization.

To this end we have chosen an adaptive version of the Control Volume Finite El-

ement Method (CVFEM) of computational uid dynamics, applied to irregular two-

dimensional domains. This is a realistic problem, combining heavy computational

requirements with necessarily dynamic data structures. Moreover, the solution al-

gorithm implies a certain spatial organization of data, such that all computations

require only \locally-available" information. This makes the problem particularly

amenable to our approach, despite the relatively dense data connectivity ultimately

demanded by the method.

First we motivate the development of our algorithm by giving a brief intro-

duction to the adaptive CVFEM problem, illustrating its dynamic and irregular

requirements. This is followed by a detailed explication of our algorithm, including

the method employed for (and relative costs of) adaptivity. In Section 5.6, we prove

some theoretical upper bounds on the cost of our algorithm. However, since our

algorithm is highly dependent on the exact geometry of the input domain, experi-

mental results can give a more accurate assessment of the algorithm's e�cacy. In

Section 5.7, therefore, we use a sequential implementation in C of the algorithm

to provide experimental results for several di�erent domains of varying complexity.

75

Finally, in Section 5.8 we illustrate how the algorithm can be implemented in the

graph grammar formalism of Chapter 3, and show an upper bound on partition-

ability, and hence parallel performance of our algorithm. This is augmented with

experimental results comparing the partitionings as produced by our method with

existing heuristic approaches.

5.1 Introduction to CVFEM

Until recently, algorithms in computational physics have largely focussed on using

regular geometric �gures as the basis of domain discretization. For physical sit-

uations where the geometry is irregular, and more importantly where the physics

requires a dynamically adaptive grid, such regular tesselations are obviously inad-

equate. One can fairly easily develop data structures that express irregular grid

structures and, with rather more e�ort, develop satisfactory algorithms that cre-

ate irregular grids consistent with the requirements of the numerical aproximations

being used. Fairly sophisticated grid-generation algorithms have been developed

for use with �nite element methods; see for example the recent book by P. L.

George [Geo91], the lecture notes by Weatherill [Wea90] or the review article by

Bern and Eppstein [BE92].

There is a basic problem with all these schemes if one attempts to use them in

conjunction with an adaptive algorithm. In physical applications, one adapts the

grid in response to some local criterion (typically the gradient of one of the physical

variables exceeds a prescribed bound), and thus one wants to re�ne (or coarsen)

a grid locally. With existing Delaunay-based algorithms, though, even such local

changes can cause the entire grid to be scrapped and recomputed|an expensive

procedure for large grids. It is of interest therefore to develop an algorithm that

allows incremental recomputation of the grid while maintaining the geometrical

exigencies of the �nite element method. In essence, it should be possible to exploit

the inherent locality of the both the method and the phenomenon.

In 1988, Baker, Grosse and Ra�erty [BGR88] described an algorithm for grid

generation which satis�es the speci�c numerical constraints of grid generation for

the �nite element method (no obtuse angles), while still conforming to an arbitrary

polygonal boundary. Here, we develop an incremental algorithm. We build on some

of the geometric insights of their algorithm but we are forced to deal with a variety

76

of new problems, including a signi�cant explosion in the number and intricacy of

the cases that need to be analyzed, and the need to maintain \balance" conditions

on the tree structures used with an eye to future parallel implementation.

5.1.1 Physical Background

The �nite element method computes an approximate solution to a di�erential equa-

tion in the following way. One breaks the region into small subregions called \ele-

ments." The solution to the di�erential equation is approximated by some standard

function, depending on a few parameters, across the element. Often one uses linear

or constant functions. One matches the solution in neighbouring elements across

their boundaries and obtains in this way a set of algebraic equations that partially

constrain the approximate solution. The iteration to the solution proceeds by using

the approximate solution in the di�erential equation and successively re�ning the

approximation.

This method imposes some basic requirements on the mesh. In order to ensure

that the linear interpolation across the boundary of each element leaves the system

consistent (i.e. the system is not overconstrained by imposing matching at three

points on a linear function), the �nite elementsmust be connected edge-wise, with no

vertices located along any edge except at its endpoints. It also imposes the condition

that the �nite elements completely and disjointly cover the domain of interest. For

an irregular domain approximated by a straight-line polygon, this essentially means

that the domain must be covered by a mesh formed from triangular elements.

Unfortunately, not just any triangular mesh will do. For many uid ow and heat

conduction problems, the �nite element method demands that the cosine of every

angle in the triangulation be positive. Obtuse triangles, ones containing angles

larger than �=2, can cause the generation of physically unrealistic results|such

as an increase in temperature given a decrease in energy input|and are therefore

undesirable in the mesh.

5.1.2 Computational Background

In practice one tries to construct a Delaunay triangulation. A Delaunay triangula-

tion is a mesh where the circumscribing circle of each triangular element is free of

any grid points in its interior. It also has the advantage that the minimum angle

77

in the mesh is itself minimized over all possible triangulations of the same point

set [Aur91], and this tends to reduce the number of obtuse triangles. A Delaunay

triangulation, however, despite its otherwise very nice properties does not guarantee

that the mesh will not contain obtuse triangles.

If the mesh is to be dynamically adapted, it must be able to e�ciently increase

and decrease the density of grid points in a speci�ed area. Since this problem is

being investigated with respect to parallel computation, particularly distributed-

memory machines, these operations should be both e�cient and as local as possible,

to minimize any inherent communication costs. In other words, any changes made

to the grid due to adaptivity should have a localized e�ect, not requiring the recon-

struction of the entire grid. This is actually a requirement only for a coarse-grained

parallelization strategy, where the grid itself is distributed among a relatively small

number the processors. However, given that the �nite element method requires only

local computation at each grid point, and has a great deal of dependency between

adjacent elements, surface-to-volume ratio arguments suggest that a coarse-grained

approach is the most workable.

Unfortunately, the more popular Delaunay algorithms, like Watson's [Wat81],

and Bowyer's [Bow81] are not certain to modify a triangulation with only bounded

e�ect. The \edge ipping" technique of Watson, while guaranteed to terminate, is

not guaranteed to restrict its locus of activity, and can spread throughout the entire

mesh. Bowyer's algorithm has a similar problem: inserting a single point can (in the

worst case) require a complete retriangulation of the domain. A dynamic adaptive

scheme cannot a�ord such expensive operations, particularly when the grid is large.

5.1.3 The Baker, Grosse and Ra�erty Algorithm

The algorithm of Baker et al [BGR88] works by overlaying a regular square grid of

su�cient resolution over the domain. As long as each vertex of the domain coincides

with a grid-point, and the grid is �ne enough to ensure no more than one edge of

the domain intersects a given square, it is possible to triangulate the domain. Each

square can be triangulated separately with only acute triangles, including squares

with an input edge intersecting them. Some extra e�ort is needed to deal with

acute angles in the domain description|acute angles also constrain the minimum

grid resolution. The complete details can be found, of course, in [BGR88].

78

At �rst glance this algorithm does not seem to have any special advantages when

considering adaptivity; a �xed resolution is certainly not amenable to local changes.

However, as they mention (but do not develop) in their discussion of the algorithm,

quadtrees can be used to allow for some local variation in grid size. This permits

guaranteed local grid re�nements, and a signi�cant overall reduction in number of

triangles in the grid too.

5.2 Outline of Our Algorithm

To summarize, the mesh and/or mesh generation algorithm should have the following

properties:

1. The mesh should be a triangulation, and all vertices must be only at the

corners of the triangles.

2. All triangles should be non-obtuse.

3. The density of grid points within a speci�ed region should be dynamically

adjustable.

4. Grid modi�cations should be as localized as possible.

The grid generation algorithm presented here possesses the following features:

1. It generates a triangulation respecting arbitrary polygonal boundaries.

2. No triangle has an internal angle larger than �=2.

3. Starting from a \base" triangulation, the grid can be increased in density

(within a speci�ed region), and subsequently reduced as needed.

4. Modi�cations have a small and greatly-restricted non-local e�ect.

It should also be noted that since the grid generated has no obtuse angles,

it is also automatically a Delaunay triangulation [Aur91], and so it inherits the

well-established numerical properties thereof. Also note the one-way nature of this

relationship: a non-obtuse triangulation is always a Delaunay triangulation, but a

Delaunay triangulation is not automatically a non-obtuse one.

79

The algorithm consists of two main stages. First, the quadtree structure itself

is generated|a square large enough to contain the entire domain is recursively

decomposed into four smaller squares, until a base level is reached. This base level

will depend on the geometry of the input domain, the choice of input vertices, and

the necessity of being able to generate acute triangles. In order to ensure this

base level can be reached, a number of conditions need to be guaranteed: a vertex

condition (vertices lie on quadtree vertices), an edge condition (roughly, no more

than one or two edges lie within any leaf quad), and a balance condition (leaf quads

sharing an edge di�er in depth by no more than 1).

Once the quadtree has been constructed to a base level, the leaves of the quadtree

are triangulated. The vertices forming the corners of each quad are added to the

domain, and (acute) triangles are generated respecting the individual boundaries of

each quad. Once each quad is consistently and completely triangulated with acute

triangles, so will be the entire domain. Completing this process for each of the

possible quad leaves forms the bulk of the e�ort in implementing the algorithm.

Adaptivity applies after the initial triangulation is complete: it may be necessary

to increase (and subsequently decrease) the density of the grid within a speci�ed

region, in accordance with the physical criteria discussed above. Our algorithm is

such that incremental modi�cations dampen out exponentially; this is important for

e�cient adaptivity, as well as any parallel implementation.

5.3 Generating the Quadtree

The quadtree can be generated in one of two fashions; either depth-�rst or breadth-

�rst. The former involves generating the branches of the quadtree one at a time,

making each branch as deep as needed before moving on to the next branch. The

latter generates the quadtree level-by-level, building all branches at an equal rate.

While each version attempts to minimize the consumption of di�erent resources

(space and time, respectively), for reasons that will become clear shortly, the breadth-

�rst approach is preferred.

Part of the algorithm for generating the quadtree requires a de�nition:

De�nition 5.3.1 A two-edge case is a pair of edges meeting at the corner of a quad

that form an acute interior angle to the domain.

80

We begin with an initial square large enough to contain the entire input polygon.

We will then recursively divide a given square s, at depth d in the quadtree, into

four squares of depth d+ 1 if any of the following properties hold.

Vertex Condition An input vertex of the polygon is contained within

s (including the boundaries), and is not coincident with one of the

four corners of s.

Edge Condition More than one input edge of the domain properly

intersects s, and the half-planes (domain side) determined by edges

of at least one pair of such edges intersect within s, and such a pair

is not a two-edge case.

Balance Condition Any square at depth d

0

with d

0

> d + 1 shares

a side with s, and s does not contain only two-edge cases, nor is s

entirely external to the domain.

5.3.1 Vertex Condition

The vertex condition is self-explanatory|it merely ensures that each input vertex

lies on the corner of a grid square, which is the primary operating assumption for

this algorithm. Note that since the quadtree recursively divides itself in two with

respect to both the x and y axes, in order for the algorithm to terminate the input

vertices must have some �nite base-2 representation. The maximumbase-2 precision

will then be a lower bound on the maximum depth of the quadtree.

5.3.2 Edge Condition

The edge condition is necessary to keep the number of quad con�gurations that must

be triangulated small. It is not possible to demand that each quad be triangulated

acutely when one might be intersected by an arbitrary number of input edges, each

of which must be taken into account. Hence, quads are generally restricted to just

a single input edge. However, even if there are multiple input edges intersecting a

quad, when the domains to be triangulated (as indicated by the interior half-plane

of each input edge) do not intersect, there can be no conict if each such domain is

triangulated separately.

81

There is one exception to the edge condition. If two edges meet at a corner of

the quad and form an acute interior angle (to the domain), the two-edge case, it

will still be possible to triangulate the acute region, and so this situation need not

cause the quad to be deepened.

Note that while it is possible to triangulate a quad containing more than two

edges, it is also possible to demand that no more than two edges properly intersect

any quad. Quads containing more than two edges can be forced to be subdivided,

and the algorithm will still terminate. This follows because in a simple polygon

(or even one with holes) only pairs of lines can intersect, and between any non-

intersecting pair of lines is a minimum distance. Once quads are smaller than that

minimumdistance, the two non-intersecting lines cannot be in the same quad. Thus,

at a cost of slightly more triangles in complex regions, the task of generating the

tree can be made signi�cantly easier.

1

5.3.3 Balance Condition

The �nal condition, the balance condition, is the one that makes triangulating the

quadtree leaves possible. By ensuring each quad is adjacent to another quad of no

more than one level deeper, one can be certain to �nd an acute triangulation of each

quad that places no new points on the boundary of the quad. If the balance condition

is not enforced, a quad s may exist that is adjacent to arbitrarily deeper quads. The

corners of each such adjacent deeper quad will then lie on the boundary of s, and

so will need to be considered when triangulating s|and an arbitrary multiplicity

of boundary points makes it quite di�cult to generate an acute triangulation that

does not change the boundary of the quad. By enforcing the balance condition

it can be guaranteed that s will have to consider no more than a single such side

point, and moreover that this side point, if it exists, will be precisely midway along

the side. Such regular conditions do allow acute triangulations to be independently

generated.

Thus, each quad can be triangulated individually and it is still certain that the

triangulations within quads sharing a side will match up. Note that the condition

has some caveats; if a quad lies entirely external to the domain then it will not

1

Easier in that deciding when to subdivide a quad is simpler|otherwise, all edges would have

to be checked each time to verify no two non-two edge cases have intersecting domain sides, which

is an expensive operation.

82

Figure 5.1: Enforcing the balance condition on the two-edge case causes in�nite

recursion.

need to be triangulated, and so the balance condition does not have to apply, saving

some memory and e�ort. For reasons of correctness, though, the balance condition

cannot apply to the two-edge case. To do so would create an in�nite recursion (see

Figure 5.1), as the balance requirements force the quad containing the two-edge case

to be recursively subdivided, the result of which will be a smaller but identically

unbalanced situation.

It is also the balance condition that makes a breadth-�rst approach more vi-

able than depth-�rst. In order to ensure no neighbour of a quad is adjacent to a

neighbour more than one level deeper, a depth-�rst approach would require multi-

ple traversals|each time a branch is built, all its neighbours must be checked to

ensure the balance condition is not violated. Retaining the balance condition during

a level-by-level construction is somewhat simpler.

Once the above properties are not satis�ed by any of the leaves of the quadtree,

the tree construction terminates, and a case-by-case triangulation of the leaves en-

sues.

5.4 Triangulating the Quadtree Leaves

It is not a priori clear that once the quadtree has been constructed according to the

above criteria, every resulting leaf/square of the tree has a non-obtuse triangulation.

Indeed, most of the subtlety of the algorithm is in the cases, and there are many

83

of them. Below, all possible cases are illustrated, as well as arguments about each

triangle's acuteness. The following two concepts will be required.

De�nition 5.4.1 If some triangle (a; b; c) is such that a vertex c lies on or between

lines drawn perpendicular to ab from a and from b, and c also lies on or outside the

circle with diameter jabj centered midway along ab, then (a; b; c) is not obtuse, and

c is in acute position with respect to edge ab. The circle/disk de�ned by two points

a and b will be speci�ed as Disk(a; b) (see �gure 5.2).

a b

c

r

t

Figure 5.2: If c is not within the shaded region, (a; b; c) is acute.

Note 5.4.1 An obtuse triangle can always be decomposed into two right-angle tri-

angles by drawing a line intersecting the obtuse vertex which is perpendicular to the

opposing edge (see �gure 5.3).

c

C

a b

Figure 5.3: Splitting an obtuse triangle into 2 right-angle triangles.

Each one of our leaf-squares created by the above quadtree construction falls

into one of the following mutually-exclusive and exhaustive categories:

84

1. Exterior; the quad is entirely outside the domain.

2. Interior; the quad is entirely inside the domain.

3. Boundary; the quad contains some portion of the domain boundary.

The last case, boundary quads, includes a large number of subcases. It itself is

then subdivided into cases based on the manner in which a quad can intersect the

boundary:

1. One-Edge properly intersects the quad:

(a) The edge intersects adjacent quad sides

(b) The edge intersects opposing quad sides

2. Two-edges intersect the quad:

(a) Domain side of edges do not intersect

(b) The two-edge case

For each of the above cases, the balance condition forces the consideration of

the possibility that each of the four quad leaf sides may or may not have a vertex

at its midpoint. If a quad shares a side with another quad of depth one greater,

then there will be a vertex midway along the same side corresponding to a corner

of the smaller square. Each side that the square shares with another square that is

at the same or higher depth will not have such a midpoint. Fortunately, this same

property also ensures that there is no possibility of there being any other additional

vertices on the sides of a quad. Thus, there are at most 16 possible con�gurations

of midpoints for each subcase. As it will turn out, there are far fewer cases than

this would indicate|symmetries, as well as not being concerned with the exterior

domain allow for many combinations to be ignored.

Naturally, quads that are entirely exterior to the domain of interest do not need

to be triangulated.

5.4.1 Interior Quads

When no input edges intersect, the task of triangulating the square is much sim-

pli�ed. Beyond the four corner vertices, there are only four possible other vertices

85

(a midpoint on each side) to consider. Symmetries reduce the number of cases to a

mere six (see �gure 5.4). In each case, the triangles are trivially not obtuse.

Figure 5.4: Possible triangulations of interior quads.

5.4.2 Case 1a: An Input Edge Intersects Adjacent Sides

If an input edge enters from one side, s, of a square, and exits from one of the two

sides that share a corner with s, it can be classi�ed into one of four cases. The edge

enters either above or below the midpoint on s, and exits similarly (though to keep

things straight, instead of `above' or `below' the two halves of the exit side are called

`left' and `right'). Of course there are symmetries; the edge can be assumed to enter

from the left and exit on the bottom, and then any above-left con�guration is a

counter-clockwise rotation by �=2 of a below-right con�guration. Thus, there are

actually only 3 subcategories to consider: above-right, below-left and below-right.

A note about numbering within the diagrams: the three cases, below-left, below-

right and above-right are indicated by the pre�xes \BL," \BR" and \AR" respec-

tively. This is followed by a number, 0 to 4, indicating the number of midpoints,

then a decimal point and then a number indexing the possible combinations of mid-

points. When the other \side" of the edge is being triangulated, the cases follow

the same pattern, with the pre�x being followed by a prime (e.g., \BL

0

-2.1" instead

of \BL-2.1").

Individual diagrams also have a consistent labelling scheme. Corners of the quad

are labelled c

1

to c

4

, going clockwise starting from the lower-left corner. The edge

86

typically enters from the left at point e

1

and exits to the right at point e

2

. Points

added to the interior are labelled a, b, p or q, with the intention that a always lies

at the center of the quad, b is usually the point corresponding to the third corner of

a right-angle triangle (interior to the domain) made with e

1

and e

2

, and p and q are

individually placed. Midpoints along the sides of the quad are labelled m

1

to m

4

,

clockwise beginning with the left side (see �gure 5.5). Finally, the horizontal line

bisecting the quad is referred to as the horizontal bisector, and similarly the vertical

line bisecting the quad is referred to as the vertical bisector. By center we mean the

center of the quad.

2
c

1
c

3
c

4
c

1
e

2
e

m
4

m
3

m
1

m
2

Figure 5.5: Labelling for individual quad diagrams.

Below Left Intersections

When the input edge intersects the square below the midpoint on the left side, and

left of the midpoint on the bottom, there are either 16 cases or one case. If the

domain of interest lies to one \side" of the directed input edge then there are 4

midpoints which may or may not be present, for a total of 16 possibilities. If the

domain lies to the other \side," then there is only one trivial case (a below-left

intersection cuts o� a right-angle triangle corner, which can contain no midpoints).

Here the 16 non-trivial cases are presented.

Note that for this case the input edge can be constrained such that jc

1

e

1

j � jc

1

e

2

j.

If this is not true, the quad can be transformed by a vertical reection followed by

a counter-clockwise rotation by �=2, and then this constraint will hold.

The discussions that follow frequently make reference to the following simple

results. Though sometimes intricate, none of these proofs require math more so-

phisticated than high school trigonometry.

87

Lemma 5.4.1 Given a rectangle of size w � z, let a be the upper-right corner,

and let the origin, O, be the lower-left corner (see �gure 5.6). If a line is drawn

from a to some point e

2

on the bottom side, and a perpendicular to ae

2

is projected

from e

2

, intersecting the left side at e

1

, then the vertical distance of e

1

from O is

y = x(w � x)=z, and this value is maximal for 0 � x � w at x = w=2, whereupon

y = w

2

=(4z).

Proof: Note that � =

6

e

2

am and that � =

6

e

1

e

2

O. Thus, tan(�) = (w � x)=z.

We can compute the value of y then as y = x tan(�) = x(w � x)=z.

