
Efficient and Usable
Model Transformations

Māris Jukšs
Supervisors: Clark Verbrugge, Hans Vangheluwe

Doctor of Philosophy

School of Computer Science

McGill University

Montreal,Quebec

2017-12-15

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Doctor of Philosophy

Copyright Māris Jukšs

DEDICATION

To my parents and Mehrnoosh.

ii

ACKNOWLEDGMENTS

I would like to acknowledge both of my supervisors Prof. Clark Verbrugge and

Prof. Hans Vangheluwe for believing in me, providing support, guidance and advice.

I would like to express my gratitude for fruitful collaborations and discussions to

MSDL members and in particular to Dr. Levi Lucio, Dr. Joachim Denil, Dr. Bruno

Barroca, Dr. Sadaf Mustafiz and Simon Van Mierlo. I would also like to express my

gratitude to the NECSIS project that was the main source of my funding.

I would like to thank Prof. Daniel Varró and Dr. Maged Elaasar for their advice

and collaboration resulting in publications relevant to this thesis.

For all the help and learning I am grateful to McGill School of Computer Science

and specifically to Prof. Jörg Kienzle and Prof. Bettina Kemme for being on my

graduate progress committee. I would also like to acknowledge my undergraduate

advisor Prof. Oksana Nikiforova from Riga Technical University for her continued

and valued support.

Finally, I am very grateful to my family, my parents Janis and Tatiana Jukss

for all their sacrifices and to my wife Mehrnoosh Azodi who was alsways there for

me through difficult times.

iii

ABRÉGÉ

L’adoption généralisée de l’ingénierie dirigée par les modèles dépend de la dis-

ponibilité d’outils et de techniques efficaces et utilisables prenant en charge les trans-

formations de modèle (TM). Dans cette thèse, nous abordons l’efficacité de TM à

travers des techniques qui exploitent mieux la localité dans les transformations, et la

facilité d’utilisation en adressant le manque important et actuel de support d’outils

pour le débogage de tels systèmes.

L’efficacité dans de nombreux systèmes de programmation est basée sur la pro-

priété fondamentale de la localité de calcul, souvent exprimée en utilisant une certaine

notion de portée. Dans le contexte du modèle, et en particulier de la transformation

graphique, l’utilisation de la portée peut présenter deux avantages : premièrement,

une expression plus naturelle de la localité d’application de transformation, et

deuxièmement, une réduction du nombre de candidats correspondants. Dans cette

thèse, nous présentons deux approches de portée. La première approche fait de la

portée un citoyen de première classe dans les transformations de modèles basées

sur des règles en définissant un formalisme de portée avec des modifications as-

sociées à la spécification de la règle de transformation. Par conséquent, un ingénieur

TM peut manipuler et raisonner sur les étendues dans les règles de transformation.

La deuxième approche vise à tirer parti de la localité dans TM sans la contribu-

tion de l’ingénieur. Nous proposons ici une conception probabiliste, de bôıte noire à

l’exécution, qui observe et apprend des transformations au fur et à mesure de leur

exécution, en effectuant des prédictions sur les étendues d’application TM possibles

iv

dans le modèle d’entrée.

Le support d’outils est également essentiel pour utiliser efficacement les systèmes

de transformation de modèles de haut niveau. Les travaux dans ce domaine se sont

principalement concentrés sur les éditeurs frontaux, visuels ou d’autres domaines

spécifiques, laissant la tâche tout aussi importante de débogage aux débogueurs tra-

ditionnels basés sur le code et fonctionnant sur le code généré ou le traçage via

l’implémentation de bas niveau d’un système de transformation. Nous abordons ici

ce problème en décrivant une approche en couches du débogage, en mappant les

opérations de débogage familières à différents formalismes, ainsi que les transitions

entre eux. Notre conception permet un débogage transparent à travers les différentes

abstractions entrelacées communes aux transformations de modèles, permettant à

un ingénieur TM de déboguer dans un formalisme approprié à chaque niveau de

débogage. Notre approche présente l’avantage supplémentaire de prendre en charge

à la fois le débogage traditionnel et impératif ainsi que les approches déclaratives

fondées sur des requêtes.

Nos deux approches générales sont démontrées par des implémentations non

triviales, validant les conceptions, et nous permettant d’explorer le comportement

et d’assurer la faisabilité de nos techniques. La création d’outils pratiques et bien

fondés est un élément important de la poursuite de l’amélioration des problèmes

d’utilisabilité dans les transformations de modèles.

v

ABSTRACT

Wide adoption of Model-Driven Engineering (MDE) depends on the availabil-

ity of efficient and usable tools and techniques supporting Model Transformations

(MTs). In this thesis, we address MT efficiency through techniques that better ex-

ploit locality in transformations, and usability by addressing the important, current

lack in tool support for debugging such systems.

Efficiency in many programming systems is based on the fundamental property

of locality of computation, often expressed using some notion of scope. In the con-

text of model, and in particular graph transformation, the use of scope can present

two advantages: first, more natural expression of transformation application locality,

and second, reduction of the number of match candidates, promising performance

improvements. In this thesis, we present two scope approaches. The first approach

makes scope a first-class citizen in rule-based model transformations by defining a

scope formalism with associated modifications to the transformation rule specifica-

tion. As a result, a MT engineer can manipulate and reason about scopes within

the transformation rules. The second approach aims at leveraging locality in MT

without the engineer’s input. Here we propose a runtime, probabilistic, black-box

design observing and learning from the transformations as they are executed, making

predictions to the possible MT application scopes within the input model.

Tool support is also essential to effectively using high-level model transforma-

tion systems. Work in this area, however, has mainly focused on front-end, visual

or other domain-specific editors, leaving the equally important task of debugging to

vi

traditional code-based debuggers operating on generated code or tracing through the

low-level implementation of a transformation system. Here we address this issue by

describing a layered approach to debugging, mapping familiar debugging operations

to different formalisms, as well as the transitions between them. Our design allows for

seamless debugging through the different, interleaving abstractions common to model

transformations, allowing a MT engineer to debug in a formalism appropriate to each

level of debugging. Our approach has the additional advantage of supporting both

traditional, imperative debugging as well as declarative, query-based approaches.

Both of our general approaches are demonstrated through non-trivial imple-

mentations, validating the designs, and allowing us to explore behaviour and ensure

feasibility of our techniques. Building practical, well-grounded tools is an important

part of continuing to improve usability concerns in model transformations.

vii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABRÉGÉ . iv

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

1 Introduction . 1

1.1 Contributions . 6
1.2 Publications . 7
1.3 Thesis Roadmap . 9

2 Background . 11

2.1 What are models? . 11
2.2 What are Model Transformations? 14
2.3 Model Transformation Features 20
2.4 Optimizing Model Transformations 25

2.4.1 Search Plans . 25
2.4.2 Incremental techniques . 30
2.4.3 Pattern matching strategies 33
2.4.4 Rule optimizations . 35

2.5 Overview of Relevant MT Tools 36
2.5.1 AToMPM . 36
2.5.2 GrGen . 38
2.5.3 ATL . 40
2.5.4 VIATRA . 41

viii

3 Scope in Model Transformations . 43

3.1 Introduction . 43
3.2 Static Scope . 46

3.2.1 Formal Definitions . 48
3.2.2 Running Example . 49
3.2.3 Efficiency Motivation . 51

3.3 Scope in Rule Based Model Transformations 53
3.3.1 Scope Syntax . 53
3.3.2 Expressiveness . 58
3.3.3 Transformation Rule Structure 61
3.3.4 Semantics . 65
3.3.5 Scope Matching Using Search Plans 67
3.3.6 Rewriting . 73

3.4 Implementation . 75
3.4.1 Mutual Exclusion . 76
3.4.2 Forest-Fire Simulation . 80
3.4.3 Implementation of Scope in AToMPM 92
3.4.4 Experimental Evaluation 94
3.4.5 Results . 96

3.5 Conclusions and Future Work . 100

4 Dynamic Scope . 103

4.1 Introduction . 103
4.2 Dynamic Scope Discovery . 106

4.2.1 Overview . 108
4.2.2 Warming the Nodes . 110
4.2.3 Scope refinement by Naive Bayes classifiers 116

4.3 Experiments . 119
4.3.1 Benchmarks and Measurements 120
4.3.2 Results . 122

4.4 Conclusions and Future Work . 126

5 Debugging Transformations . 128

5.1 Introduction . 128
5.2 Structured View of Debugging . 135

5.2.1 Navigating the debugging target 136
5.3 Structured View of MT Stack . 143

ix

5.3.1 Pattern Matching/Application Level 147
5.4 Debugging Language . 150

5.4.1 Scope use to indicate location 156
5.5 Breakpoints and Watchpoints . 161
5.6 Prototype Implementation . 166

5.6.1 Implementation in AToMPM 168
5.6.2 Porting Implementation . 179
5.6.3 Efficiency Considerations 183

5.7 Conclusions and Future Work . 185

6 Related Work . 188

6.1 Scope . 188
6.2 Model Transformation Debugging 194

7 Conclusions . 199

References . 203

x

LIST OF TABLES
Table page

3–1 Operators . 58

4–1 Forest-fire scope sizes (nodes), full input graph 29800 nodes 125

xi

LIST OF FIGURES
Figure page

2–1 The Petri Net DSL with its abstract syntax metamodel and two
graphical concrete syntaxes. Dashed lines represent a mapping
between concrete and abstract syntax elements. A PN model
example is shown on the right. 13

2–2 A typical rule from rule-based model transformations and its effect
on the input model resulting in the output model. 16

2–3 DPO approach for the rule application in Figure 2–2 18

2–4 An example rule from Figure 2–2 with unique labels added. 19

2–5 A rule in compact notation, equivalent to the rule in Figure 2–2. . . . 20

2–6 A typical rule from rule-based model transformations with added
NAC pattern. The presence of the NAC pattern prohibits rule
application and the input model is unchanged. 21

2–7 An example rule from Figure 2–2 applicable to a different model where
several matches exist (marked with different colors). We can thus
apply the rule to a single non-deterministically selected location
until the rule can no longer apply. 23

2–8 An explicit MT schedule using branch and loop constructs. 24

2–9 Input graph in column a with the pattern to match in column b. A
corresponding (input sensitive) search graph is shown in column c,
with its minimum spanning tree indicated by bold edges. 27

2–10 Spanning trees corresponding to the search plans P1 and P2. 29

2–11 A Rete network made for the pattern on the left with the input model
on the right. The input model contains a single transition and the
pattern is not matched. 31

xii

2–12 A Rete network demonstrating an update phase when a place and an
edge was added to the input model. 32

3–1 The scoped graph with the scope hierarchy forest (SF) containing two
scope hierarchy trees (ST). 47

3–2 Extended forest-fire scope hierarchy. 50

3–3 Forest-fire scope hierarchy applied to the forest grid. 51

3–4 A screenshot of the forest-fire simulation and the model of the forest-
fire spreading over the grid. 52

3–5 Six core scope patterns, each with the pattern on the left, and
a possible matching scoped graph on the right. Panel 2 shows a
labeled scope pattern, panel 3 contains an anonymous scope pattern,
and nested and overlapping scope patterns are shown in panels 4
and 6 respectively. A dashed scope pattern is shown in panel 5. . . 55

3–6 Flattening of a scope pattern on the left, with a result on the right. . 61

3–7 Ambiguity in modifying scope hierarchy in RHS. 62

3–8 Extended model transformation rule. 63

3–9 The extended rule applied to the ambiguity problem. 65

3–10 Scoped matching visualized (scoped graph syntax for patterns) using
SPO notation. 66

3–11 A minimum spanning tree over the search graph in bold edges on the
right. The input graph is on the left, and the pattern in the middle. 68

3–12 After addition of scope to the input graph and the pattern, the search
plan generated from the search graph on the right has a cost of 5
as opposed to 12 without scope. 69

3–13 The search graph in column b displaying two new match operations
targeting dashed scope constructs 70

3–14 Metamodel for the mutual exclusion problem [108] 77

xiii

3–15 A subset of rules describing the ALAP mutual exclusion transforma-
tion . 78

3–16 The initial mutual exclusion model on the left and the resulting model
after transformation sequence execution on the right. Each resource
is moved to the next process in the process ring. 79

3–17 Scoped giveRule; resources in scope sResource are used for matching
the pattern in LHS . 80

3–18 The grid input model and the comb pattern from the comb structure
benchmark . 81

3–19 Forest-fire abstract syntax . 81

3–20 Core rules of the baseline forest-fire simulation shown using AToMPM
syntax. Here and in the scoped transformation the cells are colored
according to the type attribute value. 83

3–21 Core rules of scoped forest-fire simulation shown using AToMPM syntax. 83

3–22 The sequential scheduling of the scoped and non-scoped rules. 84

3–23 The Result of execution in both baseline (left) and scoped (right)
cases in AToMPM simulation: the fire spreads uniformly. 85

3–24 Scope abstract syntax used in AToMPM. 94

3–25 GrGen forest-fire total, rewrite and match times for Baseline (B),
Scope Graph (S), Index (I), and Container (C) variations. Note the
log-scale in time. 96

3–26 AToMPM forest-fire total, rewrite and match times for Baseline (B)
and Scope Graph (S) . 98

3–27 AToMPM ALAP mutual exclusion total time for Baseline (B) and
Scope Graph (S) . 99

4–1 Dynamic scope discovery and matching (new components are shaded). 108

4–2 A subset of rules describing the mutual exclusion algorithm. 112

xiv

4–3 Application of releaseRule on a model (left) results in warmed up
nodes (right). 113

4–4 Forest-fire simulation rendering (left) with burned out, black cells in
the middle and the model heat map over the cells (right). 114

4–5 Application of giveRule on a portion of model (left) and the result
(right). 118

4–6 Single STS (left) and multiple ALAP (right) resource model types.
Association types omitted. 121

4–7 Single resource model. Overall success rate and scope sizes. 122

4–8 Overall success rate, multiple resource model. 123

4–9 Scope sizes, multiple resource model. 124

4–10 Overall success rate, forest-fire simulation. 125

5–1 Horizontal and vertical dimensions or levels. Arrows between items
on a horizontal level represent horizontal movement operation.
Vertical operations are dashed arrows and labeled. 137

5–2 Navigation pointer evolution. Red arrows represent a step-over
debugging scenario. 141

5–3 Navigation pointer evolution for a graphical formalism. Red arrows
represent a step-over debugging scenario. 142

5–4 A MT stack view. Nesting of boxes represents hierarchy. 144

5–5 Example of MT schedule. 145

5–6 Concrete syntax of the navigation command language. The last two
icons are for the resume and pause operations. 154

5–7 Rule example that advances the execution of MT based on a LHS
pattern match. 154

5–8 Simple debugging scenario that repeatedly advances the execution of
MT based on a LHS pattern match. 156

xv

5–9 Rule example that issues Down command to MT based on a LHS
pattern match in the input model. A scope formalism is used to
indicate location of the query. 158

5–10 On the left is the target MT consisting of two rules, on the right is the
debugging scenario. The target specification is contained within
the MT scope rectangle and the input model within the Host scope.
Dashed lines represent matches for the LHS parts of the debugging
rules. 159

5–11 Rule example that uses scope to query navigation pointer and results
in a debugger action. 160

5–12 Debugging rule example that results in a debugger action upon the
processing of the RHS of every rule in MT. The star represents any
value. 161

5–13 Explicit watchpoint debugging scenario resulting in a trace after the
query in the input model is found. 164

5–14 A syntactic sugar debugging scenario resulting in a trace after the
query in the input model is found. 165

5–15 A syntactic sugar debugging scenario on the left and its equivalent
explicit scenario on the right. 166

5–16 A watchpoint construct, watchpoint rules inside are tried until one is
applicable, resulting in a debugging action. 167

5–17 A general architecture of our debugger in AToMPM. Debugging target
and debugger are two AToMPM instances (threads of execution)
communicating through a Statecharts and have a shared memory
access. 169

5–18 A Statecharts model of the debugger controller. Orthogonal compo-
nents are responsible for processing navigation commands, naviga-
tion pointers, and implementation specific items corresponding to
navigation pointers. Empty transitions are unconditional. 175

5–19 A screenshot of our tool and the debugging toolbar. 177

5–20 A screenshot of our tool and processing of action code. 178

xvi

5–21 A screenshot of AToM3 tool debugging action code. 180

5–22 A Statecharts controller for ATL debugger. 182

5–23 A screenshot of ATL debugger. Note a debugging toolbar similar to
the one used in AToMPM. 183

xvii

Chapter 1
Introduction

Model Transformations (MTs) are at the heart of Model Driven Engineering

(MDE) [89]. In MDE and multi-formalism modeling contexts, models are primary

artifacts used to describe complex systems at different levels of abstraction, using

the most appropriate formalisms [71]. The benefit of using models at various stages

of system development is a reduced conceptual gap between the problem domain

and the resulting code-based implementations. The model transformations are then

used to specify how the models are manipulated to produce other models or the final

code-based solution.

Therefore, efficiency, scalability, and usability are of significant concern in the

application of model transformation systems to industrial MDE problems. Scalability

concerns in terms of graph matching magnify greatly with the input graph size. On

the other hand pattern matching is the most expensive part of the graph-based

model transformation system, thus efficiency is highly dependent on the capability

of the subgraph matching algorithms, where the underlying subgraph isomorphism

problem is known to be NP-complete [18]. To alleviate this, in this thesis, we propose

to improve the pattern matching efficiency by using domain-specific heuristics based

on locality, grouping or scopes in model transformations.

From the usability point of view, debugging of MTs is as important as debugging

of general code-based programs. Because the MTs can be complex mixing declarative

1

2

and imperative constructs, engineers may require comprehensive debugging facilities

helping them to find hidden bugs responsible for incorrect model manipulations.

Hence, in this thesis, we aim to address the debugging of MTs with respect to the

MT schedule, rule applications and the input model being transformed that would

benefit tool builders and transformation engineers. We now proceed with a more

detailed introduction to scope and MT debugging.

Scope. Grouping, modularity, or locality is a common approach to dealing

with complexity and performance used throughout computer science and software en-

gineering. Optimizing compilers for general purpose programming languages (GPL)

may use locality or scoping to confine the optimizations to a part of the program. Op-

timizations, for example, can have local, intra-procedural, or inter-procedural scopes.

Modular systems design and modular programming, in particular, aim to produce

systems by grouping independent components resulting from systems subdivision

into modules. In the context of MTs, scoping or locality is typically a transient

effect of computation. For example, a pivot graph [1], a subgraph resulting from

a rule application and passed to a subsequent rule execution possibly through rule

parameters [84]. Locality can be an integral feature of the model, such as the subtree

of an abstract syntax tree (AST) in term rewriting systems [15]. In this thesis, we

propose to make scope a first-class citizen in MTs and harness the possible perfor-

mance benefits this entails. Our approach aims to reason about scope (locality) in

MTs at the level of models being transformed. In situations where scoping (locality)

is not an integral part of the model we can create persistent scope avoiding repeated

computations and thus possibly improving performance.

3

We approach scope in two ways. First, we introduce static scope concept that

is applied to the input model resulting in the scoped model (graph). Formally, the

scoped graph represents a persistent relationship between scope and the model ele-

ments. This relationship can be stored and reused. In addition, static scope can be

used to encode additional domain information on top of the existing domain specific

model because of its hierarchical nature. Static scope is created by a transformation

engineer within the model transformation rules and as a performance enhancing mea-

sure is used to constrain the pattern matching routine to parts of the graph. Static

scope added to the input model, in certain situations, creates favorable conditions

for pattern matching in local search-based approaches such as search plans [43, 107].

Although static scope is an effective way of dealing with locality, it does require

the conscious effort of an engineer who modifies MT rules to define scope. Our second

scope approach, dynamic scope, aims at discovering scopes in model transformations

automatically. This also facilitates contexts in which the model transformation may

not be available for static scope application. This can happen when the MT is

compiled or hides proprietary, sensitive information. Therefore, instead of manually

creating scope as a transformation performance optimization, we attempt at discov-

ering scopes automatically in the input model during transformation. We observe

the transformation activity at runtime and use that to predict the areas (scopes)

where transformation will be active, constraining, and thus reducing the match ef-

fort to those designated areas. We employ a temperature-based approach to tracking

transformation activity in conjunction with machine learning to restrict scoping ar-

eas even further. This technique is also intended to be primarily used with the local

4

search-based approaches and simulation-like transformations where the first match

discovered is sufficient as our approach is optimistic and requires a fall back step to

guarantee a match discovery.

MT debugging. Debugging is an essential feature in most programming lan-

guages. The user can typically step through program execution at the code or ma-

chine instruction level. In the context of MTs, we are dealing with a complex system

consisting of different abstractions. It is not always possible or desirable to trans-

form the MT model into a textual representation for debugging. Therefore, we need

comprehensive debugging support in MTs without additional conversion into a de-

buggable representation.

The complexity of MT debugging is at least partly due to the existence of

multiple layers of MT execution stack. The stack consists of several layers utilizing

different formalisms at the different levels of abstraction. For example, we can distin-

guish the modeled part, where the MT and the input/output models are concerned.

The MT specification language deals with scheduling the rule execution and can be

graphical or textual. Inside the schedule, we discover MT rules containing patterns.

These declarative patterns, in turn, can contain imperative, textual action code.

The MT operates on the input model at another, lower level of the MT exe-

cution stack that contains pattern matching and application routines. This level is

a complete departure from the formalized specification of the modeled levels of the

stack. Here we find the implementation specific routines often hidden from the user

but necessary for the understanding of how a MT works and to find potential prob-

lems: bugs may occur at any level of the MT stack, or between levels. We want to

5

debug this stack in a systematic way with an aim to advance the debugging support

for MT tools, contributing to the wider adoption of MTs in the MDE context.

In this thesis, we adopt a structural, hierarchical, and item-based view of nav-

igating a general debugging target using debugging commands. We apply this view

to MT debugging. We make use of the MTs themselves to model the interaction

with a debugger in order to realize automated debugging scenarios. These scenar-

ios are intended to automate the debugging process in situations where the human

interaction is not necessary/desirable. The benefit of explicitly modeling such inter-

action is the reuse and analysis of the solution and its exchange between engineers.

In addition, the MT engineer stays in the context of MTs he or she intends to debug.

In this debugging language, we also describe declarative queries that utilize the for-

malisms that are taken from the MT being debugged. This reduces the cognitive gap

between the MT and MT debugging. Finally, our scope concept can be beneficial

in the debugging language to indicate the areas of application for the declarative

queries specified in the debugging rules.

We evaluate the feasibility of our approach in three prototype implementations

and present our experience. We use a modeled approach to specifying the main

part of our debugger. The modeled solution demonstrates a good degree of reuse in

porting the initial implementation to another MT tool. Although these are prototype

implementations, our experience demonstrates that design is feasible, and applicable

to different MT system designs.

6

1.1 Contributions

In this section we outline the contributions pertaining to this thesis. The first

part of the contributions is dedicated to the static and dynamic scopes and addresses

MT efficiency. The second part deals with MT debugging aiming to improve MT

usability. We leave more detailed contribution description in each topic’s respective

chapter.

Contributions addressing MT efficiency:

• We propose to treat the common notions of scoping, locality, and grouping as

first class citizens in MTs. Our static scope concept, designed to capture these

notions allows the transformation engineer to create, modify, and store these

abstractions in a general way.

• To enable this we describe and formalize a modified MT rule structure, permit-

ting scope creation and utilization in MTs. Based on a prototype evaluation,

we demonstrate that scoping in the MT context has a potential to improve MT

efficiency by constraining pattern matching effort to the particular parts of the

input model. In addition, scope fits well into the search plan-based pattern

matching [6, 107].

• Finally, we demonstrate an automatic scope discovery technique that does not

require the input of a MT engineer. We propose to learn from the MT by

observing its effects on the models and make automatic decisions whether to

include the model elements into a scope of interest. The scope can then be used

for constraining the matching efforts to improve performance for example.

Contributions addressing MT usability:

7

• We propose a structured view of a debugging process. This view deals with

navigable items located at the hierarchical levels within a debugging target.

The structured view specification does not impose a strict requirement on what

these items are, except that they expose and represent something pertinent to

the debuggee execution. We define debugging operations that allow us to move

between the levels and sequentially step through debugging target items.

• We apply this view to a debugging of MTs. The view abstracts the MT process

as a hierarchical stack of heterogeneous items, allowing for a seamless transition

between the stack levels.

• We tailor a MT specification language to create a debugging scenario that es-

sentially models a user interaction with a live and interactive debugger. This

keeps the user in the MT context providing the benefits of a declarative speci-

fication reusing the DSL originally present in MT being debugged.

1.2 Publications

Below is the list of publications relevant to this thesis. All works were published

in conjunction with my supervisors who provided supervisory input.

• “Scope in Model Transformations” - Māris Jukšs, Clark Verbrugge, Maged

Elaasar, Hans Vangheluwe. Accepted for publication in Software and Systems

Modeling (SoSyM) Journal in 2016. This paper presents the concept of scope

and in particular addresses the topic of static scope. In this paper, I developed

the concept of scoped model transformations including its syntax and semantics

and demonstrated the prototype implementation and evaluation of the concept.

Maged Elasaar contributed a section on scope concept mapping to QVT.

8

• “Dynamic Scope Discovery for Model Transformations” - Māris Jukšs, Clark

Verbrugge, Dániel Varró, Hans Vangheluwe. International Conference on Soft-

ware Language Engineering (SLE) 2014. This paper develops the scope concept

further with runtime scope discovery. I developed the method, prototype and

performed the evaluations. Dániel Varró contributed to the background and

related work sections.

• “Transformations Debugging Transformations” - Māris Jukšs, Clark Verbrugge,

Hans Vangheluwe. The 1st International Workshop on Debugging in Model-

Driven Engineering@MODELS 2017. This paper develops structured view of

the debugging and its application to the MT stack. The paper demonstrates

the initial evaluation and introduces the debugging language and scenarios.

The following are the publications that were realized during the course of my PhD

and were not directly related to the topics in this thesis or were omitted from the

thesis.

• “Towards a Unifying Model Transformation Bus.” Māris Jukšs, Bruno Barroca,

Clark Verbrugge, Hans Vangheluwe. MPM workshop at MoDELS conference

2015. In this paper, in essence, we present a modeled solution to data exchange

between programs joined by a bus architecture. Bruno Barroca contributed

introduction section, collaborated with me on the bus specification language

and the concept.

• “Search-Based Model Optimization Using Model Transformations.”Joachim

Denil, Māris Jukšs, Clark Verbrugge, Hans Vangheluwe. SAM conference 2014.

9

This paper discusses MT use to perform search-based optimizations in de-

sign space exploration problem. My contributions were: a search plan pattern

matcher implementation used for performance evaluation of the approach and

the performance data collection, analysis and plotting.

• “FTG+PM: An Integrated Framework for Investigating Model Transforma-

tion Chains.” Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe,

Māris Jukšs. SDL Forum 2013. This paper introduces the formalism transfor-

mation graph and process model describing the models and possible transfor-

mations between them. This eliminates the uncertainty in MDE processes and

permits generation of transformation chains. I contributed to the AToMPM

prototype permitting the automated execution of the transformation chains.

1.3 Thesis Roadmap

In this section, we present the outline of this thesis. We begin, in Chapter 2, with

an introduction to modeling and model transformations. We discuss the optimization

of model transformations and introduce search plans, a local search-based pattern

matching approach. The chapter is concluded with an overview of relevant MT tools

from the point of view of efficiency and usability in terms of debugging.

In Chapter 3, we introduce our scope contribution. We begin with the static

scope and its formal definition. We then introduce scope syntax for use in MT rules

and the semantics of scoped rule application. In order to evaluate scope, we use

several examples also described in this chapter. Our scope concept can be imple-

mented in other tools which we discuss in the context of our examples. The chapter

is finalized with performance evaluation and discussion of the results.

10

Another part of scope contribution, a dynamic scope, is presented in Chapter 4.

We introduce the approach that discovers scope in the input model by observing MT

activity. We conclude the chapter with an evaluation of the approach and discussion

of the results.

The usability aspect in terms of MT debugging is discussed in Chapter 5. We

propose a structured view of a general debugging process and apply it to the de-

bugging of model transformations. We show how we can use the MT rules to model

interaction with a debugger and present debugging scenarios. We conclude the chap-

ter with prototype evaluations of our approach. This thesis is finalized with Chapters

6 and 7 addressing related work and final conclusions respectively.

Chapter 2
Background

Our work depends on a number of specific technologies and tools. In this section,

we give the essential background information that is necessary for understanding

our work. We begin by introducing models and the model transformations (MT).

We then discuss local search-based pattern matching and finalize this chapter by

discussing a selection of MT tools in terms of efficiency and usability, such that we

are able to draw parallels to our own work addressing these two issues.

2.1 What are models?

The abundance and complexity of real world or conceptual systems creates the

need for a concise and pragmatic way of representing or modeling them. According

to Kühne: “A model is an abstraction of a (real or language-based) system allowing

predictions or inferences to be made.” [51]. For a further explanation, we continue

with the features of the model given by Stachowiak [91]. The model needs to be based

on an original system, typically ensured with a mapping feature. In practice, the

original system may not be present. This is usually the case in a software modeling

context where the model represents an idea or a concept going to be implemented. A

model has a reduction feature that abstracts away unnecessary details of the system.

A human nervous system, when modeled, may not need to consider digestive organs,

for example. Finally, a model has a pragmatic feature. A model created to reflect

a particular system could be used in place of that system, provided that the model

11

12

is adequate and correct [51]. This is true in the case of a model-based simulation.

Instead of using the actual, physical object in crash tests, for example, a computer-

based simulation can be used resulting in the cost-saving benefits.

Typically, the main concepts of a system or a problem domain are captured by

an associated metamodel (MM), together with their attributes and relationships thus

defining the abstract syntax of a corresponding domain-specific language (DSL) 1 .

The DSL is a language tailored to a specific problem domain. In contrast, a general

purpose language (GPL) is suitable for a wide range of applications. According to

Mellor et al., a metamodel is a model of a modeling language defining structure,

semantics and constraints [64]. The metamodel then describes all possible models

that can be generated according to the said MM. To represent our DSL we can

define a concrete syntax based on the abstract syntax of the DSL. The concrete

syntax defines how the DSL is presented, whether in textual or graphical forms.

The elements of the concrete syntax are created such that they represent abstract

syntax elements. This typically means a many-to-one relationship allowing for several

concrete syntaxes for a single abstract syntax. In Figure 2–1 we demonstrate an

example DSL tailored for Petri Net (PN) modeling. The language MM and the

abstract syntax is defined using the UML class diagram language. Two possible,

graphical concrete syntaxes are shown above and below the MM. Each concrete

syntax element is mapped onto the abstract syntax element using dashed lines. In this

case, the difference is in the presentation of the transition. A PN model conforming

1 In this thesis we use the terms DSL and modeling language interchangeably.

13

Figure 2–1: The Petri Net DSL with its abstract syntax metamodel and two graphical
concrete syntaxes. Dashed lines represent a mapping between concrete and abstract
syntax elements. A PN model example is shown on the right.

to the defined MM is also shown on the right. Another example of a graphical

notation is the well known unified modeling language (UML). Program source code,

such as Java, an example of a textual notation, can be considered a model as well.

The code is modeled by its abstract syntax tree (AST) with its language grammar

being the metamodel. Finally, to discover more about models and metamodeling we

invite the reader to an article by Kühne [51].

In model-driven engineering (MDE) process, models are primary artifacts used

to describe systems at a high level of abstraction. Typically, model transformations

are then used to manipulate models with an aim of reducing the level of abstraction

of models until an executable code is derived (semi)automatically. There exists a

variety of MT approaches and a MT can be implemented using a general-purpose

14

programming language. In this thesis, however, we are concentrating on the declar-

ative, rule-based MTs and the models in the MT systems will be represented as

graphs. The following section is an introduction to MTs.

2.2 What are Model Transformations?

The definition from the Object Management Group (OMG) states that the MT

is “the process of converting one model to another model of the same system” [70].

The definition of a model transformation given by Syriani [93] explains it further,

“the model transformation is an automatic manipulation of models with a specific

intention”. The second definition clarifies the first in that the model transformation

is an automated process and is associated with an intention. An example of an

intention is generation of the GPL source code from a DSL model.

Model transformations can be used for many purposes. Here we continue with

some generic examples originally compiled in [93] as a primer to MTs.

• Query - originates from data management in databases. A query transforma-

tion, provides a view over the model or the repository of models. There is no

modification of the model and the model is accessed in a read-only fashion. A

restrictive query for example reveals all, none, or some elements of the model.

This is useful, for example, in the context when two observers of the same

model M will see the different views of M based on the access rights of the

observers.

• Synthesis - a transformation from a higher level specification to a lower level

specification. A model-to-code is a specialized case of the model-to-model

15

transformation and a code generation from the UML diagrams is one such

example.

• Reverse engineering - is the opposite to synthesis. Here, the higher level

specification is extracted from a lower level one. For example, a transformation

from source code to UML class diagrams.

• Translational semantics - the translational semantics is a model-to-model

transformation defining the semantics (the meaning) of the source DSL in terms

of the target DSL. This is necessary when the original semantics are not formal

enough to perform mathematically rigorous reasoning about the model. For

example, one can define by transformation, the semantics of a modeling lan-

guage describing a concurrent system. This can be achieved by transforming

the concurrent system model to an equivalent Petri Net (PN) model. The PN

semantics are mathematically well defined and may be used to explore a variety

of reachability problems, such as detection of a deadlock, a property useful in

a concurrent system domain.

• Simulation - a model transformation in this case updates the state of the

modeled system. For example, the PN modeling a checkout queue in a store

is simulated by a transformation discovering enabled transitions, firing them

and propagating the PN tokens. In software language engineering terms, the

transformation defining the simulation can also serve as operational semantics.

• Optimization - a transformation improving operational qualities of the model

while preserving semantics of the model. For example, transforming a model

16

Figure 2–2: A typical rule from rule-based model transformations and its effect on
the input model resulting in the output model.

incorporating a single linked list structure to a double linked list in order to

facilitate deletion operations on the list.

We now proceed to describe MT rules, an important element in the rule-based MTs.

A MT rule is a declarative construct, operating on an input (source) and an output

(target) model. The rule consists of pre-condition and post-condition parts that are

also called the left hand side (LHS) and the right hand side (RHS) respectively. In

Figure 2–2 we present a typical MT rule, the input model to be transformed and the

output model after executing the rule. The input model is changed with the removal

of a node X and its incident edge, the addition of a node Y and creation of an edge

according to the specification in the rule.

The LHS and the RHS of the rule contain patterns. The patterns can be pre-

sented in a textual or graphical form. As shown in Figure 2–2, the patterns are

represented graphically using concrete syntax of a transformation language that is

17

based on the concrete syntax of a DSL being transformed (labeled circles connected

with directed edges). In this case, the patterns are also represented as graphs. In

other transformation systems the patterns can be defined as terms for tree represen-

tations of models as in Stratego [15] or strings for the template based transformations

as in Xpand2 .

Rule application. The pre-condition of the rule must be satisfied in the input

model before a modification to the model according to the post-condition is made,

and which would result in the output model. Therefore first, an occurrence of the LHS

pattern in the input model is found by means of subgraph pattern matching. This

establishes the binding between the pattern elements and the input model. Then,

the occurrence (a subgraph within the input model) of a LHS pattern is modified

according to the RHS of the rule.

The rule application steps above have a theoretical foundation in graph gram-

mars and graph transformation theory. One of the them is an algebraic graph trans-

formation approach based on a category theory and pushouts on the category of

graphs [27]. Algebraic graph transformations can be defined using Single-Pushout

(SPO) or Double-Pushout (DPO) approaches. In Figure 2–3 we show, with a kind

of pushout diagram, how the DPO approach can be used to achieve the input model

manipulation shown in Figure 2–2. The arrows represent graph morphisms.

We continue with a simplified explanation of the DPO approach. In DPO, a

transformation rule or a production p consists of L, K, and R graphs. The L and R

2 http://wiki.eclipse.org/Xpand

18

Figure 2–3: DPO approach for the rule application in Figure 2–2

graphs are the LHS and RHS parts and K is the gluing graph sharing the common

elements with LHS and RHS (an intersection between two graphs). In essence, the

K represents the graph that is not modified and that has to exist in order to apply

the rule. Once the match of L in G (a graph morphism represented with an arrow

in Figure 2–3) is found, the graph elements in L missing from the K will be deleted

from G resulting in the context graph D. The context graph must satisfy a gluing

condition in that it must be a valid graph without any dangling edges. The resulting

graph H is achieved by gluing the graph D with the elements in R not found in K.

The SPO approach is different from the DPO in that a production does not have a

gluing graph K. This results in the absence of a context graph in the process of rule

application. In addition, the handling of the dangling edges is more relaxed. The

dangling edges are removed and do not inhibit rule applications.

19

Figure 2–4: An example rule from Figure 2–2 with unique labels added.

The patterns in graphical syntax can be represented in a traditional (as in Figure

2–2) and compact notations. In a traditional notation, the LHS and RHS parts are

clearly distinct. The pattern elements have unique labels associated with them which

allow transformation engine to decide which elements need to be added or removed

from the input model. For example, if a label present in the LHS pattern is missing

in the RHS pattern then the pattern element (with a label in LHS) binding in the

input model will be deleted. We demonstrate this with our example rule augmented

with unique labels in Figure 2–4, the match of the pattern elements 1 and 3 in the

input model are deleted and the elements with labels 4 and 5 are created.

In a compact notation, as used in FUJABA [30], elements to be created or

destroyed are explicitly marked. We show a mockup of such a rule in Figure 2–5 and

mark the elements to delete in red and the new elements to create in green.

20

Figure 2–5: A rule in compact notation, equivalent to the rule in Figure 2–2.

Finally, the MT rule can have Negative Application Conditions (NAC). Similar

to the LHS and the RHS , a NAC contains a pattern. The NAC pattern is matched

in the input model, and if it is found the rule cannot be applied. We demonstrate

the syntax of the NAC part of the rule in Figure 2–6. In this case, the rule is

not applied because the NAC pattern in matched in the input model. The model

therefore remains unchanged.

We continue with some notable MT features, such as rule application control

(RAC) and tracing. RAC relates to two issues, one is where to apply the rule in the

input model and another one is how to execute multiple rules. Tracing relates to

keeping track of changes the MT is causing.

2.3 Model Transformation Features

MTs form a complex domain with an array of possible features pertaining to

MT execution and specification. A good classification of those features was necessary

and was created by Czarnecki et al. [23]. Here we present the necessary basics.

21

Figure 2–6: A typical rule from rule-based model transformations with added NAC
pattern. The presence of the NAC pattern prohibits rule application and the input
model is unchanged.

The rule presented in the previous sections is a minimal transformation. It

designated the ”smallest transformation unit“ (TU) in Czarnecki et al.’s terminol-

ogy. The TUs are defined over one or several domains or meta-models. The source

and target meta-models can be different (exogenous transformation) or the same

(endogenous transformation). The TU can also take the form of a function or a

relation. A function is an imperative construct specifying how the modification of

the source model produces the target model. A relation acts on the domains and

states the relation between them. Relations may be used for creating bi-directional

transformations, such as in QVT-R [76]. The transformation is called in-place when

it operates on the same model, otherwise it is called out-place.

22

Often in MTs, the number of rules is larger than one. Different approaches exist

as to how to execute a set of rules in order to achieve the desired model modification.

Below we discuss the topic of rule application control.

Rule application control specifies where the rules are applied in the model

and the order in which they are executed (scheduling of the rules). A deterministic

transformation ensures the same output is produced after repeated execution. In

Stratego [15], a deterministic traversal of the model is defined to allow deterministic

transformation. A non-deterministic transformation can be achieved in several ways.

A rule can be applied to a single, non-deterministically selected location or to all

of the applicable locations in the model concurrently. In AToM3 [25] a user can

specify the application location interactively during transformation execution. A

non-determinism situation is demonstrated in Figure 2–7. There we show a rule

from Figure 2–2 with a different input model. The LHS of the rule can have three

matches shown in different colors. We, therefore, need to decide where to apply the

rule.

The transformation rule scheduling can be positioned in two groups: implicit and

explicit. With implicit scheduling, a transformation engineer has no direct control

over the order of rule executions. For example, the transformation language in the

tool Groove [82] can be unordered: the execution order depends on the patterns

and is determined at runtime, and rules are executed until there are no more rules

to be executed. Another example is found in graph grammars [28], which can be

used to generate graphs and perform graph rewriting (transformations). A grammar

23

Figure 2–7: An example rule from Figure 2–2 applicable to a different model where
several matches exist (marked with different colors). We can thus apply the rule to
a single non-deterministically selected location until the rule can no longer apply.

can also be viewed as unordered transformation. Similarly, ATL transformations

language does not provide explicit scheduling [45].

An explicit scheduling gives control over the rule execution to the engineer.

External explicit scheduling defines a scheduling separate from the transformation

rules. This results in an ordered transformation. The schedule can contain a control

structure using a branch and loop syntax or a priority-based ordering, etc. An

example of such a schedule in a graphical representation is demonstrated in Figure

2–8. The first rule to execute is Rule A. The choice of the following rule is based on

the result from the previous rule. An internal explicit scheduling is usually present

in the imperative transformation units. For example, in QVT-R when/where clauses

may invoke a next rule, thus defining a schedule. Another option is to use a general-

purpose programming language to specify MT schedules. Finally, an event-driven

24

Figure 2–8: An explicit MT schedule using branch and loop constructs.

scheduling can also be used. There, the external events trigger rule executions. An

example of an event-driven MT system is VIATRA [7].

Another important MT feature is tracing. In transformations, it is important

to know which elements in the target model relate to the elements in the source

model. The traceability links provide that information. They are also used for de-

bugging and correctness verification of MTs. Some languages, such as QVT support

traceability automatically, others leave the creation of links to the transformation

engineer. Traceability links are more valuable in unidirectional transformations. In

multi-directional transformation, it is easier to go back to original source model by

reversing the transformation.

We conclude our general discussion on MTs, rules and MT features. In the

following sections, we address the existing challenge of using MTs in the industrial

context, namely the efficiency of execution.

25

2.4 Optimizing Model Transformations

An efficient execution of a MT is important in industrial contexts. The input

models can be large, resulting in long execution times for complex MTs. The declar-

ative nature of MT patterns (found in the LHS of the rule) and their subsequent

matching generally lead to a subgraph isomorphism problem, where an exact match

of the pattern is established. Due to the fact that the subgraph isomorphism problem

is solved in an exponential time in the worst case, an effort in MT community is made

towards heuristically improving pattern matching performance. In this section, we

present the efficient pattern matching techniques. These include search plans, incre-

mental techniques, general search space reduction and pattern matching strategies.

Search plans are of particular importance to this thesis and we explain them in more

detail.

2.4.1 Search Plans

In local search-based (LS) techniques, a pattern matching starts from an initial

binding of a pattern in the input model (graph). Typically a single node of a pattern

is matched. The match is then expanded from that node by following the edges

according to the pattern definition. We present a brief overview of the search plan-

based graph pattern matching (an LS technique) in order to explain the matching

of scoped patterns presented later in this thesis. In addition, we explain primitive

match operations composing the search plan (SP) and discuss the cost of an SP. For

in-depth explanation of SPs consult the original works of Batz [6] and Varró et. al

[107].

26

A search plan is an ordered list of primitive match operations. The execution of

these operations results in a binding of pattern nodes and edges to the input graph

nodes and edges. The operations are executed in order. The ordering can be based

on the cost of these operations in terms of their branching factor. The branching

factor corresponds to the number of bindings each primitive match operation returns.

Only a single binding is considered for expanding the match further while others are

kept for a backtracking step which happens if the next operations fail to produce a

binding. In a bad case, the search plan execution can result in a lot of backtracking,

causing all of the bindings to be explored while constructing a match. Therefore,

it is desirable to first execute operations with a small branching factor and thus

minimizing the backtracking. Typically, the following primitive match operations

are distinguished:

• A lookup operation lkp(x) establishes a binding from the pattern node or edge

x to the matching host graph’s node or edge. Valid search plans must start

with a lookup operation to create the initial binding.

• The incoming and outgoing edge operations: in(v,e) and out(v,e) require an

already bound node v as a parameter to establish the binding for the incoming

or outgoing edge e of the node v.

• The source and target operations: src(e) and trg(e) require an already bound

edge e as a parameter to establish the binding with its respective source and

target nodes.

For a binding to be valid, the pattern element type must match the input graph

element type. In addition, for operations that concern edges, corresponding incidence

27

relationships must exist. Pattern attribute conformance, such as for node labels, may

be treated within the primitive match operations or as a separate operation. In this

thesis, we assume the treatment of node label conformance is within the primitive

operations and disregard attribute verification for brevity.

In Figure 2–9 an input graph is shown in column a and a pattern to match in

column b. Column c presents the search graph corresponding to the pattern. The

nodes (as circles) and edges in the pattern are labeled with their respective types.

Figure 2–9: Input graph in column a with the pattern to match in column b. A
corresponding (input sensitive) search graph is shown in column c, with its minimum
spanning tree indicated by bold edges.

The edges in the search graph correspond to primitive match operations, and

each node in the search graph corresponds to a pattern element, with the addition of

a special root node (we underline the node in the search graph corresponding to an

edge in the pattern). Nodes representing pattern elements are connected according

to pattern connectivity and in a way to allow for bidirectional navigability. The root

node is connected to each search graph node with a single outgoing edge represent-

ing a lookup operation. To produce a match each node in the search graph must

be visited once by following the edges representing primitive match operations and

28

executing them, in essence traversing a spanning tree of the search graph, as shown

by the bold edges in column c of Figure 2–9.

Statistical information about the input graph can be used to estimate operation

costs (e.g., their branching factors). The host graph information typically includes

the number of nodes and edges of a particular type. This information results in a

production of input model sensitive search plans [33, 107]. Model sensitive search

plans are constructed from a weighted search graph representing the match pattern.

In column c of Figure 2–9, for example, each edge is weighted with the cost of its

operation.

There are several search plans possible for the pattern in Figure 2–9. Let us

consider a search plan P1=lkp(X),out(X,Z),trg(Z) represented by the spanning tree

on the left of Figure 2–10. This is not the best possible SP. The lookup operation,

executed first, returns the bindings for all three nodes of the type X. The following

outgoing edge operation, in the worst case, fails for two of the three X nodes because

of the missing outgoing edge. When the match operation fails to produce a binding

backtracking occurs and other unexplored candidates are considered. Thus, a single

binding for X is used to bind the outgoing edge successfully. As backtracking is

expensive, the search plan that causes the fewest backtracking steps is preferable.

With this in mind, a better search plan in our case is P2=lkp(Z),src(Z),trg(Z). P2

is based on the search graph’s minimum spanning tree, as shown on the right in

Figure 2–10 (and also in Figure 2–9), which will produce no backtracking. In this

case, the first lookup operation binds the lone edge of type Z, and execution of the

source operation binds pattern element X to the node of type X at the endpoint of

29

Figure 2–10: Spanning trees corresponding to the search plans P1 and P2.

the edge Z. The target operation is executed last, resulting in a pattern element Y

binding to the node of type Y in the input graph.

The minimum spanning tree of a directed graph, weighted with operation costs

can be constructed by using Edmonds’ polynomial time algorithm [26]. The mini-

mum spanning tree is then used to produce the ordered search plan with the smallest

cost.

The cost of a search plan corresponds to the size of its search space tree rep-

resenting the number of host graph elements visited during matching. The ith level

of the tree corresponds to the execution of the ith match operation. The number

of nodes at the ith level of the tree is equal to the product of the costs of match

operations (branching factors) up to the ith level.

Let us first consider the cost of each individual operation. The cost of a lookup

operation is equal to the number of candidate bindings. Therefore c(lkp(X)) = 3

and c(lkp(Z)) = 1. In case of the incoming and outgoing edge operations let us

consider out(X,Z) for the same graph and pattern in Figure 2–9. Depending on

the X node, we may or may not have an outgoing edge Z resulting in a number

of candidate bindings equal to 0 for the two nodes and 1 for the third. We then

30

consider c(out(X,Z)) = 0.3 as the average between the three nodes. The source and

target operations are simple and both cost 1, because once the edge is bound, the

number of candidates at each endpoint is equal to 1 (we do not consider hyperedges

in this thesis).

Therefore, the cost of the search plan P=〈o1,...,ok〉 is calculated by c(P)=c1 +

c1c2 + · · ·+ c1c2 · · · ck or
∑k

j=1

∏j
i=1 ci. Here ci is the cost of the ith primitive match

operation and k is the number of pattern elements. For example, the cost of P1 is

c(P1) = 3 + 3 ∗ 0.3 + 3 ∗ 0.3 ∗ 1 = 4.8, which is larger than c(P2) = 3, as all three

operations in the latter case have branching factor of 1. Note that the search plan

cost equation is dominated by the early terms, and therefore it is important to reduce

the cost of early match operations.

One of the benefits of our static scope technique presented in Chapter 3 is to

reduce the cost of search plans by introducing early match operations with a small

branching factor. These operations are then prioritized in an SP and positively

affect its overall cost. Another efficient technique presented in the following section

is incremental pattern matching.

2.4.2 Incremental techniques

The incremental pattern matching techniques are based on caching intermedi-

ate, partial matches. This accumulation of partial matches results in a cache of all

matches for a given pattern. The matches are then available for use at the constant

time. The performance benefits are evident, for example in a situation when it is

necessary to apply a rule to all occurrences of a pattern in the input model. In

essence, this approach is well suitable for match intensive transformations, but less

31

Figure 2–11: A Rete network made for the pattern on the left with the input model
on the right. The input model contains a single transition and the pattern is not
matched.

appropriate for the transformations where the model is often updated as the match

caches need to be updated. The authors of VIATRA tool [10] propose to use the

Rete algorithm [31] and its network to achieve caching of matches and match re-

trieval in constant time. The Rete was originally used in rule production systems. In

Figure 2–11, we show an example Rete network along with the corresponding initial

PN input model on the right and the pattern to match on the left (both contained

in dashed rectangles for separation from Rete network). Note that for illustration

purposes, the input model contains a single transition as to demonstrate a manual

PN drawing in an editor for example. The network for the pattern consists of the

32

Figure 2–12: A Rete network demonstrating an update phase when a place and an
edge was added to the input model.

input, join and intermediate nodes. The input nodes receive a single model element

and perform conformance test, they also maintain or keep track of the individual

elements. Here we have a single transition cached inside the input node. In Figure

2–12 we see how an update of the input model changes the contents of the Rete

network. We add the place and connect it to the transition. The new elements are

propagated through the network. The input nodes now contain a place and the edge

(connecting place with transition).