To establish that this is maximal for 0 � x � w, we simply take the derivative

of the function for y with respect to x and note that y is 0 at x = 0 and

x = w. ut

e
2

e
1

θ

θ

m

a

w

w-xx

z

O

x(w-x)/z

Figure 5.6: Height y is de�ned by y = x(w � x)=z

Corollary 5.4.1 If

6

ae

2

e

1

is not acute, then y � x(w � x)=z, and if angle

6

ae

2

e

1

is not obtuse, y � x(w � x)=z.

Proof: This follows trivially from lemma 5.4.1. ut

BL-0 See �gure 5.7. Only two triangles are not right angle, (c

2

; c

3

; b) and (c

3

; c

4

; b).

However, the construction of b forces b to lie in the lower left quarter of the quad.

According to de�nition 5.2, then, b must be in acute position with respect to c

2

c

3

and c

3

c

4

, and so both triangles must be acute.

88

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

1
m

2
c

1
c

3
c

4
c

1
e

2
e

m
2

a

BL-1.2a

m
2

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

m
3

a

BL-1.3a

m
3

m
2

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e m

4
m

4

2
c

1
c

3
c

4
c

2
e

1
e

b

BL-0 BL-1.1

b

BL-1.2cBL-1.2b

b

p

BL-1.3b

a

BL-1.4a BL-1.4b

p

pb

Figure 5.7: Subcases for adjacent below-left intersections with zero or one midpoint.

89

2
c

1
c

3
c

4
c

1
e

2
e

1
m

m
2

2
c

1
c

3
c

4
c

1
e

2
e

m
2

1
m

2
c

1
c

3
c

4
c

1
e

2
e

1
m m

3

2
c

1
c

3
c

4
c

1
e

2
e m

4

1
m

2
c

1
c

3
c

4
c

1
e

2
e

As per BL-0

or BR-0

or AR-0

m
3

m
2

m
2

m
4

2
c

1
c

3
c

4
c

2
e

1
e

m
4

2
c

1
c

3
c

4
c

1
e

2
e

m
2

a

BL-2.5a

m
4

m
3

1
c

3
c

4
c

1
e

2
em

4

m
3

2
c

1
c

3
c

4
c

1
e

2
e

2
c

BL-2.1a

a
p

b

a

BL-2.1b BL-2.2

BL-2.3

a

b

BL-2.4

BL-2.5b BL-2.6b

a

BL-2.6a

p

p

Figure 5.8: Subcases for adjacent below-left intersections with two midpoints.

90

2
c

1
c

3
c

4
c

1
e

2
e

m
2

1
m

1
m m

3

2
c

1
c

3
c

4
c

1
e

2
e

m
3

m
2

m
4

As per BL-0

or BR-0

or AR-0

2
c

1
c

3
c

4
c

1
e

2
e m

4

As per BL-0

or BR-0

or AR-0

2
c

1
c

3
c

4
c

1
e

2
e

m
2

m
3

m
4

m
4

1
m

As per BL-0

or BR-0

or AR-0

2
c

1
c

3
c

4
c

1
e

2
e

1
m

m
2

2
c

1
c

3
c

4
c

1
e

2
e

m
3

b

p

BL-3.1

2
c

1
c

3
c

4
c

1
e

2
e

m
3

m
4

BL-3.2 BL-3.3

BL-3.4 BL-4

b p

a

a a

BL’-0

BL-2.6c

p
b

Figure 5.9: Remaining BL and all BL' subcases.

91

BL-1.1 See �gure 5.7. Point p is located as the point closest to the center along

the horizontal bisector betweenm

1

and the center, such that

6

e

1

e

2

p is no larger than

�=2. Note that p will lie horizontally somewhere between e

2

and the center. Because

je

1

c

1

j is no bigger than jc

1

e

2

j, a perpendicular to e

1

e

2

extended from e

1

will always

intersect left of the center and left of the intersection of a similar perpendicular

extended from e

2

, and so

6

e

2

e

1

p will be acute as long as je

1

e

2

j > 0. Since p is

to the right of e

2

, the angle

6

e

1

pe

2

is contained in the �=2-angle formed between

the horizontal bisector and a vertical passing through p, and hence is certainly

not obtuse. The other triangles are simple to establish: because point p is on the

horizontal bisector, p is necessarily in acute position to e

2

c

4

and c

2

c

3

. Because p is

left of the center, p is also in acute position to c

3

c

4

.

BL-1.2 See �gure 5.7. If

6

ae

2

e

1

is not obtuse, then this con�guration can be

triangulated as per subcase BL-1.2a. In such a case point a, being the center of the

quad, is trivially in acute position relative to all of e

2

c

4

, c

3

c

4

and e

1

c

2

. Angle

6

e

2

e

1

a

is acute for the same reasons as in BL-1.1, and angle

6

e

1

ae

2

is acute because e

1

and

e

2

lie in the lower-left quadrant.

Alternatively, if

6

ae

2

e

1

is obtuse, then if

6

m

2

e

2

e

1

is acute and e

2

is horizontally

at least 1=4 of the way along the bottom side, the quad can be triangulated as

per BL-1.2b. Point m

2

is then guaranteed to be in acute position relative to e

2

c

4

.

Because of the constraints on the vertical coordinate of e

1

imposed by corollary

5.4.1, the angle

6

c

1

e

1

e

2

varies between approximately 1:1 and �=2 radians within

the allowed range of e

2

. Angle

6

m

2

e

1

c

2

only varies between 0:46 and 0:52 radians,

but in any case the two angles sum to more than �=2, leaving

6

e

2

e

1

m

2

less than

�=2. Finally, because e

1

and e

2

lie in the lower-left quadrant,

6

e

1

m

2

e

2

is acute.

Finally, if

6

m

2

e

2

e

1

is also obtuse or e

2

is horizontally within the leftmost 1=4

of the bottom side, point b can be introduced and the quad triangulated as in BL-

1.2c. Point b is then in acute position relative to edge m

2

c

4

: b is certainly within

perpendiculars to m

2

c

4

extended fromm

2

and c

4

, and (within its horizontal bounds)

b necessarily lies below a tangent to Disk(m

2

; c

4

) at halfway along the bottom side

(Disk(m

2

; c

4

) intersects the bottom side at the bottom right corner, and midway

along the bottom side).

92

BL-1.3 See �gure 5.7. If

6

ae

2

e

1

is acute, the triangulation is similar to BL-1.2a,

as shown in subcase BL-1.3a.

If

6

ae

2

e

1

is obtuse, triangulation follows BL-1.3b. Here, point p is located along

the horizontal bisector to the right of the center. Thus, p is in acute position

relative to c

2

c

3

. In order to ensure that triangle (b; c

2

; p) is acute, p is placed outside

Disk(b; c

2

), but inside the right angle formed by extending a perpendicular to bc

2

out from b. That this can always be done is established by the following lemma.

Lemma 5.4.2 The perimeter of Disk(b; c

2

) intersects the horizontal bisector of the

square (strictly) to the left of the right side.

Proof: Because point b must be located in the region designated by corollary 5.4.1,

the line segment c

2

b reaches a maximum length in the degenerate case wherein b is

coincident with the bottom midpoint. Thus, jc

2

bj �

p

5 (assuming the square is

2�2, with origin at the lower-left corner). As well, the furthest to the right that the

midpoint along c

2

b can be located occurs in the same degenerate situation, where

by similar triangles the center of the circle can be determined to be at coordinates

(1=2; 1). Hence, the intersection of the circle and the horizontal bisector of the

square can be no further to the right than

p

5=2 + 1=2, which must be to the left of

the right side of the 2 � 2 square.

Hence, by lemma 5.4.2 and the simple observation that a perpendicular to c

2

b

from b never intersects the horizontal bisector inside the square, it is certain p can be

placed in acute position relative to both c

2

c

3

and c

2

b. The only triangle in doubt is

(p; b; c

4

). Corollary 5.4.1 implies that the height of b is bounded by x(1�x) (within

our 2�2 square), and thereby b always lies below the diagonals c

2

c

4

and c

1

c

3

. Thus,

b must lie within perpendiculars to pc

4

from p and from c

4

. Furthermore, Disk(p; c

4

)

does not intersect the curve x(1 � x) within 0 < x < 1, so b is in acute position to

pc

4

.

BL-1.4 See �gure 5.7. Once again, if

6

ae

2

e

1

is acute, the triangulation is similar

to BL-1.2a, as shown in subcase BL-1.4a.

If

6

ae

2

e

1

is obtuse, BL-1.4b is used instead. Point p here is located as the

intersection of a perpendicular to c

2

b at b and the vertical bisector; point p must

be in acute position relative to c

3

c

4

. Since the location of b is constrained as per

corollary 5.4.1, point p certainly can never be higher than the horizontal bisector,

and so p is in acute position to c

2

c

3

. By construction, b must lie below p and above

93

the bottom side, so angles

6

pm

4

b and

6

bpm

4

must be acute . As well, the placement

of b implies that

6

m

4

bc

2

must be no larger than �, and �=2 of that angle is \used

up" by the right-angle

6

pbc

2

. Hence

6

m

4

bp must be smaller than �=2.

BL-2.1 See �gure 5.8. Again, if

6

ae

2

e

1

is acute, the triangulation is similar to

BL-1.2a, as shown in subcase BL-2.1a.

Otherwise subcase BL-2.1b applies; point p is located as the intersection of the

horizontal bisector and a vertical extended up from b. Since e

2

is by de�nition left

of the center, so will be p. The only triangle that is not a right-angle triangle is

then (b; a; c

4

). But since b is constrained as per corollary 5.4.1, b must be in acute

position to ac

4

: b must lie within perpendiculars to ac

4

extended out from a and

c

4

, and the center of Disk(a; c

4

) maintains a distance of at least 1=

p

2 (which is the

same as its radius) away from any possible position of b.

BL-2.2 See �gure 5.8. This situation is very similar to BL-1.1.

BL-2.3 See �gure 5.8. This triangulation trivially follows.

BL-2.4 See �gure 5.8. Since point b here is constrained to lie in the lower-left

quadrant of the quad, b must be in acute position to m

3

m

4

, m

3

c

4

, and c

2

m

3

.

BL-2.5 See �gure 5.8. Once more, if

6

ae

2

e

1

is acute, the triangulation is similar

to BL-1.2a, as shown in subcase BL-2.5a.

Alternatively, the triangulation is a trivial modi�cation of the pattern shown in

BL-1.4b, which is illustrated in BL-2.5b.

BL-2.6 See �gure 5.8. Again, if

6

e

1

e

2

a is acute, the triangulation is similar to

BL-1.2a, as shown in subcase BL-2.6a.

Otherwise, assume a 2� 2 square as in BL-2.6b; point e

1

is then constrained by

corollary 5.4.1 to be such that if e

2

has x-coordinate x, then e

1

has y-coordinate

no bigger than x(1 � x). In particular, if 0:41877 < x < 0:58123, then 0:25 � y �

0:2434. Because of this, Disk(c

2

; e

1

) can have radius no bigger than 1� 0:1217, and

hence intersects the horizontal bisector strictly to the left of the point (0:8783; 1).

Let p be placed as the intersection of a perpendicular to e

1

e

2

extended from e

2

and

the horizontal bisector, and let v be the horizontal di�erence between p and the

94

center: v = 1 � p:x. If we show that within the limited range allowed for x (and

hence y) v must remain outside Disk(c

2

; e

1

), then triangle (e

1

; c

2

; p) is surely acute.

e
1

e
2

Horizontal

Bisector

Vertical

Bisector

c
1

m
4

θy

θ
z

p

1-xx

v

Figure 5.10: Subcase BL-2.6b detail.

Given x and y, we can calculate v as follows (see �gure 5.10). Let � be the

angle

6

c

1

e

1

e

2

; then tan(�) = x=y. Let z be the length of the bottom side of a right-

angled triangle formed from e

2

, p and the intersection of a vertical through p and

the bottom side, and note that � =

6

(x+ z; 0)e

2

p. From this we can conclude that

z = 1= tan(�) = y=x, and thus v = 1� x� z = 1� x� y=x. Distance v increases as

y decreases, so for a y lower-bounded by 0:2343, v is maximal when x =

p

0:2343.

Thus, v is maximal at about v

max

� 0:013288, which is well outside of Disk(c

2

; e

1

).

Also note that because p lies horizontally between e

2

and the center, p is in acute

position to both c

2

c

3

and e

2

m

4

, and m

4

is in acute position to pm

3

.

Alternatively, if y < 0:2343 (which is certainly true if x � 0:41877 or x �

0:58123), then triangulation is as per BL-2.6c (see �gure 5.9). Here p is located as

the intersection of a perpendicular to c

2

b at b and the vertical bisector. Note that

because of corollary 5.4.1,

6

m

4

bc

2

< �, and so if

6

pbc

2

= �=2 then

6

m

4

bp < �=2.

Point b is therefore in acute position to pm

4

. Point p will also be in acute position to

m

3

c

4

if p does not rise vertically above the horizontal bisector. However, in order for

6

m

3

pc

2

to be acute p must satisfy the more stringent requirement that p lie outside

Disk(c

2

;m

3

).

We can bound the height of p. Let � =

6

e

1

c

2

b, and let q be the point (1; y)

(the intersection of a horizontal passing through e

1

and the vertical bisector). Let

z be the y-coordinate of p. Because � =

6

qbp and tan(�) = x=(2 � y), we can

determine z = y + (1 � x)x=(2 � y), and because z increases as y increases, we

can bound the size of z by considering only a maximal y for a given x; that is,

95

y = x(1 � x). By assumption, y is upper-bounded by 0:2343, and so z is upper-

bounded by approximately 0:37. Disk(c

2

;m

3

) is �xed, and intersects the vertical

bisector at y-coordinate 1:5�

p

5=2 � 0:382, hence p is outsideDisk(c

2

;m

3

). Because

p is of course lower-bounded bym

4

, p must be in acute position to c

2

m

3

and to m

3

c

4

.

BL-3.1 See �gure 5.9. Point p is located as the intersection of a vertical extended

up from e

2

and the horizontal bisector. Thus, point p is certain to be left of the

center and in acute position relative to c

2

m

2

, and similarly m

2

will be in acute

position to pm

3

. Because b will be located left of the center, b will also be in acute

position relative to m

3

c

4

. All the rest are right-angle.

BL-3.2 See �gure 5.9. These results are trivial.

BL-3.3 See �gure 5.9. These results are trivial.

BL-3.4 See �gure 5.9. Here, point p is located as the intersection of a horizontal

extended out from e

1

and the vertical bisector. Thus, p is in acute position to m

3

c

4

,

and m

3

is in acute position relative to m

2

p. Point b is constrained to lie in the lower

left quadrant of the quad, and so point b is in acute position relative to c

2

m

2

.

BL-4 See �gure 5.9. These results are trivial.

BL-0' See �gure 5.9. These results are trivial.

Below Right Intersections

When the input edge enters below the midpoint on the left, and right of the bottom

midpoint, the triangulation follows one of the patterns below. There are only 10

subcases in total here, though|when triangulated one side of the input edge there

are only three midpoints that may or may not be present. When triangulating the

other side, only a single midpoint could exist.

Note that within these cases, the point b within the quad diagrams has no par-

ticular signi�cance (i.e., it is not always the intersection of a vertical from e

2

and a

horizontal from e

1

).

96

m
2

2
c

1
c

3
c

4
c

2
e

1
e

2
c

1
c

3
c

4
c

1
e

2
e 4

c

1
m

2
c

1
c

3
c

2
e

1
e

2
c

1
c

3
c

2
e

1
e

m
3

2
c

1
c

3
c

2
e

1
e

1
c

2
e

1
m

m
2

2
c

3
c

1
e

1
c

m
2

2
c

3
c

1
m

1
m m

3

2
c

1
c

3
c

2
e

1
e

2
c

1
c

3
c

2
e

1
e

4
c

4
c

4
c

4
c

4
c

4
c

m
3

m
2

2
c

1
c

3
c

2
e

1
e

m
2

m
31

m

4
c

2
c

1
c

3
c

2
e

1
e

4
c

4
c

2
c

1
c

3
c

1
e

1
e

2
em

4

2
e

BR-0a BR-0b

b

p

BR-1.1

BR-1.2

b

BR-1.3 BR-2.1a

b

BR-2.2

b

BR-2.3

a

BR-3 BR’-0 BR’-1

a

b

p

b

b

b

q

BR-2.1b

Figure 5.11: Subcases for adjacent below-right intersections.

97

BR-0 See �gure 5.11. If

6

c

3

e

2

e

1

is acute, triangulation is performed as in BR-0a.

Point e

1

must lie outside Disk(e

2

; c

3

), and so is in acute position to e

2

c

3

.

If this is not the case, point b is located as the intersection of a perpendicular to

c

3

e

2

extended from e

2

and a horizontal extended from e

1

. Since e

1

is certainly below

the horizontal bisector, b will be in acute position to c

2

c

3

. Point p is then located

as per note 5.4.1.

BR-1.1 See �gure 5.11. Point b is located as the intersection of a perpendicular

to e

1

e

2

extended out from e

1

and the horizontal bisector. Thus, point b will always

be in acute position relative to edge c

2

c

3

. By lemma 5.4.1, jm

1

bj is maximal when e

1

is midway between c

1

and m

1

; assuming a 2� 2 square, jm

1

bj � 1=(4x). Within the

allowed range of x, this maximizes at x = 1, whereupon jm

1

bj = 1=4. Disk(c

3

; e

2

)

has radius no larger than

p

5=2, and its center has an x-coordinate no smaller than

1:5, so it intersects the horizontal bisector no closer to the left than about 0:382.

Since

6

e

2

bc

3

decreases as b moves to the left or e

2

moves to the right, and even when

b is maximally to the right and e

2

maximally to the left

6

e

2

bc

3

is acute, triangle

(e

2

; b; c

3

) must be acute.

BR-1.2 See �gure 5.11. Point e

2

is certainly in acute position to m

2

c

3

, and by

the constraints on the positions of e

1

and e

2

(i.e., being a below-right case) e

1

is in

acute position to m

2

e

2

.

BR-1.3 See �gure 5.11. Point b is located as the intersection of a vertical extended

up from e

2

, and the horizontal bisector. Since e

2

is certainly right of the vertical

bisector and b is above e

1

, b must be in acute position relative to e

1

c

2

, and since b

is along the horizontal bisector, it is also in acute position to c

2

c

3

. Point e

1

must lie

vertically between c

1

and m

3

so e

1

is in acute position to e

2

b.

BR-2.1 See �gure 5.11. Point b is located here as with the bottom left (BL) cases,

as the intersection of a vertical extended from e

2

and a horizontal extended from

e

1

. If b lies outside Disk(c

3

; c

4

), then b is in acute position relative to c

3

c

4

, and

triangulation is as per BR-2.1a. Because e

1

is never higher than the center, b is

also in acute position relative to m

2

c

3

. Finally, because b must lie in the lower right

quadrant, b must be in acute position to m

1

m

2

as well.

98

If b would lie within Disk(c

3

; c

4

), then triangulation proceeds as in BR-2.1b. Let

b lie on the intersection of a vertical up from e

2

and the perimeter of Disk(c

3

; c

4

),

and position p as the intersection of a perpendicular to be

1

extended from e

1

and

the horizontal bisector. Once again assuming a 2 � 2 square, we can express the

equation describing Disk(c

3

; c

4

) as y = 1�

p

�x

2

+ 4x� 3.

Let x be the x-coordinate of e

2

and y be the y-coordinate of b. Let z be the

y-coordinate of e

1

, w be the x-coordinate of p, and let � =

6

pe

1

m

1

. Thus, it must

also be that � =

6

e

1

b(0; y) and tan(�) = (z � y)=x, and we can compute w from

w = (1 � z) tan(�) = (1 � z)(z � y)=x. In order to upper-bound w we note that if

we assume a �xed x (and hence y), by lemma 5.4.1 w is maximized by placing e

1

precisely midway between y and m

1

; z = (y + 1)=2. Thus, it must be that:

w �

(1 �

y+1

2

)(

y+1

2

� y

x

=

(

1�y

2

)

2

x

=

�x

2

+ 4x� 3

4x

This function is maximal within our allowed range of x values when x =

p

3, at

which point w

max

= 1 �

p

3=2.

m
1

m
2 c

3

c
4

c
2

p

b

φ

φ

r

(2,1)

u

w

Figure 5.12: A necessarily acute angle in subcase BR-2.1b.

Now, consider a perpendicular to m

2

p extended from p. It intersects the bottom

side of the quad (the y = 0 line) at some point r (see �gure 5.12). If we establish that

pr never intersects Disk(c

3

; c

4

), then

6

bpm

2

must always be contained in

6

rpm

2

=

�=2, and hence must be acute.