In Figure 2–12 the outgoing edge from the input node is connected to the ap-

propriate join nodes to produce the combinations of the individual pattern elements

into pattern constructs. After update, we see that the element P can be joined with

33

P2T element followed by the final join with T to produce the desired match (here

we store all occurrences of a pattern in the current input model). The intermediate

nodes maintain the partial matches. Anytime during transformation execution the

input model changes, the update operation is executed and changes are propagated

down the network to modify partial and complete matches accordingly. Efficient

construction and implementation of the network is important as the memory cost to

caching the matches can be high. Memory cost is reduced by constructing a network

where similar nodes are shared between patterns.

It is possible to combine several pattern matching strategies to achieve better

results depending on the MT at hand. We discuss this in the next section.

2.4.3 Pattern matching strategies

We already presented two of the state-of-the-art graph pattern matching ap-

proaches: search plans (an LS technique) and incremental pattern matching. In [9]

the authors evaluate a hybrid approach that combines LS techniques with incremen-

tal techniques (INC). The INC pattern matching can provide the match in constant

time due to caching of matches, so this technique usually outperforms LS. However,

there are several cases where the LS technique is preferable over the INC.

• INC Cache of matches exceeds available memory. This is more apparent

on a desktop machine rather than in the cloud. Regardless, the authors provide

an example where the Java Virtual Machine (JVM) memory limit was reached

when the input model size was increased from 10 model elements to just 575. In

order to avoid memory starvation, some of the pattern matching was delegated

to the LS matcher.

34

• INC Cache construction time is prohibitive. There is an initialization

step in the INC techniques that creates the match cache. The time required

is not less than finding all occurrences of a pattern in the input model. In the

case when only the first match is necessary, LS can stop matching and therefore

be faster than INC, provided that the patterns can be efficiently matched by

LS.

• Expensive model updates. Frequent model manipulations with infrequent

pattern matching introduce additional time overhead on INC. The cost of up-

dating the match caches when the input model changes may exceed the time

to find a match using the LS. Therefore, the authors suggest using the LS

for pattern matching after identifying the MT rules that perform significant

updates.

Finally, the authors discuss static factors that help transformation designers choose

between LS and INC at the design time. Structural properties of a pattern hint

at the complexity of matching: number of nodes, edges, node degrees (statistical

information about the input model is also indication of the LS performance). The

frequency of repeated matching of a single pattern (taken from MT schedule) suggests

that use of INC is more appropriate. On the other hand, the great impact on the

model structure described in the 3rd item of the list above suggests that using LS is

more desirable. An automatic approach was also proposed that is based on observing

dynamic factors at runtime. Observing the match cache size with respect to the

available system memory will cause the system to switch to LS matching. The

35

average matching times of hybrid matching strategies were comparable to INC yet

easier on the system memory.

In our work on dynamic scope described in Chapter 4 we present a dynamic tech-

nique for learning from the MT by observing its interaction with the input/output

model. This allows us to influence the matching process by reducing the input model

the pattern matcher is using. It is possible to use our technique with some modifi-

cations to make decisions on the matching strategies as we observe the MT engine

and its effects on the input/output models.

2.4.4 Rule optimizations

It is possible to optimize model transformations by optimizing transformation

rules. In particular, MT rules can be parameterized to allow parameter passing.

For example, an application of one rule can produce a pivot. In a graph-based

transformation, the pivot is a graph that provides an initial match binding. This

means that subsequent rules can use the pivot to start matching a LHS pattern from

and around the pivot graph. In GReAT [110, 1] for example, this is called pivoted

matching. The pivots are typically useful in the rule execution sequences sharing and

passing previously discovered matches. This leads to reduced computation effort. In

addition, the pivots are one of the ways to reduce the logical complexity of the rules

and complex MT use scenarios. Scope concept presented in this thesis can be seen

as a compliment to pivots. Both can be used to discover pattern matches sooner as

they represent the areas of interest in the input model. However, depending on how

scope areas are created and used, they may not necessarily contain parts of input

36

model where a valid match can be discovered. This is particularly true in case of

dynamically discovered scope areas presented in Chapter 4.

Sometimes transformation rules are executed repeatedly in loops. The authors in

[72] propose to automatically identify which model elements from one rule execution

can be reused in the subsequent rule. In a way, this is an automatic pivot detection

and propagation. In addition, the technique is aimed at producing new and improved

rules from combining several old rules. The new rules contain combined matching

patterns by exploring the similarities between the patterns in different rules.

We conclude the discussion on the MT optimizations and continue with the

discussion on MT tools.

2.5 Overview of Relevant MT Tools

The previous section deals with the efficiency challenge MTs face. In addition,

this thesis discusses the usability aspect of MTs through their debugging support in

Chapter 5. Therefore, in this section, we discuss a selection of MT tools relevant to

this thesis, from the point of view of their efficiency and/or debuggability aspects.

2.5.1 AToMPM

AToMPM [59], a tool for Multi-Paradigm Modeling developed in our lab, is a

multi-formalism, multi-abstraction meta-modeling and model transformations tool,

conceived as a successor to AToM3. One of the distinguishing features of AToMPM

is the multi-view, multi-user browser-based user interface that eliminates the need

for complex installations and setups for DSL engineers and users. In AToMPM

everything is modeled explicitly, from the tool bars in the browser to the user interface

37

behavior. The tool is under active development and aspires to be the answer to the

shortage of accessible and usable model-driven engineering (MDE) tools.

Efficiency. The graph rewriting capability of AToMPM is powered by T-Core

[93], a collection of transformation primitives which abstracts the graph matching

and rewriting aspects of graph transformation rules and provides a universal way

of dealing with graph rewriting problems and in particular, the rapid design and

implementation of transformation languages.

Graph representation and transformations are actually carried out within the C-

based igraph library [22], contained within a Python implementation called Himesis

[81]. Graph structures in igraph have a simple and well-optimized representation.

Nodes, for instance, are implicitly represented by an integer index, allowing the

system to allocate nodes simply by incrementing a maximum node counter. Once a

node is allocated, edges can be constructed as (directed) pairs of node indexes, and

are themselves referenced by an index. This design allows for straightforward and

efficient access to graph structures, using array-like access semantics.

We base many of our experiments on AToMPM. The tool in its original form

provides a good use case in testing our techniques. Before the thesis-related proto-

types were implemented, the pattern matching routine present in AToMPM was a

variant of a VF2 algorithm [19]. This defined a baseline case for our evaluations of

scoped model transformation efficiency.

Debugging. The tool supports certain debugging functionality. The user is

able to step through a single rule application using a debugging toolbar. The in-

put model and the transformation effects can be observed in the browser window.

38

The visualization of a control flow through an explicit MT schedule is possible with

highlighting if an active rule is in a separate window.

2.5.2 GrGen

GrGen [33] is a highly efficient graph rewriting and model transformation sys-

tem. GrGen compiles everything that is necessary to run the transformation into

executable binaries. This, along with the use of search plan-based matching results

in very fast transformation executions [8].

Other than the use of a textual language, the process of specifying the transfor-

mation and DSL in GrGen is similar to AToMPM. A meta-model (MM) is defined

and models conforming to the MM are instantiated. The rules and their execu-

tion sequences are specified. Then, the pattern matching backend generates model

sensitive search plans.

Efficiency. As described in the GrGen manual, several optimizations aimed at

speeding up the graph rewriting are available for a transformation engineer with deep

knowledge of the problem domain. Below we list some of the available optimizations

we used in our evaluation of GrGen to implement our scope concept. The way each

of the following optimizations was used to implement our scope concept and the

experimentation results are presented in the Chapter 3.

• An annotation prio is used in rules to indicate to the transformation backend

which pattern element should be bound first in the search plan-based matching.

Assume, for example, the engineer anticipates that there are ten nodes of type

A versus thousands of nodes of type B in the input model. Marking the A type

related pattern element with prio annotation will then force the first lookup

39

operation to bind a node of type A, significantly reducing the cost of the search

plan. This annotation overrides model sensitive search plan generation or is

used in the case when the input model statistics is not available.

• A transformation engineer can define custom model attribute indices in the

meta-model. These indices are then used in the rules to reduce the search

space. During matching, model elements can be queried based on the exact

value or the range of attribute values.

• It is also possible to use containers in the transformation rules. Sets and

maps promise node lookup performance gains in addition to the convenience

of passing them between the rules.

• The GrGen manual also suggests to introduce extra edges into the DSL. Pro-

vided the number of such edges is smaller than the number of DSL type ele-

ments, the use of these edges in the model will cause model sensitive search

plans to bind with these edges first.

It is not, of course, our goal to present an exhaustive list of possible GrGen opti-

mizations. We concentrated on including those optimizations that can be used to

implement our scope concept or those that have some overlap in the functionality of

reducing the search space.

Debugging. Below we present GrGen’s debugging support. The complete

description can be found in the user manual 3 of GrGen. The tool suite provides

3 http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.

pdf

40

GrShell enabling interactive execution of GrGen rewrite rules. For visualization

purposes, GrGen uses its own yComp editor displaying the input model as a graph.

GrShell (a text-based user interface) commands control the execution step by step.

Below are some of the most interesting commands. It is possible to step through a rule

application in three steps: match, rewrite and apply. The match step highlights the

match in the graph, rewrite highlights the elements to be changed and the application

step performs the actual rewrite operation and displays the resulting graph. The

step-over command, results in a one shot rule application, producing the modified

graph. There exist a step-out operation, it continues execution of the MT until a

single iteration of the loop (in MT schedule) or to the end of the rewrite sequence.

A resume functionality is available too, the remaining rules will be executed to the

end of the rewrite sequence or a breakpoint. It is also possible to save the visualized

graph in a file for later inspection and print the local and the global variables of the

rewrite sequence. In addition to breakpoints, GrGen provides choicepoints that halt

the execution expecting some user input. The choicepoints can be used to deal with

MT non-determinism by providing, in the event of uncertainty, all available choices

to the user for selection.

2.5.3 ATL

ATL is a de facto standard in the Eclipse model-to-model transformations. A

combination of declarative and imperative constructs in rules are specified in a tex-

tual format. The ATL rules are then compiled into specialized byte code that is

executed on a stack-based virtual machine. Importantly, the whole transformation

is compiled into two notable operations called match and exec. The first runs rule

41

specific match parts and creates automated trace links (with empty target elements

at the end). The second initializes those empty target elements according to the

specification in the rule.

Efficiency. In [14] the author compares the ATL MT execution to QVT on

several transformations. The author explores ways of improving ATL performance

through augmenting the transformation specification. One such approach is to move

the input model navigation to the attribute helper functions so that the matched or

queried model elements are reused (cached). This approach proved to be beneficial for

the rules that query the elements more often thus justifying the caching. Otherwise,

the standard declarative ATL rules outperform the rules with model navigation in

the attribute helper functions.

Debugging. Debugging in ATL is supported through the Eclipse launch config-

urations. Transformations can be executed step by step or continuously. Breakpoints

can be set in the rules and variable inspection is possible as a proxy mechanism for

model inspections. The debugger is essentially based on the underlying virtual ma-

chine (VM) operations. This is supported by the presence of the callback hooks

in the VM. Those hooks are for VM stack frame entering and leaving as well as

stepping. We use those callback mechanisms in our debugger prototype evaluation.

2.5.4 VIATRA

VIATRA stands for Visual Automated model Transformations [7]. In VIATRA,

rule-based model transformations are specified using Viatra Textual Command Lan-

guage (VTCL). The rules have pre-conditions and post-conditions. VIATRA also

supports negative patterns or NAC. The NAC pattern is specified within the LHS

42

directly thus explicitly marking the elements that must not be matched in the model.

The rules are parameterizable, similar to pivoted matching in GreAT [1] and their

scheduling is explicit with a possible non-determinism of rule application location

using random constructs. In addition, the branching construct if-then-else in combi-

nation with forall and iterate constructs allows for advanced control over the trans-

formation schedule. Additionally, rule hierarchies exists in VIATRA that facilitate

rule packaging and reuse.

Efficiency. VIATRA tool is a pioneer in utilizing the incremental pattern

matching in a MT system [10]. The Rete network, described in Section 2.4.2, is

used to provide pattern matches in constant time. In addition, VIATRA supports

search plan pattern matching. These two efficient approaches can be used in the tool

depending on the MT problem at hand by combining pattern matching strategies

[9].

Debugging. The tool supports debugging through the Eclipse Debugging

framework. It supports breakpoints, including rule activation breakpoints, con-

ditional breakpoints (specified using VIATRA query language), and rule halting

breakpoints. Various views over the debugging state (including the models) are also

supported with a possibility for a user to control the transformation interactively.

We conclude this section describing the selection of MT tools. We now move to

the chapter describing scoped MTs and start with the static scope concept.

Chapter 3
Scope in Model Transformations

In this chapter we describe our static scope concept applicable to model trans-

formations (MT). The purpose of static scope is to provide the means to specify and

reason about scopes in MT. Our scope becomes part of the model and is definable

by the transformation engineer inside the MT rules.

Scope is primarily aimed at improving pattern matching performance. For this,

to demonstrate possible and practical performance benefits, we build on the search

plan-based pattern matching described in the previous chapter. We begin with the

introduction into scopes in MTs and specific contributions described in this chapter.

3.1 Introduction

Scoping, i.e., grouping of related elements within a model is a common ap-

proach to dealing with complexity. Use of scope in models in some form or another

has advantages in terms of improving scalability, especially for visualization of large

graphs1 [11], as well as in representing the natural hierarchy or scoping that exists

within the underlying problem domain. In the context of model transformation, the

integration of scope allows for a more natural expression of locality of transforma-

tion rule execution, and has the potential to provide performance benefits as well.

1 Throughout this thesis we refer to model representations as graphs, and use both
terms interchangeably.

43

44

The latter is of particular importance, since the declarative nature of rules in many

model transformation environments leads to expensive matching procedures based

on subgraph isomorphism [18]. A matching process that is constrained by scope

to a subgraph may be faster (depending on the implementation and the problem),

addressing one of the main concerns in the industrial-scale implementation of graph-

based model transformation systems. A difficulty exists, however, in that the scope

best used for a given model transformation may not trivially conform to the notion

of scope used in the base modeling formalism—the method by which a hierarchical

system is transformed does not always need to respect its original hierarchy.

In this chapter, we address this concern by developing a graph transformation

language that incorporates scope directly into the input (host) graph, while also

allowing for easy and natural manipulation of scope within rule syntax. This is in

contrast to previous efforts at using scope that either concentrated primarily on de-

veloping hierarchical rule structures [84], or focused on domain-specific implementa-

tions of transformations [34]. Our effort is aimed at integrating a general and flexible

form of hierarchical scope directly into model transformation, while still maintaining

practicality of implementation, and indeed heading towards useful efficiency improve-

ments. The system we design has the further advantage of being a natural extension

of existing graph transformation approaches, and we present an initial non-trivial

prototype implementation that demonstrates real speedup in a state-of-the-art re-

search modeling environment. Specific contributions of this chapter include:

45

• We present a unified way to model and utilize scope in MT. Instead of being a

runtime artifact, the scope becomes a first class citizen in MT. We develop a for-

malism for representing multiple scope hierarchies in a host graph, orthogonal

to any internal hierarchy of the underlying model. Our approach is designed

as a natural extension of basic graph transformation environments, allowing for

implementation within an existing framework and supporting tools. This en-

ables straightforward and incremental migration to an optimized, scope-aware

transformation system.

• We define a modified rule syntax that tightly integrates scope into rule match-

ing and rewriting. Rule structure is selected to elegantly reflect an intuitive

understanding of how scope is used, without overly compromising the ability

to ensure efficiency in a realistic implementation.

• Practical utility of our scope model is demonstrated by an initial prototype

implementation within the AToMPM [59] meta-modeling tool. Performance

evaluation is performed on a forest-fire spreading simulation and a distributed

mutex benchmark (from a model transformation benchmark suite [109]). In

addition, we map our scope concept to an efficient and highly optimized trans-

formation tool GrGen [33]. Our experience indicates that our scope design is

very usable and also capable of significant speedup.

• The actual scoped pattern matching is presented in the context of search plans

(SP) [107] (introduced in Section 2.4.1). We demonstrate that adding scope

to an existing pattern may result in the reduction of SP costs. This leads to

accelerated pattern matching and performance gains in MTs in general.

46

The rest of the chapter is organized as follows. Section 3.2 formally introduces

our interpretation of scope and offers a running example. Section 3.3 investigates

the use of scope in rule-based model transformations. Section 3.4 concentrates on

implementation, experimental evaluation and interpretation of results. Section 3.5

concludes the chapter and discusses future work.

3.2 Static Scope

There are many possible ways to express and use scopes in a model transforma-

tion system. Our approach here is necessarily a compromise intended to allow for

reasonable expressiveness, while still ensuring a realization that is as efficient as pos-

sible. Below we describe the core ideas underlying our approach and give an initial

formal definition, followed by an introduction of our running example, and efficiency

motivation behind scope-based matching.

The basic idea of scopes we use is built on the notion of a secondary scope

forest, connected with, but logically distinct from the underlying host graph. The

scope forest is formed as a set of hierarchies, represented by a scope hierarchy forest

(SF) consisting of one or more scope hierarchy trees (ST s), and such that each

node in the SF has a unique label. The use of multiple ST s allows a node to

simultaneously exist in multiple hierarchies, while unique names and the single-parent

and acyclic properties of ST s make certain scope patterns unambiguous and improve

the efficiency of determining whether a scope pattern applies to a given node.

Figure 3–1 shows a simple example of a scoped graph as used in this thesis.

Labeled, dashed rectangles identify the two main components of a scoped graph,

the host graph, and the SF . To avoid confusion we represent the host graph in

47

Figure 3–1: The scoped graph with the scope hierarchy forest (SF) containing two
scope hierarchy trees (ST).

terms of connected, labeled circles, while the SF is represented using labeled and

rounded-rectangles. In Figure 3–1, we have two distinct ST s in the SF. Dashed lines

from ST nodes to host graph nodes represent innermost scope labeling or mapping,

while edges within ST nodes represent the scope hierarchy relation. Here, node X

is understood to be in scope C and D with the innermost scope D, and node Y

is in all 4 scopes, with the innermost scopes D and B. Note that the expression

of scope in this fashion allows for a straightforward implementation, even in scope-

unaware systems, either by including scope nodes directly or by expressing scope

as an additional attribute of host graph nodes. In the case of encoding scope as

attributes, the tool may gain performance during matching by performing attribute

indexing. A scope-aware implementation will obviously exploit the extra information

to increase performance.

We now proceed with a formal definition of our scope concept.

48

3.2.1 Formal Definitions

The above description can be formalized by defining a scoped graph as a 7-tuple

G = (VG, EG, LG, VS, ES, LS, R), where:

• VG is a finite set of host graph vertices,

• EG ⊆ VG × VG is a set of directed edges in the host graph,

• LG : VG → String is a node labeling function; duplicate names are allowed.

• VS is a finite set of scope vertices, disjoint from VG (VS ∩ VG = ∅),

• ES ⊆ VS × VS is a set of of directed edges such that (VS, ES) forms a forest,

• LS : VS → String is a scope-node labeling function, assigning unique labels to

each scope node: ∀v1, v2 ∈ VS, L(v1) = L(v2)⇒ v1 = v2.

• R ⊆ VS × VG defines the innermost scoping relation; which must fulfill the

conditions enumerated below.

With this definition, we have a formal way of evaluating whether a node is in

a scope or not. A node n ∈ VG is considered in a scope s ∈ VS if there exists a

path from s to some s′ such that (s′, n) ∈ R. We will also be concerned with an

innermost scope: s ∈ VS is an innermost scope of n ∈ VG if (s, n) ∈ R. Note that we

allow a node to belong to multiple scopes, and thus innermost scope is not a unique

property. However, to better reflect the conceptual hierarchy each ST represents, we

will also impose a requirement that each node has at most one innermost scope in

each ST ; that is, ((s, n), (s′, n) ∈ R ∧ s 6= s′)⇒ @s′′ s.t. path(s′′, s) ∧ path(s′′, s′).

In this thesis, we are dealing with directed, typed, and attributed graphs. We

leave the use of hierarchical graphs, in the context of scoped MTs, for future work.

However, the theoretical foundations of algebraic hierarchical graph transformations

49

exist [77] and can be used as a foundation for our approach. In addition, we demon-

strate our scope use in the context of the tool GrGen in Section 3.4. This tool does

support hierarchical graphs and we believe that their scoped transformation would

be straightforward. We conclude the formal definition of static scope and move on

to the running example.

3.2.2 Running Example

To motivate the use of hierarchical scopes in model transformations we present

our running example. For this, we used a simulation of forest-fire spreading, where

fire spreads across a 2D grid of neighboring cells. Each cell in a grid represents

a forested area which may catch fire if any neighboring cells are on fire. Once

fully burned, a cell represents a barrier to further fire spreading. The simulation

terminates when no burning cells remain. There are of course many fine-grain details

that may be added to the base simulation model, such as the duration of forest

burning, wind effects, and so forth [50]. This overall geometric approach, however,

is recognized as a standard way of modeling the dynamics of fire spreading scenarios

[29]. Additionally, in [109] the grid approach is used to benchmark transformations

that mostly perform matches without changing the structure of the source graph.

Due to strong localization in where rule transformations occur and which rules can

apply, the forest-fire constitutes an interesting problem to evaluate efficiency in model

transformations. This localization is highly dynamic, changing as the simulation

progresses. Thus, it provides an excellent test-case for evaluating the impact and

suitability of scoped versus non-scoped transformations.

50

Figure 3–2: Extended forest-fire scope hierarchy.

We use a SF to capture both the domain-oriented structure and the dynamic

knowledge of forest-fire spreading dynamics. Tree burning time can be affected by

several factors. For example, the type of trees in the forest and their moisture content

may be static aspects of our model that form a natural hierarchy of the domain.

Thus, the forest cells (assuming sufficiently small cells to guarantee homogeneity)

can be grouped into scopes by their type and moisture content. In Figure 3–2

we thus introduce two ST s to represent this structure, dividing trees into classes

of hardwoods and conifers in the Tree Type scope hierarchy and introducing two

moisture levels in the Moisture scope hierarchy.

The dynamic property of fire spreading is also captured in the scope hierarchy.

This represents a scoping orthogonal to the natural, static domain hierarchy, and

introduces a Region ST with three active scopes F , B, and D (highlighted with

a dashed rectangle in Figure 3–2). Scope F contains burning forest cells, scope

D represents cells with dead trees, and scope B represents cells with healthy trees

that border cells in scope F (think of scope B containing smoldering trees to ignite

soon). We illustrate the entire scoped graph in Figure 3–3, where filled round nodes

representing cells in the 3 by 3 grid of host nodes are connected by dashed edges

from SF nodes, indicating the innermost scope relationships.

51

Figure 3–3: Forest-fire scope hierarchy applied to the forest grid.

In this example, we can see that some of the cells are in the scope of conifers

while others are in the scope of hardwoods. There is one cell in the fire scope and

the moisture content scope encompasses several cells. Note that there are unmarked

cells in the grid. These indicate nodes without any scope relationship.

The dynamics and evolution of the forest-fire spreading, encoded in scopes, can

be related to the concept of activity tracking in a cellular or a Discrete Event System

Specification (DEVS) based modeling and simulation, such as presented by Muzy

et al. [75, 73]. In fact, the active regions of the transformation were some of the

first candidates to be represented as scopes. This is one of the examples of how hints

from the problem domain can be used for defining scopes. Similarly, in previous work

on automated and runtime scope discovery [47], the active parts of the transformed

model are considered as dynamic scope candidates. The next section presents the

efficiency motivation of using scopes in MTs.

3.2.3 Efficiency Motivation

We use scope areas to demonstrate possible matching efficiency gains. Consider

an N ×N grid of forest cells, as shown on the left in Figure 3–4. This is the actual

52

NxN

B

Δ

r

F D

Figure 3–4: A screenshot of the forest-fire simulation and the model of the forest-fire
spreading over the grid.

simulation of forest-fire spreading using our scope concept. On the right is a model of

the forest-fire spreading over the grid on the left. Concentric annuli marked B, F and

D represent the Region scope hierarchy from our running example and correspond

to the scope regions marked on the screenshot. The areas bound by these regions

approximate the number of grid nodes that need to be iterated over to find all matches

of a pattern containing a single forest cell. We are interested in a symmetrical

spreading of the forest-fire (conceptually circular, but appearing diamond-shaped due

to the taxicab geometry in the forest-fire spreading screenshot), and so are primarily

interested in the dynamically expanding fire-front area B containing candidate cells

to be moved into F scope (as well the F cells which eventually finish burning and

change to D cells).

The number of match searches performed without using scope is equal to N2,

the entire area of the grid. Considering only the scope relevant to a rule application

can dramatically decrease this cost. The area of the B annulus, for instance, is

53

B = 2πr∆+π∆2. Dividing both sides of the equation by r2 we get B
r2

= 2π∆
r

+π(∆
r

)2.

We can eliminate (∆
r

)2 as negligible when r is significantly larger than ∆. Now we can

approximate the area to B ≈ 2πr∆. When r ≈ N
2

the annulus area is B ≈ πN∆, this

yields a linear complexity of O(N) to enumerate the nodes inside the scope defined

by annulus B.

Dynamically changing scopes such as the one represented by annulus B in the

previous example requires runtime modification to scope membership—we gain noth-

ing in efficiency if the entire grid must be traversed to change scopes during the

transformation. To solve this problem, we can maintain scope B from within its

neighbor scope F . For this, we need to incorporate scope modification directly into

the rule syntax as we demonstrate in the next section.