The position of r is dependent on p; as p moves to the right, r moves to the

right. Thus, if pr does not intersect Disk(c

3

; c

4

) when w is maximal, neither does

p

0

r

0

for any 0 � p:x

0

< w. We can calculate the x-coordinate of r by noting that if

we let � =

6

(w; 2)m

2

p, then tan(�) = 1=(1 � w), and � =

6

(w; 0)pr. Thus, if u is

99

the x-coordinate of r, then u = 1=(1 � w) + w. As mentioned, u is maximal when

w is maximal, so:

u

max

=

1

1� w

max

+ w

max

=

1

1�

p

3=2

+ 1�

p

3=2 = 1 +

1

2

p

3

� 1:288

The distance of the center of Disk(c

3

; c

4

) (which is (2; 1)) from the line pr can

then be determined to be

p

7=2, which is certainly larger than the unit radius of

Disk(c

3

; c

4

).

Point b can never be located outside of the lower-right quadrant of the square

and p must lie along the horizontal bisector left of the center, and so angles

6

pm

2

b

and

6

m

2

bp must both be acute. For the same reasons, p is in acute position to c

2

m

2

,

b is in acute position to m

2

c

3

, and by construction b is in acute position to c

3

c

4

. The

angle

6

e

1

be

2

is obtuse by assumption, so once we locate point q as per note 5.4.1

the remaining triangles are all right-angled.

BR-2.2 See �gure 5.11. This case is a trivial modi�cation of BR-1.3.

BR-2.3 See �gure 5.11. Point a, being the center of the quad, is trivially in acute

position to e

2

m

3

and e

1

c

2

. Angle

6

ae

2

e

1

cannot be obtuse since e

2

is right of a (and

hence

6

c

4

e

2

a is obtuse), and

6

e

2

e

1

a cannot be obtuse since both

6

ae

1

c

2

and

6

c

1

e

1

e

2

must both be at least �=2. The �nal angle,

6

e

1

ae

2

may or may not be obtuse|if it

is, then a point b is introduced as per note 5.4.1.

BR-3 See �gure 5.11. This case is virtually identical to BR-2.3.

BR'-0 See �gure 5.11. This case is trivial.

BR'-1 See �gure 5.11. This case is trivial.

Above Right Intersections

When the input edge enters above the midpoint on the left, and right of the bottom

midpoint, there are only 8 possible subcases|each side of the input edge has two

possible midpoints, each of which may or may not be present.

AR-0 See �gure 5.13. This case is trivial; the above right constraints on the input

edge mean point c

3

must be in acute position to e

1

e

2

.

100

2
c

1
c

3
c

4
c

2
e

1
e

2
c

1
c

3
c

4
c

2
e

1
e

2
c

1
c

3
c

4
c

2
e

1
e

2
c

1
c

3
c

4
c

2
e

1
e

1
m

m
3

2
c

1
c

3
c

4
c

2
e

1
e

m
2

m
2

m
3

2
c

1
c

3
c

4
c

2
e

1
e

m
4

1
c

3
c

4
c

2
e

1
e

2
c

1
c

3
c

4
c

2
e

1
e

2
c

1
m

m
4

AR-1.2AR-0

AR-2 AR’-0

AR-1.1

AR’-1.1

AR’-1.2 AR’-2

b

b

b

b

b

p

p

b

Figure 5.13: Subcases for adjacent above-right intersections.

101

AR-1.1 See �gure 5.13. Point e

2

must be in acute position relative to m

2

c

3

.

Angles

6

e

2

e

1

m

2

and

6

m

2

e

2

e

1

must be acute by the constraints on e

1

and e

2

. And if

6

e

1

m

2

e

2

is not acute, then point b is added according to note 5.4.1.

AR-1.2 See �gure 5.13. This case is actually a vertical reection followed by a

counter-clockwise rotation of �=2 of case AR-1.1.

AR-2 See �gure 5.13. Points b and p can always be located along e

1

e

2

as the

intersection of a line coincident with e

1

e

2

and a perpendicular to e

1

e

2

passing through

m

2

and m

3

respectively. Because of the slope constraints on e

1

e

2

implied by this

being an above-right case, the projection of m

2

m

3

onto e

1

e

2

has both a non-zero

minimal length and is forced to lie entirely along e

1

e

2

; in other words, b and p

necessarily lie along the segment e

1

e

2

, and bm

2

and pm

3

do not cross. The result

is a quadrilateral, (b;m

2

;m

3

; p) containing two �=2-angles; thus, at most one of the

remaining two angles can be obtuse|and even so it cannot be too obtuse, since the

slope of e

1

e

2

is constrained. If the quadrilateral is then divided into two triangles

so as to split the obtuse angle, two acute triangles must result.

AR'-0 See �gure 5.13. This case is trivial.

AR'-1.1 See �gure 5.13. Point b is placed according to note 5.4.1.

AR'-1.2 See �gure 5.13. This is a symmetric variant of AR'-1.1.

AR'-2 See �gure 5.13. Point p is located as the intersection of the vertical bisector

and e

1

e

2

. Since the center of the quad can never be included in the domain below

e

1

e

2

, p must lie vertically between the horizontal bisector and m

4

|in other words,

in acute position relative to m

1

c

1

. Point b is then positioned as per note 5.4.1.

5.4.3 Case 1b: Opposing Intersections

An edge entering from one side and exiting from the other can be assumed without

loss of generality to enter from the left side and exit from the right. There are then

four possibilities: either the edge enters above or below the midpoint on the left,

and it exits similarly on the right.

102

However, symmetry reduces the four cases to two. An above-above situation is

a vertical reection of below-below, and above-below is a rotation of below-above.

Hence, only below-above and below-below actually need to be considered.

Below Above Intersections

When the edge enters from below and exits above, both sides of the input edge

can be triangulated identically|one side is simply a �-rotation of the other. Thus,

there are a mere 4 subcases to deal with here, corresponding to the two possible

midpoints.

1
m

m
2

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

1
m

m
2

m
2

1
m

2
c

1
c

3
c

4
c

1
e

2
e

BA-0

b

BA-1.1

b

BA-1.2

b

BA-2a

a b

BA-2b

p

Figure 5.14: Subcases for opposing below-above intersections.

BA-0 See �gure 5.14. This case is trivial; point e

2

must be located above the

midpoint on the right, and so e

2

must be in acute position relative to c

2

e

1

.

BA-1.1 See �gure 5.14. Again, point e

2

must be in acute position to c

2

m

1

. Point

b is then located in accordance with note 5.4.1. Note that

6

e

1

m

1

e

2

must be obtuse,

since e

2

is above m

1

.

103

BA-1.2 See �gure 5.14. Being a below-above case forces both

6

e

2

e

1

m

2

and

6

m

2

e

2

e

1

to be acute. The remaining angle,

6

e

1

m

2

e

2

may or may not be acute, but if it is

not, point b is placed according to note 5.4.1.

BA-2 See �gure 5.14. If the domain to be triangulated contains the center of the

quad, then triangulation proceeds as in BA-2a. Point e

2

is in acute position to am

2

,

and point b is located to split the obtuse angle

6

e

1

ae

2

, as described in note 5.4.1.

If, however, the domain does not contain a, case BA-2b applies. Here, point p

is located as the intersection of the horizontal bisector and e

1

e

2

. Since the center

is not contained in the domain, p must lie to the left of point m

2

, and so p is in

acute position to c

2

m

2

. As with case BA-1.2,

6

m

2

e

2

e

1

cannot be obtuse, and since

6

m

2

pm

1

is certainly obtuse,

6

e

2

pm

2

is certainly not (

6

m

1

pe

1

,

6

m

2

pm

1

and

6

e

2

pm

2

must sum to �). Then, if

6

pm

2

e

2

is obtuse, point b is situated as in note 5.4.1.

Below Below Intersections

When an edge enters below the midpoint and exits below as well, the edge may or

may not have a positive slope. However, if the edge does not have a positive slope,

a horizontal reection converts it to a case that does. This results in 10 cases: 8

for the side of the input edge that may have up to three midpoints, and two for the

side that can have but one midpoint.

BB-0 See �gure 5.15. This case is trivial; since the slope of e

1

e

2

is positive, e

2

must be in acute position to c

2

e

1

.

BB-1.1 See �gure 5.15. Since point e

2

is bound to be below m

1

, m

1

must be in

acute position to c

3

e

2

, and for the same reason e

2

is in acute position to m

1

e

1

.

BB-1.2 See �gure 5.15. Since this is a below-below case, e

1

and e

2

are below the

horizontal bisector. Hence, m

2

is in acute position to e

1

e

2

.

BB-1.3 See �gure 5.15. Point a, being the center, must be in acute position

relative to c

2

e

1

. Since e

1

and e

2

must both lie below the center,

6

e

1

ae

2

is certain

to be at least �=2, which implies that

6

e

1

e

2

a and

6

ae

1

e

2

are both acute. By note

5.4.1, point b can be placed to split the obtuse angle.

104

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

1
m

2
c

1
c

3
c

4
c

1
e

2
e

m
2

2
c

1
c

3
c

4
c

1
e

2
e
m

3

2
c

1
c

3
c

4
c

1
e

2
e

1
m

m
2

2
c

1
c

3
c

4
c

1
e

2
e

1
m m

3

2
c

1
c

3
c

4
c

1
e

2
e
m

3

m
2

2
c

1
c

3
c

4
c

1
e

2
e

m
2

m
31

m

2
c

1
c

3
c

4
c

1
e

2
e

2
c

1
c

3
c

4
c

1
e

2
e

m
4

BB-0 BB-1.1

BB-1.3

a

BB-2.1 BB-2.2

a

b

b

BB-2.3 BB-3 BB’-0

b

BB’-1

BB-1.2

Figure 5.15: Subcases for opposing below-below intersections.

105

BB-2.1 See �gure 5.15. Because point e

2

must lie below the center,

6

m

1

m

2

e

2

cannot be larger than �=2, and because e

2

is along the right side,

6

e

2

m

1

m

2

must be

acute as well, putting e

2

in acute position to m

1

m

2

. As with BB-1.1, e

2

is also in

acute position relative to e

1

m

1

.

BB-2.2 See �gure 5.15. Again, as with BB-1.1, point e

2

is in acute position to

e

1

m

1

.

BB-2.3 See �gure 5.15. This case is a trivial modi�cation of BB-1.3.

BB-3 See �gure 5.15. This case is a trivial modi�cation of BB-2.2.

BB'-0 See �gure 5.15. The slope of e

1

e

2

is positive, and so e

1

must be in acute

position to e

2

c

4

.

BB'-1 See �gure 5.15. Since e

1

and e

2

are both bound to be below the horizontal

bisector,

6

e

2

m

4

e

1

is necessarily obtuse. Thus, both

6

m

4

e

1

e

2

and

6

e

1

e

2

m

4

must be

acute, and point b can be located as per note 5.4.1.

5.4.4 Case 2a: Two Input Edges With Non-Intersecting Do-

mains

If two edges intersect the quad, and the domain sides of each edge do not intersect

within the quad, then triangulation can proceed separately for each edge. Since only

the domain sides will be triangulated, no conict can result, and the independent

triangulations of each edge can be (disjointly) merged.

5.4.5 Case 2b: Two Input Edges forming a Two-Edge Case

When two edges intersect a quad, their domain sides intersect within the quad, and

they are not joined at a corner of the quad then the quad is recursively divided.

This avoids considering many more cases, trying to triangulate the domain between

two edges of more or less arbitrary orientation. Unfortunately, as can be seen in

�gure 5.1, recursively dividing such cases results in the quad actually containing the

106

two edges joined at a corner having more than one \midpoint" along any or all of

its sides.

Fortunately, a few observations and a simple scheme mentioned in Baker et al 's

paper [BGR88] make this problem tractable. Although each side of the quad may

have an arbitrary number of points, since only the interior of the domain is being

triangulated only some of these points will have to be considered. As well, the

region being triangulated will have two unconstrained edges|any number of points

can be added to the boundary of the domain (the two input edges), and still the

triangulation of such a quad will not a�ect its neighbouring quads.

Such a situation can have two di�erent con�gurations; either both input edges

intersect the same side of the quad, or they intersect adjacent sides. Without loss of

generality the vertex shared by the two input edges can be assumed to be the upper

left corner of the quad, and then the input edges either both intersect the bottom

side, the right side, or one intersects the bottom and one intersects the right. Once

again symmetry reduces the cases|if both edges intersect the right side, then a

simple rotation by �=2 transforms the case so both intersect the bottom side.

Two-Edge Case: Both on the Bottom Side

When both edges intersect the same bottom side of the quad, the resulting �gure

is an obtuse triangle, with the leftmost edge forming an obtuse angle with the

bottom side (see �gure 5.16). Such a con�guration can be triangulated by adding

lines parallel to c

2

e

2

at each of the points along the bottom side (e.g., line p

1

b

1

).

Each such line intersects input edge c

2

e

1

, and at each such intersection point a line

perpendicular to c

2

e

2

is projected out to edge c

2

e

2

. This decomposes the original

obtuse triangle into a collection of rectangles, which can be trivially triangulated,

and right-angle triangles.

Two-Edge Case: One on the Bottom Side, One on the Right Side

If the input edges do not intersect the same side, the result can be partially triangu-

lated as shown in �gure 5.17. Horizontal lines are extended from each point along

the right side until they intersect the leftmost edge, c

2

e

1

. At each such intersection

point, and from each point along the bottom side, a vertical line is extended up

to the highest horizontal. This decomposes some of the region into rectangles and

107

2
e

1
e

2
c

1
b

1
p

Figure 5.16: Triangulating the two-edge case when edges intersect the same side.

right-angle triangles. The remaining region is similar enough to �gure 5.16 to be

triangulated in the same manner.

2
c

1
e

2
e

Figure 5.17: Triangulating the two-edge case when the edges intersect di�erent sides.

5.5 Adaptivity

The above construction yields a complete triangulation of the domain computed

from the leaves of the quadtree. This original structure constitutes a \base level,"

a minimum depth for each branch of the quadtree, enforced in order to permit

independent triangulations of each of the leaves. However, it is possible to grow the

108

quadtree deeper than needed if greater resolution (i.e., more grid points) is required

in a given region.

A leaf which is \deepened" after reaching the base level of triangulation may

cause other leaves to require deepening, in accordance with the criteria discussed

above. Fortunately, as long as the quad to be deepened is not a two-edge case,

the base level construction ensures that no quad deepened beyond the base level

will need to be deepened for any other reason that the balance condition. Once a

quad contains only a single edge, for example, recursively dividing it can never make

that quad contain more edges, and once all input vertices lie at corners of quads,

deepening the quads further cannot move them.

5.5.1 Adapting On a Budget

An e�cient adaptive algorithm needs to have limited external e�ect when a given

region is adapted. Within the quadtree context, this means deepening a quad beyond

the base level should not propagate deepenings throughout the grid, or at least

should limit the number. This algorithm, \dampens" the propagation of the balance

condition, to the point where the following lemma can be stated. Note that the proof

of this lemma requires a fairly lengthy case analysis|more direct proofs certainly

exist; however, the structure of this proof is used below to illustrate the partitioning

method we will eventually apply to these grids.

Lemma 5.5.1 If a non two-edge case leaf at depth d in the quadtree is deepened

by one level (after the base level has been reached), then it will take at most O(d)

deepenings to restore the balance condition throughout the quadtree.

Proof: The proof is inductive, relying on a recursive situation where only a single

quad is \out of balance" with its neighbours. Note that it is not necessary

to consider all possible arrangements of quads of varying depths|a quad

at depth d just deepened to four quads of depth d + 1 cannot propagate

the imbalance to quads at a depth greater than d � 1. In other words,

the number of deepenings required to restore the balance condition will be

maximized when quads neighbouring the unbalanced quad are at as shallow

a depth as possible.

Also note that the inclusion of arbitrary boundaries or two-edge cases does

not change the maximum e�ects of propagation. Although deepening the

109

latter can generate many more quads (depending on the angle), the bal-

ance condition does not apply to either of these types of quad, and so any

unbalanced quads adjacent to an exterior or two-edge quad will not cause

more deepenings in the direction of the exterior/two-edge quad. The maxi-

mum number of deepenings will always occur in the absence of these special

quads.

Since induction will be on the depth of the unbalanced quad, the base case,

depth 0, is trivial|the root quad cannot be unbalanced with respect to its

neighbours, since it does not have any.

Assume, then that there is a single quad, q at depth d > 0 that has just

been deepened, and so is unbalanced with respect to its at least one of its

neighbours. The discussion that follows demonstrates that after some con-

stant number of deepenings, the quadtree will either again contain a single

unbalanced quad with depth less than d, in which case the inductive argu-

ment holds, or will be completely balanced, or will contain two unbalanced

quads of depth less than d. The latter situation will turn out to be closed|it

either eventually produces a situation with just a single unbalanced quad, or

it maintains exactly two.

p p p p

q q

q q

Figure 5.18: Possible positioning of q as a child.

Quad q must have a parent quad since d > 0. Call this parent quad p.

Hence, q is an upper-left child, an upper-right child, a lower-left child, or a

lower-right child (see Figure 5.18). Since these are all rotationally symmetric,

without loss of generality q can be assumed to be an upper-left child.

The neighbours of p, must all satisfy the balance condition, since q is assumed

to be the only unbalanced quad. In fact, because p has children, p must be

surrounded by quads of depth no less than p itself. Of course p must also

be the child of some quad (or the same degenerate truth used in the base

case will apply), in one of the four possible child positions. Two situations

110

can then arise|either the deepening of q will a�ect (unbalance) one or two

neighbours of p. All the legal quadtree decompositions for the �rst case are

illustrated in Figure 5.19

2

and for the second case in Figure 5.20. In each

case p is shown as the inner square with a heavy outline.

1-BL 1-BR1-UR1-UL

Figure 5.19: Legal quadtrees when p is a child and q unbalances only one neighbour.

2-BR2-BL2-UR2-UL

Figure 5.20: Legal quadtrees when p is a child and q unbalances two neighbours.

The �rst case in Figure 5.19, when p is an upper-left child (1-UL), is terminal|

the quadtree is completely rebalanced. The inductive assumption applies to

the other three cases, since they satisfy the initial requirement with a smaller

depth|a single quad of depth d� 1 or d� 2 is left unbalanced in each situ-

ation, after causing either 1 or 2 quads to require deepening.

Unfortunately, it is not as simple when q unbalances two neighbouring quads.

The �rst case in Figure 5.20 (2-UL) results in a single unbalanced quad of

depth d�2, and so the inductive assumption applies. It is also apparent that

2-UR is a symmetric variant of 2-BL, leaving two cases, 2-BL and 2-BR, for

which we must consider p's parent.

When p is assumed to be a below-right child, the situation is as shown in

Figure 5.21. Three of the cases, (2-BR-UL, 2-BR-UR, 2-BR-BL), result in a

2

The symmetric variation when the other quad adjacent to q is unbalanced is not shown.

111

2-BR-UL 2-BR-UR

2-BR-BR2-BR-BL

Figure 5.21: Further expansion of 2-BR.

single unbalanced quad of either depth d�2 or d�3 after either 4 or 5 extra

deepenings, and so the inductive argument can again be applied. The last

case, (2-BR-BR) generates two quads at depth d� 2.

The second possibility occurs when p is assumed to be a below-left child, and

the four possibilities for its parent are shown in Figure 5.22. Two of these

(2-BL-UL and 2-BL-BL) result in the familiar recursive situation, and two

result in two unbalanced quads.

Thus, of all the possibilities, only three result in a non-terminal, non-recursive

situation: 2-BR-BR, 2-BL-UR, and 2-BL-BR. The four further possibilities of

2-BL-UR are shown in Figure 5.23; three of these result in a single unbalanced

quad to which the inductive argument can be applied, and the fourth (2-BL-

UR-UR) is terminal.

This leaves only two possibilities, 2-BR-BR and 2-BL-BR, that might create

more than a constant number of deepenings per level of depth. These two

cases, however, can be characterized by the pattern shown in Figure 5.24.

112

2-BL-UL 2-BL-UR

2-BL-BL 2-BL-BR

Figure 5.22: Further expansion of 2-BL.

2-BL-UR-UL 2-BL-UR-UR

2-BL-UR-BR2-BL-UR-BL

Figure 5.23: Further expansion of 2-BL-UR.

113

2-BR-BR Pattern 2-BL-BR Pattern

Figure 5.24: Patterns of growth when two quads are unbalanced.