3.3 Scope in Rule Based Model Transformations

In this section, we describe the syntax and semantics of scoped model transfor-

mations. First, we look at possible scope patterns, their use in transformation rules,

and provide some justification based on usage scenarios and constraints. We then

introduce an extension to our own transformation rules that allows for the manip-

ulation of scope hierarchies. We describe the semantics of scoped transformations

and scoped matching using search plans. Finally, we address scoped graph rewriting

with its well-formedness concerns.

3.3.1 Scope Syntax

Our full design applies a syntax to the conceptualization of scope presented

earlier. This simplifies and constrains rule specification in the presence of scopes,

reducing the potential for specifying malformed rules, and overall providing a more

54

intuitive format for describing scope matching and construction. Our goal is to be

sufficiently expressive while ensuring that an efficient implementation is possible.

In general, we will need to know whether nodes are in different scopes, and may

be concerned with combinations of scopes, or inheritance within a scope. For this, we

define scope patterns as core constructs of our syntax. Figure 3–5 visually summarizes

this approach. For each of the 6 panels, a scope pattern syntax is presented on the

left, and a corresponding scoped graph (host graph and SF) that would match the

pattern is shown on the right. In patterns, the shaded, rounded-rectangles represent

scopes, and labeled circles represent nodes of a source graph. The items placed

inside a scope imply a direct relationship. Thus the semantics of a circle node drawn

inside a scope rectangle is a node inside that scope (this is similar to the notion of

containment in hierarchical graphs described in [77]), and that scope also constitutes

the node’s innermost scope. Similarly, a scope immediately inside another scope

represents an edge in the scope hierarchy relationship, with the outer scope being

the direct parent of the inner scope.

The graph on the right of each panel shows source nodes slightly larger than on

the left in order to emphasize the distinction between template host nodes in our

pattern syntax and host nodes in the actual scoped graph.

We now discuss each of the 6 panels. As an example, and to help motivating

the syntax of our scope patterns, we use our running example.

• Panel 1. The node X is not placed inside a scope pattern. The intention is

to ignore the scope during matching. Using this construct we can match any

55

Figure 3–5: Six core scope patterns, each with the pattern on the left, and a possible
matching scoped graph on the right. Panel 2 shows a labeled scope pattern, panel
3 contains an anonymous scope pattern, and nested and overlapping scope patterns
are shown in panels 4 and 6 respectively. A dashed scope pattern is shown in panel
5.

56

forest cell in the grid, regardless of its type, moisture content, or fire region.

We refer to this construct as no scope.

• Panel 2. The node X is placed inside a single, labeled scope. This indicates

the innermost scope relationship for node X . Here we match all birch cells in

the forest.

• Panel 3. The node X is placed inside an unlabeled scope. Such a pattern rep-

resents an arbitrary scope in the SF , and we refer to it as an anonymous scope.

This pattern will produce a match if the corresponding source node has any

(innermost) scope relationship. In a negated rule application condition, the

anonymous scope can also be used to determine the absence of scope for the

node it contains.

• Panel 4. The node X is placed inside a hierarchical (nested) scope construct.

Such patterns can be used to designate a specific portion of the scope hierarchy

while matching. In hierarchical scope constructs, labeled or anonymous scope

represents one level of scope hierarchy inside a single ST below the scope that

directly contains it. Here we are trying to match all hardwood cells that are

birches.

• Panel 5. Here we introduce an unlabeled, dashed scope. It represents 0 or

more levels of scope hierarchy inside a single ST below the labeled or anony-

mous scope that directly contains it. As opposed to panel 2, this allows us to

identify nodes within an inherited scope; here, any scope under Tree Type. A

dashed scope is not allowed to be used on its own or as the outermost scope

in nesting constructs, as that results in the source of the inheritance being

57

undefined. Dashed scope patterns are in a way similar to the use of rules with

inheritance [24], where a pattern is specified using an abstract type and is

applicable to the subtype model elements.

• Panel 6. Pattern 6 demonstrates a node having multiple innermost scopes. Here

we are matching nodes that are both pine cells and have 30% moisture content.

Multiple scopes enclosing a node must be in separate ST s, as mentioned in

the formal scope definition. In our design, an attempt to match a node in

multiple scopes from the same ST will result in an error. We base this on the

assumption that a node in two scopes of the same ST properly belongs to its

single least-ancestor.

Core scope constructs, labeled, anonymous, and dashed, can be combined using

nesting (such as in panel 4 in Figure 3–5) and intersection (panel 6 in Figure 3–

5). Not all scope nesting combinations make sense. In particular, nesting of dashed

scopes is redundant if expressed as a single parent-child nesting, and so is disallowed.

The intersection of scopes is meant to be simple, representing a conjunction of

distinct scope patterns that must apply to the same host graph node. Thus nests of

scope pattern specifiers may not intersect except at the leaf-level. As well, to ensure

we can easily distinguish which nest of patterns to apply to a given scope tree, we

also require the outermost scope of each intersecting scope nest to be a labeled scope.

It is also worth pointing out that the knowledge of the exact scope hierarchy may

render some scope combinations such as nested labeled scopes unnecessary. In panel

4 of Figure 3–5, for example, it is actually sufficient to use a single labeled scope

construct (such as in panel 2) to indicate just the innermost scope relationship, since

58

Table 3–1: Operators

Scope Operator RE Operator
(L) labeled scope α
(A) anonymous scope .
(D) dashed scope .*
(n) host graph node n

we already know that birches are a direct subscope of hardwood. Specifying parts of

the hierarchy is mainly useful when the scope hierarchy is dynamically modified, or

when the same rule set may be used in distinctly different scope contexts. We now

move to a discussion on the expressiveness of scope.

3.3.2 Expressiveness

Our scope pattern constructs are defined to accommodate an intuitive under-

standing of how scope may be used and required in practice, while trying to guarantee

that an efficient runtime test will still be possible. We would still like, however, to

guarantee some degree of expressiveness, ensuring reasonably general applicability,

and also better formalizing our allowable scope pattern constructs. For this we can

relate our constructs to other ways of expressing path properties in graphs, and con-

sider our patterns as a form of path expression [111] or regular path query [65] over

the SF . To do this we show that the paths within the SF encoded in the scope

constructs can be mapped to simplified regular expressions (RE) over the labels of

the scoped graph. Table 3–1 gives the basic translation, relating each of our scope

pattern operators to corresponding RE syntax. In this mapping α represents a label

of a SF node and n indicates a label of a host graph.

59

In order to perform this mapping, we first define the language of well-formed

scope path expressions (SPEs) by converting the nesting hierarchy to an RE-language,

SPE = (L|A)(D? (L|A))∗ D? n

with a restriction of no nested dashed scopes to respect the constraints given earlier.

A scope hierarchy path starts with L or A, followed by a combination of scope

operators and terminates at the host graph node n. The sequence of operators

read from left to right defines scope nesting order. The leftmost operator indicates

the outermost scope, and subsequent operators represent subscopes of the parent

scope denoted by the preceding operator. The innermost scope relationship for the

terminating node n is defined by its immediate predecessor. Scope intersection is

interpreted through a finite set of paths, each terminating at the same host node,

but otherwise evaluated separately. Recall that we also require intersecting patterns

to have a labeled node at the top level.

Mapping a particular pattern p ∈ SPE to an RE itself is then defined by trans-

lating p according to the mapping given in Table 3–1: . ∗ (p[A → .][D → .∗])n

(an arrow here means replacing construct on the arrow’s left with the construct on

its right side). Here we also prepend .∗ to represent an arbitrary starting point in

the SF for RE matching. Matching over the SF is then conceptually performed

in a depth-first manner, beginning at the first operator and terminating at n. We

also perform the shortest match, that is useful in the context of search plan-based

matching described in Section 3.3.4. There we navigate up the scope hierarchy from

the graph node and if the anonymous scope contains the dashed scope we terminate

60

our matching at the very first scope node encountered (innermost scope) instead of

searching such a construct all the way up the hierarchy until the root scope node.

We now map as an example some of the patterns in Figure 3–5 to REs.

• Panel 5 is: . ∗ Tree Type. ∗X

• Panel 6 is a combination of two REs: . ∗ Pine X and . ∗ 30% X

All our patterns are required to terminate at a single host graph node. In many

cases, however, a designer may wish to specify that the same pattern applies to mul-

tiple host nodes, and patterns similar to the one on the left in Figure 3–6 may thus

be desirable. Since the host graph does not, in general, conform to the same re-

strictions we impose on our SF that make RE expression straightforward, describing

such patterns introduces significant complexity into our RE translation process. To

reason about such patterns, we thus instead rely on a flattening operation, concep-

tually decomposing a non-conforming pattern to duplicate the scope pattern such

that there is a single well-formed path expression for each host node. The result of

flattening is shown on the right in Figure 3–6. Note that this reduces the ability for a

pattern to guarantee it refers to the same scope node containing different host nodes:

even if we draw X and Y within the same anonymous scope A, once flattened the

respective anonymous scopes could be bound to different ST s. Avoiding the need to

find a scope binding that is the same for all nodes, however, simplifies the matching

process, and so we only permit non-conforming patterns such as these when there

is an unambiguous use of scope (no rewriting of anonymous scopes). The use of

anonymous scope (or dashed scope) in conforming patterns similar to the pattern on

the right in Figure 3–6 is allowed. The user should be aware of the resulting matches

61

Figure 3–6: Flattening of a scope pattern on the left, with a result on the right.

of different scopes or different parts of the scope hierarchies (in the case of dashed

scope use).

Finally, we note that extensive use of scope combinations such as intersection

can stress the visual syntax of our scope formalism. In more complex cases we can use

a textual format to describe SPEs, or a layered, hierarchical visual representations

to deal with the complexity. In the next section we introduce scoped rules.

3.3.3 Transformation Rule Structure

Graph transformation rules in our design follow a traditional composition of a

left-hand side (LHS) graph pattern, a possible negative application condition pat-

tern(s) (NAC), and a right-hand side (RHS) transformed pattern. Note that the rule

systems traditionally also include unique labels associated with pattern elements, to

allow LHS , NAC , and RHS elements to refer to specific matched instances, and thus

identify elements which are specifically deleted or modified. For clarity and simplic-

ity in depicting the patterns in transformation rules, we do not show these unique

labels in our examples.

A straightforward rule design would be to simply allow our scope syntax to

be employed in LHS , RHS , and NAC specifications. An interesting complexity in

defining rules for a scoped transformation system, however, arises from the need to

express scope manipulations independently of source graph manipulations. This is

62

Figure 3–7: Ambiguity in modifying scope hierarchy in RHS.

due to the fact that a naive change in scope hierarchy has the potential for non-trivial

side-effects on the graph structure, not easily visible in the rule structure.

An example motivating this concern is given in Figure 3–7. The rule in column a

is attempting to express an inversion of the scope hierarchy relation between A and

B. Consider, however, a source graph consisting of two connected nodes X and Y

and a single ST , as depicted in column b of Figure 3–7. The LHS will match a node

labeled X which is marked with innermost scope B, such that scope A is a parent

scope of B. After execution of the RHS, node X is moved into the scope A. And the

scope hierarchy manipulation occurs: scope B now becomes the parent of scope A,

as shown in column c. The new scope hierarchy, however, indirectly affects node Y ;

its immediate scope is still B, but scope B is now a parent of scope A, and thus Y

is no longer (by transitivity) in scope A. This may be the desired, correct behavior,

but is also potentially confusing in that it is not clear whether a scope pattern in

the RHS is intended to represent a global transformation of scope relations or just

specification of a single, bound host node’s new scoping relation.

To more cleanly separate these issues we decided to perform SF and ST ma-

nipulations orthogonal to the main transformation rule rather than implicitly in

63

Figure 3–8: Extended model transformation rule.

the normal RHS. This ensures that the intent of any scope manipulations is overt.

Attempts to modify the scope hierarchy itself in the RHS are thus disallowed.

Figure 3–8 presents an extension to our existing transformation rule that illus-

trates our final rule design. This rule creates a scope hierarchy between unconnected

ST nodes A and B and places node X into scope A. Node X must not be in C

scope as dictated in the NAC part of the rule. The top part contains DSL and scope

patterns, while the bottom part of the rule is reserved for scope hierarchy manipu-

lation only, with matching and rewriting performed in typical model transformation

fashion on the SF . Thus, only labeled scopes with nesting to represent hierarchy are

allowed in the bottom part. We will now refer to the top part as LHST ,RHST ,NACT

and to the bottom part as LHSB,RHSB,NACB.

There are constraints on placing certain scope patterns in the top parts of the

rule. Anonymous and dashed scope constructs are ambiguous in labeling source

graph nodes in the RHST and should be disallowed when creating new innermost

scope relationships. Nested scope constructs such as in pattern 4 from Figure 3–5

64

are not allowed in RHST if they attempt to modify the scope hierarchy because of

the hierarchy manipulation problem described in Figure 3–7.

In RHST , labeling of source graph nodes with the corresponding innermost scope

occurs and the bottom part with its RHSB is reserved for scope hierarchy manip-

ulation. A runtime check will ensure that the RHST is using (assigning) a scope

that exists in the scope hierarchy. This is necessary when the scope is not matched

prior in LHST or present in RHSB, which guarantees scope existence through either

matching or creation of the scope. If the scope does not exist the rule application

will result in a failure. Scope well-formedness is discussed in Section 3.3.6.

Returning to our example of the ambiguous intent in the transformation shown

in Figure 3–7. We can now use the extended rule structure to more clearly express

the transformation engineer’s intent. Figure 3–9 shows the resulting rule (a), and

behavior in terms of the input scoped graph (b) and rewritten output graph (c).

Here, in the top left part of the rule it is clear that we wish to match X with an

innermost scope of B and a parent to that scope A. The top right shows us changing

X ’s innermost scope relation from B to A. The actual SF manipulation itself,

however, is now separately specified in the bottom part of the rule, showing that

we require B to be nested immediately inside A, and wish to invert that relation.

The end effect is the same, but the change to the SF by the rule designer’s choice is

intentional, explicit and is more clearly affecting the entire scoped graph.

Final argument in favor of our extended rule structure is to allow for the flexi-

bility to execute the top part of the rule when the bottom part is applicable (LHSB

match is found in SF) and vice versa. It is also possible to omit either the top or

65

bottom parts of the rule. In this way a rule designer can easily separate SF ma-

nipulation from any transformation of the host graph and the scope relationships it

includes.

Figure 3–9: The extended rule applied to the ambiguity problem.

In the following section, we describe the semantics of scoped rule application.

3.3.4 Semantics

In this section, we give the semantics of our scoped rule application a visual

description. In Figure 3–10 an extended rule application is shown using notation

similar to that used in algebraic single-pushout (SPO) graph rewriting [58] (with the

NAC portion of the rule omitted for brevity). Top and bottom parts of LHS and

RHS are shown separately as they represent different parts of the extended rule. For

simplicity the morphisms are indicated by the bold outlines of the nodes and edges.

A morphism of the bottom parts pertaining to the SF are indicated by dashed bold

rectangles. The application of this rule creates a node Birch in the scope hierarchy

and a node Y connected to node X . Both top and bottom patterns must have a

match in the scoped graph for the rule to apply. That is m top : LHST → G and

m bot. : LHSB → G morphisms must exist.

66

Figure 3–10: Scoped matching visualized (scoped graph syntax for patterns) using
SPO notation.

Note that matching the scope labeled Pine in the top and bottom parts of the

rule may seem redundant, as both ensure the existence of a node labeled Pine in SF .

This need not be true in general, however, and there is no requirement that LHST be

related to LHSB, giving us the flexibility to modify the SF as a consequence of rule

application, without needing that rule to directly refer to host nodes in the portion

of the SF being modified.

Finally, due to a restriction on the use of unique labels in the SF , we ensure

that the Pine scope patterns in both LHST and LHSB match the same Pine node

in G. The use of anonymous and dashed scope constructs is forbidden in the bottom

part of the rule for the reason of ambiguity in modifying the scope hierarchy (see

Section 3.3.6). This eliminates the situations with unclear matching semantics, such

67

as the presence of the anonymous scope constructs in both LHST and LHSB parts

of the rule.

3.3.5 Scope Matching Using Search Plans

We now present scoped matching in the context of search plans (SP). The SPs

were presented in the background chapter in Section 2.4.1. We believe that this is

the most natural way of dealing with scoped matching, because our scope constructs

translate into search plans in a straightforward way. Below we discuss the generation

of SPs for the scoped patterns and address possible matching scenarios and strategies.

Matching is a process of finding an occurrence or a binding of a pattern (includ-

ing scoped pattern) in the input graph. We consider the scoped graph as a whole for

the purpose of SP-based matching. Note that matching routines typically produce

a set of occurrences of a pattern in a host graph, called the matchset [94]. A match

is then selected from a matchset for a rewrite. To understand our process, however,

it is sufficient to provide a description of locating a single match, and this can be

trivially extended to multiple matches.

To demonstrate how scope augments the SP-based matching we start with a non-

scoped pattern and add scope. In Figure 3–11 an input graph is shown in column

a. Assume that the host graph is analyzed to collect statistical information for the

purpose of calculating the costs of primitive match operations. In this demonstration,

we count the number of types in the input model. We get 4 X node types and 4

e edge types between the nodes. The resulting search graph for the pattern given

in column b is shown in column c. Edges are labeled with corresponding primitive

match operations, their cost is shown after the comma, and a minimum spanning tree

68

Figure 3–11: A minimum spanning tree over the search graph in bold edges on the
right. The input graph is on the left, and the pattern in the middle.

is marked over the search graph with bold edges. Note that this minimum spanning

tree is not unique, and thus other lowest-cost search plans are possible. In this case

a SP is P1=lkp(e),src(e),trg(e) with a cost of 12 (c(P1) = 4 + 4 ∗ 1 + 4 ∗ 1 ∗ 1 = 12).

Consider Figure 3–12 with the same layout as Figure 3–11. We add scope to

the input graph and augment the pattern with the scope (shown using input graph

syntax, a dashed edge representing an innermost scope relationship). The input

graph statistics remains unchanged by the addition of a single scope node and its

immediate scope edge (labeled s). The resulting SP from a minimum spanning

tree P2=lkp(Pine),out(Pine,s),trg(s),out(X,e),trg(e) is longer in terms of the number

of operations. The scoped search plan however, is much cheaper at a cost of 5

(c(P2) = 1 + 1 ∗ 1 + 1 ∗ 1 ∗ 1 + 1 ∗ 1 ∗ 1 ∗ 1 + 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 = 5).

The generation of scoped SP can be applied in the same way to labeled and

anonymous scopes with nesting, as well as the scope intersections after flattening

operation. Simple scoped patterns are treated just like any other pattern. If the

anonymous scope construct is present in the search graph, the primitive match op-

erations should accommodate returning a binding for any scope node in the SF .

69

Figure 3–12: After addition of scope to the input graph and the pattern, the search
plan generated from the search graph on the right has a cost of 5 as opposed to 12
without scope.

This could mean considering all the nodes in the SF which is expensive. There-

fore, depending on the input graph statistics, it could be beneficial to force the SP

to start from the input graph node and then match up the scope hierarchy until

the outermost scope construct. This can be demonstrated in an alternative (and

not necessarily the best) search plan, searching right to left through Figure 3–12.

In this case, we start at an input graph node and match up the scope hierarchy:

P3=lkp(X),in(X,e),src(e),in(X,s),src(s).

Dashed Scope Matching is addressed next. The dashed scope constructs re-

quire slight modification to the search plan-based matching. We introduce two extra

match operations down and up. These two new operations are functions that con-

tain calls to the primitive match operations with additional branch and loop control

structures. In Figure 3–13 in column a is the scoped pattern and the search graph

corresponding to that pattern in column b. Now, during search graph generation the

dashed construct within a labeled scope is treated with these new operations. The

match operation down is used when the matching process starts binding the pattern

from the scope node (Pine node in this example) down the hierarchy towards the

70

Figure 3–13: The search graph in column b displaying two new match operations
targeting dashed scope constructs

input graph node X . The up operation, on the contrary, is used when we match

up the scope hierarchy from the input graph node. In Figure 3–13 lookup operation

edges are present. Based on the input graph statistics, lookup of the node (includ-

ing the scope hierarchy nodes) whose type is least represented in the model may be

chosen to be at the start of a search plan list. This results in a matching up or down

the hierarchy.

The down operation requires two parameters, an already bound scope node

and the information about the non-scope node where the pattern terminates. The

information about the non-scoped node is used to decide whether matching reached

the terminating host graph node. In reverse, the up operation requires an already

bound host graph node and the information about the terminating scope pattern

node. In a case when the scope pattern node is an anonymous scope, the generic

type of the scope node is provided to indicate that any node of the SF will be

satisfactory for a binding. Then, the up routine should terminate as soon as the

innermost scope relationship from the bound host graph node is found by traveling

up the scope relationship edge satisfying shortest match semantics. In Figure 3–13

71

operation costs are not shown. At this point we do not attempt to reason precisely

about the cost of the up and down operations, except to estimate the maximum or

minimum values based on the information about SF . The cost depends on the number

of levels and branching of the ST s. Let us first consider dashed scope patterns inside

labeled scope as in Figure 3–13. The best case for an up operation is when Pine

is the immediate scope to X . The worst case is when the scope of interest is not

present or is the root of the ST . Similarly, for a down operation the intermediate

scope relationship presents the best case. However, the worst case is when all of the

ST is traversed from the root scope down.

When the anonymous scope contains dashed scope, a down operation can be

very expensive. Bindings to all scope nodes may need to be evaluated in an effort

to discover the host graph node down the ST . In addition to that, the match can

contain portions of the ST of different length (depending on the starting point). The

up operation starting from the host graph node will match the very first immediate

scope node discovered. Depending on the cost of a binding to the host graph node,

this can be an expensive operation. Calculating the cost of the nested operations

presents an interesting case for future work in the field of search plans.

Below are algorithmic descriptions of down and up operations. For brevity, we

assume that the primitive operations inside these functions return a single binding

out of all possible; anonymous scope treatment is also omitted because extending

these functions to support such scopes is trivial. To concisely convey the semantics

of dashed scope matching in a simple way, in these functions, we do not deal with

failures to produce a binding and the resulting backtracking. The S parameter passed

72

into in and out match operations represents a generic scope hierarchy edge type that

needs to be bound, including the innermost scope edge.

function down(Scope,Node)

result = Scope

while result != Node do

ScopeEdge = out(result, S)

result = trg(ScopeEdge)

end while

return result

end function

function up(Node, Scope)

result = Node

while result != Scope do

ScopeEdge = in(result, S)

result = src(ScopeEdge)

end while

return result

end function

Inside the down function, the outgoing scope hierarchy edge is bound and stored

inside the variable ScopeEdge. The edge is then used to bind the target node at

its endpoint. The binding stored in result is tested for the conformance to the

terminating non-scope node. If it conforms, the binding is returned, if not, the

routine continues looking for the non-scope node in a depth-first fashion. Note

that intermediate scope hierarchy bindings are not returned from this function. If

necessary, these bindings can be stored within the function and returned. In the

case of the up function, the same principles describing down operation apply, only in

reverse. From the starting binding of the non-scope node, the matching travels up

the scope hierarchy edges until the labeled scope (outermost scope in the pattern)

is reached. We continue with a description of the rewriting stage of the scoped rule

application.

73

3.3.6 Rewriting

After the discovery of the match, the rule application process enters the rewriting

phase. This phase is described in this section.

As mentioned in Section 3.3.3, we rely on unique labels within the rule patterns

to determine which nodes and edges are being added as opposed to being removed

or updated in the match bindings. If we have a match for both LHST and LHSB,

we perform the corresponding graph modifications to rewrite the host graph and the

immediate scope relationships according to RHST , and the SF , according to RHSB.

Recall that in RHST , we only deal with innermost scope relationships. Therefore, all

scope relationships and nodes that are not intermediate to the host graph nodes in the

LHST are ignored for the rewriting. Rewriting within the scoped graph occurs using

standard graph transformation operations that add, update, or remove nodes and

relations. Note that treatment of NAC scoped patterns is similar to the treatment

of LHS patterns described above. The efficient treatment of NAC patterns when

common parts of LHS and NAC are matched first is outside of the scope of this

thesis.

Scope Well-Formedness is addressed next. The additional complication

shows up in terms of ensuring that the innermost relation between host and SF

nodes is properly updated and still well-formed. Our constraints on RHST ensure

that we only need to consider innermost bindings of RHST , but even there we still

need to ensure that the innermost bindings are not created to the new or matched

74

scope nodes that would violate our property of each host node having only one in-

nermost scope in a given ST . Failures in this represent runtime errors, as do rewrites

that would violate the forest nature of the SF .

A constructive technique presented in [40], which derives application conditions

from global constraints and adds them to the transformation rules to ensure valid

models (w.r.t. constraints) by design, could possibly be used in this context as

well. In [12] the authors ensure EMF model consistency, such as avoiding cyclic

containment, by introducing restricted rules. That work could be applied to ensuring

certain consistency requirements of our scope hierarchy forest, such as an absence

of cycles. Another way to ensure consistency is by using a tool such as IncQuery

[100]. This tool is used successfully in industry to facilitate verification of models by

efficiently matching (IncQuery uses incremental pattern matching) anti-patterns, the

patterns that break consistency. It would be possible to implement scope hierarchy

consistency verification as the rules are being constructed. This would be facilitated

by the fact that the bottom part of our scoped rule is reserved for scope hierarchy

manipulations. The MT engineer could then be alerted to any problems in advance

of executing the transformation.