In each case, four quads of depth d

0

containing two unbalanced quads of depth

d

0

+1 are subdivided into quads of at least depth d

0

+1 around the perimeter

of the depth d

0

� 1 square (note that this outermost square may or may

not form a quad). Internally, within the depth d

0

� 1 square, all quads are

balanced, and imbalance only occurs between the two indicated quads and

quads external to the square. If these two patterns are then expanded one

more level (Figures 5.25 and 5.26), it becomes apparent that both patterns

either repeat exactly at a smaller depth, or are reduced to a single unbalanced

quad at a smaller depth.

Thus, the deepening of a single quad can produce at most 7 further deep-

enings before a single quad of a strictly lesser depth remains as the only

unbalanced quad, or two unbalanced quads remain in the aforementioned

pattern. Since the latter case either repeats or devolves into the former, the

inductive argument holds. ut

From this we can extract an \exponential dampening" theorem, demonstrating

that adapting has a guaranteed small bound on non-local e�ects of a local re�nement:

Theorem 5.5.1 Let s be a non-two-edge case at depth d in the quadtree and let s

0

be a leaf quad at depth d

0

< d a�ected by the deepening of s (d, d

0

both greater than

or equal to the base level). Then s

0

is no more than O(d � d

0

) quads distant from

s.

Proof: From the proof for lemma 5.5.1, it is clear that at most a constant number

of quads can require deepening per level in the chain of deepenings connecting

s to s

0

. Thus, if the di�erence in depth between s

0

and s is d � d

0

, then the

chain of a�ected quads between s and s

0

is of length at most c(d � d

0

) for

114

2-BR-BR-UL 2-BR-BR-UR

2-BR-BR-BR2-BR-BR-BL

Figure 5.25: A schematic 2-BR-BR, one step further.

2-BL-BR-UL 2-BL-BR-UR

2-BL-BR-BL 2-BL-BR-BR

Figure 5.26: A schematic 2-BL-BR, one step further.

115

some constant c. ut

5.5.2 Unadapting

Once a quad has been deepened beyond the base level, it can be subsequently

\undeepened" to reduce resolution of the grid. Note that these operations are

complementary, but not inversive|even if all four children of a given deepened

leaf are subsequently undeepened, it may not restore the quadtree to its original

condition.

In order to undeepen a quad deepened below the base level, the only condition

that needs to be checked is the balance condition, which may propagate undeepen-

ings in a manner similar to the deepenings. Since an undeepening merely reverses

the e�ect of a deepening, and one can can never undeepen higher than the base

level, undeepenings will have the same upper bound on cost as deepenings.

5.6 Runtime Analysis

The exact number of triangles/nodes generated by this algorithm is geometry-

dependent. While deepening any single node/square can generate at most a depth-

bounded number of further deepenings, the number of nodes that will have to be

deepened to satisfy the vertex and edge conditions is not so easily determined. The

vertex condition, for example, demands that the depth of a node is lower-bounded

by the length of the binary expression of its input coordinates (with respect to the

bounding square). The edge condition merely implies that there must exist a grid of

su�cient resolution to ensure no two (non two-edge case) edges with a non-empty

intersection of interior domains intersect the same grid square. This is su�cient for

termination, but since the resolution required will depend on the distance between

edges and their orientation with respect to the bounding square, it is not possible to

give very tight a priori bounds. We can, however, give an upper bound, for which

the following de�nition is needed:

De�nition 5.6.1 The interior angle between two edges, e

1

and e

2

connected at a

vertex v straddles the x-axis (respectively, the y-axis) if there exists an in�nite ray

r, parallel to the x-axis (y-axis) starting at v with some continuous segment of r

including v entirely interior to the domain.

116

De�nition 5.6.2 The smallest feature of a polygon is the smallest distance between

any two distinct vertices, or between any two non-intersecting lines.

Note that the smallest feature is always de�ned for every polygon, and since it

is de�ned only on non-intersecting objects, is always larger than 0.

Lemma 5.6.1 Let b be the maximum length of the binary expression of any input

vertex (with respect to the bounding square), f

0

be the smallest feature,

f =

$

log

2

f

0

p

2

!%

and let � be the smallest angle interior to the domain that straddles neither the x

nor the y-axis. If � does not exist, or equivalently if � � �=2, then the smallest

quad has sides of length no smaller than min(2

�b

; 2

f

).

Proof: The node condition is satis�ed by the 2

�b

; every vertex must lie on the

corner of a quad, since no vertex has binary expansion larger than b. This

also helps with the edge condition with respect to intersecting edges. Since

each vertex is required to lie on a quad corner, either the interior angle is

larger than �=2, or the two edges straddle an axis|in either case, intersecting

edges must lie in di�erent quads. Once quads are small enough that no two

non-intersecting features can lie within the same quad, the edge condition

must be satis�ed. The balance condition, of course, cannot cause a quad to

be deeper than the maximum depth. ut

Alternatively, if � < �=2, then some two-edge case will exist in the triangulated

domain, and can result in much smaller quads being generated. Let e

1

; e

2

be a pair

of intersecting lines with interior angle �, and let c be the corresponding cone. Let

y

1

; y

2

be the points of intersections of the arms of c and a line parallel to the y-axis

at x-distance 1 away from v, and let x

1

; x

2

be similarly de�ned for the x-axis. Since

� < �=2 and the edges do not lie on nor straddle either axis, these intersections are

uniquely de�ned in both cases.

Lemma 5.6.2 Let d

0

be the smaller of the width of c at x

1

, x

2

, y

1

and at y

2

, and

let

d =

$

log

2

d

0

p

2

!%

Then the smallest square will have sides no smaller than min(2

d�b

; 2

d+f

).

117

Proof: The node condition, and all edge conditions concerning non-intersecting

features are satis�ed according to Lemma 5.6.1. However, even with such

bounds it may happen that a two-edge case occurs in a quad of minimum

size, in which case some of the surrounding quads may then contain two edges

with intersecting domains. A minimum quad size of 2

d

, though, is su�cient

to ensure that the two edges exiting from a two-edge case do not lie within

the same quad. Scaling this down to the minimum quad size for non-two-

edge cases provides the given bounds. Note that two two-edge cases cannot

interact; since the two cases do not intersect they are already separated by

the minimum distance between features. ut

5.7 Experimental Results

Expected behaviour of our algorithm is di�cult to determine without some model

of expected input. Nevertheless, our initial attempts at quite complex domains are

very encouraging, with the number of nodes being essentially linear in the depth

of the quadtree. Here we present the results from three very di�erent domains:

an unsymmetric wrench (Figure 5.27), a hammer and sickle (Figure 5.28), and an

almost-unit square

3

(Figure 5.29).

The wrench consists of 40 input nodes. The total number of nodes generated

(and including the input) verses the maximum allowed binary expansion of input

coordinates (i.e., binary digits of input precision) is plotted in Figure 5.30. For the

sickle, consisting of 35 nodes, the results are in Figure 5.31, and for the 4 node

square in Figure 5.32. Neither the wrench nor the square contain any 2-edge cases.

The sickle contains just one 2-edge case (at the upper tip of the hammer).

In each case, most or all of the coordinates have been chosen for their rela-

tively long binary expansions, overconcentrating quadtree nodes (and hence trian-

gles) around these points. Since there is usually some freedom in the speci�cation of

input vertices

4

it is straightforward to produce a much smaller and more balanced

triangulation. Note that such coordinate selection does not change the domain|

just the location along the domain of the selected vertices. The arch in Figure 5.33,

3

A true unit square would be triangulated by just two triangles.

4

Arti�cial domains are often selected with an eye to the perspicuity of their input coordinates,

and actual domains are rarely so precise that some variation is not possible.

118

Figure 5.27: Triangulation of Wrench.

Figure 5.28: Triangulation of Hammer & Sickle.

119

Figure 5.29: Triangulation of Square.

0

2000

4000

6000

8000

10000

12000

14000

16000

8 10 12 14 16 18 20

N
u
m
b
e
r

o
f

N
o
d
e
s

o
r

T
r
i
a
n
g
l
e
s

Maximum Digits in Binary Expansion of Input Coordinates

Nodes
Triangles

Figure 5.30: Vertices versus Precision for Wrench.

120

0

2000

4000

6000

8000

10000

12000

14000

8 10 12 14 16 18 20

N
u
m
b
e
r

o
f

N
o
d
e
s

o
r

T
r
i
a
n
g
l
e
s

Maximum Digits in Binary Expansion of Input Coordinates

Nodes
Triangles

Figure 5.31: Vertices versus Precision for Hammer & Sickle.

150

200

250

300

350

400

450

500

550

8 10 12 14 16 18 20

N
u
m
b
e
r

o
f

N
o
d
e
s

o
r

T
r
i
a
n
g
l
e
s

Maximum Digits in Binary Expansion of Input Coordinates

Nodes
Triangles

Figure 5.32: Vertices versus Precision for Square.

121

for instance, reaches its base level with a maximum quadtree depth of just 5 (i.e., 5

digits of binary precision in input coordinates).

Figure 5.33: Triangulation of Arch.

The process and results of adapting a grid are shown in Figures 5.34, 5.35,

5.36 and 5.37. The �rst one, Figure 5.34, shows the initial grid, a full quadtree of

depth 3 on the unit square. After solving this grid and adapting where the solution

gradients are highest, the resulting grid is shown in Figure 5.35. This process is

then repeated, producing grids 5.36 and 5.37. Note that the adaptation reects the

slightly asymmetric nature of our test problem, adapting more in the y-direction

than in the x-direction.

5.8 Partitioning CVFEM

The solving phase of CVFEM consists of a repetitive update of each node in the grid

based on the values stored in its immediate neighbours. This process is iterated until

the node values reach convergence, which may require a great deal of computation.

For this reason, in a parallel implementation of CVFEM, the usual approach is to

coarsely partition the grid into independent sections, and have one process dedicated

122

Figure 5.34: Initial triangulation of unit square.

Figure 5.35: First adaptation of unit square.

123

Figure 5.36: Second adaptation of unit square.

Figure 5.37: Third adaptation of unit square.

124

to each partition. Volume to surface area (or area to perimeter) arguments suggest

that that this is a good strategy, requiring minimal interprocess communication.

However, partitioning irregular grids is quite hard in general, and one is usually

forced to resort to heuristic techniques in these situations. This is particularly

unfortunate in our case, since the shape of our grids is governed by the quadtree

used to create and maintain the grid|i.e., there is structure but it is unlikely

any general heuristics will be able to make use of this information. Moreover, in

order to support the adaptive re�nements, the quadtree support structure should

be partitioned as well, making the problem even harder.

The solution is of course to just partition the quadtree, and let the grid itself

be partitioned thereby. All non-two-edge cases contain only a constant-bounded

number of triangles, and actual two-edge cases have shown themselves rare, so this

should be a very useable technique. Unfortunately, an e�cient implementation of

the quadtree data structure also includes \level-threading," or pointers connecting

each quad (except 2-edge cases) to its 4 immediate neighbours at the same depth in

the quadtree (fully-described in the next section). This allows for a constant-time

check of the balance condition when deepening a quad, and for rapid navigation

when inspecting the structure after or during construction. Thus the graph to

be partitioned is neither planar, nor a quadtree|meaning most domain-speci�c

heuristics will be of no help, and even direct methods for partitioning quadtrees will

need to be tailored to manage the level-threading. It is also not clear what might

be the impact of adaptivity. Still, these are not insurmountable problems, and an

ad hoc partitioning method can be developed with some e�ort.

The problem, though, can be easily expressed in the path extended graph gram-

mar formalism developed in Chapter 3. Such an expression mirrors the graph con-

struction, and so the partitioning can be discovered as the graph is created, not as

an additional post-processing step; this can have a large impact on partitioning in

the presence of incremental changes, like adaptivity.

5.8.1 The Data Structure

The main data structure used to support our implementation of this algorithm is a

\level-threaded" quadtree. This is a simple quadtree with pointers between neigh-

bouring quads at the same level, at each level in the tree. However, due to our

125

balance condition, we may have some leaf quads which do not have neighbours at

the same level; in these cases the level-threading is directed upward one level in

the tree|when or if the larger quad is expanded into 4 child quads, these upward-

directed pointers can be just shifted down one level to the new children. A small

example is shown in Figure 5.38. This upward-directed level-threading is only main-

tained when quads di�er by one level (i.e., within the interior of the quadtree, and

not for a two-edge case); this design ensures a bounded number of pointers at each

quadtree node.

Figure 5.38: A level-threaded quadtree.

As mentioned, the level-threading is used to ensure constant-time access from

one quad to its neighbours. To support our quadtree construction, this is only really

critical for leaf quads. If unadapting is to be supported, though, retaining upper-

level neighbour pointers can become useful once more (as interior nodes become

leaves again), and even within the base-level of the quadtree these pointers can be

used for fast and convenient navigation through the structure. For these reasons,

level-threading is maintained at all levels of the quadtree.

126

5.8.2 A Dangling Graph Grammar for Partitioning

Each change in the graph as the grid is constructed can be seen as a deepening of

one quadtree leaf node, followed by a chain of deepenings as required by the balance

condition. Thus, if we can describe a grammar that follows this chain, deepening

and updating level-threading pointers, we will be able to generate the entire tree

using graph grammars, and then be able to show a partitioning with appropriately

derived communication cost.

The idea for such a grammar is derived from the proof of the maximum costs of

adaptivity used in Section 5.5: we will use path extended productions to mimic the

update patterns seen in the proof of Lemma 5.5.1. For the purpose of clarity, we

will only describe one of the symmetric aspects of the rule|the (constant number

of) others can all be generated with simple changes to the labels of the parent-child

connections. We assume leaf nodes and external quads are labelled di�erently from

the internal nodes.

Consider Figure 5.18: q can be any child of p, so we need a rule which ors

together 4 graphs, as in Figure 5.39, to express any one of the four possibilities.

This way q may be connected by its parent 1/2-edge, either as an upper-left, upper-

right, below-left or below-right child of p. A similar approach will apply each time

we move up a level and are faced with four possible connections.

ul

p p
br

p
ur

p
bl

ul=uror bl=bror
ur=blor

q

parent

Figure 5.39: Possible positioning of q as a child, expressed as a rule.

We can describe each static situation in the same way, as some number of graphs

or -ed together. The only di�culty then arises from the two inductive parts of the

proof: we will not be able to just generate a rule of �xed size to describe the chain of

quads in need of deepening. Fortunately, this is easily dealt with using the iteration

operator of path extended productions. The complete expression is too large to

include as a recognizable �gure; however, a schematic portion of the expression

is shown in Figure 5.40. Neither edge-labels nor the actual graphs at each point

127

are shown, but note the use of the iteration operator to indicate that the whole

situation may be repeated inductively, and that within any such repetition there

may be a nested repetition of 2-BR-BR. Also note that this expression corresponds

to a worst-case scenario; all possible combinations where the chain of deepenings

does not propagate further have to be factored in as well. This increases the size of

the expression, but again only by a constant factor.

1UR 1BL 1BR 2UL 2UR2BR 2BL1UL

UL UR BL BR

p

q

BLURUL

+

+

Figure 5.40: Schematic path expression for rebalancing.

A rule which maps this one large path expression (as a source graph) to a sim-

ilar expression with each static graph having the appropriate nodes expanded (the

target), generates the entire semi-balanced quadtree. Each time we deepen a node

because it has not yet satis�ed either the edge condition or the vertex condition we

apply our rule, and the balance condition is then automatically satis�ed, and our

level threading can be maintained as well. A fragment of this rule, corresponding to

the terminal 1-UL situation, is shown in Figure 5.41. Most edges and connections

are not shown, but note how both q and q3 are expanded simultaneously, and how

a level-thread is established between one of the new descendants of q3 and the orig-

inal q. Also note that most of this rule is non-rewritten context; only q and q3 are

actually rewritten.

128

p

p2

q

p

p2

q q q q

q q q q

parent

ul

parent

up
down

ul

p1

parent

bl

q

parent

ul

parent

up
down

ul

p1

parent

bl

q3 q3

up down

Figure 5.41: Fragment of Rebalancing Rule for 1-UL.

5.8.3 Partitioning Bounds

The rule described above incrementally generates the quadtree by deepening one

node, accounting for the balance condition and then repeating. This means that the

rule must be applied multiple times in order to satisfy the vertex condition and edge

conditions as they arise. In other words, any quad containing an input vertex having

coordinates with maximum binary expansion d will have to be deepened at most

5

d

times, and the edge condition implies a similar, geometry-dependent observation.

This is the basis for an upper bound on partitionability. If the entire quadtree

is constructed by repeatedly deepening n input vertices at most d time each, then

Theorem 3.6.2 allows us to derive an upper bound on partitionability, at least when

the edge condition does not play a signi�cant role.

Proposition 5.8.1 Let Q be a level-threaded quadtree as produced by our grid gen-

erating method given an input domain of n nodes with maximum binary expansion

d in any coordinate. Assume Q contains no two-edge cases, and that if any quad q

deepened during the construction of Q failed the edge condition, then q also failed

the vertex condition. Then Q is O(nd

2

log(jV j))-partitionable.

Proof: Since the vertex condition, and the subsequent chain of rebalancings are

the only reasons any quad is deepened, Q can be expressed by applying the

5

Fewer deepenings are required if the containing quad was deepened as a result of the rebal-

ancing due to some other deepening.

129

rule described in Subsection 5.8.2 at most d times to the quads containing

each of the n input vertices. Each application is of a path-expression whose

occurrence is formed of at most d concrete subexpressions. Thus, by Theo-

rem 3.6.2, Q must be O(sd log(jV j))-partitionable, where s � dn. ut

It is unlikely we would actually reach this worst-case complexity in practice. The

bound on s we use to derive Proposition 5.8.1 requires a rather precise relationship

between input nodes, which is certainly rare in practice, and may not even be

physically realizable. Hence, in Table 5.1 we give experimental results, comparing

the partitioning of the level-threaded quadtrees produced using our graph grammar-

based method, and the partitionings produced by two \state-of-the-art" heuristic

graph partitioners, Jostle and Metis. Both these partitioners use a combination of

heuristic methods, and are described further in [WCE

+

95] and [KK95] respectively.

Three graphs were partitioned: the wrench of Figure 5.27 at maximum binary

precision 12 and 18, resulting in graphs with 3677 and 8573 quadtree nodes, and

the arch of Figure 5.33 with minimum depth 7, resulting in 12665 nodes. Thus,

while the former two graphs are level-threaded quadtrees with a fairly irregular and

sparse shape (quadtree depth is considerably greater at input node vertex sites than

in the interior of the domain), the latter, owing to the minimumdepth speci�cation,

is much closer to a full quadtree. In each case we show the total number of edges

cut; in all cases partitions are very well balanced, usually within 10 vertices of a

perfect split. As we might expect, our method does better for the sparser (relative

to size) wrenches than for the arch, and does best for the larger wrench. This

reects the number of applications of a path extended production required by the

di�erent graphs; the wrenches require fewer deepenings than the arch, and the larger

wrench requires fewer deepenings relative to the number of nodes in the tree than

the smaller wrench. Note that while our partitionings do not tend to be as good

as the ones produced by Metis, our method is competitive, and could certainly be

considered as good as or better than Jostle on sparse structures when partition sizes

are reasonably large.

Partitionings of the actual grids are described in Table 5.2, and a similar pattern

of results is evident. Our grid partitionings are generated by following the quadtree

partitioning, simply allocating grid nodes to the appropriate containing quadtree

partition, whereas both Metis and Jostle are working directly on the grid itself.

Because of this, we have an extra constant factor in the number of edges we cut.

130

Thus, while we sometimes do better than Jostle and Metis, generally there is a

factor of between 1 and 2 di�erence in the total number of cut edges. Our partitions

are also less balanced|the di�erence between partition sizes varies by up to 10%-

15%, though typically less than 5%; again this is a consequence of our strategy,

since we do not partition the grid within leaf quads, only between them. If more

precise partitions are required, a simple node-swapping heuristic (like Kernighan-

Lin [KL70]) that splits portions of the grid within leaf quads would enable greater

balance and likely fewer cuts as well.

Wrench Quadtree Wrench Quadtree Arch Quadtree

3677 nodes, 9918 edges 8573 nodes, 23443 edges 12665 nodes, 37096 edges

Ptns Our Alg. Jostle Metis Our Alg. Jostle Metis Our Alg. Jostle Metis

2 113 135 57 127 595 59 511 294 289

3 133 268 106 186 660 208 546 459 520

4 271 126 129 280 502 164 977 713 663

5 308 240 231 350 506 270 998 868 827

6 340 285 204 399 495 255 1202 952 1002

7 410 246 209 487 556 390 1255 977 1015

8 452 565 255 538 826 344 1331 1136 1159

9 529 285 288 571 673 386 1380 1281 1242

10 618 377 331 577 939 390 1557 1275 1328

20 945 634 511 1014 1292 726 2238 2025 2065

30 1304 762 719 1441 1638 899 2808 2613 2485

50 1743 1155 1108 2086 1375 1333 3673 3402 3240

100 2415 1937 1943 3186 2344 2387 5183 4858 4831

Table 5.1: Comparison of total number of edges cut by our algorithm, Jostle and

Metis in level-threaded quadtree partitioning.