As mentioned in Section 3.3.3, the top part of the rule is intended for innermost

scope manipulations. Thus, RHST will only have labeled scope constructs without

any nesting when new innermost scope relationships are created. The scoped pat-

tern found in the LHST may need to be replicated in the RHST if the intent is to

preserve the relationship discovered. The bottom part of the rule can only contain la-

beled scopes (with possible nesting) to allow for SF manipulations. Anonymous and

75

dashed constructs are not permitted in the bottom part. We may also need to delete

innermost bindings from arbitrary other nodes if a scope node is destroyed. This

requires simply removing dangling edges between deleted scope nodes and affected

source graph nodes. Runtime well-formedness verification implies the use of some

form of the transactional rewriting system with checkpointing and backtracking. In

case of a failure, the previous well-formed state of the scoped graph is restored. Note

that T-Core within AToMPM supports backtracking.

We can also envision automated debugging scenarios, presented in Chapter 5,

used to evaluate scoped transformations. Debugging scenarios can be defined (using

declarative patterns) to catch illegal SF modifications, such as loop creation, etc. The

MT is then executed under the supervision of the debugger running the scenario. In

case an illegal pattern is discovered, the execution can be halted and appropriate

alert issued to the engineer debugging scoped MT.

In general, and although pathologically expensive scope-based manipulations

can be easily defined, we envision the scope hierarchy to be much smaller than the

related host graph, and scope modifications to be much less frequent. We thus expect

the overall SF modification time to be negligible, at least in comparison to the cost

of host graph manipulations. In the next section, we continue with the possible

implementations of scope applicable to several benchmark transformations.

3.4 Implementation

In this section, we first describe the mutual exclusion and the forest-fire sim-

ulation transformations. We then discuss a basic design in the industry-standard

context of QVT and the state-of-the-art graph rewriting tool GrGen demonstrating

76

that our approach does not require any fundamental changes to existing transfor-

mation systems in order to realize an implementation. The implementation of our

scope concept in GrGen in the context of the forest-fire and mutual exclusion bench-

marks are evaluated to establish the performance benefits. In addition, a prototype

implementation in our tool AToMPM, allows us to show a preliminary performance

comparison between a scoped and a non-scoped (baseline)2 implementations of the

forest-fire and mutual exclusion benchmarks. These examples are used throughout

the thesis. We proceed with a description of a mutual exclusion MT benchmark.

3.4.1 Mutual Exclusion

We evaluate the use of scope on a benchmark from the model transformation

community. For this, we chose the distributed mutual exclusion benchmark in its as

long as possible (ALAP) form, as introduced in [109] with a complete specification

presented in [39]. In this benchmark, we model the processes that are attempting to

access shared resources. In order to ensure exclusive access to resources, the processes

are interconnected to model a token ring. The access to resources is achieved through

the passing of the tokens in the ring.

A metamodel of the mutual exclusion problem is shown in Figure 3–14. There

are two classes called Process and Resource. These classes are connected by associ-

ations of type next, request, held by, release, token, and blocked. The final reference

blocked is not used in the ALAP transformation.

2 Non-scoped and baseline implementations are the same and are used interchange-
ably.

77

Process

Resource

next

blocked

Mutex

held_by releasetoken

request

*

0..1

*

0..1

*

0..10..10..1

**

*

*

Figure 3–14: Metamodel for the mutual exclusion problem [108]

In Figure 3–15 the four rules of the ALAP mutual exclusion benchmark trans-

formation are presented (the original, complete problem contains the total 13 rules in

[39]). These rules constitute the baseline, non-scoped MT. Note that we will revisit

this baseline transformation in Chapter 4 for another evaluation. We give an expla-

nation of the releaseRule as an example. The rule in its LHS requires Resource 1 to

be held by a process Process, while in its RHS the same nodes Process and Resource

1 become connected by an edge of type release. The releaseRule also has a NAC

(shown in dashed rectangle) which ensures that the process Process does not have

any requests issued for any resources. A single iteration of the mutex benchmark

transformation is scheduled such that the rules are executed in the following order:

releaseRule, giveRule, requestRule, and takeRule. Each rule is executed N times, this

number is equal to the number of both resources and processes in the input model.

Another version of the benchmark exists where there is only one resource for the

process ring, called short transformation sequence (STS) [108].

To explain the essence of the transformation, on the left in Figure 3–16 is an

example of an initial mutex model. The edge labels are omitted, but the processes

are interconnected using next associations, forming a ring of processes. The resources

78

Figure 3–15: A subset of rules describing the ALAP mutual exclusion transformation

79

Figure 3–16: The initial mutual exclusion model on the left and the resulting model
after transformation sequence execution on the right. Each resource is moved to the
next process in the process ring.

corresponding to a process are linked with held by association. The resulting output

model is shown on the right. As a result, each resource is moved to the next process

in the process ring. Parallel execution of this benchmark is possible, however, we are

concerned with the sequential execution of this benchmark because AToMPM does

not support parallel rule execution.

To achieve scoped MT, we place the resource model elements into a scope, and

the other model elements such as processes and associations are not placed into scope.

Thus, each rule of the transformation uses scope for matching resources except for

the releaseRule transformation rule that is used to place each resource into the only

scope in the SF called sResource. In Figure 3–17 is the example of the giveRule

transformation rule with the added scope labeled sResource (other scoped rules are

omitted for brevity).

Note that it is, of course, possible to implement scoped transformation in dif-

ferent ways (this is also true for the forest-fire simulation described in the following

section). For example by placing processed model elements into the scope to elim-

inate them from consideration in the following rules. In this thesis, we added the

80

Figure 3–17: Scoped giveRule; resources in scope sResource are used for matching
the pattern in LHS .

scope to the benchmarks in a way to keep the likeness of scoped and non-scoped

rules as much as possible (no introduced NAC for example) and capture the result-

ing performance effects. A short transformation sequence (STS) mutex benchmark

was briefly evaluated in GrGen (using the implementation provided in the GrGen

source tree). Next, we describe the forest-fire simulation MT and its implementations

in several MT tools.

3.4.2 Forest-Fire Simulation

In experimental work we wanted to validate that our scope model was feasible in

implementation, allowed for reasonably intuitive rule constructions, and was able to

demonstrate some improvement in efficiency. For this we used our running example

with its Region scope hierarchy, examining both scoped and non-scoped designs in

AToMPM and GrGen. The forest-fire example was partially motivated by the “comb

structure” MT benchmark from the MT benchmark suite [109]. This benchmark is

used especially for evaluating the pattern matching efficiency. We show the bench-

mark input model and the comb pattern itself in Figure 3–18. The essence of the

comb structure benchmark is the discovery of the comb pattern in the grid input

81

Figure 3–18: The grid input model and the comb pattern from the comb structure
benchmark

Figure 3–19: Forest-fire abstract syntax

model that itself is not modified. The grid of this benchmark is also similar to our

forest-fire grid. Note that in this thesis we demonstrate the application of scope

to in-place transformations; however, there is no restriction on the use of scope in

model-to-model transformations.

Figure 3–19 shows the abstract syntax model of the forest-fire spreading for-

malism. The Cell class instances can form the forest by connecting to each other

using the Next association. For simplicity we do not create any specialization of

the connection between the cells such as North, East, or West. The state of the

forest cell, healthy, on fire, smoldering or dead, is denoted by an integer attribute

type, as inspired by Muzy et al. [73]. The concrete (visual) syntax of the cell icon

is a rectangle (although the underlying representation is fully graph-based), colored

82

according to the state of the cell: healthy–green, on fire–red, and dead–gray. The

smoldering cells have no color of their own for simplicity and to allow scope labels

B displayed over them as shown in Figure 3–23 on the right.

Implementation in AToMPM

The operational semantics of the forest-fire simulation are defined using trans-

formations. To be able to compare the scoped transformations to non-scoped ones,

we design transformations to produce similar simulation results. In our case, the

fire-spreading pattern is uniform for both transformations.

The baseline transformation is presented in Figure 3–20. The first rule, “Cells

catch fire” marks (by changing the type attribute to smoldering) the cells neighboring

the cells with burning trees (they catch fire). Note that in Figure 3–20 and Figure 3–

21 we show undirected edges in “Cells catch fire” rule. In the actual implementation,

the rule has two versions for the incoming and the outgoing edges from and to the

neighboring cell to catch fire. The smoldering cells are then set on fire in the rule

“Cells ignite”. Note that we do not regulate burning time for both transformations,

since this is an as fast as possible simulation. The final rule “Cells burn out” finds

the cells that are on fire and marks them as dead. Thus the fire front spreads in the

same fashion as in the scoped transformation described below.

Our scoped transformation uses the Region scope hierarchy from our running

example. For simplicity in this simulation, the scoped rules do not utilize the hi-

erarchical nature of the SF . Instead we just use the leaves of Region ST , such as

with F as shown in Figure 3–21. There are 4 rules in the core of fire spread sim-

ulation, as displayed in Figure 3–21. The first rule “Init F scope” is intended for

83

Figure 3–20: Core rules of the baseline forest-fire simulation shown using AToMPM
syntax. Here and in the scoped transformation the cells are colored according to the
type attribute value.

Figure 3–21: Core rules of scoped forest-fire simulation shown using AToMPM syn-
tax.

84

Figure 3–22: The sequential scheduling of the scoped and non-scoped rules.

one-time initialization; it places a cell on fire into F scope and also creates Region

ST in SF . The initialization rule also uses our extended rule structure to change

the SF . Note that the subsequent rules omit the bottom part of the scoped rule,

because it is not used. Rule “Cells catch fire” puts any neighbors of cells in the F

scope into the B scope (they catch fire) and marks them as smoldering. Rule “Cells

ignite” sets the cells in B scope (smoldering) on fire and puts them into F scope.

Finally, the rule ‘Cells burn out” seeks out the cells in F scope. The cells are then

marked dead and put into scope D. The transformation rules for both the scoped

and non-scoped implementations are then scheduled as per the sequential scheduling

approach is given in Figure 3–22 (the first rule “Init F scope” is scope-specific). The

sequential approach aims to produce uniform fire spreading (in our case circular, as

in taxicab geometry, since we do not model the effect of the wind).

85

Figure 3–23: The Result of execution in both baseline (left) and scoped (right) cases
in AToMPM simulation: the fire spreads uniformly.

AToMPM simulation screen shots of the results for both baseline and scoped

transformations are shown in Figure 3–23. We chose to use Tkinter [44] as our

canvas for fast prototyping and running transformations in a stand-alone rendering

outside AToMPM. The use of Tkinter allows us to display extra information that is

not part of the formalism, e.g. scope of the source node.

Implementation in QVT

We include excerpts of QVT-Relational (QVT-R) [76] and QVT-O transforma-

tions implementing our scoped forest-fire simulation. These examples were provided

by Maged Elaasar a co-author of the ”Scope in Model Transformations” journal pa-

per [46]. In the examples below, the class Cell models a single cell in the forest

grid. The cell neighborhood relationship is denoted by the next property (similar

to the next association in Figure 3–19). Property type represents the enumeration

corresponding to the state of the forest cell described in Section 3.4.4. The QVT

transformation’s intermediate property called Scope is used to model our scope. This

property is defined as an enumeration of F , B, and D scopes from our running ex-

ample. Note that the intermediate property can be of arbitrary complexity to model

86

our scope formalism (in Figure 3–24), enabling hierarchical scope constructs during

transformation. The intermediate property is a good facility to implement scope

as it does not exist outside the context of the transformation that defines it. This

ensures a non-invasive scope application as the MM of the language transformed will

remain unchanged. This can be a good strategy for scope use in scope-unaware MT

systems.

Below is the QVT-R transformation with the implementation of our scoped

“Cells catch fire” rule (in Figure 3–21). The rule “Cells catch fire” puts any healthy

forest cells adjacent to cells in F scope into the B scope (they catch fire). Definitions

of the QVT classes Cell and ForestFire are not listed.

metamodel ScopeMM {

enum Scope { F, B, D };

}

transformation FireSimulation (ff : ForestFire) {

intermediate property Cell::scope : Scope;

toplevel relation CellsCatchFire {

checkonly domain ff healthy:Cell {

type = healthy,

next = burning:Cell {

scope = Scope::F

}

}

enforce domain ff healthy:Cell {

87

scope = Scope::B

type = smoldering

}

}

}

The same rule in QVT-O is presented below.

metamodel ScopeMM {

enum Scope { F, B, D };

}

transformation FireSimulation (inout ff : ForestFire) {

intermediate property Cell::scope : Scope;

mapping inout Cell::CellsCatchFire()

when {

self.type = healthy

self.next->exists(scope = Scope::F)

}

{

scope := Scope::B

type := smoldering

}

}

88

Implementation in GrGen

We also consider the forest-fire simulation for scope evaluation using GrGen. We

ported the non-scoped transformation from Figure 3–20 and its schedule to GrGen

and refer to it as a baseline transformation. Below is the baseline “Cells catch fire”

rule.

rule CellsCatchFire {

t1:Cell <-:Next- t2:Cell;

if {t1.type == 1 && t2.type == 0;}

modify {eval {t2.type = 2;}}}

We then use some of the available optimizations GrGen provides (listed in Section

2) to implement/simulate a scope-aware system. Note, that in the actual implemen-

tation of the simulation we use a node replacing an edge of the type Next between

the forest cells to align the benchmark with the implementation in AToMPM.

Container. First, to model the scope, sets are introduced directly into the

rules, a transformation we refer to as “Container”. The forest cells, such as the cells

on fire are maintained inside a single set container and so there exists a container

for each region of the forest-fire. GrGen then performs the search plan pattern

bindings from these containers. It is up to transformation engineer to maintain

model elements inside the containers, whereas the AToMPM scope implementation

aims at a transparent and automatic scope implementation. Below is the “Cells

catch fire” rule. Notice the familiar F and B scope mirroring variables.

rule CellsCatchFire (ref F:set<Cell>, ref B:set<Cell>){

t1:Cell{F} <-:Next- t2:Cell;

89

if {t2.type == 0;}

modify {

eval {

B.add(t2);

t2.type = 2;}}}

The t1:Cell{F} construct signals to the search plan backend to perform a binding to

the pattern variable t1 during a lookup from a container set named F .

Index. The forest cell attribute type goes hand in hand with the forest-fire

regions. The cells with type values equal to 1 represent the fire front and so forth. We

thus implement the attribute indexing inside GrGen, referring to this transformation

as “Index.” First, the index for cell types is specified in the MM. Then, the index is

used in rules for binding pattern elements. GrGen takes care of index maintenance.

Below is the same “Cells catch fire” rule using the TYPE attribute indexing that

embodies scoping or grouping based on attributes values.

rule CellsCatchFire {

t1:Cell{TYPE==1} <-:Next- t2:Cell;

if {t2.type == 0;}

modify {eval {t2.type = 2;}}}

The t1:Cell{TYPE=1} construct signals to the search plan backend to perform a

binding to the pattern variable t1 during a lookup from the dictionary where keys

are type attribute values.

Scoped graph. Finally, we implement the scoped graph by adding scope nodes

and scope relationships to the forest-fire MM. We refer to this transformation as

90

“Scoped graph” in this section, and our scope implementation is a direct mapping of

our scope concept onto GrGen. Placing of the forest cells into scopes is performed

by drawing a scope relationship edge between the cell nodes and the scope nodes. In

the rule below, the immediate scope relationship is matched in the pattern using the

edge of type S. Below we show the “Cells catch fire” rule using the scope directly in

the input graph.

rule CellsCatchFire {

F[prio = 10000]:Scope{NAME=="F"} -:S-> t1:Cell <-:Next- t2:Cell;

B:Scope{NAME=="B"};

if {t2.type == 0;}

modify {

B -:S-> t2;

eval {t2.type = 2;}}}

The scope is now part of the pattern. In this rule, we use prio to ensure that the

search plan starts matching from the scope node F . We also use scope name indexing

to locate a scope node based on its name. In the rewrite part we place the t2 forest

cell into scope B with B -:S-> t2;.

Amalgamated Forest-Fire. It is possible to use amalgamated rules to im-

plement forest-fire transformation, and we also modified the forest-fire example to

investigate the effects of scope on the amalgamated rules. For this, we use undi-

rected edges between the forest cells. Before, to align the GrGen example with the

implementation in AToMPM, the forest-fire transformation was implemented using

directed edges. The undirected edge implementation is simpler and cleaner, as it

91

allows us to specify successor and predecessor neighbors with one rule (in GrGen, it

is still possible to make a pattern that matches directed edges in both directions).

Below is the meta-model of the modified forest-fire example including the scoping

information.

node class Cell { type: int; }

node class Scope { name: string; }

edge class S

connect Scope [1] --> Cell [1];

undirected edge class C2C;

We amalgamate the “Cells catch fire” rule. Its non-scope, baseline version is shown

below. In this rule, after a single execution all cells neighboring burning cells catch

fire. The attribute indexing in the baseline transformation is also performed.

rule CellsCatchFire {

multiple{

t1[prio=10000]:Cell{TYPE==1};

multiple {

t1 -:C2C- t2:Cell;

if {t2.type == 0;}

modify {eval {t2.type = 2;}}

} modify {eval{}}}}

We now add scope in a similar fashion to how we showed earlier. In the rule below,

a single match of the scope node F , is used to iterate over all scope edges to find the

neighboring cells of all burning cells.

92

rule CellsCatchFire {

B:Scope{NAME=="B"};

F[prio = 10000]:Scope{NAME=="F"};

multiple{

F -:S-> t1:Cell;

multiple {

t1 -:C2C- t2:Cell;

if {t2.type == 0;}

modify {

B -:S-> t2;

eval {t2.type = 2;}}

} modify {eval{}}}}

Note that we now use an iterator multiple in the amalgamated rules of the forest-fire

example. Previously, in AToMPM and GrGen the rewrites happened on the first

match found. As demonstrated with an amalgamation example in Section 3.4.5, the

iteration may not always be beneficial. In the next section, we briefly discuss an

implementation of scope-aware MT system in AToMPM.

3.4.3 Implementation of Scope in AToMPM

A prototype of scoped transformations is implemented in the AToMPM meta-

modeling and graph rewriting tool [59]. Our design is intended mainly to establish

additional proof of feasibility, and to serve as a baseline for further research into

optimizing performance. At the same time, we use this naive approach as another

93

example, demonstrating that our scoped model can be easily and incrementally in-

tegrated into an existing framework.

For scope implementation in AToMPM we use our model sensitive search plan

matcher. There, the SF is implemented trivially, by using sets containing input

graph node identifiers. Each set represents a single scope. This implementation is

not well suited for dealing with hierarchical scopes as opposed to what was shown in

GrGen where we directly write scope hierarchy into the input graph. Nevertheless,

this approach allowed us to easily use the existing subgraph matching algorithm.

Within this process, we do make one important modification to the part of the

algorithm where candidate nodes are evaluated for compatibility in type/name and

degree during a primitive lookup operation. Here we prioritize scope in the search

plan generation process causing search plan to start from scope node. The candidate

bindings are then taken from the scope sets. Only the nodes that are in scope

are considered as candidates. As we will show, even this simple change led to a

performance improvement.

Other changes were made to accommodate the new rule and the scope formalism

in the tool. For this, we need syntactic changes to introduce a universal scope

formalism that can be used with any AToMPM DSL model in transformation rules.

For abstract syntax, AToMPM uses a variant of the UML diagram formalism, and a

reconstruction of the abstract syntax model is shown in Figure 3–24. The class Scope

represents a scope. The class $* is an implementation-specific way of defining a

wildcard class (i.e., any class). The type of Has association is containment, such that

it allows Scope instances to contain any class instance, including Scope instances

94

Figure 3–24: Scope abstract syntax used in AToMPM.

themselves. This allows for hierarchical construction of scope. In addition, the

resulting implementation makes our tool scope-aware. Scope is now a part of MT

language formalism, applicable to any DSL without modification of its MM. Such

scope integration becomes transparent to the user, and can now be used without

the far-reaching effects of a language specification modification. This also addresses

an aspect of a model and model transformation evolution problem [69]. Finally, as

a side effect, in this fashion the scope hierarchy can also be used to encode certain

domain-specific information omitted at the language design time. We now continue

with a description of our experimental setup to evaluate scoped MTs.

3.4.4 Experimental Evaluation

In the experimental evaluation, we investigate if our scope concept can indeed

bring performance improvements. This implies the following research questions:

• Does the application of scope to the baseline transformation reduce the total

transformation execution time?

• What is the penalty for scope maintenance?

To answer these questions we perform the following experiments. For the forest-fire

benchmark, the forest grids of N ×N cells similar to one on the left in Figure 3–4,

are generated in conformance with the meta-model. In AToMPM the grid is gener-

ated programmatically for N values of 100 and 200. In GrGen transformation rules

95

are used to create the grid for N values of 100, 1000, and 2000. Smaller grid sizes

in our tool compared to a highly optimized GrGen were necessary because of the

performance advantage of GrGen. A single cell in the middle of the grid is placed on

fire before executing the transformation. In AToMPM scoped and baseline transfor-

mations were executed, while in GrGen baseline (non-scope), index, container, and

scope graph experiments were executed. Each experiment was executed 3 times and

the average was taken for total, match, and rewrite times of the simulation. Rewrite

time allows for estimating scope maintenance penalty. The amalgamated forest-fire

example was evaluated on a grid of 1000 by 1000 cells, on which baseline and scoped

transformations were executed. Because the baseline amalgamated transformation

is already using attribute indexing, we exclude indexing/container type experiments

for the amalgamated forest-fire transformation in GrGen.

The mutual exclusion ALAP benchmark was executed in AToMPM. Initial mu-

tex models for N values of 100, 1000, and 10000 were generated programmatically

(N represents the number of both resources and processes in the input model). Each

experiment for scoped and non-scoped transformations was executed 3 times. The

average total, match, and rewrite times were taken. The short transformation se-

quence (single resource) mutex benchmark implementation found in GrGen source

tree was augmented with scope and evaluated on a million process model. Paralleliza-

tion was purposefully omitted from the evaluation as the benchmarks implemented in

our AToMPM tool do not execute transformations asynchronously. The evaluation

was performed on an x64 i7 mobile quad-core processor with 16 GB RAM running

96

Ubuntu 12.10. The results of the static scope experimental evaluation are presented

next.

3.4.5 Results

Note that throughout this section standard deviation is not reported, as it was

within ten percent of the mean.

Forest-fire results. In Figure 3–25 total, rewrite and match times are pre-

sented for the forest-fire benchmark in GrGen. The total time is displayed to con-

trast for the unaccounted time in the case of container and index experiments. Gr-

Gen match and rewrite times were taken as reported by the system. It appears that

container and index maintenance time is not fully accounted for. There is also an

anomaly for the index simulation. For N = 1000 match and rewrite times add up

to match the total execution time. In N = 2000 however, this is not the case. A

possible explanation is the large graph size and that at such size index maintenance

becomes an issue and it is not tracked.

0.4 0.3 0.6

20.7

361.2
83.5

1,147.4
2,771.6

652.6

18,925.5

0.1

10

1000

100000

B S I C B S I C B S I C

100 1000 2000

Se
co

n
d

s,
 lo

g
sc

al
e

N, cells

GrGen forest-fire total, rewrite, match times

Rewrite

Match

Total

Figure 3–25: GrGen forest-fire total, rewrite and match times for Baseline (B), Scope
Graph (S), Index (I), and Container (C) variations. Note the log-scale in time.

97

The container transformation results are only reported for N = 100. Due to

large forest grids, the runtime exceeded the practical limit of 10 hours and fur-

ther experiments were not executed. The container scope implementation is not

feasible due what likely is a prohibitive penalty for container maintenance. The

scope implementation using indexing does not show a speed up compared to a base-

line transformation, although index maintenance is evidently cheaper than container

maintenance judging by total time. Finally, from the results, we conclude that ap-

plying the scope directly into the host graph is a better optimization to an already

fast baseline transformation in GrGen. This is attributed to the search plan cost

reduction described in Section 3.3.5.

The only downside to the scoped graph use is shown by the larger portion of

the transformation dedicated to the rewriting comparing to other transformations

(this is also true for the container transformation). However, the rewriting penalty

associated with the scope maintenance within the input graph is diminished by the

improvement in matching and total time compared to the baseline transformation.

In Figure 3–26 we show total, rewrite and match times for the forest-fire bench-

mark executed in AToMPM. Is it clearly evident that the scoped transformation

outperforms baseline by close to two orders of magnitude, again the only side effect

being the increase in the rewriting time due to scope maintenance.

The results of the amalgamated forest-fire transformation demonstrate the ef-

fects of scope inclusion in GrGen. On average, the baseline amalgamated transfor-

mation on 1000 by 1000 cell grid took 1448 seconds. This result is similar to the

indexed transformation for the same grid size model in a non-amalgamated version.

98

3,047.9

62.2

26,023.8

216.8

1

10

100

1000

10000

100000

B S B S

100 200

Se
co

n
d

s,
 lo

g
sc

al
e

N, cells

AToMPM forest-fire total, rewrite, match times Rewrite

Match

Total

Figure 3–26: AToMPM forest-fire total, rewrite and match times for Baseline (B)
and Scope Graph (S)

This result does not demonstrate an improvement. We believe that this is due to the

use of undirected edges and possibly the amalgamation itself. The amalgamation

may help to reduce matching costs in theory, because a series of steps is merged into

one. However, the actual implementation of the amalgamation within a tool does not

necessarily guarantee improved efficiency. It remains unclear whether amalgamation

would improve efficiency in another tool.