For adaptivity, or in cases when the graph changes only slightly, our method

has a distinct advantage over Metis and Jostle. Whereas post-processing methods

require the entire graph as input, and the partitioning of one graph may not be easily

associated with the partitioning of its adapted descendant, our method is quite well-

suited to incremental approaches. Since our grammars follow the transformations of

the quadtree, we can derive one partitioning from another based on the way the data

structure changes as it adapts. Some results of this process for a binary partitioning

on the adapting unit square of Figures 5.34 through 5.37 and on an adapting wrench

are illustrated in Tables 5.3 and 5.4 using our method, and in Tables 5.5 and 5.6

using Jostle

6

. Each row is a di�erent quadtree, generated from the speci�ed pattern

(unit square or wrench) by successive adaptations (adapt in the Process column),

6

Jostle does perform \repartitioning," but only in the case when the number of nodes remains

the same. Needless to say, this does not apply to our repartitioning problem.

131

Wrench Wrench Arch

3040 nodes, 8310 edges 7195 nodes, 19805 edges 9451 nodes, 27962 edges

Ptns Our Alg. Jostle Metis Our Alg. Jostle Metis Our Alg. Jostle Metis

2 96 123 33 103 307 40 512 283 262

3 127 85 64 164 418 89 540 325 326

4 231 112 70 246 114 86 956 446 487

5 285 106 144 312 278 160 957 544 576

6 318 178 143 358 374 163 1191 609 653

7 375 217 168 437 345 194 1204 698 761

8 400 189 175 482 428 214 1285 812 806

9 488 226 173 528 321 235 1359 883 880

10 546 201 215 503 638 281 1479 880 965

20 826 451 410 903 913 541 2118 1407 1481

30 1180 578 527 1271 937 655 2595 1761 1872

50 1553 864 839 1871 1045 1078 3366 2379 2453

100 2096 1389 1383 2871 1866 1897 4768 3423 3504

Table 5.2: Comparison of total number of edges cut by our algorithm, Jostle and

Metis in grid partitioning.

or by expanding all quadtree leaves interior to the domain one level (push in the

Process column), and so we show the number of nodes, edges and total edge cuts

to make the binary partition in each case. The remaining columns show the work

involved in repartitioning the tree once it has been adapted or pushed; our method is

integrated into tree generation, so we can show exactly how many tree nodes must

be moved from one partition to the other to reect the new partitioning. Thus,

in Tables 5.3 and 5.4 we give the absolute number of nodes moved, as well as the

percentage of nodes in the quadtree to move. Jostle does not directly repartition a

changed graph, but we can relate the nodes in the smaller graph to the nodes in the

adapted graph by preserving node identi�cation numbers, and examining the two

partitionings to calculate how many original nodes have been moved to make the

new partition. Depending on how the new nodes in the adapted quadtree have been

allocated, we end up with a minimum number of nodes to move, which is the total

number of original nodes moved to a di�erent partition, (min shifted in Tables 5.5

and 5.6) and a maximum, which is the total number of originals moved plus the

number of new nodes added (max shifted in the tables). Actual repartitioning costs

will of course be somewhere inbetween.

Our repartitioning costs are dramatically less than with Jostle. In most instances

we move below 10% of the nodes; this represents a signi�cant saving over the cost

of following a new partitioning generated from scratch, which can require moving

132

Process Nodes Edges Cuts Nodes Shifted

%

base 85 224 23 0 0.0

adapt 193 548 40 39 20.2

adapt 657 1938 77 71 10.8

adapt 2493 7444 189 137 5.5

push 9973 29848 390 922 9.2

push 39893 119536 803 3776 9.5

push 159573 478432 1608 15168 9.5

Table 5.3: Our repartitioning costs for unit square when adapting.

Process Nodes Edges Cuts Nodes Shifted

%

base 3677 9918 113 0 0.0

adapt 8465 23672 137 4208 49.7

adapt 18301 52963 240 1878 10.3

adapt 30277 88569 229 534 1.8

adapt 43741 128154 443 413 0.9

push 167137 495744 953 1116 0.7

Table 5.4: Our repartitioning costs for wrench when adapting.

Process Nodes Edges Cuts Nodes Shifted

Min % Max %

base 85 224 24 0 0.0 0 0.0

adapt 193 548 45 35 18.1 143 74.1

adapt 657 1938 63 119 18.1 583 88.8

adapt 2493 7444 132 636 25.5 2472 99.2

push 9973 29848 306 2191 22.0 9671 97.0

push 39893 119536 594 9033 22.6 38953 97.6

push 159573 478432 1315 38372 24.0 158052 99.0

Table 5.5: Jostle repartitioning costs for unit square when adapting.

Process Nodes Edges Cuts Nodes Shifted

Min % Max %

base 3677 9918 135 0 0.0 0 0.0

adapt 8465 23672 212 535 6.3 5323 62.9

adapt 18301 52963 144 2970 16.2 12806 70.0

adapt 30277 88569 229 337 1.1 12313 40.7

adapt 43741 128154 325 904 2.1 14368 32.8

push 167137 495744 1213 37017 22.1 160413 96.0

Table 5.6: Jostle repartitioning costs for wrench when adapting.

133

upward of 90% of the nodes. In fact, our repartitionings are usually better than the

minimum cost if we were to follow the ones produced by Jostle; only for the �rst

adaptation of the wrench is Jostle likely (though not certainly) to result in moving

fewer nodes, and this savings would be quickly o�set by future adaptations. Also

note how our repartitioning cost mirrors the regularity of changes to the quadtree;

the �rst adaptation for both the square and the wrench results in large changes to the

quadtree structure, and our repartitioning cost is correspondingly high. Subsequent

changes, and in particular \pushes" which make the tree bigger without altering its

fundamental \shape" (i.e., the heaviest branches in the tree partition scheme tend

to stay the heaviest after a push), result in low repartitioning costs. This permits

our repartitionings to have costs less than 1% (wrench) or 10% (square) after a few

adaptations, whereas costs engendered by Jostle vary wildly, though they do seem

to be converging to somewhere between 20%-99% for the square.

It is therefore evident that our partitioning method is both practical and e�ective.

While we do not consistently produce partitions of better quality than state-of-

the-art heuristic approaches, our partitions are de�nitely competitive; even in the

worst cases our partitions are roughly balanced, and communication cost is within

a small factor of the costs of the ones produced by Jostle or Metis. Our method

is also very fast; the production of the tree partition scheme is integrated into the

graph generation process itself, meaning that the bulk of work in partitioning is

amortized within the cost of data structure creation. Partitions are then generated

by simple O(n) tree traversals

7

of the tree partition scheme. This is an extremely

fast procedure, requiring only a fraction of a second even for large graphs; Jostle and

Metis, comparatively, take up to several seconds for the same graphs. For example,

an arch with minimum depth 8 has 49761 nodes and 147480 edges in the quadtree

structure; we partition this in 0:7 seconds, whereas Jostle takes 10:2 seconds, and

Metis 7:0 seconds.

The miscegenation of the partitioning procedure and the data structure gener-

ation has another clear advantage: the partitioning of one data structure can be

easily related to the partitioning of another data structure derived from the �rst.

This allows us to partition a graph incrementally, following the incremental changes

in the graph structure as it is updated (or adapted in this example). Partitioners

7

Postorder search is linear in tree size, as is the subtree weight calculation. We do need to sort

children by subtree weight for our partitioning, but since each node in our tree partition scheme

has bounded degree, this is performed in constant time.

134

that require the complete graph as input and do not relate the partitioning of one

graph to another are not able to use this information, and this can make the cost of

repartitioning very expensive. When dynamic data structures are being used, this

is clearly an important criterion, which has not been very well addressed by current

methods.

5.9 Conclusions

As an example of the utility of our grammar-based partitioning technique, we have

developed and implemented an algorithm that e�ciently constructs two-dimensional

triangular grids conforming to polygonal boundaries, not necessarily simply con-

nected, with the guarantee of nonobtuseness of the triangulation. This algorithm

is a non-trivial solution to the problem of grid generation for irregular domains,

allowing for the construction of conforming triangulations and permitting adaptive

re�nements. The propagation of local changes to the grid also \decays exponen-

tially" making our algorithm a good candidate for parallelism|small changes in

the graph result in a small amount of communication.

A primary advantage of our grid generation algorithm is its ability to adapt

with reasonable locality, and its relative simplicity. It requires data structures no

more sophisticated than augmented quadtrees and lists, and algorithms no more

complex than tree traversals. Further, and despite the large theoretical bounds

on size, the algorithm has in practice been very fast and consistently produced

triangulations comparable in size to other methods. The major factor dominating

the size of the quadtree seems to be the vertex condition; input polygons having

vertices with small binary expansions result in quite small triangulations. Given the

intended application domain (grids for the �nite element method in uid dynamics),

even grids containing vertices with long binary expansions can be quite useful|the

physics of uid movement suggests that placing many nodes around corners is very

often desirable.

The hierarchical representation has a number of other advantages too. Checking

convergence of the solution as well as computing the criterion for determining the

locations of adaptations both require gathering information from all graph nodes into

a global value. The quadtree provides a convenient structure for such algorithms. As

well, the quadtree provides an e�cient point location structure, which can be quite

135

useful for attendant grid problems. User input, for example, is often desireable

in order to inspect solution progress or to guide grid creation/management, but

locating the point of a mouse click within a large unstructured grid can require

other non-trivial data structures as well as the ones for grid creation and storage.

The tree structure of a quadtree, coupled with the balance condition, can allow for

e�cient point location without any extra structure. Finally, there is some indication

that the quadtree can be used for either algebraic of geometric multigrid methods

on irregular domains; this remains a topic for further investigation.

To support the construction and manipulation of the grids, we use a \level-

threaded" quadtree; this is an unusual variation of a well-known data structure,

speci�cally created for our algorithm. The dynamic quality of the structure, in par-

ticular the application of adaptivity, coupled with the custom design means that a

suitable partitioning strategy will be hard to �nd, and under normal circumstances

we would be forced to develop an ad hoc partitioning technique for this speci�c

problem. However, we have been able to design a dangling graph grammar mim-

icking the changes in the structure, and this grammar follows quite naturally from

the design of the algorithm. By using this grammar in conjunction with the parti-

tioning method developed in Chapter 3, we have demonstrated that our approach

produces good quality partitions, roughly comparable to those produced by more

powerful methods. Moreover, the partitionings we have evinced carry over to the

actual generated grid, and are also of reasonably good quality.

To support adaptivity the data structure, and hence the partitioning, must pe-

riodically change. External partitioning techniques, ones applied after the fact with

little or no knowledge of how the data structure changes, perform poorly in these sit-

uations; since they do not relate one partitioning to another, they can require drastic

changes to the way the data structure has been divided up. The grammar-based

approach we use is considerably more e�ective in these cases; small changes, and

even dramatic changes that do not alter the fundamental \shape" of the structure,

result in a correspondingly limited repartitioning cost. Depending on the manner in

which a data structure changes, being able to repartition without having to move too

many nodes around can be very important, and must be factored into the selection of

a partitioning strategy. An exact partitioning, with minimum communication cost

and perfect load-balancing is of little use in a dynamic situation if each time the data

136

structure mutates a completely new partitioning must be generated, possibly requir-

ing most or all nodes to be shifted from one processor to another. The speed of the

partitioning also becomes critical in such situations; even if communication is quite

cheap, an expensive partitioning algorithm can result in a great deal of overhead if

the data structure changes. Our algorithm is very fast, requiring only a linear-size

tour through the nodes to produce partitions. Even the extra cost of modelling the

grammar as the data structure is manipulated is quite small|a constant-bounded

amount of work each time the data structure is altered. Our method is therefore

well-suited to the combination of constraints on dynamic, irregular problems: it

produces partitions competitive in quality to more direct methods, it can e�ciently

deal with local updates, and it is fast.

137

138

Chapter 6

Related Work

Of course the problem of using graph partitioning to facilitate parallelism has been

investigated before, and many aspects predate parallel computing. The following

sections contextualize the work presented in the previous chapters; �rst we discuss

general e�orts at graph partitioning. The next section expounds on other \linguis-

tic" characterizations of graphs, and situates our particular form of graph grammar

in relation to existing classes of graph grammars. The language eL is a new par-

allel language based on these grammars, so we also compare eL to other parallel

and graph grammar-based languages. Finally, in Section 6.4, we describe various

non-obtuse grid generation algorithms.

6.1 Partitionability

In the interests of generality, we have investigated graph partitioning under the

assumption that any number of partitions may be demanded. However, related

problems such as determining the minimumnumber of edges to be cut to separate a

graph into just k partitions for a �xed k, or determining the smallest set of vertices

separating the graph into two partitions with no edges between them, have been

examined extensively. Both problems are NP-complete in general, but have tractable

versions for speci�c classes of graphs. In 1979, for instance, Lipton and Tarjan [LT79]

solved the latter problem for planar graphs, by showing that all planar graphs have a

set of O(

p

n) separator vertices; an extension of this classic result to graphs of �xed

genus is available [SV93] and other variations have been explored [BP92, DDSV93]

from the viewpoint of graph embedding. Unfortunately, these results do not easily

139

transfer to the p-partitioning problem for any arbitrary p, nor do they tend to

produce partitionings with the tight balancing and communication costs we require.

One of the simpler structures to partition is of course trees, and there have been a

variety of di�erent approaches. Lukes gives an e�cient algorithm based on dynamic

programming for �nding connected partitions of trees [Luk74]. A similar problem

has been looked at by Kundu and Misra, who give a linear algorithm for �nding an

optimal cut partitioning, where each subtree contains at most a given number of

nodes, though there may or may not be a total of k partitions produced [KM77].

While these algorithms are interesting and have some similarity to our tree parti-

tioning algorithm of Section 3.4, we do not necessarily require connectivity, and we

do require there to be a given number of partitions. Other types of tree partitioning

have been considered which are less relevant to our goals. Tarjan and Misra [MT75]

give an algorithm for �nding an optimal chain partition of a tree, where a chain

partition is a collection of edges with the property that no node n has more than

one child c with (n; c) in the collection. Frederickson gives optimal algorithms for

removing a given number of edges in order to minimize the maximum, or maximize

the minimum component weight [Fre91].

Heuristic attacks on partitioning problems abound. Perhaps the most well-known

is the Kernighan-Lin heuristic [KL70]: a graph is �rst partitioned arbitrarily, and

the partitioning is then improved by exchanging vertices between partitions. This

technique was later extended by Fiduccia and Mattheyses [FM82]. Feo and Khel-

laf have developed a heuristic based on a recursive pair-wise grouping of nodes for

k-partitioning when k is large [FK90]. More recent methods include Spectral Bi-

section [HL93], Simulated Annealing [JAMS89], and others; heuristic combinations

of such methods have also been quite successful [DLMS95, KK95, WCE

+

95]. We

of course are interested in deterministic methods, though we have compared our

partitionings to some heuristic ones and found our results roughly comparable. Re-

cently, direct approaches that �nd cuts within a speci�c bound of the optimal have

been investigated; for instance, Saran and Vazirani �nd minimum k cuts within at

most (2� 2=k) of the optimal [SV95]. While polynomial (O(n

p

) for some p), direct

methods such as these are still too expensive for our purposes.

Data partitioning explicity for irregular problems has also been explored. Nakan-

ishi et al. [NJS

+

94], for instance, develop a \Heirarchical Data Partitioning" graph,

140

incorporating a hierarchical representation of control ow and control-ow depen-

dencies. This is a general model for partitioning that does not attempt to utilize

any structure-speci�c information, and does not include cost bounds. Naturally,

better results can be obtained if even general characteristics of such algorithms are

known; this is the approach taken by Gautier, Roch and Villard [GRV95]. They

identify several programming paradigms for dealing with irregular problems in or-

der to produce a classi�cation scheme. Their e�orts are meant to facilitate either

manual or automatic load-balancing and not to actually specify such algorithms.

Das, Moser and Melliar-Smith [DMMS95] also give a generic approach through the

presentation of hardware designed to support irregular data accesses, called the

\Intersecting Broadcast Machine." By distributed data randomly, and maintaining

multiple copies of data through broadcasts, they can show (experimentally) very

good load-balancing and processor utilization; however, their method is stochastic,

rather than deterministic. Alternatively, there are many algorithms for tackling

speci�c problem areas: backtracking search trees [San95], Finite Element Methods

on irregular domains [BK95, DMM95, GWZ95, WCE

+

95], particle systems [MP95],

etc. Most of these make use of heuristics or randomized techniques, such as greedy

graph clustering [Far88], simulated annealing and recursive bisection.

6.2 Analyzing Irregular Data Structures

One possible approach to irregular data structures is to �nd some way to express

them that makes their actions more predictable. We have argued that most irregular

data structures are simple variations on well-known structures; our graph grammar

systems can be seen as a method of making irregular data structures more \regular,"

and hence analyzable. There have been a few similar approaches, with various goals

in mind.

The Abstract Description of Data Structures (ADDS) formalism of Hummel,

Hendren and Nicolau [HHN92] falls into this category. Recursive data structure

de�nitions are augmented by a set of keywords de�ning the general shape (via in-

teracting dimensions), and the intended traversals as well. A doubly-linked list, for

instance, might be speci�ed as consisting of two dimensions, one uniquely forward

along the next pointer and the other backward along the previous pointer. The

emphasis here is on increasing the compiler's ability to perform automatic error

141

detection, optimizations, and �ne-grain parallelization, and not to dictate graph

structure.

A similar linguistic approach is given by Gupta [Gup92], with intent to extend

SPMD-style parallelism to dynamic data structures. Data structures may be local or

distributed, and distribution and naming strategies are user-speci�ed (default strate-

gies exist too). While quite exible, this approach still requires the programmer to

de�ne the partitioning (or accept the default), and is primarily a descriptive rather

than prescriptive approach. The emphasis here is on correct and fast execution of

the run-time system, and not on ensuring the quality of the partitions.

Klarlund and Schwartzbach [KS93a] have developed an extension to data types

by appending routing expressions to recursive type de�nitions: a spanning tree is

speci�ed using the normal recursive de�nition, and a regular string expression over

edge labels and simple node predicates (such as \this is a leaf") is allowed to dic-

tate further connectivity. This allows the expression of recursive data structures

which do not strictly form trees, but without the generality of arbitrary and explicit

pointers. Like our path expressions, their routing expressions are based on a gener-

alization of regular expressions on character strings, though their formalism includes

logical decision operators as well as simple pattern matching. This model is directed

toward facilitating automated reasoning about pointer structures, though and not

partitionability|graph types exist for structures that are relatively expensive to

partition, like a binary tree with all leaves pointing to the root.

6.3 Graph Grammars

We have used graph grammars as the basis for our representation of data structures.

Because of their exibility and necessary formalization of rewrites, graph grammars

are an attractive model for data structure development; by eliminating many of the

problems associated with pointers, such as the inevitable temporary inconsistencies

as pointers are updated, graph grammars are able to represent data structures and

modi�cations in a way that tends to make analyses and interpretive results con-

siderably more feasible than with pointers. Our method constitutes a novel use of

graph grammars even within this context; however, we are certainly not the �rst to

use such a formalism to represent data structures. In the text that follows we o�er

a brief synopsis of other work on graph grammars, followed by a description of how

142

they have been applied to algorithm and data structure development.

A paper by the ESPRIT Basic Research Working Group No. 3299 [No.90] gives a

history of the di�erent forms and directions of research into graph grammars. There

have been a wide variety of approaches. The \algebraic" method of Ehrig and

Schneider and L�owe [BEHL86, Ehr87, EBHL88, EKL90, LE91], also known as the

\Berlin Approach," concentrates on Categorical representations of graph grammars.

This primarily theoretical body of work allows for the speci�cation of properties that

permit concurrent application and amalgamation of rules, in a non-speci�c setting.

Courcelle [Cou90a, Cou90b] gives another abstract approach based on the logical

interpretation of graphs. By showing that various graph properties cannot be ex-

pressed in certain logical languages, he is able to de�ne an expressiveness heirarchy,

and relates this to a speci�c form of graph grammar (hyperedge replacement gram-

mars).

More concrete de�nitions and results also exist. One of the �rst and most suc-

cessful (i.e., long-lived) forms of graph grammar is the \Node Label Controlled"

(NLC) formalism of Janssens and and Rozenberg [JR80a]. Here each production

rewrites a single node to an arbitrary graph (of �xed size), and connections are es-

tablished based on a connection (embedding) relation (a set of pairs of node labels);

each time a rewrite is performed, nodes in the newly embedded graph are hooked

up to the nodes surrounding the original rewritten node based on the pairs. There

is only one connection relation for all productions. Janssens and Rozenberg have

shown this model to be quite robust under many variations [JR80b], and have used

this as the basis for an expressiveness heirarchy [JRV82, JRV83].

The restricted form of the embedding relation in NLC grammars can be incon-

venient. \Neighbourhood Controlled Embedding" (NCE) grammars generalize this

function, allowing each rule to specify its own embedded relation [JR82a, JR82b].

NCE grammars also permit the left-side of each rule to be an arbitrary graph,

not just a single node. These would seem to be extensions that would make

NCE grammars strictly more powerful than NLC, and this is true of general NCE;

however, if NCE grammars are constrained to have just one node on the left-

side of each rule, \1-NCE" grammars, then it turns out NLC is just as powerful:

NLC = 1�NCE � NCE [JR82b]. This makes NCE grammars a particularly exi-

ble model.

There have been numerous variations on NCE and a readable introduction to

143

the di�erent forms of NLC and NCE grammars is given by Engelfriet and Rozen-

berg [ER90]. \dNCE" extends NCE to directed graphs [JR81], and \eNCE" includes

edge-labels into NCE [Bra86, ELW90]; the combination, \edNCE", having both.

The most useful extension seems to be \C-edNCE", or Conuent edNCE gram-

mars [Eng89, Eng90]. Conuence in this context means that the order of rule appli-

cations is unimportant|any order generates the same graph (conuence is de�ned

formally by Courcelle in [Cou87]). This sort of determinism is useful for reasoning

about expressiveness (and for parallelism in rule applications), and seems to pro-

duce a fairly natural class of grammars; it has been shown that C-edNCE grammars

generate languages which can be characterized in terms of Monadic Second-Order

Logic on Trees [Eng90], \Separated Handle-Rewriting Hypergraph Grammars" (S-

HH) [CER90], and others.

This last category hints at one of the major dichotomies in graph grammar the-

ory: the distinction between node-rewriting and edge-rewriting grammars. While the

former transform graphs by mapping nodes to graphs (and includes NLC and NCE),

and so edges in the original graph are only manipulated as a consequence of node

transformations, the latter rewrite (hyper)edges

1

to (hyper)graphs. (Hyper)edge

rewriting grammars have been primarily investigated by Kreowski [HK86, DK90],

Lautemann [Lau90b, Lau90a] and Courcelle [Cou90a, Cou90b], where they have

been successfully used to establish many decidability properties for graph languages.

The extension to handle-rewriting hypergraph grammars is through the inclusion of

the vertices to which the hyperedge is attached in the rewrite; such a structure is

called a \handle."

There have been attempts to reconcile the two approaches. For instance, the

schematic formalization of graph grammars developed by Kreowski and Rozen-

berg [KR90a, KR90b] encompasses a large variety of grammars in both camps. They

describe the actions of graph grammars in terms of �ve basic operations: choose a

rule application, check its applicability, remove the designated parts of the graph,

add parts to the graph, and �nally connect graph elements. Unfortunately, such

a high level of abstraction does not engender many useful results. More speci�c

results, particularly for the context-free/conuent versions, have begun to appear

in the last few years. Node and edge grammars are united, for instance in the pa-

per (mentioned above) by Courcelle, Engelfriet and Rozenberg showing that S-HH

1

A generalization of edges, hyperedges connect more than two nodes together.

144

grammars are expressively equivalent to C-edNCE [CER90, CER93], as well as by

Engelfriet and Heyker showing that \Context Free Hypergraph Grammars" (CFHG)

have the same expressive power as C-edNCE when both are restricted to graphs of

bounded degree [EH94].

Our grammars of Chapter 3 were designed for two reasons; to allow for the

easy expression of partitionings and associated problems, and to accurately model

(doubly-connected) data structures. The resulting formalism is distinct from any

of these existing systems; like eNCE we permit more than one node on the left-

side of a production, and have separate embedding relations for each rule, though

our embedding relation more precisely resembles that used by Slisenko, in a work

describing a polynomial-time solution to the Hamiltonian Circuit problem for certain

graphs [Sli82]. However, there are many important di�erences, such as the use of

1/2-edges, and restrictions we have introduced to make the execution of our model

practical: bounded-degree, no node can being allowed to have more than one 1/2-

edge attached with the same label, matching by bijection, ST-overlap free, etc. This

makes comparisons somewhat di�cult to perform, although the overall simularity

makes it seem likely that our grammars have an expressive power somewhere between

1-eNCE and eNCE. Our model is also not context-free; our basic dangling graph

grammars are permitted to have SS-overlap which can make the resulting language

dependent on the order of rule application. When we introduce our parallel graph

grammars we must of course ensure that no two rules overlap, but the use of (non-

rewritten) contexts again makes the language order-dependent. The concept of

non-rewritten local contexts for productions is well-established in the theory of L-

Systems, a parallel form of string-rewriting grammar [Lin68, PH92].

6.3.1 Using Graph Grammars

Graph grammars have been used for a variety of purposes related to parallelism

and data structure development. Graph grammars, for instance, have been used to

analyse network reliability [OH91], solid modeling for CAD/CAM systems [Fit86],

compiler generation [Hof82], and as a syntax for visual representations [Rek94].

There have also been several languages based on graph grammars, though none

have dealt with the partitioning problems arising from coarse-grained parallelism.

One of the earliest was the IPSEN project of Nagl et al. [NEGS82]. The goal here was

145

to give formal methods for software development, using graph grammars as a speci�-

cation system. This project spawned the well-known \PROGRESS" (PROgrammed

Graph Rewriting SyStems) language of Sch�urr, a graph rewriting formalism intended

for generic software development [Sch89, Sch90c]. This is a complete system, includ-

ing language and (textual) editing environment. As with the original IPSEN project,

though, many of its constructs, such as the use of directed edges and matching rules

through an (unrestrained) graph query sublanguage, make partitioning di�cult,

and so they are unsuitable for our purposes. The intermediate language \Lean"

by Barendregt et al. [BvEG

+

87] is another generic graph grammar language, with

a similar drawback. There have also been many papers on implementing database

queries and transformations using graph grammars [AE93, AP91, FV82], but again

these contain constructs which make partitioning di�cult.

Speci�cally for parallel applications, Janssens and Rozenberg [JR90] give a the-

oretical result where they model the behaviour of an Actor grammar using graph

transformations. Barthelmann and Schied also use graph grammars as the seman-

tics of a parallel language, \DHOP" [BS93], and Glauert, Kennaway and Sleep have

developed \Dactl" as a graph grammar-based common target language for a number

of other languages [GKS90]. All of these approaches, while interesting and designed

to deal with parallelism, take a relatively \�ne-grained" approach to parallelism,

essentially rendering the partitioning problem moot.

In Chapter 4 we developed a visual environment for editing and viewing our

graph grammars. Our environment is unique in the incorporation of the control

structure; however, there are many other environments for editing graphs and graph

grammars, and the number of interactive graph drawing tools is of course legion.

Bailey and Cuny, for instance, have developed graphical editing methods based

on graph grammars for designing parallel communication structures [BC86], and

also the \ParaGraph" editor for specifying very large graphs [BC90]. \Graph

Ed

" is

another graph grammar editor/viewer designed by Himsolt [Him90], which allows for

the interactive visual editing of graphs and also speci�cation and execution and of

some types of NLC grammars. The IPSEN project, and PROGRESS as well, both

specify an editing environment, though entirely textual in nature [NS90, Sch90a,

Sch90b].

Although the number of graph grammar languages and environments is not

large, there are still remarkably few complexity analyses of implementations of graph

146

grammars systems. Because of the NP-complete subgraph isomorphism problem

usually associated with matching the rules to the (iterated) axiom, graph grammars

have typically been regarded as entirely theoretical, and practical considerations

have not been addressed. Bunke, Glauser and Tran [BGT90] provide one of the few

attempts to optimize the matching process, by noting that most of the graph, and

hence possible locations for rule applications, does not change after a production is

applied. This does not give them a better worst-case complexity, but it does give a

general improvement, and experimental evidence is given. A more generic approach

is given by D�orr [D�or94, D�or95], where a general, e�cient Graph Rewriting Abstract

Machine (GRAM) is de�ned. D�orr speci�es conditions under which e�cient graph

rewriting can occur; if the rewrite system can match subgraphs in constant time,

then the grammar can be e�cienty executed by GRAM.

6.4 CVFEM Grid Generation

Till recently the bulk of the work on generation of unstructured grids has been either

heuristic, or has concentrated on generating grids satisfying the Delaunay criterion.

A paper by Bern and Eppstein [BE92] provides an exhaustive survey of the �eld,

particularly as it relates to the �nite element method in uid dynamics.

Techniques for generating bounded-size grids over arbitrary polygons (and with-

out obtuse angles) have only begun to appear in the last few years; Baker, Grosse

and Ra�erty [BGR88] being perhaps the very �rst to provide a provably correct

algorithm. Their e�orts were focussed on establishing the existence of an algorithm

rather than on demonstrating its usefulness or feasibility in practice. They did not

establish any bounds on the size of the triangulations that they generate nor did

they implement their algorithm. Despite these criticisms this paper clearly opened

up a new set of possibilities and demonstrated the existence of triangulations based

on subtle ideas from modern computational geometry.

The papers by Bern, Eppstein and Gilbert [BEG90, BEG94] describe a family

of related algorithms that cover a variety of cases. In three of them they work with

given point sets rather than with given regions. This means that the boundary

of the region is the convex hull of the point set and is thus much more tractable

than the regions we work with. In one case they guarantee no small angles, but

some of the angles could be obtuse; in the other two cases they avoid obtuse angles.

147

The basic tradeo� is between the number of triangles and the minimum angle.

They also give an algorithm that triangulates polygonal regions (but which does not

guarantee no obtuse angles), and some higher dimensional algorithms with similar

guarantees. In sum, while these are very interesting algorithms from the point of

view of computational geometry, they do not have all the requirements that one

needs in practice.

In another paper by Bern and Eppstein [BE91] they develop an O(n

2

) triangula-

tion which is guaranteed to contain no obtuse angles. The regions could have holes

and certainly need not be convex so this is general enough for most applications. It

is not clear, however, how one could modify the algorithm to make it adaptive.

Several authors have also investigated the use of quadtrees in mesh generations,

both heuristically (Yerry and Shephard [YS83]), and deterministically (Bern, Epp-

stein and Gilbert [BEG94]). The former use quadtrees to essentially tile the domain

with some (�xed) number of patterns which can then be triangulated, while the

latter extend an (other) algorithm presented in [BGR88] to triangulate point sets

with no obtuse angles.

To triangulate polygons (with holes) with no small angles and no obtuse angles,

Melissaratos and Souvaine [MS92] have developed an algorithm which �rst locates a

rectilinear polygon inscribed inside the original domain, triangulates this region and

the remainder of the polygon separately, and then patches the triangulation to make

the two tilings consistent. They also use quadtrees to reduce the size of the resulting

triangulation in a manner similar to Bern, Eppstein and Gilbert's 1990 algorithm

for non-obtuse triangulation of point sets [BEG90], reaching O(nM) triangles where

M depends on the input geometry.

Bern, Dobkin and Eppstein [BDE92] describe several other algorithms for quality

triangulations. They maximize the minimum height of triangles within a polygon

using O(n) triangles, ensure the largest angle is no larger than 150

�

using O(n log n)

triangles (simple polygon) and O(n

3=2

) triangles (polygon with holes) and also gen-

erate a nonobtuse triangulation of convex polygons with O(n

1:85

) triangles.

Very recently Bern, Mitchell and Ruppert [BMR94] announced a linear-size

nonobtuse triangulation of polygons, �nally satisfying the longstanding problem.

This algorithm uses a very ingenious circle-packing scheme and is recursive in char-

acter. Unfortunately, it is not clear how feasible this algorithm would be for an

adaptive grid|the e�ects of replacing a given circle with some number of smaller

148

ones does not have an easily determined e�ect. As well, the computation of the

\generalized Vorono�� polygon" is required as substep; e�cient algorithms exist for

this structure, but the programming e�ort is daunting, and even they resort to a

heuristic instead. Thus, despite being a major accomplishment in grid generation,

their algorithm is not practically suitable for our purposes.

149

150

Chapter 7

Conclusions

We have illustrated a general method for partitioning irregular data structures for

parallelism. By translating the data structure updates into graph grammar rules

in our formalism, the resulting structure is necessarily partitionable. This allows a

parallel version of the algorithm in question to be executed with guaranteed bounds

on communication cost, and with well-balanced partitions. The production of these

partitions is also quite fast, and can follow incremental changes in the structure;

these are especially important qualities when the structure is dynamically changing.

Our method applies to only a subset of all possible graphs. This is intended; the

general partitioning problem applied to arbitrary graphs is NP-complete, and so we

have no hope of �nding e�cient solutions for all inputs. However, by restricting our

input to the graphs typically employed in applications using dynamic data struc-

tures, we are able to show reasonable bounds on communication cost. Moreover,

our method does not constrain the input precisely|small variations in structure

can be easily accomodated: a tree remains fundamentally a tree even if a few edges

between siblings are added, or if recursive threading is introduced, and such changes

can be directly incorporated into the corresponding grammar, and hence into our

partitionings. A partitioning method speci�c to trees will obviously be stymied by

such alterations, and heuristic methods will usually fail to identify the underlying

structure and default to more general methods. This makes our approach quite

viable, particularly when the data structure is a slightly altered version of a more

common data structure.

Such exibility allows us to design a complete programming language around

the graph grammar structure. In this way both partitioning and computation can

151

coexist in the same formalism, making the development of irregular applications

for parallelism considerably more straightforward. Our current implementations are

naturally prototypical, but they do indicate that any practical problems to the im-

plementation of our ideas are surmountable. They also give an e�ective context for

exploring graph grammars and the data structures and algorithms they can rep-

resent; our graphical representation (Tuna) constitutes a novel representation of

computation. Tuna incorporates control ow into the visual paradigm of computa-

tion given by graph grammars, and this allows us to provide a seamless graphical

environment for the generation and manipulation of data structures, eliminating

much of the tedious and error-prone aspects of a textual description of graphs and

graph updates. Our language also has the quality that graph rewrites represent

atomic data structure changes; whereas procedural languages like C must move and

create pointers over several sequential steps, which can cause the data structure

to be momentarily in an inconsistent state, we can mutate the data structure and

update pointers in a single indivisible step. This quality can be very important

to analyses trying to determine more about the nature of the data structure being

used.

The utility and e�cacy of our method is established by example. We have

shown small, but indicative, grammars illustrating how a number of data structures

can be expressed in our formalism. The considerably larger example of adaptive

grid generation for the �nite element method on irregular domains provides a more

practical explication of the process; we have shown how to take an irregular problem,

including a pertinent (to the problem) though non-standard data structure, and use

our system to determine the partitionings. Experimental measurements verify the

quality of the resultant partitionings: the partitionings we generate are reasonably-

good, and are certainly competetive with state-of-the-art heuristic approaches.

Our method has a distinct advantage over a post-processing approach to graph

partitioning. The grammar formalism is integrated with the data structure ma-

nipulations themselves; this means the partitioning we generate for a given data

structure can be easily related to the partitioning we generate once the structure

has been updated in some local way. An \external" partitioning strategy does not

make this kind of association, and produces each partitioning with no reference to

any of its previous work. As we have demonstrated, this can result in quite drastic

changes in the partitioning, and may cause the entire data structure to be shu�ed

152

between processors. Our approach, on the other hand, directly accommodates in-

cremental changes to the data structure|the number of data structure nodes we

move between partitions is generally quite small, and in proportion to the severity

of the changes in the structure itself. This is clearly a very important quality for

dynamic problems.

The time required to produce the partitioning can also be a critical factor when

working with a dynamic algorithm. The heuristic techniques we have compared our

work against are very fast, usually requiring only a few seconds, even for graphs with

upward of 10

5

vertices. Even so, our system is easily an order of magnitude faster,

requiring less than a second for the same large graphs. Of course, some of our cost is

amortized within the data structure construction itself, with each such step adding

(at most) a constant amount of extra work to the construction. Altogether, though,

this extra e�ort still only constitutes as much work as another linear traversal of the

associated tree partition scheme. When the graph changes dynamically, the speed

of our technique, combined with a reduced repartitioning cost makes our approach

especially e�cient.

We have therefore developed a complete general system for working with irreg-

ular, dynamic problems. The partitions we produce are deterministically generated

by the actions of the grammar or data structure updates; this means we can im-

mediately produce partitions without recourse to iterative-converging or random-

ized methods. This makes our method quite e�ective, and not prone to the occas-

sional bad partition which heuristics can sometimes produce. At the same time, our

method is quite exible, accommodating a great deal of variation in structure|we

can easily use a custom-designed structure derived from a more well-known one,

without being forced to resort to more general methods. This carries over to data

structure alterations; while other methods are applied post facto, and so cannot take

advantage of the nature of the changes applied to a data structure, the partition-

ings produced by our method reect the way the data structure was constructed.

Partitioning each graph|the original data structure and its derivation by updates|

separately can result in large data movements, whereas our method has a very low

repartitioning cost. Similar arguments apply to the time required for partitioning;

the integration of our method with data structure construction, together with the

simple tree traversals for generating actual partitions results in a very fast partition-

ing strategy. It is, however, the combination of all these qualities that makes our

153

methodology so appropriate; irregular problems often require specialized data struc-

tures which change dynamically. By illustrating a method which incorporates the

ability to deal with a wide variety of irregular structures, and which e�ciently man-

ages dynamic updates with a fast partitioning algorithm, we have shown a general

solution to this very di�cult problem.

7.1 Future Work

The partitioning techniques described here are the basis for producing an e�cient

parallel implementation of an algorithm. It would be interesting to see how this

is actually born out in practice. An implementation of the grid generation algo-

rithm on parallel hardware, where work is divided up according to our partitioning

scheme would provide this sort of information; the speed-up with respect to the

number of processors could be measured and compared with the speed-up using

other partitioning techniques.

The language eL has only been de�ned using our basic graph grammars. The

incorporation of path-extended grammars remains to be done, as well expanding the

language to include an input/output mechanism. At the moment I/O is performed

by exploiting the fact that eL is compiled to C; a more rational framework might

include special \input" and \output" nodes which produce or consume attached

data nodes.

The dangling graph grammars and associated overlap properties we have de�ned

indicate several interesting areas for further research. For instance, we require the

grammar be such that the resulting derivation maps onto a tree, with appropri-

ate disconnection properties; similar results using much the same techniques could

ensure that the derived graphs map onto other well-known structures, such as rectan-

gular grids. This might provide a means to partition more complex graphs without

the generality of using path-expressions. Our formalism could also be extended to

handle graphs with nodes without �xed degree, or to graphs with weighted edges.

154

Appendix A

eL Programs

The following is an example of eL-code. This program receives a sequence of in-

tegers as input, sorts them and outputs the sorted list. The algorithm works by

constructing a binary search tree from the input data.

A.1 Sorting Program

/* Sort numbers using a parallel threaded binary search tree.

The algorithm is as follows: A root node received inputs,

and passes them down to its children. As the value descends

the tree, it branches appropriately based on its value. When

it reaches a terminal (external) node, that terminal is expanded

to an internal node and two terminals, with the value stored at

the new internal node. Input comes in every other time step,

and is followed by an end-of-input marker.