The addition of scope shortened the total simulation time to about 43 sec-

onds. This demonstrates an excellent use case for scope. Even though the non-

amalgamated forest-fire model was larger (due to the encoding of directed edges), its

baseline runtime is faster than the amalgamated baseline. The indexing in the amal-

gamated example, as opposed to the non-amalgamated one, was beneficial. Removal

of indexing in the amalgamated example was detrimental to performance resulting

in a runtime of about 5500 seconds on average. This indicates that the indexing was

a good performance hint to the pattern matcher in this situation.

99

Mutex results. In Figure 3–27 total times for the ALAP mutual exclusion

benchmark executed in AToMPM are presented. In this case, adding scope to the

transformation did not result in an improvement. This was due to the fact that

the number of host graph nodes in scope was large and constantly equal to the

number of resources in the input model. In the context of search plans, this means

that match operations related to scope had large branching factor (as if scope was

not applied) and the cost of search plans with the introduction of scope did not

improve. There is a minuscule improvement for the scoped transformation and that

most likely is attributed to faster lookup inside the sets used for implementing the

scope in AToMPM.

0.7 0.7

40.2 37.9

3,993.0 3,901.3

0.1
1

10
100

1000
10000

B S B S B S

100 1000 10000

Se
co

n
d

s,
 lo

g
sc

al
e

N, processes

AToMPM mutex total time

Figure 3–27: AToMPM ALAP mutual exclusion total time for Baseline (B) and
Scope Graph (S)

The inclusion of scope in a single resource version of the mutex benchmark

(STS) was evaluated. We applied the scope to the STS benchmark found in the

GrGen source tree. The test was executed on a one million process model. Inclusion

of scope resulted in a close to doubling of the runtime of the STS benchmark on

100

average. This is due to the fact that the baseline transformation is already exploiting

the single resource node for search plan matching. The inclusion of scope in this

situation creates additional, unnecessary overhead. This example represents the case

where scope use may result in performance degradation. We complete this chapter

with the conclusions and future work discussion presented in the following section.

3.5 Conclusions and Future Work

The use of hierarchical scope represents an interesting and potentially fruitful

research topic in the context of model transformations. Our experience demonstrates

by reducing the matching time by close to one and two orders of magnitude in GrGen

and AToMPM respectively, that application of scope to the host graph is a path

towards more efficient model transformations. Scope has the additional benefit of

proving an intuitive and natural mechanism for expressing hierarchical concepts that

transcend individual DSL boundaries.

Our scope concept, as demonstrated in the case of GrGen may be implemented

in various ways, such as container, indexing, and finally scoped graph. The use of

scope syntax at the rule level and automatically translating scope into the most ef-

ficient implementation is the best way to deal with our scope concept and to apply

optimizations to transformations without the engineer knowing the inside of the tool

engines. In addition, we demonstrate that scope can be beneficial for the amalga-

mated rules as well.

We do observe situations where scoping may not be as useful (the mutex exam-

ple). This is usually the case when the matcher already exploits matching hints to

101

the fullest. It is interesting, therefore, to investigate what types of transformations

benefit from the application of scope.

Future work for our design is currently concentrated on implementing changes to

AToMPM to more efficiently support the scoped formalism. Even though the naive

approach taken in our prototype implementing scope used sets, as was demonstrated

in the case of GrGen the use of scope directly in the input graph is feasible and desir-

able. We are also interested in variations and extensions of how scope is represented

in transformation rules. Our syntax and semantics here are aimed at a restricted use

of scope, as a reasonable balance between implementation complexity and ensuring

sufficient expressiveness. More varied parametrization of scope specification in rules,

allowing for example complex scope specifiers that do not always resolve to simple

path searches, is also potentially interesting, and while this can pose challenges in

terms of maintaining an efficient match process it may also offer even more flexibil-

ity in scoped graph specification and manipulation. A thorough investigation would

also need to look at how scope hierarchies and various scope management strategies

impact transformation efficiency.

In addition, the scoped graph scalability would be an interesting future work

topic. The input graph size is increased with the inclusion of an additional scope

hierarchy and the edges representing scoping relationships. From the examples in

this thesis, we observe, that the classic scope has edge-heavy effect on the input

model (as the number of scope nodes is small wrt. the host graph). We can estimate

that the number of edges representing scoping relationships between the host graph

nodes and the SF nodes to be linear in size and at most VSF ∗ V (considering the

102

scoped graph requirements) where Vsf is the number of nodes in SF and V is the

number of nodes in the host graph. Therefore, it is important for any tool, dealing

with scope, to have efficient edge representation. In case the scoped graph grows out

of memory (e.g. due to extremely large benchmarks or problems), distributed (cloud)

storage and MT approaches can be used. This is demonstrated, for example, in [96]

where incremental model querying, possibly adoptable to scoped pattern matching,

is performed in the cloud to alleviate memory limitations.

Finally, we would also like to further investigate scope workflow in solving vari-

ous MT problems. An appropriate workflow intended for a transformation engineer

should include well-defined guidelines on scope creation and scope use. A user study

could be a source of valuable information in designing such a workflow.

We continue with a new chapter presenting a different scope concept. A dynamic

scope that is meant to be used without the input of a transformation engineer.

Chapter 4
Dynamic Scope

Although the static scope presented in the previous chapter is an effective way of

specifying locality in MTs, it does require the attention of a MT engineer. Therefore,

in this chapter, we present a different scope concept that does not require modifi-

cation of MT specification. The dynamic scope, contrary to the static scope, aims

at discovering the regions of interest in the input model automatically, at runtime.

These regions, in the context of the local search-based techniques such as search

plans, are then used to reduce the initial search space, promising performance bene-

fits. We begin with the introduction into dynamic scope.

4.1 Introduction

Local search-based techniques (an example search plan technique was presented

in Chapter 2.4.1) are often used in model (or graph) transformation systems [115, 30,

43, 107, 105, 33]. These techniques start pattern matching from some initial node

(or a graph) and then expand the match candidate along edges in the vicinity of

previously discovered match nodes. This happens in accordance with some search

plan. The search plans provide an order of matching pattern elements based on

metrics calculated mostly ahead of execution [115, 30, 43] or adaptively at runtime

[105, 33, 36]. This strategy is effective but requires ahead-of-time inspection of the

model transformation system, and may be less applicable when MT rules are dynamic

or difficult to inspect, such as when the rules are compiled (for example in the GrGen

103

104

tool). In addition, MTs can be proprietary, similar to software programs, and not

available for an inspection.

Therefore, in this chapter, we present a dynamic, black-box approach intended

to reduce the search space of graph pattern matching in model transformations. This

approach is complementary to existing search plan-based approaches in that it does

not change the algorithms of SP matching but rather acts on the matcher input. We

apply our vision of scope as the region of interest in the input model. The aim of

the approach is to discover these regions or dynamic scopes where the MT is active

and feed them to the pattern matcher. The dynamic scope area (similar to static

scope) is necessarily smaller than the originally intended area of pattern search. The

SP matcher then takes advantage of this situation in creating the initial binding. In

essence, our design observes the transformation process to group the nodes which

will likely form a match of the following transformation rule, thus forming dynamic

scopes.

For dynamic scope discovery, we use two techniques. First, we employ a ”temperature-

based“ coloring of the input model elements inside the transformation engine. We

observe model elements as they are interacting with the transformation, and color

the nodes according to a basic temperature specification. Thus we obtain a heat-map

that can be used to construct a scope intended as an initial, reduced search space

that is passed to the pattern matcher.

Further refinement of this search scope is then achieved by applying a variant of

a supervised machine learning technique, based on a Naive Bayes (NB) classifier [63].

At runtime, successful matches are used incrementally as positive training examples

105

to help with further prediction. The training examples reference the heat-map in ad-

dition to domain-specific properties of the model elements that contribute to matches

and may include structural graph information as well. The classifier is then used to

decide whether the node should be included in the refined search scope. Our ap-

proach is primarily intended for long-running, simulation-oriented transformations,

where transformation evolves in the neighborhood, and where the first match dis-

covery is usually sufficient. In addition, our approach involves a fall back step to

matching in the whole input model in order to guarantee a match or lack thereof.

The benefit and applicability of our approach to other types of transformations needs

to be investigated in the future work.

To validate and assess our process for model simulation transformations, we

experimentally examine two non-trivial graph transformations. We show the effect

of different parametrizations of scoping on both transformations. Through this, we

demonstrate that the temperature-based approach in itself and also combined with

NB are effective at reducing the search scope. We achieve a high overall success rate

of 90 percent in case of single resource mutual exclusion benchmark and reduce the

size of the search scope at least 10 times in case of forest-fire simulation. Specific

contributions of this thesis include:

• We describe a temperature-based system for tracking and predicting the scope

of rule matches in model transformation. This runtime technique provides

heuristic information that helps identify possible matches without explicit ref-

erence to rule content or scheduling information.

106

• Improvement to the scope discovery is further facilitated by incorporating ma-

chine learning into the search process. A Naive Bayes classifier is trained at

runtime, filtering “warm” nodes to more accurately identify model elements

that have a high probability of being part of a successful match.

• Feasibility and performance of our design is evaluated by experimenting with

both a mutual exclusion benchmark (see Section 3.4.1) and a forest-fire simu-

lation (see Section 3.4.2) using the research oriented tool AToMPM [59]. This

work demonstrates effectiveness in both graph-modifying and pure simulation

contexts, and illustrates the impact of different parametrization of our tech-

nique.

In Section 4.2 we present our approach, explaining both the temperature and

NB scope refinement mechanisms. Experiments and their results are discussed in

Section 4.3 and finally, Section 4.4 gives conclusions and future work.

4.2 Dynamic Scope Discovery

The cost of graph pattern matching in the case of SPs (as described in Section

2.4.1) can be expressed as the size of a search tree. The nodes of this tree represent

the model elements visited during the pattern matching steps. The size of the tree

depends on the size of the graph pattern and the branching factor at each decision

point or SP primitive operation execution. A smaller search tree therefore represents

a more efficient pattern discovery.

Existing approaches (see also Section 6.1), in essence, focus on a good ordering

of SP operations, either statically before execution of pattern matching or dynami-

cally at runtime. The main idea of these approaches is to start executing cheap SP

107

operations first, i.e. those with a small branching factor. For example, extending

a match along an edge with an at most one multiplicity (according to the meta-

model specification of the input model) is guaranteed to either succeed or fail. The

branching factor of this operation is therefore 1.

In SP-based pattern matching, where to start matching is often very important,

as the first pattern node can typically be matched to many input model nodes. This

situation was demonstrated with an application of static scope (in Chapter 3) in

the context of search plan-based pattern matching. An addition of scope created a

favorable place for an initial pattern binding by introducing the first SP operation

with a reduced branching factor. In the case of our dynamic scope discovery, the SP

is not augmented, but rather a reduced input is provided to the pattern matcher.

Still, this results in reduced branching factor as the SP operations are applicable to

smaller search space.

In this chapter, we propose a complementary optimization technique to existing

local search-based approaches in order to reduce the branching factor at each deci-

sion point dynamically at execution time independently from the search plan of a

graph pattern. We aim at filtering match candidates by giving priority to (1) re-

cently touched nodes (calculated using a heat map) and (2) nodes which constitute a

match with a higher probability (estimated by Naive Bayes classifier). This filtering

effectively creates the dynamic scope that can be used to reduce the search space.

108

Figure 4–1: Dynamic scope discovery and matching (new components are shaded).

Our overall design for dynamic scope discovery builds on two main components.

Below we first give an overview of how the process is integrated into a transforma-

tion system, followed by details of the temperature and the Naive Bayes classifier

components.

4.2.1 Overview

Our approach to scope discovery is embedded within the graph pattern matching

process of a typical model transformation system. Figure 4–1 presents a general

overview of this integration with rectangles representing the major steps carried out

in the pattern matching phase model of a transformation system.

• Operation phase: During the main operation, our basic design carries out

graph pattern matching in two phases using any existing matcher component.

First, a reduced (scope) graph is computed by filtering, and pattern matching

is initiated on this reduced graph (middle pattern matching box in Figure 4–

1). A valid match on this reduced graph is guaranteed to be a valid match

of the full graph. But since this approach is optimistic, we retain the pattern

109

matching of the full graph as a fallback (right box) when pattern matching on

the reduced graph fails.

• Filtering phase: The filtering of nodes for obtaining the reduced scope graph

is carried out by a combination of two techniques. (1) First, a heat map of

model nodes is calculated : if a transformation rule touches (matches, modifies)

a model node then it becomes a warm node. Several subsequent matches heat

up a node, which gradually cools down if it is no longer part of a match. The

number of warm nodes in the system, and subsequently the size of the scoped

model, is directly dependent on parameters of the warming and cooling process,

which will be described in Section 4.2.2. (2) The exact population of the warm

set is also reduced by a Naive Bayes classifier. This classifier is trained using

the matches produced during the pattern matching phase and is then used to

further filter the warm set. Note that this is a simplified view, and the filtering

step can more generally contain an arbitrary chain of filters that refine the

warm node input and thus the dynamic scope.

• Initialization and Training phase: Initial pattern matching is performed

on the full model when all nodes are cold in the system. The scoped model is

thus initially empty, and the scoped pattern matching fails. As we observe the

matches of transformation rules, warm nodes are discovered, populating the

Scoped Model subset, and scoped pattern matching may succeed. The training

of the Naive Bayes classifier can be carried out either in a preprocessing phase

(i.e. prior to a transformation run) or during transformation execution.

110

As a result, matching a pattern on a scope graph will probabilistically reduce

the complexity of matching by reducing the branching factor. We expect that this

can be a significant reduction for simulation kinds of model transformations, which

may exploit the strong locality of subsequent execution steps. We continue with a

description of how we use the temperature and heatmaps in our system.

4.2.2 Warming the Nodes

Coloring input graph nodes with temperature values is a straightforward way of

representing the frequency of access to the graph nodes and thus the temporal locality

of transformations: high-temperature nodes are frequently accessed (or near to ones

that are), and so likely to be part of a future, successful match and/or rewrite, while

low-temperature nodes are outside the current locus of activity, and so less likely to

be part of a match.

Node temperature is maintained by augmenting the transformation engine with

the ability to color/heat the nodes belonging to a match. At rewrite time, every

node in a match chosen by the engine for a rewrite will be tagged with a temperature

value. In our system, this means updating temperature attribute of a node. This

temperature attribute is created at runtime, transparent to the language engineer

and is not part of the attributes specified in the metamodel for the language being

transformed.

Node temperature is expected to increase on frequent access, and decrease if not

accessed over time. We track the temperature changes of a node using a global timer

that counts the number of rule executions during transformation. References to warm

nodes and the time of the last temperature change are kept in the temperature list,

111

which defines the temperature scope. Nodes that are not participating (not matched

and/or colored) in the transformation for a number of rule executions will be cooled

down. We call the number of rule executions that must occur before a node begins

cooling as the node’s warm time. The decision to cool down nodes is made at every

transformation step. Reference to a node is removed from the temperature list once

the temperature of the node cools down to zero.

Temperature values in our system range from 0 to 100 (temperatures exceeding

maximum value are scaled back to 100), with increments occurring in discrete steps.

For simplicity, we chose to decrease the node temperature to zero after its warm

time expires. However, temperature decrease step can be equal to a discrete value

similar to temperature increase step. For each node in the match, the temperature is

increased by 40 degrees. Nodes in the neighborhood of a match are also colored with

a temperature, although with a smaller increase to indicate less confidence; we used

a step of 20. In our case we consider only immediate neighborhood, using single hop

distance, and exploring the effects of variable-size neighborhoods on our approach is

future work. All temperature related values were specifically chosen for the purpose

of this thesis and their variation needs to be explored in the future work as well.

Once the temperature is updated, we compose the warm set as a subgraph of the

instance model where all nodes have the temperature higher than 0, without making

any distinction between the temperature values. Diversity in temperature steps is

intended primarily for the NB classifier described in the next section. Without NB,

it would be sufficient to use two values for the temperature: 0 or 100, cold or hot.

112

Figure 4–2: A subset of rules describing the mutual exclusion algorithm.

Heat map example: Mutex. Figure 4–3 illustrates the basic heating pro-

cess, showing the application of releaseRule (from the mutex benchmark introduced

in Section 3.4.1 and shown again in Figure 4–2 for convenience) on a model of a

ring of processes with a single resource. Note that we omit labels on the connections

between processes; they are of type next. Here nodes participating in the current

rule application are shaded, and all nodes in the model initially have temperatures

equal to zero (we only show temperatures of the elements participating in the rule

113

Figure 4–3: Application of releaseRule on a model (left) results in warmed up nodes
(right).

application and their neighbors). The right side of the figure shows the result after

the matching; as described above, matched nodes are warmed up to 40 degrees, and

immediate neighbors are warmed up to 20.

Heat map example: Forest-fire. A finer-grain example of temperature is

shown in Figure 4–4, showing a stage in the forest-fire simulation transformation we

will evaluate with our approach in Section 4.3. Note that we omit the metamodel

and the transformation rules of this example for brevity; full details are available in

Section 3.4.2. In this simulation, a fire spreads across a 2D grid of neighboring cells

starting in the center. Each cell in a grid represents a forested area which may catch

fire if any neighboring cells are on fire. Once fully burned, a cell represents a barrier

to further fire spreading. The simulation terminates when no burning cells remain.

Assuming all cells are exactly the same and in the absence of wind effects, fire will

spread in a circular fashion (discretely represented).

114

Figure 4–4: Forest-fire simulation rendering (left) with burned out, black cells in the
middle and the model heat map over the cells (right).

In Figure 4–4 on the left, there are dead, burned out cells in the middle of a

fire ring of a width of 2. On the right is the heat map over the input model of the

cells on the left. We can see that white nodes in the middle of the heat map are

cold (0 degrees). These nodes correspond to dead trees on the left, they are not

touched by transformation anymore and therefore cool down. Black nodes are the

hottest, they were matched several times recently. Going outwards the temperatures

of the nodes decrease, as some rules are yet to match these nodes in the process of

spreading the fire. The least warm, outer nodes have the temperature of 20 degrees,

they are immediate neighbors of match nodes and are likely to be touched in the

next iteration transformation.

A subgraph created from the temperature list is then passed to a matcher for the

initial match attempt. Note that temperature scope approach does not guarantee a

match especially for the transformations with random behavior, and correlation of the

heat-map with match success strongly depends on the degree of locality in matching.

115

Our design also depends on rule application mainly being interested in finding any

match, rather than all possible matches. The contexts, where all possible matches

are necessary, are not suitable for the heuristic filtering enabled by temperature

based matching. We now continue with a discussion on the complexity of heatmap

maintenance.

Complexity of dynamic heatmaps. Maintaining match scope through tem-

perature allows for a reduced search space, but requires non-trivial bookkeeping to

track the warm set. Depending on the warm time of the nodes and the transforma-

tion process, warm set can grow at most to the size of the input model. Therefore

it is important to handle the warm set efficiently. For this we use an ordered set

data-structure, with node ordering based on the time the temperature of a node was

last changed.

The first heating of a given node implies inserting it into the tree while reheat-

ing a node requires removing and reinserting. Node cooling requires searching the

tree, with possible removals from the tree if nodes were cooled down to 0. A sim-

ple minimum-temperature value can be used to avoid processing cool-downs until

necessary, but identifying the nodes needed for cooling requires searching for the n

nodes at minimum temperature. By using an augmented red-black tree that allows

interval search, we can perform inserts and deletions in O(log n) worst-case time,

and find the now-cold nodes in time O(log n). The efficiency of this approach thus

depends on the trade-off between performing these additional data-structure opera-

tions and the corresponding reductions in search cost. Investigation of this trade-off

116

is planned in future work. We can refine the dynamic scope further with machine

learning techniques. We discuss this in the next section.

4.2.3 Scope refinement by Naive Bayes classifiers

The temperature scope described in the previous subsection may be larger than

necessary to find a match. This is especially apparent when nodes cool down slowly

and the temperature scope grows correspondingly large. More aggressive cooling

would mitigate this, but requires a cool-down threshold well tuned to the transfor-

mation. Our design thus instead makes use of a Naive Bayes classifier to learn from

features describing the nodes involved in the transformation at runtime, including

temperature, and so further refine the subset of relevant nodes fed to the matcher.

A Naive Bayes classifier is a simple machine learning technique that makes an

independence assumption on the training data [63]. With a training vector of features

for a given class, we assume that each feature is independent and does not affect the

conditional probabilities of these features given a class. This approach is simplistic

of course, but NB is known to perform well in many classification applications, and

speed in our design is important—an independence assumption greatly simplifies the

calculations necessary. The incremental training phase for NB is also an advantage.

Training is performed after each rewrite, with each node that is part of a suc-

cessful match participating in training before being changed in the rewrite step. We

consider each node in the pattern as an independent entity disregarding relationships

between nodes. This simplifies training and the classification. The class or the label

of the training example is the identifier of the rule, and the training features of the

117

nodes are the domain specific attributes, node type, and the temperature. For ex-

ample in the case of the mutual exclusion transformation described in Section 3.4.1,

nodes may have domain attributes such as the name of the process and resource,

process priority, etc. Each of the domain-specific attributes including the tempera-

ture constitutes an independent training feature. Graph structure also carries a lot

of information that can be harnessed, and we plan in future work to also consider

structural graph attributes such as node degree, a number of incoming or outgoing

edges, etc.

Training consists of keeping track of the number of distinct feature values en-

countered for each rule identifier. At this stage, features with continuous values such

as temperature require discretization for efficient training [112]. Here we use a sim-

ple binning approach, based on 10 bins of equal size. Other approaches are possible,

such as to assume the numerical value to be part of normal (Gaussian) distribution

[112].

In NB, the probability P (Y |X) of a class Y given set of featuresX = 〈X1, X2, .., Xn〉

is calculated as:

P (Y |X) = P (Y)
n∏

i=1

P (Xi|Y) (4.1)

In Figure 4–5, we show the application of giveRule from mutual exclusion bench-

mark (in Figure 4–2) on a portion of the model shown in Figure 4–3. The match

is shaded on the left, and the effect of the rule is shown on the right with up-

dated temperatures according to rules described earlier. Before rewriting, the match

is used for training NB. We have three feature vectors corresponding to the three

118

Figure 4–5: Application of giveRule on a portion of model (left) and the result
(right).

nodes in the match on the left. We only use type of the node and its tempera-

ture to demonstrate the concept. X1 = 〈process, 40◦〉, X2 = 〈process, 20◦〉, X3 =

〈resource, 40◦〉. The label for training is the giveRule identifier. Thus statistics accu-

mulated for giveRule is two processes, one resource, two 40-degree and one 20-degree

temperatures. At the filtering step given a node described by the feature vector

X = 〈process, 20◦〉 and the upcoming execution of requestRule from the mutual

exclusion running example (in Figure 4–2), the probability that the node will be

part of a match (or should be included in the scoped model) is P (requestRule|X) =

P (requestRule)P (process|requestRule)P (20◦|requestRule).

Knowing the probability, a decision is then made whether to include the node

in the refined scope or not. Essentially, there are two ways we can approach the

classification of nodes using NB. One is by calculating the probability of nodes be-

longing to all possible rules (classes), using a competition approach in which the class

with highest probability “wins”. Another is through judging the probability of one

class, choosing a threshold for accepting the probability as a description of the class.

The higher computational cost of the former (competition) approach makes it less

119

appealing in our performance-oriented context, and so we use the latter approach

with a threshold of zero. We now move to the experimental part of this chapter to

evaluate our approach.

4.3 Experiments

In our experimental evaluation we investigate if our concept is feasible in the

context of long-running, simulation-oriented transformations. Feasibility in our con-

text implies two research questions:

• RQ1: Does our dynamic scoping technique effectively reduce the search space?

• RQ2: Does dynamic scoped matching provide satisfactory success rate?

In order to answer RQ1, we compare the size of the scoped graph wrt. the size of

the entire instance graph. In order to address RQ2, the failure of our scoped matching

technique is when the original rule has a match on the entire graph, but a scoped

matching fails to detect it. We consider scoped matching a success when scoped

matching produces a match or when the fallback matching on the full input model

fails. We evaluate our approach using two non-trivial transformations: a mutual

exclusion problem from the transformation benchmark suite [108], and a forest-fire

simulation both introduced in Section 3.4 and decribed above. The latter constitutes

a pure simulation benchmark, mainly modifying node attributes, while the former

requires some amount of node creation and destruction in representing changing

edge relations in the model (model edges are represented in AToMPM using graph

nodes). First, we present the benchmarks in more detail, explain the experimental

setup, followed by results presentation.

120

4.3.1 Benchmarks and Measurements

Both mutual exclusion and forest-fire transformations were executed with three

different node warm times of 10, 50, and 300. These represent short, medium and

long node warm times. We used a simple model for cooling, immediately reducing

node temperature to zero and removing it from the temperature list. Each bench-

mark was executed using temperature scope matching (Temp), followed by additional

filtering using NB (Temp+NB). For evaluation purposes, we maintain several met-

rics at each transformation step. Metrics have global and individual rule resolutions.

We track: the success rate of scoped matching, size of temperature scope, size of

scope resulted after additionally using NB filtering. We report these in the following

section (individual rule results are omitted). The evaluation was performed on x64

i7 mobile quad-core processor with 16Gb RAM running Ubuntu 12.10.