The end-of-input marker is propagated down all branches, and

converts terminal nodes to TerminalDone nodes. Once all such

nodes have been converted, all of the initial input to the tree

must have finished its journey down the tree, and the sorted

output can be read off. */

// --- Node Types ---

155

node Input { // The main input node

link e; // Link to binary search tree

}

node InputIn { // Input node carrying a value

node Input;

int value; // Last input value

}

node Wait { // For waiting to flush the tree after all input

node Input; // has been completed

}

node Elt { // Nodes within the tree

int value; // Value held in node

link p,l,r; // Links to parent, left and right children

link left,right; // inorder threading

}

node EltDown { // For descending values

node Elt; // Same as an Elt

int down; // Except for having a descending value

}

node Terminal { // External nodes

link p; // Link to parent

link left,right; // For threading

}

node TerminalDone { // External node that's done

node Terminal;

}

node Begin { // Beginning of the threading

156

link right;

}

node End { // End of the threading

link left;

}

node Potato { // A 'hot-potato' used to sequentially output

link left, // the sorted list

right,

p,l,r;

}

// --- Graph Types --

graph Initial { // Axiom

Input i; // Just an input node

Terminal t; // connected to an external node

Begin b; // and threaded between a begin and end node

End e;

link i.e,t.p;

link t.left,b.right;

link t.right,e.left;

}

graph TerminalRead { // For the very first read

InputIn i;

Terminal t;

link i.e,t.p;

}

graph RootRead { // For the root of the tree to read from input

InputIn i;

Elt e;

157

link i.e,e.p;

}

graph OneElt { // An element and two terminals from a terminal

Elt e;

Terminal tl,tr;

link e.l,tl.p;

link e.r,tr.p;

}

graph TinyTree { // An element and two terminals from a terminal

Elt e;

Terminal tl,tr;

link e.l,tl.p;

link e.r,tr.p;

link tl.right,e.left; // threading

link e.right,tr.left;

}

graph G_EltDown { // An Element with a descending node

EltDown e;

}

graph G_Elt { // An Element

Elt e;

}

graph G_Input { // An input node

Input i;

}

graph G_InputIn { // An input node with a value

InputIn i;

}

158

graph G_Wait { // An input node waiting to flush the network

Wait w;

}

graph G_Terminal { // Just a terminal node

Terminal t;

}

graph G_TerminalDone { // A terminal node received the flush signal

TerminalDone t;

}

graph G_Potato { // hot potato, for printing list results

Potato p;

}

// --- Blocks ---

// A block just to print a carriage return

block PrintCR : -> {

@printf("\n");@ ;

}

// Printing out the sorted list. Terminates when the hot-potato

// reaches the end of the threading

block PrintList : graph {

Potato p;

End e;

link p.right,e.left;

} -> {

/* Begin process */

159

rule : graph {

Begin b;

} by b -> G_Potato (p.right=b.right) ;

rule : graph {

Elt e;

Potato p;

link e.left,p.right;

} by e -> G_Potato (p.link=e.link)

@ printf("%d ",elf_src->e->value); @ ;

rule : graph {

Terminal t;

Potato p;

link t.left,p.right;

} by t -> G_Potato (p.link=t.link) ;

}

// The actual printing routine. Only action is to revert

// TerminalDone nodes (which have been fully-flushed) to

// Terminal nodes. Then outputs the ordered list, followed

// by a carriage-return

block Print : -> PrintCR PrintList {

// Convert TerminalDone's to Terminals

rule : G_TerminalDone by t -> G_Terminal (t=t) ;

}

// Actual sorting algorithm. Builds the binary search tree until

// all input has been received, and fully-filtered through the tree

// (ie, the tree has been flushed).

block Sort : !graph { Terminal t; } -> {

// Rule to begin the tree

160

rule : TerminalRead by t @elf_src->i->value>0@ ->

TinyTree (e.=i.) (e.p=t.p) (tl.left=t.left)

(tr.right=t.right);

// Letting the root read

rule : RootRead by e ->

G_EltDown (e=e)

@elf_tar->e->down = elf_src->i->value;@ ;

// Discarding the descending value

rule : G_EltDown by e ->

G_Elt (e=e) ;

// Rules to inherit descending value from parent

// From an Elt to an Elt

rule : graph {

EltDown d;

Elt e;

link d.l,e.p;

} by e @elf_src->d->down==0 ||

elf_src->d->down<=elf_src->d->value@ ->

G_EltDown (e=e)

@elf_tar->e->down = elf_src->d->down;@ ;

rule : graph {

EltDown d;

Elt e;

link d.r,e.p;

} by e @elf_src->d->down==0 ||

elf_src->d->down>elf_src->d->value@ ->

G_EltDown (e=e)

@elf_tar->e->down = elf_src->d->down;@ ;

// From an Elt to a Terminal

161

rule : graph {

EltDown e;

Terminal t;

link e.l,t.p;

} by t @elf_src->e->down!=0 &&

elf_src->e->down<=elf_src->e->value@ ->

TinyTree (e.p=t.p) (tl.left=t.left) (tr.right=t.right)

@elf_tar->e->value = elf_src->e->down;@ ;

rule : graph {

EltDown e;

Terminal t;

link e.r,t.p;

} by t @elf_src->e->down!=0 &&

elf_src->e->down>elf_src->e->value@ ->

TinyTree (e.p=t.p) (tl.left=t.left) (tr.right=t.right)

@elf_tar->e->value = elf_src->e->down;@ ;

// Rules to read input

rule : G_InputIn by i @elf_src->i->value>0@ -> G_Input (i=i) ;

rule : G_InputIn by i @elf_src->i->value==0@ -> G_Wait (w=i) ;

rule : G_Input by i -> G_InputIn (i.link=i.link)

@if(!scanf("%d",&(elf_tar->i->value)))

elf_tar->i->value = 0; @ ;

// Rules for flushing the network

// From an Elt to a Terminal

rule : graph {

EltDown e;

Terminal t;

link e.l,t.p;

} by t @elf_src->e->down==0@ ->

G_TerminalDone (t=t) ;

162

rule : graph {

EltDown e;

Terminal t;

link e.r,t.p;

} by t @elf_src->e->down==0@ ->

G_TerminalDone (t=t) ;

}

// Axiom declaration

axiom Initial;

// Declaration for which block begins the computation

start Sort;

163

164

Bibliography

[AE93] Marc Andries and Gregor Engels. Syntax and semantics of hybrid

database languages. In Hans J�urgen Schneider and Hartmut Ehrig, ed-

itors, Graph Transformations in Computer Science: Proceedings of the

International Workshop, number 776 in Lecture Notes in Computer Sci-

ence, pages 19{36, Dagstuhl Castle, Germany, January 1993. Springer-

Verlag.

[ALS88] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for

tree-decomposable graphs. In Timo Lepist�o and Arto Salomaa, editors,

Proceedings of the 15th International Colloquium On Automata, Lan-

guages and Programming, number 317 in Lecture Notes in Computer

Science, pages 38{51, Tampere, Finland, July 11{15, 1988. Springer-

Verlag.

[AP91] Marc Andries and Jan Paredaens. A language for generic graph-

transformations. In G. Schmidt and R. Berghammer, editors, Graph-

Theoretic Concepts in Computer Science: Proceedings of the 17th In-

ternational Workshop, WG '91, number 570 in Lecture Notes in Com-

puter Science, pages 63{74, Fischbachau, Germany, June 17{19 1991.

Springer-Verlag.

[Arn85] Stefan Arnborg. E�cient algorithms for combinatorial problems on

graphs with bounded decomposability|a survey. BIT, 25(1):2{23,

1985.

[AST94] Noga Alon, Paul Seymour, and Robin Thomas. Planar separators.

SIAM Journal on Discrete Mathematics, 7(2):184{193, May 1994.

165

[Aur91] Franz Aurenhammer. Voronoi diagrams | a survey of a fundamen-

tal geometric data structure. ACM Computing Surveys, 23(3):345{405,

1991.

[BB90] G�erard Berry and G�erard Boudol. The chemical abstract machine.

In Conference Record of the Seventeenth Annual ACM Symposium on

Principles of Programming Languages, pages 81{94, San Francisco, Cal-

ifornia, January 17{19, 1990. ACM SIGACT and SIGPLAN.

[BC86] Duane A. Bailey and Janice E. Cuny. Graph grammar based speci�-

cation of interconnection structures for massively parallel computation.

In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Pro-

ceedings of the 3rd International Workshop on Graph Grammars and

Their Application to Computer Science, number 291 in Lecture Notes

in Computer Science, pages 73{85, Warrenton, Virginia, December 2{6,

1986. Springer-Verlag.

[BC90] Duane A. Bailey and Janice E. Cuny. Programming with very large

graphs. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Pro-

ceedings of the 4th International Workshop on Graph Grammars and

Their Application to Computer Science, number 532 in Lecture Notes

in Computer Science, pages 84{97, Bremen, Germany, March 5{9, 1990.

Springer-Verlag.

[BDE92] Marshall Bern, David Dobkin, and David Eppstein. Triangulating poly-

gons without large angles. In Proceedings of the 8th Annual ACM Sym-

posium on Computational Geometry, pages 222{231, June 1992.

[BE91] Marshall Bern and David Eppstein. Polynomial-size nonobtuse trian-

gulation of polygons. In Proceedings of the 7th ACM Symposium on

Computational Geometry, pages 342{350, 1991.

[BE92] Marshall Bern and David Eppstein. Mesh generation and optimal tri-

angulation. In F.K. Huang, editor, Computing in Euclidian Geometry.

World Scienti�c, 1992.

166

[BEG90] Marshall Bern, David Eppstein, and John Gilbert. Provably good mesh

generation. In Proceedings of the 32nd IEEE Symposium on the Foun-

dations of Computer Science, pages 231{241, 1990.

[BEG94] Marshall Bern, David Eppstein, and John Gilbert. Provably good mesh

generation. J. Comput. System Sci., 48:384{409, 1994.

[BEHL86] Paul Boehm, Hartmut Ehrig, Udo Hummert, and Michael L�owe. To-

wards bistributed graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg,

and A. Rosenfeld, editors, Proceedings of the 3rd International Work-

shop on Graph Grammars and Their Application to Computer Science,

number 291 in Lecture Notes in Computer Science, pages 86{98, War-

renton, Virginia, December 2{6, 1986. Springer-Verlag.

[BGR88] Brenda S. Baker, Eric Grosse, and Conor S. Ra�erty. Nonobtuse trian-

gulation of polygons. Discrete Comput. Geom., 3:147{168, 1988.

[BGT90] H. Bunke, T. Glauser, and T.-H. Tran. An e�cient implementation of

graph grammars based on the RETE matching algorithm. In H. Ehrig,

H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the 4th In-

ternational Workshop on Graph Grammars and Their Application to

Computer Science, number 532 in Lecture Notes in Computer Science,

pages 174{189, Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[BH86] Joshua E. Barnes and Piet Hut. A heirarchical O(n log n) force calcu-

lation algorithm. Nature, 324(4):446{449, 1986.

[BK95] George Horatiu Botorog and Herbert Kuchen. Algorithmic skeletons

for adaptive multigrid methods. In Afonso Ferreira and Jos�e Rolim, ed-

itors, Parallel Algorithms for Irregularly Structured Problems: Proceed-

ings of the Second International Workshop, IRREGULAR '95, number

980 in Lecture Notes in Computer Science, pages 27{41, Lyon, France,

September 4{6 1995. Springer-Verlag.

[BMR94] Marshall Bern, Scott Mitchell, and Jim Ruppert. Linear-size nonobtuse

triangulation of polygons. In Proceedings of the 10th ACM Conference

on Computational Geometry, pages 221{230, 1994.

167

[Bod88] Hans L. Bodlaender. NC-algorithms for graphs with small treewidth.

In J. van Leeuwen, editor, Graph-Theoretic Concepts in Computer Sci-

ence: Proceedings of the International Workshop, WG '88, number 344

in Lecture Notes in Computer Science, pages 1{10, Amsterdam, The

Netherlands, June 15{17 1988. Springer-Verlag.

[Bow81] A. Bowyer. Computing Dirichlet tesselations. Comput. J., 24(2):162{

166, 1981.

[BP92] Thang Nguyen Bui and Andrew Peck. Partitioning planar graphs. SIAM

Journal on Computing, 21(2):203{215, April 1992.

[Bra83] Franz J. Brandenburg. The computational complexity of certain graph

grammars. In A. B. Cremers and H. P. Kriegel, editors, Theoretical

Computer Science: 6th GI-Conference, number 145 in Lecture Notes

in Computer Science, pages 91{99, Dortmund, West Germany, January

1983. Springer-Verlag.

[Bra86] Franz J. Brandenburg. On partially ordered graph grammars. In

H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceed-

ings of the 3rd International Workshop on Graph Grammars and Their

Application to Computer Science, number 291 in Lecture Notes in Com-

puter Science, pages 99{111, Warrenton, Virginia, December 2{6, 1986.

Springer-Verlag.

[BS93] Klaus Barthelmann and Georg Schied. Graph-grammar semantics

of a higher-order programming language for distributed systems. In

Hans J�urgen Schneider and Hartmut Ehrig, editors, Graph Transfor-

mations in Computer Science: Proceedings of the International Work-

shop, number 776 in Lecture Notes in Computer Science, pages 71{85,

Dagstuhl Castle, Germany, January 1993. Springer-Verlag.

[BvEG

+

87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Ken-

naway, M.J. Plasmeijer, and M.R. Sleep. Towards and intermediate

language based on graph rewriting. In J. W. de Bakker, A. J. Nijman,

and P. C. Treleaven, editors, Proceedings of PARLE { Parallel Archi-

tectures and Languages Europe, volume I of Lecture Notes in Computer

168

Science 258{259, pages 159{174, Eindhoven, The Netherlands, June

15{19, 1987. Springer-Verlag.

[CER90] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Context-

free handle-rewriting hypergraph grammars. In H. Ehrig, H.-J. Kre-

owski, and G. Rozenberg, editors, Proceedings of the 4th International

Workshop on Graph Grammars and Their Application to Computer Sci-

ence, number 532 in Lecture Notes in Computer Science, pages 253{268,

Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[CER93] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-

rewriting hypergraph grammars. Journal of Computer and System Sci-

ences, 46:218{270, 1993.

[CG90] Nicholas Carriero and David Gelernter. How to Write Parallel Pro-

grams: A First Course. MIT PRess, Cambridge, MA, 1990.

[CGL86] Nicholas Carriero, David Gelernter, and Jerry Leichter. Distributed

data structures in Linda. In Conference Record of the Thirteenth An-

nual ACM Symposium on Principles of Programming Languages, pages

236{242, St. Petersburg Beach, Florida, January 13{15, 1986. ACM

SIGACT and SIGPLAN.

[CK88] D. Callahan and K. Kennedy. Compiling programs for distributed-

memory multiprocessors. Journal of Supercomputing, 2(2):151{169, Oc-

tober 1988.

[CL93] Bruno Courcelle and Jens Lagergren. Recognizable sets of graphs of

bounded tree-width. In Hans J�urgen Schneider and Hartmut Ehrig,

editors, Graph Transformations in Computer Science: Proceedings of

the International Workshop, number 776 in Lecture Notes in Com-

puter Science, pages 138{152, Dagstuhl Castle, Germany, January 1993.

Springer-Verlag.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. MIT Press; McGraw-Hill Book Company,

Cambridge, Massachusetts; New York, New York, 1990.

169

[Cou87] Bruno Courcelle. An axiomatic de�nition of context-free rewriting and

its application to NLC graph grammars. Theoretical Computer Science,

55:141{181, 1987.

[Cou90a] B. Courcelle. Graph rewriting: An algebraic and logic approach. In

J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol-

ume B, pages 195{241. Elsevier, Amsterdam, 1990.

[Cou90b] Bruno Courcelle. The logical expression of graph properties (abstract).

In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of

the 4th International Workshop on Graph Grammars and Their Appli-

cation to Computer Science, number 532 in Lecture Notes in Computer

Science, pages 38{40, Bremen, Germany, March 5{9, 1990. Springer-

Verlag.

[DDSV93] Krzystof Diks, Hristo N. Djidjev, Ondrej S�ykora, and Imrich Vr

�

to. Edge

separators of planar and outerplanar graphs with applications. Journal

of Algorithms, 14:258{279, 1993.

[DH73] W. E. Donat and A. J. Ho�man. Lower bounds for the partitioning

of graphs. IBM Journal of Research and Development, 17(5):420{425,

September 1973.

[DK90] Frank Drewes and Hans-J�org Kreowski. A note on hyperedge replace-

ment. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Pro-

ceedings of the 4th International Workshop on Graph Grammars and

Their Application to Computer Science, number 532 in Lecture Notes

in Computer Science, pages 1{11, Bremen, Germany, March 5{9, 1990.

Springer-Verlag.

[DLMS95] R. Diekmann, R. L�uling, B. Monien, and C. Spr�aner. A parallel local-

search algorithm for the k-partitioning problem. In Proceedings of the

28th Hawaii International Conference on System Sciences (HICSS '95),

volume 2, pages 41{50, 1995.

[DMM95] Ralf Diekmann, Derk Meyer, and Burkhard Monien. Parallel decom-

position of unstructured fem-meshes. In Afonso Ferreira and Jos�e

Rolim, editors, Parallel Algorithms for Irregularly Structured Problems:

170

Proceedings of the Second International Workshop, IRREGULAR '95,

number 980 in Lecture Notes in Computer Science, pages 199{215,

Lyon, France, September 4{6 1995. Springer-Verlag.

[DMMS95] A. Das, L.E. Moser, and P.M. Melliar-Smith. A parallel process-

ing paradigm for irregular applications. In Afonso Ferreira and Jos�e

Rolim, editors, Parallel Algorithms for Irregularly Structured Problems:

Proceedings of the Second International Workshop, IRREGULAR '95,

number 980 in Lecture Notes in Computer Science, pages 249{254,

Lyon, France, September 4{6 1995. Springer-Verlag.

[D�or94] Heiko D�orr. An abstract machine for the execution of graph grammars.

Technical Report B-94-07, Freie Universit�at Berlin, Takustra�e 9, D-

14195 Berlin, 1994.

[D�or95] Heiko D�orr. E�cient Graph Rewriting and Its Implementation. Number

922 in Lecture Notes in Computer Science. Springer-Verlag, 1995.

[EBHL88] Hartmut Ehrig, Paul Boehm, Udo Hummert, and Michael L�owe. Dis-

tributed parallelism of graph transformations. In H. Gottler and H. J.

Schneider, editors, Proceedings of the 13th International Workshop on

Graph-Theoretic Concepts in Computer Science (WG '87), number 314

in Lecture Notes in Computer Science, pages 1{19. Springer-Verlag,

July 1988.

[EH94] Joost Engelfriet and Linda Heyker. Hypergraph languages of bounded

degree. Journal of Computer and System Sciences, 48:58{89, 1994.

[Ehr87] Hartmut Ehrig. Tutorial introduction to the algebraic approach of

graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rozen-

berg, editors, Proceedings of the 3rdInternational Workshop on Graph-

Grammars and Their Application to Computer Science, number 291 in

Lecture Notes in Computer Science, pages 3{14. Springer-Verlag, De-

cember 1987.

[EKL90] Hartmut Ehrig, Martin Kor�, and Michael L�owe. Tutorial introduction

to the algebraic approach of graph grammars based on double and single

pushouts. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,

171

Proceedings of the 4th International Workshop on Graph Grammars and

Their Application to Computer Science, number 532 in Lecture Notes

in Computer Science, pages 24{37, Bremen, Germany, March 5{9, 1990.

Springer-Verlag.

[EKR90] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Proceedings of

the 4th International Workshop on Graph Grammars and Their Appli-

cation to Computer Science, number 532 in Lecture Notes in Computer

Science, Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[ELW90] J. Engelfriet, G. Leih, and E. Welzl. Boundary graph grammars with

dynamic edge relabeling. Journal of Computer and System Sciences,

40:307{345, 1990.

[EMR82] Hartmut Ehrig, Manfred Magl, and Grzegorz Rozenberg, editors. Pro-

ceedings of the 2nd International Workshop on Graph Grammars and

Their Application to Computer Science, number 153 in Lecture Notes in

Computer Science, Haus Ohrbeck, West Germany, October 4{8, 1982.

Springer-Verlag.

[Eng89] Joost Engelfriet. Context-free NCE graph grammars. In J. Csirik,

J. Demetrovics, and F. G�ecseg, editors, Proceedings of the International

Conference on Fundamentals of Computation Theory (FCT '89), num-

ber 380 in Lecture Notes in Computer Science, pages 148{161, Szeged,

Hungary, August 1989. Springer-Verlag.

[Eng90] Joost Engelfriet. A characterization of context-free NCE graph lan-

guages by monadic second-order logic on trees. In H. Ehrig, H.-J. Kre-

owski, and G. Rozenberg, editors, Proceedings of the 4th International

Workshop on Graph Grammars and Their Application to Computer Sci-

ence, number 532 in Lecture Notes in Computer Science, pages 311{327,

Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[ENRR86] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. Pro-

ceedings of the 3rd International Workshop on Graph Grammars and

Their Application to Computer Science, number 291 in Lecture Notes in

172

Computer Science, Warrenton, Virginia, December 2{6, 1986. Springer-

Verlag.

[ER90] Joost Engelfriet and Grzegorz Rozenberg. Graph grammars based on

node rewriting: An introduction to NLC graph grammars. In H. Ehrig,

H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the 4th In-

ternational Workshop on Graph Grammars and Their Application to

Computer Science, number 532 in Lecture Notes in Computer Science,

pages 12{21, Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[Far88] C. Farhat. A simple and e�cient automatic FEM domain decomposer.

Computers & Structures, 28(5):579{602, 1988.

[Fit86] Patrick Fitzhorn. A linguistic formalism for engineering solid modeling.

In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Pro-

ceedings of the 3rd International Workshop on Graph Grammars and

Their Application to Computer Science, number 291 in Lecture Notes

in Computer Science, pages 202{215, Warrenton, Virginia, December

2{6, 1986. Springer-Verlag.

[FK90] Thomas A. Feo and Mallek Khellaf. A class of bounded approximation

algorithms for graph partitioning. Networks, 20:181{195, 1990.

[FM82] C.M. Fiduccia and R.M.Mattheyses. A linear-time heuristic for improv-

ing network partitions. In 19th IEEE Design Automation Conference,

pages 175{181, 1982.

[FR95] Afonso Ferreira and Jos�e Rolim, editors. Parallel Algorithms for Ir-

regularly Structured Problems: Proceedings of the Second International

Workshop, IRREGULAR '95, number 980 in Lecture Notes in Com-

puter Science, Lyon, France, September 4{6 1995. Springer-Verlag.

[Fre91] Greg N. Frederickson. Optimal algorithms for tree partitioning. In

Proceedings of the Second Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 168{177, San Francisco, California, January 1991.

[FV82] A.L. Furtado and P.A.S. Veloso. Speci�cation of data bases through

rewriting rules. In Hartmut Ehrig, Manfred Magl, and Grzegorz Rozen-

berg, editors, Proceedings of the 2nd International Workshop on Graph

173

Grammars and Their Application to Computer Science, number 153

in Lecture Notes in Computer Science, pages 102{114, Haus Ohrbeck,

West Germany, October 4{8, 1982. Springer-Verlag.

[Geo91] P. L. George. Automatic Mesh Generation: Application to Finite Ele-

ment Methods. John Wiley & Sons, Inc., 1991.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freemann and Co.,

New York, New York, 1979.

[GKS90] J.R.W. Glauert, J.R. Kennaway, and M.R. Sleep. Dactl: An exper-

imental graph rewriting language. In H. Ehrig, H.-J. Kreowski, and

G. Rozenberg, editors, Proceedings of the 4th International Workshop

on Graph Grammars and Their Application to Computer Science, num-

ber 532 in Lecture Notes in Computer Science, pages 378{395, Bremen,

Germany, March 5{9, 1990. Springer-Verlag.

[GRV95] T. Gautier, J.L. Roch, and G. Villard. Regular versus irregular prob-

lems and algorithms. In Afonso Ferreira and Jos�e Rolim, editors, Par-

allel Algorithms for Irregularly Structured Problems: Proceedings of the

Second International Workshop, IRREGULAR '95, number 980 in Lec-

ture Notes in Computer Science, pages 1{25, Lyon, France, September

4{6 1995. Springer-Verlag.

[Gup92] Rajiv Gupta. SPMD execution of programs with dynamic data struc-

tures on distributed memorymachines. In Proceedings of the 1992 Inter-

national Conference on Computer Languages, pages 232{241, Oakland,

California, April 20{23, 1992. IEEE Computer Society Press.

[GWZ95] P.W. Grant, M.F. Webster, and X. Zhang. Solving computational uid

dynamics problems on unstructured grids with distributed parallel pro-

cessing. In Afonso Ferreira and Jos�e Rolim, editors, Parallel Algorithms

for Irregularly Structured Problems: Proceedings of the Second Interna-

tional Workshop, IRREGULAR '95, number 980 in Lecture Notes in

Computer Science, pages 187{197, Lyon, France, September 4{6 1995.

Springer-Verlag.

174

[HHN92] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. Abstract

description of pointer data structures: An approach for improving the

analysis and optimization of imperative programs. ACM Letters on

Programming Languages and Systems, 1(3):243{260, September 1992.

[Him90] Michael Himsolt. Graph

Ed

: An interactive tool for developing graph

grammars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,

Proceedings of the 4th International Workshop on Graph Grammars and

Their Application to Computer Science, number 532 in Lecture Notes

in Computer Science, pages 61{65, Bremen, Germany, March 5{9, 1990.

Springer-Verlag.

[HK86] Annegret Habel and Hans-J�org Kreowksi. May we introduce to you:

Hyperedge replacement. In H. Ehrig, M. Nagl, G. Rozenberg, and

A. Rosenfeld, editors, Proceedings of the 3rd International Workshop on

Graph Grammars and Their Application to Computer Science, number

291 in Lecture Notes in Computer Science, pages 15{26, Warrenton,

Virginia, December 2{6, 1986. Springer-Verlag.

[HL93] B. Hendrickson and R. Leland. Multidimensional spectral load bal-

ancing. Technical Report SAND93-0074, Sandia National Laboratory,

January 1993.

[Hof82] Berthold Ho�mann. Modelling compiler generation by graph grammars.

In Hartmut Ehrig, Manfred Magl, and Grzegorz Rozenberg, editors,

Proceedings of the 2nd International Workshop on Graph Grammars

and Their Application to Computer Science, number 153 in Lecture

Notes in Computer Science, pages 159{171, Haus Ohrbeck, West Ger-

many, October 4{8, 1982. Springer-Verlag.

[Jac86] Manfred Jackel. ADA concurrency speci�ed by graph grammars. In

Gottfried Tinhofer and Gunther Schmidt, editors, Proceedings of the

12th International Workshop on Graph-Theoretic Concepts in Com-

puter Science (WG '86), number 246 in Lecture Notes in Computer

Science, pages 41{57, Bernried, West Germany, June 17{19, 1986.

Springer-Verlag.

175

[JAMS89] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Opti-

mization by simulated annealing: An experimental evaluation; part 1:

Graph partitioning. Operations Research, 37(6):865{893, 1989.

[JR80a] D. Janssens and G. Rozenberg. On the structure of node-label-

controlled graph languages. Information Sciences, 20:191{216, 1980.

[JR80b] D. Janssens and G. Rozenberg. Restrictions, extensions and variations

of NLC grammars. Information Sciences, 20:217{244, 1980.

[JR81] D. Janssens and G. Rozenberg. A characterization of context-free string

languages by directed nodel-label controlled graph grammars. Acta In-

formatica, 16:63{85, 1981.

[JR82a] D. Janssens and G. Rozenberg. Graph grammars with neighbourhood

controlled embedding. Theoretical Computer Science, 21:55{74, 1982.

[JR82b] D. Janssens and G. Rozenberg. Graph grammars with node-label con-

trolled rewriting and embedding. In Hartmut Ehrig, Manfred Magl,

and Grzegorz Rozenberg, editors, Proceedings of the 2nd International

Workshop on Graph Grammars and Their Application to Computer Sci-

ence, number 153 in Lecture Notes in Computer Science, pages 186{203,

Haus Ohrbeck, West Germany, October 4{8, 1982. Springer-Verlag.

[JR83] D. Janssens and G. Rozenberg. Hypergraph systems generating graph

languages. In Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozen-

berg, editors, Proceedings of the 2nd International Workshop on Graph-

Grammars and Their Application to Computer Science, number 153 in

Lecture Notes in Computer Science, pages 172{185. Springer-Verlag,

October 1983.

[JR90] D. Janssens and G. Rozenberg. Structured transformations and com-

putation graphs for actor grammars. In H. Ehrig, H.-J. Kreowski, and

G. Rozenberg, editors, Proceedings of the 4th International Workshop

on Graph Grammars and Their Application to Computer Science, num-

ber 532 in Lecture Notes in Computer Science, pages 446{460, Bremen,

Germany, March 5{9, 1990. Springer-Verlag.

176

[JRV82] D. Janssens, G. Rozenberg, and R. Verraedt. On sequential and par-

allel node-rewriting graph grammars. Computer Graphics and Image

Processing, 18:279{304, 1982.

[JRV83] D. Janssens, G. Rozenberg, and R. Verraedt. On sequential and parallel

node-rewriting graph grammars, II. Computer Vision, Graphics, and

Image Processing, 23:295{312, 1983.

[Ken87] Richard Kennaway. On \On graph rewritings". Theoretical Computer

Science, 52:37{58, 1987.

[KK95] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme

for irregular graphs. Technical Report 96-064, University of Minnesota,

Department of Computer Science, Minneapolis, MN, 55455, August

1995.

[KL70] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for par-

titioning graphs. The Bell System Technical Journal, pages 291{307,

February 1970.

[Klo94] TomKloks. Treewidth: Computations and Approximations. Number 842

in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.

[KM77] Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algo-

rithm. SIAM Journal on Computing, 6(1):151{154, March 1977.

[KR90a] Hans-J�org Kreowski and Grzegorz Rozenberg. On structured graph

grammars I. Information Sciences, 52:185{210, 1990.

[KR90b] Hans-J�org Kreowski and Grzegorz Rozenberg. On structured graph

grammars II. Information Sciences, 52:221{246, 1990.

[KS93a] Nils Klarlund and Michael I. Schwartzbach. Graph types. In Conference

Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 196{205, Charleston,

South Carolina, January 10{13, 1993.

[KS93b] Patrick Knupp and Stanly Steinberg. Fundamentals of Grid Generation.

CRC Press, 1993.

177

[Lau88a] Clemens Lautemann. Decomposition trees: Structured graph represen-

tation and e�cient algorithms. In M. Dauchet and N. Nivat, editors,

Proceedings of the 13th Colloquium on Trees in Algebra and Program-

ming, number 299 in Lecture Notes in Computer Science, pages 28{39.

Springer-Verlag, March 1988.

[Lau88b] Clemens Lautemann. E�cient algorithms on context-free graph lan-

guages. In Timo Lepist�o and Arto Salomaa, editors, Proceedings of

the 15th International Colloquium On Automata, Languages and Pro-

gramming, number 317 in Lecture Notes in Computer Science, pages

362{378, Tampere, Finland, July 11{15, 1988. Springer-Verlag.

[Lau90a] Clemens Lautemann. The complexity of graph languages generated by

hyperedge replacement. Acta Informatica, 27:399{421, 1990.

[Lau90b] Clemens Lautemann. Tree automata, tree decomposition and hyperedge

replacement. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,

Proceedings of the 4th International Workshop on Graph Grammars and

Their Application to Computer Science, number 532 in Lecture Notes

in Computer Science, pages 520{537, Bremen, Germany, March 5{9,

1990. Springer-Verlag.

[LE91] M. L�owe and H. Ehrig. Algebraic approach to graph transformation

based on single pushout derivations. In R. H. Mohring, editor, Proceed-

ings of the 16th International Workshop on Graph-Theoretic Concepts

in Computer Science (WG '90), number 484 in Lecture Notes in Com-

puter Science, pages 338{353. Springer-Verlag, June 1991.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in devel-

opment. Journal of Theoretical Biology, 18:280{315, 1968.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal

on Computing, 21(1):193{201, February 1992.

[LMZ92] Igor Litovsky, Yves M�etivier, and Wieslaw Zielonka. The power and the

limitations of local computations on graphs. In E. W. Mayr, editor, Pro-

ceedings of the 18th International Workshop on Graph-Theoretic Con-

cepts in Computer Science (WG '92), number 657 in Lecture Notes in

178

Computer Science, pages 333{345, Wiesbaden-Naurod, Germany, June

18{20, 1992. Springer-Verlag.

[LS88] Timo Lepist�o and Arto Salomaa, editors. Proceedings of the 15th Inter-

national Colloquium On Automata, Languages and Programming, num-

ber 317 in Lecture Notes in Computer Science, Tampere, Finland, July

11{15, 1988. Springer-Verlag.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for

planar graphs. SIAM Journal on Applied Mathematics, 36(2):177{189,

April 1979.

[Luk74] J. A. Lukes. E�cient algorithm for the partitioning of trees. IBM

Journal of Research and Development, 18(3):217{224, May 1974.

[Mon70] Ugo G. Montanari. Separable graphs, planar graphs and web grammars.

Information and Control, 16:243{267, 1970.

[MP95] Serge Miguet and Jean-Marc Pierson. Load balancing strategies for a

parallel system of particles. In Afonso Ferreira and Jos�e Rolim, edi-

tors, Parallel Algorithms for Irregularly Structured Problems: Proceed-

ings of the Second International Workshop, IRREGULAR '95, number

980 in Lecture Notes in Computer Science, pages 255{260, Lyon, France,

September 4{6 1995. Springer-Verlag.

[MS92] Elefterios A. Melissaratos and Diane L. Souvaine. Coping with inconsis-

tencies: A new approach to produce quality triangulations of polygonal

domains with holes. In Proceedings of the 8th Annual ACM Symposium

on Computational Geometry, pages 202{211, June 1992.

[MT75] Jayadev Misra and R. Endre Tarjan. Optimal chain partitioning of

trees. Information Processing Letters, 4(1):24{26, September 1975.

[Nag77] Manfred Nagl. On the relation between graph grammars and graph

l-systems. In Marek Karpinski, editor, Fundamentals of Computation

Theory: Proceedings of the 1977 International FCT-Conference, num-

ber 56 in Lecture Notes in Computer Science, pages 142{151, Poznan-

Kornik, Poland, September 1977. Springer-Verlag.

179

[NEGS82] M. Nagl, G. Engels, R. Gall, and W. Sch�afer. Software speci�cation

by graph grammars. In Hartmut Ehrig, Manfred Magl, and Grzegorz

Rozenberg, editors, Proceedings of the 2nd International Workshop on

Graph Grammars and Their Application to Computer Science, num-

ber 153 in Lecture Notes in Computer Science, pages 267{287, Haus

Ohrbeck, West Germany, October 4{8, 1982. Springer-Verlag.

[NJS

+

94] Tsuneo Nakanishi, Kazuki Joe, Hideki Saito, Constantine D. Poly-

chronopoulos, Akira Fukuda, and Keijiro Araki. The data partitionining

graph: Extending data and control dependencies for data partitioning.

In K. Pingali, U. Banerjee, D. Gelertner, A. Nicolau, and D. Padua, ed-

itors, Languages and Compilers for Parallel Computing: Proceedings of

the 7th International Workshop, number 892 in Lecture Notes in Com-

puter Science, pages 170{185, Ithaca, New York, USA, August 8{10

1994. Springer-Verlag.

[No.90] ESPRIT Basic Research Working Group No.3299. Computing by graph

transformation: Overal aims and new results. In H. Ehrig, H.-J. Kre-

owski, and G. Rozenberg, editors, Proceedings of the 4th International

Workshop on Graph Grammars and Their Application to Computer Sci-

ence, number 532 in Lecture Notes in Computer Science, pages 688{703,

Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[NS90] M. Nagl and Andy Sch�urr. A speci�cation environment for graph gram-

mars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Pro-

ceedings of the 4th International Workshop on Graph Grammars and

Their Application to Computer Science, number 532 in Lecture Notes

in Computer Science, pages 599{609, Bremen, Germany, March 5{9,

1990. Springer-Verlag.

[OH91] Yasuyoshi Okada and Masahiro Hayashi. Graph rewriting systems and

their application to network reliability analysis. In G. Schmidt and

R. Berghammer, editors, Proceedings of the 17th International Work-

shop on Graph-Theoretic Concepts in Computer Science (WG '91),

number 570 in Lecture Notes in Computer Science, pages 36{47, Fis-

chbachau, Germany, June 17{19, 1991. Springer-Verlag.

180

[PH92] Przemyslaw Prusinkiewicz and James Hanan. L-systems: From for-

malism to programming languages. In G. Rozenberg and A. Salomaa,

editors, Lindenmayer Systems: Impacts on Theoretical Computer Sci-

ence, Computer Graphics, and Developmental Biology, pages 193{211.

Springer-Verlag, Berlin, 1992.

[PR91] M. Pourazady and M. Radhakrishnan. Optimization of a triangular

mesh. Comput. & Structures, 40(3):795{804, 1991.

[Rao84] Jean-Claude Raoult. On graph rewritings. Theoretical Computer Sci-

ence, 32:1{24, 1984.

[Rei91] R�udiger Reischuk. Graph theoretical methods for the design of parallel

algorithms. In L. Budach, editor, Proceedings of the 8th International

Conference on Fundamentals of Computation Theory (FCT '91), num-

ber 529 in Lecture Notes in Computer Science, pages 61{67, Gosen,

Germany, September 1991. Springer-Verlag.

[Rek94] J. Rekers. On the use of graph grammars for de�ning the syntax of

graphical languages. Technical Report 94-11, Department of Com-

puter Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden,

The Netherlands, 1994. Available by ftp: ftp.wi.leidenuniv.nl as

pub/cs-techreports/tr94-11.ps.gz.

[RS86] N. Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects

of treewidth. Journal of Algorithms, 7:309{322, 1986.

[San95] Peter Sanders. Better algorithms for parallel backtracking. In Afonso

Ferreira and Jos�e Rolim, editors, Parallel Algorithms for Irregularly

Structured Problems: Proceedings of the Second International Work-

shop, IRREGULAR '95, number 980 in Lecture Notes in Computer

Science, pages 333{347, Lyon, France, September 4{6 1995. Springer-

Verlag.

[Sch89] Andy Sch�urr. Introduction to PROGRESS, an attribute graph gram-

mar based speci�cation language. In M. Nagl, editor, Proceedings of

the 15th International Workshop on Graph-Theoretic Concepts in Com-

puter Science (WG '89), number 411 in Lecture Notes in Computer

181

Science, pages 151{165, Castle Rolduc, The Netherlands, June 1989.

Springer-Verlag.

[Sch90a] Andy Sch�urr. Presentation of the IPSEN-environment: An integrated

and incremental project support environment. In H. Ehrig, H.-J. Kre-

owski, and G. Rozenberg, editors, Proceedings of the 4th International

Workshop on Graph Grammars and Their Application to Computer Sci-

ence, number 532 in Lecture Notes in Computer Science, pages 66{66,

Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[Sch90b] Andy Sch�urr. Presentation of the PROGRESS-editor: A text-oriented

hybrid editor for PROgrammedGraph REwriting SyStems. In H. Ehrig,

H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the 4th In-

ternational Workshop on Graph Grammars and Their Application to

Computer Science, number 532 in Lecture Notes in Computer Science,

pages 67{67, Bremen, Germany, March 5{9, 1990. Springer-Verlag.

[Sch90c] Andy Sch�urr. PROGRESS: A VHL-language based on graph grammars.

In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of

the 4th International Workshop on Graph Grammars and Their Appli-

cation to Computer Science, number 532 in Lecture Notes in Computer

Science, pages 641{659, Bremen, Germany, March 5{9, 1990. Springer-

Verlag.

[SE93] Hans J�urgen Schneider and Hartmut Ehrig, editors. Graph Transforma-

tions in Computer Science: Proceedings of the International Workshop,

number 776 in Lecture Notes in Computer Science, Dagstuhl Castle,

Germany, January 1993. Springer-Verlag.

[Sli82] A. O. Slisenko. Context-free grammars as a tool for describing

polynomial-time subclasses of hard problems. Information Processing

Letters, 14(2):52{56, April 1982.

[SV93] Ondrej S�ykora and Imrich Vr

�

to. Edge separators for graphs of bounded

genus with applications. Theoretical Computer Science, 112(2):419{429,

1993.

182

[SV95] Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the

optimal. SIAM Journal on Computing, 24(1):101{108, February 1995.

[SW90] John E. Savage and Markus G. Wloka. On parallelizing graph-

partitioning heuristics. In M. S. Paterson, editor, Proceedings of the

17th International Colloquium On Automata, Languages and Program-

ming, number 443 in Lecture Notes in Computer Science, pages 476{

489, Warwick University, England, July 16{20, 1990. Springer-Verlag.

[Wat81] D.F. Watson. Computing the n-dimensional Delaunay tesselation with

applications to Voronoi polytopes. Comput. J., 24(2):167{172, 1981.

[WCE

+

95] C. Walshaw, M. Cross, M.G. Everett, S. Johnson, and K. McManus.

Partitioning & mapping of unstructured meshes to parallel machine

topologies. In Afonso Ferreira and Jos�e Rolim, editors, Parallel Al-

gorithms for Irregularly Structured Problems: Proceedings of the Sec-

ond International Workshop, IRREGULAR '95, number 980 in Lecture

Notes in Computer Science, pages 121{126, Lyon, France, September

4{6 1995. Springer-Verlag.

[WCJE94] C. Walshaw, M. Cross, S. Johnson, and M. Everett. A parallelisable

alorithm for partitioning unstructured meshes. In Proceedings of Irreg-

ular '94: Parallel Algorithms for Irregularly Structured Problems, 1994.

[Wea90] N. P. Weatherill. Numerical grid generation. Lecture Series 1990-06,

von Karman Institute for Fluid Dynamics, 1990.

[YS83] M.A. Yerry and M.S. Shephard. A modi�ed quadtree approarch to �nite

elementmesh generation. IEEE Computing Applications, 3:39{46, 1983.

183