Experimental setup for mutual exclusion simulation. The mutual ex-

clusion experiments were executed on two types of the input models each containing

1000 processes in accordance with the benchmark setup published in [108]. This is

the same baseline, non-scoped as long as possible (ALAP) transformation applicable

to both input models and presented in Chapter 3 with the MT rules shown again

in Figure 4–2. The first input model contains a single resource (similar to model in

Figure 4–3) corresponding to the input model to the STS benchmark and the second

input model contains multiple resources (one resource for each process) correspond-

ing to ALAP benchmark. We show examples of both types of input models in Figure

4–6. In the single resource case, the size of the graph underlying the input model

was 2002 nodes and the multiple resource model contained 4000 nodes (counting

121

Figure 4–6: Single STS (left) and multiple ALAP (right) resource model types.
Association types omitted.

model associations represented as nodes). The transformation applicable to both

input models was executed in an ALAP fashion using the following rule sequence:

releaseRule, giveRule, requestRule, and takeRule. Each rule was scheduled to execute

exhaustively as long as the matches were found, followed by the next rule scheduled

in the same fashion. Each model was simulated for several cycles after which trans-

formation terminates. One transformation cycle is defined by sequential execution

starting from releaseRule and terminating at takeRule. The multiple resource model

was transformed for 4 cycles, resulting in approximately 20000 rule executions. The

single resource model was simulated for 100 cycles with close to 1000 rule executions.

We observed that this is quite sufficient to demonstrate the stability of the success

rate of scoped matching in the system i.e. transient effects (such as initialization

and training) are no longer visible.

Experimental setup for forest-fire simulation. The forest-fire simulation

was executed on a grid of 100 by 100 cells with one cell burning to start the simu-

lation. The number of nodes in the underlying graph is 29800 (including the nodes

representing association edges). The simulation ran until all cells burned out. We

122

observed that the success rate in the forest-fire simulation stabilizes after 15000 it-

erations. We now present the results of running the evaluation.

4.3.2 Results

In this section we present results, demonstrating the overall success rate and

the size of scopes with respect to the iterations of transformation, where iteration is

equal to a single rule execution. All figures in this section contain legends that are

following the order of the graphs in the plot: the top line in each graph corresponds

to the top entry in the legend list.

Mutual exclusion results. Overall success rate of our single resource mutex

benchmark with node warm time (WT) of 10 is presented in Figure 4–7 on the left.

On the right in Figure 4–7 sizes of scopes are shown for node warm times of 300 and

10 (log scale on the y axis).

1

10

100

0 200 400 600 800 1000

N
o

d
es

.
lo

g
 s

ca
le

Iterations

Scope sizes, mutex single resource

Temp. WT=300
Temp. + NB WT=300
Temp. WT=10

0

20

40

60

80

100

0 200 400 600 800 1000

P
er

ce
n
t

Iterations

Overall success rate, mutex single resource

Temp. WT=10

Temp. + NB WT=10

Figure 4–7: Single resource model. Overall success rate and scope sizes.

We observed that success rate does not improve after increasing WT, and a

short WT of 10 is sufficient to demonstrate a good success rate. It is evident that

123

NB filtering reduces success rate by about ten percent. On the right in Figure 4–

7, warm scope at WT equal to 10 is presented to contrast the long WT. With a

long WT, the reduction of warm scope by NB is more evident. After the system

stabilizes, a warm scope is reduced by approximately 30 nodes with NB, equivalent

to 30 percent of the warm scope. NB filtering does reduce the scope size, however,

it reduced the success rate due to exclusion of some of the match candidates.

In Figure 4–8 we present the success rates of Temp (left) and Temp+NB (right)

scope matching in the multiple resource mutex model. Highest success rate in both

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000

P
er

ce
n
t

Iterations

Overall success rate, mutex multiple resource,

Temp. scope

Temp. WT=300

Temp. WT=50

Temp. WT=10
0

10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000 20000 25000

P
er

ce
n
t

Iterations

Overall success rate, mutex multiple resource,

Temp. + NB scope

Temp. + NB WT=300

Temp. + NB WT=50

Temp. + NB WT=10

Figure 4–8: Overall success rate, multiple resource model.

filtering situations is achieved at WT equal to 300. The success rate with tempera-

ture filtering is at 50 percent in the worst case with WT of 10. We observe a similar

reduction in success rate to the one seen in the single mutex benchmark, by apply-

ing NB filtering. NB filtering reduces the overall success rate by approximately 10

percent compared to warm scope matching.

Scope sizes for multiple resource model are shown in Figure 4–9. Temperature

filtering is on the left and NB filtering on the right. The peaks on the left plot are due

124

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000

N
o

d
es

Iterations

Scope sizes, Temp. + NB, mutex multiple resources

WT=300
WT=50
WT=10

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000

N
o

d
es

Iterations

Scope sizes, Temp., mutex multiple resources

WT=300

WT=50

WT=10

Figure 4–9: Scope sizes, multiple resource model.

to the increased number of nodes in the graph after repeatedly executing requestRule,

which adds an extra node corresponding to the request association. Temperature

based filtering reduced the scope to sizes ranging from 100 nodes (WT=10) to 1400

nodes (WT=300) (full model 4000 nodes). Consider the area under the graph for

WT of 300 in the left and right plots. NB filtering does reduce the temperature

scope even though there are peaks to 1200 nodes. When the number of nodes in the

temperature scope peaks on the left and remains flat, NB scope size does not follow

the trend closely.

Forest-fire results. Figure 4–10 presents overall success rates for temperature

scope matching (left) and additional NB filtering (right). We observe satisfactory

and equivalent success rates with WT of 300 for both filtering cases. This is likely

because we use more data for NB training compared to the mutex example, such as

the “burning” state of the forest cell. On the right in Figure 4–10 we can clearly see

a gradual rise in success rate for WT 300. This is due to the initial NB training as

well as the increase of the warm scope. The success rate in both plots is high at the

125

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000

P
er

ce
n
t

Iterations

Overall success rate, forest-fire, Temp. + NB

scope

WT=300
WT=50
WT=10

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000

P
er

ce
n
t

Iterations

Overall success rate, forest-fire, Temp. scope

WT=300
WT=50
WT=10

Figure 4–10: Overall success rate, forest-fire simulation.

beginning because a small portion of the graph is active. As the active region grows,

the rate reduces and stabilizes sometime after 10000 rule executions.

Table 4–1: Forest-fire scope sizes (nodes), full input graph 29800 nodes

Temp Temp+NB
WT Ave. Std. Dev. Ave. Std. Dev.
300 1110 319 357 415
50 357 415 157 155
10 77 17 37 36

The table 4–1 shows the average scope sizes in nodes and standard deviation for

different warm times. The temp+NB scope is three times smaller on average than

Temp scope. Average Temp scope is close to 20 times smaller than a number of

nodes in the forest-fire graph.

Result summary. After running both benchmarks we learned that scoped

matching in our approach is promising based on success rates of 30 to 90 percent.

This depends on the warm time of the nodes and the additional filtering, such as

NB in our example. In certain cases such as for the single resource mutex model,

126

the success rate was over 90 percent with a significant reduction to the search space,

reducing it to just 10 nodes compared to 2000 nodes for the full input graph. NB

filtering does reduce the search scope further at the slight expense of success rate.

NB filtering performed best in the case of the forest-fire simulation both in terms of

success rate and in reducing search scope. It is important to note that these results

were achieved using the initial prototype. Even though we observe interesting results,

a deeper investigation of performance, parameter values and applications is necessary

for future work. We wrap up this chapter in the following section with conclusions

and future work.

4.4 Conclusions and Future Work

In this chapter, we investigated the dynamic scope approach to reducing search

scope of model transformations by tracking the transformation process within the in-

put model. For this, we used a temperature inspired underlying graph node coloring.

Temperature regions constitute the likely rule application areas that we explored in

pattern matching during runtime, with a fall back to matching in the whole input

model in case the match was not discovered.

We investigated additional filtering based on Naive Bayes classifier. In the con-

text of simulation oriented transformations, where first match is usually sufficient,

we demonstrated that our approach works well in certain situations: the success rate

of matching within the scope defined by our filtering was over 90 percent in single

resource mutex benchmark. We also observed the reduction of search scope by using

our filtering approaches. NB application further refined the search area, however in

some instances at the expense of the matching success rate.

127

In future work, we would like to explore the cost of the warm scope maintenance

and the MT runtime effects of our concept. This involves answering the question

whether the dynamic scopes help to improve MT runtime in general. We believe that

deeper investigation of temperature scope related parameters, with an addition of

structural graph information for NB training, will be beneficial to the performance

and accuracy of the approach. Temperature scope in the context of search plans

could in the future provide dynamic information to search plan generation at run-

time. In addition, the fall back step does not necessarily need to search in the whole

input model, it can do so in some special scope or an enlarged dynamic scope (where

matching has just failed). The incremental matching technique is another area of

model transformation that could possibly incorporate our approach. Another area

to investigate is the pre-trained NB classifier used as a static filter in future trans-

formation applications offloading the training expense.

Chapter 5
Debugging Transformations

Model transformations are complex specifications possibly combining declara-

tive and imperative constructs. Similar to regular text-based programs, MTs can

contain errors resulting in undesired behavior. Therefore, it is important to provide

comprehensive debugging support for MTs.

Debugging MTs in a consistent, systematic way is a complex task due to a pres-

ence of a heterogeneous, hierarchical execution stack. Multiple stack execution layers

are used, consisting of different languages/formalisms at different levels of abstrac-

tion. A schedule language, for example, contains the rules, which themselves hold

patterns using action code. Further down the stack, we find the pattern matching

and application routines. As problems can manifest at each layer, or between layer

interactions, thorough debugging requires a tool permitting inspection and modifi-

cation throughout the execution stack. In this chapter, we present our contributions

to MT debugging and explain how scopes, from previous chapters, can be used in

the debugging context. We begin with the introduction.

5.1 Introduction

Model Transformations are an important part of Model Driven Engineering

(MDE) [89]. In MDE, models are primary artifacts and manipulation of models

is achieved through transformations. The usability of tools supporting MTs and

128

129

modeling in general affects wide adoption of MDE, with usability enhanced by com-

prehensive debugging facilities akin to the ones found in software tools. These should

enable exploration of what a transformation does, and also how the transformation

does it, both of which are important to understanding a transformation. In addition,

to be useful, the debugging of MTs should be automated. This point is supported

by Zeller [114] who believes that interactive debuggers are not the most appropriate

tools. Another observation in favour of automated tools was made by Parnin et al.

[78] stating that automated debugging tools may help users fixing faults rather than

patching failures. In the context of MTs, debugging could also benefit from declar-

ative nature of models. This is of great importance to improving usability of MTs

by narrowing the knowledge gap between the process of debugging and the problem

domain specified by means of various domain-specific languages (DSL). The aim of

the automated debugging is an unsupervised program execution that can be useful

in the context of long-running and complex MTs. In addition, specifying debugging

scripts or scenarios that can be reused and exchanged between users can supplement

the interactive debugging tools. Such debugging specifications are presented in this

chapter.

The purpose of a debugger is also to aid a developer in locating and eliminating

software failures [113]. The same can be said about debugging of model transforma-

tions. Although this execution context can be quite different from the execution and

debugging of a procedural, textual language, a generic vocabulary exists for under-

standing the basic approach, and main components of a debugger. We thus briefly

130

discuss the criteria and facilities related to a debugger described in this chapter,

following the classification described by others [86, 60, 88].

Debugging can be generally divided into live and forensic contexts. As the

names suggest the former is used during execution and the latter is effective after

execution, where traces are available and can help identify the problem. The MT

debugger presented in this chapter is intended to be a live debugger, and thus requires

a fundamental set of facilities, suitably adapted to the MT context. These facilities

include:

• Selection of a specific part of MT for debugging. This also implies that the

matching process is exposed and can be influenced, with the pattern bindings

in the input model during the matching process available to the user. When

present, non-determinism of multiple choices during MT execution needs to be

resolved either automatically (communicating the choices made to the user)

or by giving control to the user for a decision. Breakpoints in MTs should be

available as in program debugging, to halt MT execution automatically based

on some state condition.

• Investigation of the state of MT execution. State inspection is common in pro-

gram debuggers. For MTs a developer needs to inspect the state of source/target

models, pattern bindings, the current match, etc. This also includes access to

traces of the transformations. Visualization of control flow allows one to see

the flow of the MT. In textual languages, this is done by displaying lines or

line numbers, and in graphical languages by highlighting relevant parts of the

MT such as the rules being executed.

131

• Dynamic behavior investigation by means of stepwise execution. In textual

languages, a step corresponds to advancing execution to the next line num-

ber, or syntactic element. The notion of a “step” in declarative languages is

more ambiguous, as rule application can involve a large number of underlying

smaller steps that are normally invisible to the MT developer. This leads to

the necessity of presenting information at the appropriate level of abstraction.

• Adapting the parts of MT during execution. This includes modification of the

input model, match bindings and finally the transformation itself.

In order to draw parallels with the MT debugging discussed in this chapter, we

continue with relevant debugging concepts and operations from the area of interactive

debugging. A variety of general purpose language debugging tools exist, here, we

adopt a view of a gdb debugger 1 as it represents a ubiquitous application in the

open source universe.

The inspection of a debugging target control flow can be achieved through com-

mands executed inside a debugger. The target can be instructed to execute until

the end through a continue operation and a stepwise execution of the target can be

achieved through stepping commands. In case of stepping, a step is usually a single

line of code (LOC) or a machine instruction. A step-over command executes a single

LOC or a machine instruction (without exploring inside of the function or procedure

calls) and returns control to the user. The step-into command operates similarly

to step-over except that it will inspect inside of a function or a procedure call. A

1 https://www.gnu.org/software/gdb/

132

stepping command can also execute several lines of code or machine instructions. An

example of this is the step-out command that executes a target just until after the re-

turn out of a function in the selected stack frame. Certainly, the step-over command

can be included in this category as well because it implicitly causes the function or

procedure call execution within a span of a single step debugging operation.

Regardless, whether the target program is in the process of continuing or step-

ping, the execution can be interrupted by means of, most notably, breakpoints, watch-

points and catchpoints. A breakpoint is associated with a certain place within a de-

bugging target. Once that place is reached during execution, the target stops and

returns control to the user. A watchpoint (sometimes also called a data breakpoint)

is intended to stop execution when a value of an expression of interest changes. A

catchpoint is a special breakpoint designed to stop the execution on special events

such as exceptions. This brief introduction is not intended to exhaustively explore

the well-established area of program debugging. We direct the user to a gdb2 manual

for more information.

MT debugging brings in additional complexity in terms of a layered execution

stack. The stack layers consist of different languages/formalisms at different levels of

abstraction. We can envision the top of the stack to be the MT schedule specifying

rule application order. The declarative rules are representing hierarchical structures

with their LHS and RHS parts, internally holding the patterns in turn containing

imperative action code. At the bottom of the stack, we can discover the pattern

2 https://sourceware.org/gdb/current/onlinedocs/gdb/index.html

133

matching and application routines with their own implementation-specific complex-

ity. This heterogeneity of MT stack layer requires thorough debugging throughout

the execution stack in a systematic and unified way.

Modern transformation tools already provide some debugging functionality, al-

though typically at the schedule/rule level, with possible areas of relevant models

highlighted, as in AGG [97], GrGen [33], or Fujaba [32]. MT tools may also delegate

debugging tasks to the low-level debugging facilities provided by the hosting general

programming language (GPL), such as Java in ATL [45]. To our knowledge, there are

no MT tools that fully address debugging of the whole MT stack, from the schedule

level down to the pattern matching and application routines details.

Automated debugging support is also limited. The declarative nature of models

and MTs is a natural setting for many debugging tasks, particularly event or watch-

based goals, such as pausing execution when a pattern matcher accumulates a certain

portion of the match, or when an undesirable pattern appears in the output model. In

this context, query-based debugging techniques [56] yield further inspiration for our

debugger design, allowing us to inspect all the relevant MT stack levels with declara-

tive queries during the debugging session. In this way we facilitate deep introspection

of a MT execution, taking advantage of the high level abstraction provided by a MT

environment itself. Ideally, every aspect of a MT is modeled at the most appropriate

level(s) of abstraction, using the most appropriate formalism(s) [71]. An important

property of our debugger is thus that we try to avoid resorting to code-level debug-

ging and instead remain at the level of abstraction similar to the Domain-Specific

Language (DSL) of the models being transformed.

134

In this thesis, we aim to provide a practical and flexible solution for MT de-

bugging for modern tools, validating our design by describing our experience with

realizing such a debugger in a research tool AToMPM. In addition, we demonstrate

the applicability of our approach by applying our debugger implementation approach

to other tools such as AToM3 and ATL. Specific contributions of this chapter include

the following.

• We describe a structured view of a debugging process that lends a unified way

of navigating the debugging target. We consider debugging as a movement

over items in horizontal and vertical planes, an abstraction applicable to many

stacked execution contexts.

• We describe a simple language for automated debugging of MTs spanning

the levels of the MT stack. In addition, we introduce declarative break-

points/watchpoints applicable throughout the MT stack.

• Our design builds on the use of familiar transformation rule and schedule syn-

taxes. This enables us to reuse the core declarative nature of the MTs, namely

the pattern matching. The user is able to stay in the MT mindset while defin-

ing debugging scenarios. Similar to higher order transformations (HOT), where

the transformations themselves are being transformed, we strive to apply the

MT syntax and semantics to the debugging of MTs.

• Our declarative approach subsumes a separate control scheme for direct user

interaction. We show how the action of a step issued during interactive debug-

ging can be modeled with our debugging rules in terms of calling a MT. In this

135

way our design provides a unified debugging model, suitable for automation or

interaction.

The rest of this chapter is structured in the following way. The structured view of

a general debugging process is presented in Section 5.2. In Section 5.3 we apply

the structured view to the MT stack. We present our debugging language with

the debugging rules and transformations in Section 5.4, and describe our prototype

implementation in Section 5.6. The conclusions and future work finalize the chapter.

5.2 Structured View of Debugging

In this section, before moving on to the MTs, we approach the general process

of debugging in a structured way. We discuss navigation of a general debugging

target with an aim to use this in defining debuggers for situations where a general

programming language paradigm may be less applicable, such as in debugging DSLs

and in particular MTs. This view allows us to clarify the notion of a step that may

be ambiguous in declarative debugging contexts.

Consider event-based view of debugging, a powerful and flexible approach to

realizing debuggers [4, 17]. Debuggers reason about the program execution from the

stream of events to perform debugging, whether it is live or forensic. In general, a

process of live debugging follows the hierarchical structure of the execution control

flow. This implies descending and ascending the composite structures and thus

exploring the existing hierarchies. Instead of reasoning about the program execution

from the sea of events, it may be advantageous to employ a structured view, that can

be used across a wide range of applications. This view is intended to complement

an event-based paradigm as events can still be used to realize the structured view of

136

debugging. Here, we are simply imposing a conceptual structure on the view. Let

us now discuss this generic view in more detail.

5.2.1 Navigating the debugging target

To take a generic view of debugging control flow (process) we can imagine it

to be somewhat similar to navigating the multi-story building representing the de-

bugging target. On the vertical dimension (here we use the term without adhering

to its strict definition) we have a multitude of floors representing the many levels

of nested structures. These hierarchical levels can be found in nested function calls,

hierarchical models, etc. We call these nested levels vertical levels (VL) and the

movement between them as vertical movement.

Each vertical level also has a horizontal dimension, this can be imagined as the

apartments on a floor. If we use the programming language analogy, these levels

represent a single kind of scope. We call this horizontal dimension a horizontal

level (HL) and the movement within that level as horizontal movement. Each

horizontal level contains items of interest for the debugging. These can be statements,

expressions, nodes and edges in the model. The unifying characteristic of these items

is the fact that when the debugging target has processed, visited or executed one item,

it will move to the next item—items on a horizontal level are dynamically enumerated

as a result of executing general step-over operations on the debugging3 target. In

3 For the rest of this chapter, we will use the term debugging target and target
interchangeably.

137

Figure 5–1: Horizontal and vertical dimensions or levels. Arrows between items on
a horizontal level represent horizontal movement operation. Vertical operations are
dashed arrows and labeled.

Figure 5–1, we show the horizontal and vertical dimensions4 of a debugging control

flow. Some of the items on the horizontal level can contain other items (nested) and

therefore lead to lower vertical levels. For example, these can be hierarchical model

elements or function calls to descend into. Therefore, the vertical dimension in a

debug process is explored by moving up and down between the hierarchical items (as

illustrated by the dashed arrows in Figure 5–1).

Figure 5–1 gives us a conceptual graph structure which we can apply general

forms of stack-based program execution. Each vertical level embodies a particular

behavior, execution scope, or level of abstraction. The horizontal elements then cor-

respond to the smallest units of processing, computation, execution, or specification

within that level of abstraction. Program execution, whether procedural or MT-

based, can then be understood in terms of navigating this 2D hierarchy. This view

4 In this chapter, we use the terms level and dimension interchangeably.

138

can be further expanded to include additional dimensions. Consider concurrent exe-

cution, an additional dimension can be added representing the threads of execution

(although in this thesis we concentrate on sequential MT execution).

Navigation pointers. For our purposes, we need to be aware of the control

flow position during debugging with respect to the horizontal and vertical dimensions.

Horizontally we are concerned with the item pointer (IP) and vertically with the level

pointer (LP). We can then define a Navigation Pointer (NP) as a tuple (IP,LP),

describing the control flow position in the target, similar to the position of a point

on a plane, described by its two coordinates. Both IP and LP are non-negative integer

values, representing the ordered movement of control flow within, or between levels.

The use of integer values is convenient in the specification of debugging operations

shown below. However, as demonstrated later in this chapter, pointer values can also

be symbolic if they are properly ordered and allow us to move within and between

them. One of the benefits of symbolic values is readability.

We also define certain constant values for the NP tuple elements. These allow

us to refer to the typical positions and the debugging situations within the target.

The following are the constant values the IP can take.

• NULL - this value indicates that the pointer is not initialized or more specifi-

cally it is not pointing to any item on the HL. This value is useful in describing

the situation when the IP moves past the last item on the HL.

• FIRST - the first item of interest on the HL. Note, that in some of the

following examples we use the first item’s value directly. As in tuple (1,TOP)

for example.

139

The following is the constant value the LP can take.

• TOP - the very top VL in a debugging target.

Taking the above values into account, a program begins at NP=(FIRST,TOP),

and the end of the debugging (termination) can be specified with a tuple (NULL,TOP).

Note, that our intention is also to use the NP to specify breakpoints (described later

in this chapter). Therefore, we assume that within the same program, two equal

NP values represent the same location inside a program execution control flow. For

example, NP1=(FIRST,TOP+2) is equal to NP2=(FIRST,TOP+2).

Operations. We now propose the operations that allow us to navigate the

vertical and horizontal dimensions in a debugging target. Operational semantics

essentially follows a controlled stack-based traversal, giving us operations to move

between (ordered) siblings, into child nodes, or back to parent nodes. The effect of

these operations includes the modification of LP and IP pointers, and presumes an

execution stack of horizontal item pointers, σ. We begin execution at (FIRST,TOP),

with σ empty.

• Next . This operation processes the current item on a HL and moves on to the

next item at the same level. Given non-NULL values for (IP,LP) and stack σ,

Next((IP,LP), σ) =

 ((IP + 1,LP), σ) if IP + 1 exists

((NULL,LP), σ) if IP + 1 does not exist

Given (NULL,LP),σ, a Next operation delegates to an Up.

• Down . This operation moves one vertical level down if possible, pushing the

current state and setting the IP to the first item on the next level. If no deeper

level exists from this item, this delegates to a Next operation.

140

Down((IP,LP), σ) =

 ((FIRST,LP + 1), IP :σ) if LP + 1 exists

Next((IP,LP), σ) if LP + 1 does not exist

• Up. This operation completes processing of all remaining items on the current

horizontal level and moves one level up vertically. This is idempotent, and

implies terminating the program if it attempts to ascend past TOP.

Up((IP,LP), σ) =

 ((IP’,LP− 1), σ′) if LP is not TOP and σ = IP’ :σ′

((NULL,TOP), ∅) if LP is TOP

We can now describe the program execution in terms of the navigation pointer

evolution. Using a simple textual example, Figure 5–2 demonstrates a graph of

possible pointer values in the nodes and the operations that result in the changes

as edges. In this example, the items were the statements of the program and were

identified by the line number. At each point a debugger may move to the next

statement at a given level, either as a typical step-into (black Next arrow) or step-

over (red arrow) any lower levels (the latter being Down operations that delegate

to Next). An actual Down operation can be performed on the method call to enter

the method body, at which point an Up operation can be requested to complete

execution, skip debugging the method body and return to the caller, or Next can

be used to flow through the execution of the increment statement, and Up executed

when no more horizontal execution is possible.

141

Figure 5–2: Navigation pointer evolution. Red arrows represent a step-over debug-
ging scenario.

We now demonstrate, in Figure 5–3, a possible NP evolution while debugging a

graphical formalism representing sequential execution of two MT rules. The simple

schedule contains two rules enclosed in rounded rectangles connected with an arrow

to indicate sequential execution control flow. The MT schedules as demonstrated in

Section 3.4 hide rule details in plain rectangles, here the rule contents are shown. In

addition, here, we demonstrate the use of symbolic pointer values. The ordering is

provided by the MT schedule structure. For example, Next operation for IP=Rule 1

results in IP change to Rule 2 as it is the following item on that horizontal level.

In this example, the items are the elements of the MT schedule. At the top

level, the step-over (red arrow) operation is performed using the Next command by

enumerating the items at the TOP level. A typical step-into (black Down arrow)

operation can be performed on the nested MT schedule element. In such case, the

hierarchy of Rule 1 is explored resulting in the adjusted LP. At this point the step-

over results in sequential exploration of the LHS and the RHS parts of the rule Rule

1. Finally, the debugger is taken back to the TOP level from the LHS processing

142

Figure 5–3: Navigation pointer evolution for a graphical formalism. Red arrows
represent a step-over debugging scenario.

(skipping the debugging of the RHS) by Up command or by the delegated Next

command after exploring the items of the Rule 1 level.

In order to handle breakpoints, described in Section 5.5, we need to distinguish

between two kinds of NP evolutions. The first evolution is explicit. This evolution

produces NP traces when the debugging target execution is controlled by means

of navigation commands. This trace does not contain the fine-grained details of

the debugging target execution, and the details of NP evolution from the lower

vertical levels is omitted. This is similar to stepping over the nested items of interest

without exploring them deeper. For a comprehensive information about the target

execution, we consider an implicit NP evolution. This trace, visible to debugger at

all times, contains all NP value changes. The implicit values are necessary for us

143

to enable breakpoints based on NP values, pinpointing various locations throughout

the debugging target execution flow.

Debugger behavior is of course not entirely addressed by this control flow model.

We also need to consider how and when a debugger accesses data. Global, static data

is universally available, but access to other, local data can depend on the language

semantics given by the position in the control flow (such as with local, stack variables

in a procedural language). As this depends on the language being debugged, we will

require the target-language context to provide a means to expose (and represent)

data, given a (current) navigation state, allowing the debugger read and write access

in accordance with the expected semantics. We now move to apply the structured

view of debugging to MTs.

5.3 Structured View of MT Stack

In this section, we apply our structured view of debugging to a MT stack typi-

cally found in rule-based MT systems. We describe the MT stack in terms of levels,

items, and data. We need this in order to enable seamless debugging across the MT

stack layers.

Typically, in MT debugging we are mainly concerned with MT specification,

its use of the source model and the final effect the transformation has on the tar-

get model. Inside the transformation specification, we can discover the hierarchical

structure of the schedule encompassing MT rules. Further down, we find individual

patterns contained within the pre/post-condition parts of the rule. These individual

patterns are used for matching in the source model and modifying the target model.

Pattern matching and application steps are also important and need to be debugged.

144

In Figure 5–4 we outline a conceptual, level-based view of the MT stack. Rect-

angles represent the components such as static models and dynamic routines. The

nesting relationship represents hierarchy or containment. There is a clear separa-

tion of data where the model artifacts are concerned. The data found inside the

operational semantics of related components, however, such as the matcher of the

pattern for example, is not clearly distinguishable on the diagram. We will clarify

this concern below. In the following paragraphs, we discuss the MT stack in more

detail and investigate how it fits within our debugger.

Figure 5–4: A MT stack view. Nesting of boxes represents hierarchy.

Input/Output Model Level. Shown on the right of Figure 5–4, this is the

main data part of a model transformation. In our prototype example we perform

in-place transformations, and therefore we expose that single model to the debugger.

The model is global access data and we decide whether it should be accessible to

145

Figure 5–5: Example of MT schedule.

the debugger for inspection at any point in the target control flow space (in terms

of navigation pointers that is). Of course, the model may contain sensitive, propri-

etary data, to which the target may want to limit or obfuscate access, depending

on the requirements. Our choice is motivated by our desire to provide automated,

declarative debugging of MTs and for that purpose, we assume full model access for

querying from any point in the execution.

Schedule/Rule Model Level. The MT specification describes the control

flow of the MT execution. This level is the heart of the debugging target. The

nested structure of MT specification is giving us hints to the vertical and horizontal

dimensions for the debugging. Note that although we think of this as specifying

control flow of the target, at the same time it also represents data for our debugger

to query, and we can use that perspective to guide a more MT-driven debugging

process. In Figure 5–5 we demonstrate a mock-up of a MT schedule. Syntactically,

rectangles represent rules (and possibly transformations as shown in Figure 5–3).

To describe the hierarchical nature of MT schedule, we expand the Rule1 rectangle

146

revealing the actual rule model the rectangle contains. The MT rule typically consists

of LHS and RHS parts (with an optional NAC), each in turn containing patterns.

We need to decide on the VL and HL items. We do this by analyzing the possible

movement in horizontal and vertical dimensions. In this case, in terms of debugging

we would navigate horizontally from Rule1 to Rule2, as rule are processed at the

same level of abstraction (the vertical arrow shown in the example is indicating that

application of Rule2 follows Rule1). Note that the Rule1 is shown with its LHS and

RHS parts and their individual patterns. The LHS tells us to find a circle in the input

model, and RHS shows it converted to a diamond. The actual rule transformation is

at a different level of abstraction from rule scheduling and represents a descent into

a deeper, vertical level, wherein there is horizontal movement between the process of

applying first the LHS , and then the RHS parts of the rule.

Action Code. The execution of the LHS and RHS parts contains further,

nested execution complexity, most notably in terms of the presence of some action

code (AC) used to specify imperative constructs otherwise too complex to express

declaratively. Model elements attribute evaluation is one example of AC use. Treat-

ment of AC requires a context switch in interpreting the MT specification. Execution

semantics depend on the action language, and so requires a formal view of the lan-

guage in terms of the debugger navigation pointer values, or would need to relay

to the underlying general purpose language debugging facilities. We utilize those

facilities in our prototype evaluation to deal with AC.

147

In summary, for this part of MT stack, the VL can be obtained by exploring

the containment relationship in the MT schedule presented. If the schedule is pre-

sented in the textual format the hierarchical relationship could also be explored by

descending into the function/procedure calls. In turn, a horizontal dimension of each

VL is exposed by enumerating the items without exploring the hierarchy, as in the

case of the LHS and the RHS parts of one rule. We continue with the low-level rule

application details.

5.3.1 Pattern Matching/Application Level

We now discuss the parts of MT stack which are arguably overlooked the most

in the MT debugging or are exposed to a limited degree of in the MT tools.

Pattern matching. Going a level down into the pattern matching process we

are presented with the tool specific implementation. We need to agree on the uni-

fying concepts of pattern matching applicable to various solutions that can be used

uniformly during debugging. Local search-based techniques will operate differently

from the constraint satisfaction pattern matchers (such as VF2 [19]). However, with

some degree of certainty, we may assume that both will return the bindings repre-

senting the match and both will iterate over the candidate bindings in an attempt

to grow the match further.

We propose below unifying concepts related to pattern matching. This gives us

the ability to use them regardless of the pattern matching algorithm employed. The

items below can also be considered as data that we can query during the debugging.

148

• Candidates - a list of bindings between the pattern elements and the input

model the matcher considers to produce the match. Observing candidates

gives us an insight into how the algorithm goes about finding a match.

• Bindings - list of bindings between pattern elements and the input model that

positively form a part of an incomplete match.

• Match - a complete match as a set of bindings.

• Matchset - a set of valid matches for one pattern. Typically, from this set, a

match is selected for the rule application when non-determinism is present.

Movement in the horizontal dimension within these sets happens by iterating over

set items by means of the Next command. In addition, we decided to treat each of

these categories as being on the same horizontal level, and one vertical level below

(inside) the pattern matcher. Certainly, it would be possible to assume a different

structure in treating these groups of items inside the pattern matcher. For example,

a set of candidates inside the match item.

Match selection. Another part of the match/apply process is the match selec-

tion from the matchset containing all matches found for the pattern. This addresses

the question of non-determinism (described earlier in Section 2.3). It is important

to announce to the user which of the matches were selected by the tool for a rewrite

(application) phase. This can be approached simply by exposing the selected match.

Alternatively, depending on the implementation, the candidates for the selection can

be exposed and offered to the user for inspection and modification. In this paper,

we treat this simply and define the selected match concept. The non-determinism

exposed here may possibly translate into an additional dimension of our structured

149

view of the MT debugging, as each match selected for the application stage may

result in a different control flow. We leave the treatment of additional dimensions in

our structured view to future work.

Pattern application. For the pattern application process related to the RHS

part of the MT rule we also need execution concepts to consider in our debugger.

This design can also be quite implementation specific. As a general solution, however,

we rely on the Create, Read, Update, Delete (CRUD) operations affecting the input

model and define the sets related to each one (except for the Read, since in this

context the Read operation belongs in the pattern matching domain). We also

consider these items as data available for querying. Our interpretation of the CRUD

operations is based on element-labeling typical of MT rule design, where unique

labels on pattern elements are used to assist in identifying elements meant to be the

same or different in the LHS and RHS patterns; the labels absent in the LHS but

present in the RHS indicate the creation of an element and element deletion in the

opposite situation. We present below the sets related to the pattern application.

• Create - a set describing the elements that will be created in the output model.

This set is populated by RHS elements that do not have corresponding labels

in the LHS .

• Update - a set describing the elements that will only be updated. This set is

formed from pattern elements that have mirroring labels in both parts of the

rule.

150

• Delete - a set of items that will be deleted from the input model. It is created

from items that are only present in the LHS and have no correspondence in

the RHS .

Just as in the case of pattern matching, navigation in the horizontal dimension on

this level should happen by enumeration of the set items presented in the sets above.

Note, that while we aim to explicitly expose pattern matching and application, we

leave user-modification of these processes to future work.

In the next section, we describe a debugging language that is utilizing the struc-

tured view and the navigation commands to model interaction with a debugging

target.

5.4 Debugging Language

Our debugger design builds on a custom debugging language expressed through

debugging rules, which follow the familiar MT rule structure, including LHS and RHS

parts. This approach allows us to incorporate domain-specific syntax for different

layers. Debugging rules can also be chained to form debugging scenarios, which can

be executed separately from a target MT, facilitating automated debugging.

We begin with the discussion about the LHS part of the debugging rule, followed

by a description of the possible action the debugging rule can perform. Also in this

section, we describe the use of scopes to indicate where in the MT stack the LHS

query will perform the search.

Querying. The use of the LHS of a MT rule is that of a pre-condition for the

application of the RHS . The LHS patterns are matched in the input model and for

our purposes, this can be considered as a query over data or state of a debugging

151

target. Therefore, it seems natural to use the LHS for all queries related to the

debugging problem. These queries include:

• Input/output model querying. The problem domain formalisms used in the MT

are then reused in the debugging rule specification without the need for any

extra effort on the part of an engineer. The input/output models represent the

main data part of the MT system. An engineer may have an idea about an

undesirable pattern appearing in the model resulting from the application of

a MT. It may become quite tedious to interactively step through the transfor-

mation and monitor the transformation results until the problematic pattern

appears. Therefore, it is important, for MT tools to facilitate declarative and

automatic querying of the models (or a debugging state of MT in general).

This is the intended application of queries this thesis. In a way, this is similar

to anti-pattern querying in the tool IncQuery [16]. These patterns represent

undesired changes in the model that the tool monitors through incremental

pattern matching.

• MT specification querying. The MT specification is a model itself and is already

treated as an input in the area of higher order transformations (HOT) [99]. This

permits us to issue queries over the MT specification. Further if necessary, the

HOTs can also be applicable in the context of debugging. The debugging rule

may modify the image of a query found in the MT schedule thus providing the

adaptation facility of a debugger mentioned in Section 5.1.

152

• Pattern matching and application querying. The data involved in the pattern

matching and application process can also be the target of queries. For exam-

ple, a match containing the bindings between the pattern and the input model

or any other data can be exposed to the debugger. We can envision the use of

an appropriate graphical formalism to query in this context, as the complete

match, for example, should conform to the MM of the input model and is a

graph (even though it may not be represented as such in the pattern matcher

implementation). If this low-level data does not conform to the meta-model

of the languages involved in the transformation we are debugging, the use of

normal LHS mechanisms for pattern matching may therefore not be available,

and thus we currently make use of action code to read and write that data.

The complete treatment of such cases we leave for future work. Finally, in this

context, we also reserve certain keywords for the match discovery described

in Section 5.3.1 for more precise querying. The keywords include: candidates,

bindings and others.

• Navigation pointer querying. In order to reason about the location within the

debugging target, we need to form a query based on the navigation pointer

pair, or some part of it. This is useful in order to perform an action when

the MT control flow enters a desired location in the MT specification. For

example, we may want to break the execution of the MT when a specific rule

is executed. We intend to use action code in order to match the current NP

value to the one we may be interested in.

153

Note that the LHS condition can be further augmented through the use of

NAC s to specify negative application conditions, and so inhibit application of the

debugging rule.

Action. After successful query discovery (or simply a pre-condition satisfac-

tion), we want to perform an action. For this, we use the RHS of the rule, specifying

traditional debugger actions, as well as modification of the various parts of the query

domains. We focus mainly on the former in this chapter, but many other effects of the

RHS action are possible, including modifications to the input/output and the MT

specification models. The latter, for example, allows us to perform the adaptation

of MT specification, described in Section 5.1, for the exploration of new execution

scenarios. We may also want to influence the pattern matching and application

process by modifying such data as match candidates, matches, and matchsets for

example. More detailed investigation of execution adaptation and pattern match-

ing/application influence represents an advanced debugging session, which we leave

for future work. Finally, we may also want to perform simple miscellaneous opera-

tions such as printing the values to the console or file. For this, we rely on the action

code facilities typically available in the MT implementation.

Navigation Commands. One of the goals of our debugger is to control the

execution of the debugging target by means of issuing navigation commands. To

issue navigation commands we embed them within the RHS . Application of the rule

and successful matching of the LHS pattern then results in the command being

performed. Such debugger commands can be simply issued through the use of action

code. A visual representation, however, better fits the MT paradigm and allows for

154

Figure 5–6: Concrete syntax of the navigation command language. The last two
icons are for the resume and pause operations.

Figure 5–7: Rule example that advances the execution of MT based on a LHS pattern
match.

a more natural integration with other RHS elements. We have thus chosen a simple

graphical concrete syntax, shown in Figure 5–6. These symbols naturally map to

the Up, Down, and Next operations comprising our navigation strategy, as well as

a resume (repeated Next), and asynchronous pause behaviors found in debuggers.

In terms of common debugging parlance, the Next operation represents step-over,

step-into maps to Down, and the Up operation maps to the step-out operation.

Debugging rules. With this in mind, we can now create the first debugging

rule as shown in Figure 5–7. This rule advances the execution of the MT by issuing

a Next command if the pattern in the LHS (a query) of the rule is found. At this

moment we ignore the location of the input (model) applicable to this query.

The rule in Figure 5–7 represents a slight semantic departure from typical MT

rule design. In traditional MT rule design, the absence of the LHS pattern in the

RHS of Figure 5–7 indicates that the occurrence of the LHS pattern should be

155

deleted (as well as Next invoked). As this is not typically the combined intent of a

debugger action, we assume that when a navigation command is present in the RHS

the rule becomes read-only, and the occurrence of the query present in the LHS will

not be modified.

This approach limits the expressiveness of RHS actions, but avoids the need to

repeat the LHS pattern in the RHS when performing common navigation commands.

When modifications to the occurrence of a query in combination with navigation are

desired, the user will need to perform this action with two rules in sequence, one to

perform the modification, and another to issue the navigation command. Overall,

the execution order of debugging rules depends on the debugging scenario scheduling.

In this case, however, it makes sense to execute the write rule while the target MT

is paused and before the second rule advances the target execution by issuing a

navigation command.

In order to understand how the debugging scenarios work and their possible

limitations, we need to agree on the semantics of interaction between the debugging

target and the debugger. When a debugging scenario is first executed, the target

should be paused. The debugger is then free to control the target through the ap-

plication of debugging rules. The debugging scenario can issue the continue/resume

command after which the target can be paused again and another debugging scenario

executed. The debugging rule application when the target is in the running state

should be avoided because the state of the target will evolve independently resulting

in an undefined scenario behavior.

156

Figure 5–8: Simple debugging scenario that repeatedly advances the execution of
MT based on a LHS pattern match.

With this in mind, Figure 5–8 demonstrates a simple debugging scenario, that

uses the rule from Figure 5–7 executed repeatedly in loop. The successful rule ap-

plication results in a repeated, step-over debugging target execution on the current

VL. The failure, terminates this debugging scenario. We continue with a discussion

on how the scope concept from Chapter 3 can be applied to the debugging rules.

5.4.1 Scope use to indicate location

Given the many sources of data described in the previous section, the rule in

Figure 5–7 is ambiguous in terms of which input model is applicable to the query. A

straightforward approach to enumerating query pattern occurrences is to search for

them everywhere, from the input model and the MT schedule, down to the match

bindings in the matcher routine. Rule efficiency, clarity, and readability can be

improved, however, by indicating the location of the input for a query, allowing the

query to be applied with more specificity.

157

To represent the search area in a meaningful way, within the MT rule paradigm,

we make use of our scope formalism proposed in Chapter 3. Scope provides a means

to specify the locality of pattern matching and application in the input model using

graphical and textual formalisms. Our debugger thus defines several, global scopes

to represent the fundamental parts of the model transformation we are debugging.

Note that while in principle scopes can be modified by transformations, the value

of doing that in a debugger context is less clear, and so we assume scopes are read-

only, with appropriate scoping preserved in any RHS transformation. In addition,

for simplicity, these scopes are not hierarchical. However, it would be possible to

use scope hierarchies if necessary. Below we propose several scopes suitable for MT

debugging context.

• Host - this scope gives our debugger access to the host graph encoding the

input model.

• MT specification - this scope is used for MT querying and HOTs. For simplicity,

in this paper, we define a global access to the MT specification—regardless of

the navigation pointer values, all the rules of MT are available to debugging

scenario for query and modification.

• Navigation - this scope allows us to query the navigation pointer. This actually

represents a set of scopes, parametrized by navigation pointer values, so as to

allow a rule to focus on a specific navigation instance.

The rule in Figure 5–9 demonstrates the use of the scope formalism in the LHS

part of the rule. This rule issues the Down command to the target MT if the pattern

is found in the input model. The rectangle ”Host” represents the scope of the input

158

Figure 5–9: Rule example that issues Down command to MT based on a LHS pattern
match in the input model. A scope formalism is used to indicate location of the query.

model—any item placed in the scope rectangle, through the containment relationship

is said to be in that scope. Now the rule is clearly indicating the location for query

matching.

Use of scope helps with disambiguation but is meant mainly as a performance op-

timization. To better take advantage of the possible performance benefits, however,

the creator of a debugging scenario may want to create their own scope, dynamically

modifying it as necessary. For example, suppose the user relies on a complex query

based on part of the input model, but which may need to be checked frequently, such

as in the case of data-based debugging scenario. Using a write rule in the debugging

scenario, the user marks part of the input model with a unique scope. This part of

the input model, now in scope, represents an incomplete query, but will eventually

grow to produce a pattern completely satisfying the query. The pattern matcher can

start checking for that query from and around the scope, potentially greatly reducing

the matching cost as we demonstrated in Chapter 3. Search plan-based matchers

can be particularly helpful in this context; tools supporting search plan matching

include GrGen and Viatra [33, 42].

159

Figure 5–10: On the left is the target MT consisting of two rules, on the right is
the debugging scenario. The target specification is contained within the MT scope
rectangle and the input model within the Host scope. Dashed lines represent matches
for the LHS parts of the debugging rules.

In Figure 5–10 we show an overview picture of a debugging situation demon-

strating the use of scopes. On the left, is a MT rule schedule, on the bottom is

the input host graph. Both the schedule and the host graph are displayed enclosed

within their respective scopes. On the right is the debugging scenario, consisting of

two rules. The first rule expects a pattern in the host scope. A successful query

of this pattern issues the Up command and schedules the next debugger rule. The

next rule uses the MT scope and has the purpose of a HOT on the MT specification,

160

Figure 5–11: Rule example that uses scope to query navigation pointer and results
in a debugger action.

modifying a rule that transformed diamonds to triangles into one that transforms di-

amonds to circles. The dashed arrows are indicating where the LHS of the debugger

rules find their matches.

Finally, in Figure 5–11, we demonstrate the rule implementing debugger action

based on the navigation pointer values. We utilize the scope labeled Navigation to

encapsulate the NP values. In the event the execution enters the LHS of the rule, the

action will result in step-into operation. Note that in this example, the navigation

pointer values are encoded as strings. This facilitates the exchange of these values

between the debugger and the debugging target, and increases readability. The

ordering, allowing us to move between the NP values, is provided by the debugging

target. This includes, for example, the schedule of the MT being debugged encoding

the ordering. The evaluation of the NP happens using the action code within the

scope pattern element in the LHS of the rule. We can also envision the use of regular

expression style matching over the NP values to cover a range of NP values in one

query. For example, we can query when the debugging target processes the RHS of

every rule (see Figure 5–12) or the input model is modified (enumeration of Update

161

Figure 5–12: Debugging rule example that results in a debugger action upon the
processing of the RHS of every rule in MT. The star represents any value.

set during pattern application). We now continue with a discussion on breakpoints

and debugging scenarios modeling the watchpoint-like functionality in our debugger.

5.5 Breakpoints and Watchpoints

In order to support a well featured MT debugger, we need a comprehensive

breakpointing support. In this section, we describe breakpoints in our debugger

concept. We begin with the manual breakpoints set within the MT stack. This

is similar to setting breakpoints over the lines of code. We then describe break-

pointing/watchpoining realized through the debugging scenarios. Note that, for our

purposes, we redefine the common notion of a watchpoint in debugging. The classic

watchpoint interrupts execution of a program and returns control to the user when a

change to the observable state of a debugging target is detected. A watchpoint in this

chapter is a debugging mechanism intended to query the state of a debugging target.

Upon the satisfaction of a query, some watchpoint action is performed. The action is

not limited to returning control to the user but can include tracing, debugging state

modification, or even the navigation commands.

162

Manual breakpoints. Let us first consider breakpointing in the context of a

typical interactive debugger, without the use of the debugging scenarios modeling

debugger interaction. Manual breakpoints are the breakpoints that can be placed

within the MT stack before MT execution. Intuitively, such breakpoints are more

applicable to the MT specification as it is typically a model available for inspection

and modification. Recall, that our debugger observes the debugging target through

the NP evolution. Each NP then represents a possible breakpoint location at which

the execution can be halted and the state of the debugging target inspected. Clearly,

for this, the debugger needs to be aware of the implicit evolution of the NPs. Manual

breakpoint location then needs to be associated with the NP value. This can be

achieved in two ways. First, the debugging target can label the NP value as a

breakpoint. The debugger then halts the target execution upon receiving such NP.

In case the debugging target has the facilities to indicate breakpoints in the MT

stack (such as within the rules or even in the action code), the implementation

responsible for producing the NPs needs to handle labeling of the NPs within the

target. Second, the breakpoint as the NP value can be specified in the debugger itself.

The debugger then compares incoming NP values to the internal list of breakpoints

it has. Naturally, the latter kind of breakpoint specification needs to conform to the

NP values produced by the debugging target.

Watchpointing using debugging rules. Watchpoints in our design are mod-

eled and driven by debugger rules, depending on the variety of query specifications.

Introducing a break or other action in an explicit debugging scenario is shown in

163

Figure 5–13. The purpose of this debugging scenario is to step through the execu-

tion, by issuing Next command (with an unconditional query that always evaluates

to the true value) until the creation of a circle in the input model can be detected by

a second rule. Rule scheduling applies the first rule (which always succeeds), then

the second, returning to the first rule when the second fails to apply. Upon success

of the second rule a debugging action is performed, in this case, a trace is done using

action code.

A pause or other navigation action could be performed instead or as well. Recall,

however, that the debugging target is in the paused condition after a debugging rule

application, unless the resume/continue command was issued. Therefore, defining a

pause action in the rule (as to create a breakpoint) is unnecessary and can be used

simply for readability purposes and to make the target pause intent explicit. This is

the reason why we chose to refer to such debugging scenarios as watchpoints rather

than breakpoints.

The pace of debugging in Figure 5–13 is given by the use a Next operation,

which depends on the navigation pointer position at the time the command is issued;

it may also be desirable to step execution at a finer granularity, such as by using a

Down operation in the first rule to model a fine-grain (step-into) execution. Modeling

watchpoints in this fashion mimics the user repeatedly invoking navigation command

until a condition is reached.

Writing explicit watchpoints can become tedious. Therefore, we extend the MT

language with an addition of a syntactic sugar construct to represent the repeated

attempt of a debugging rule application. Once the rule is successfully applied (the

164

Figure 5–13: Explicit watchpoint debugging scenario resulting in a trace after the
query in the input model is found.

query is satisfied) the execution of a watchpoint construct is terminated and the

control can be passed to a next MT language construct. In Figure 5–14 we show this

construct as a grayed out rectangle housing the debugging rule. While this construct

is executed in a debugging scenario, the target will be stepping through its execution,

with rule failure implying repetition. The debugger controls the granularity of the

target in the explicit debugging scenarios (as shown in Figure 5–13), in the proposed

syntactic construct however it is unclear what granularity is implied. Parametrization

is certainly possible, however by default, we propose that the finest step granularity

should be used in order to catch the minuscule and incremental debugging target state

changes. Therefore, the construct in Figure 5–14 is equivalent to the construct shown

on the right in Figure 5–15. Here the finest granularity is ensured with the Down

165

Figure 5–14: A syntactic sugar debugging scenario resulting in a trace after the query
in the input model is found.

command execution. Certainly, some watchpoints do not require fine granularity and

the performance of a target execution will suffer if the syntactic sugar constructs are

used unnecessarily frequently.

The new construct can also house several watchpoint rules as shown on the left in

Figure 5–16. There, we see two watchpoints, one is for the occurrence of a pattern in

the input model and another for navigation pointer values to be pointing to the LHS

of a particular rule. The latter is having the pause action for readability purposes

described earlier. The semantics of this construct is that each of the watchpoint

rule queries contained within will be checked once while the target transformation is

suspended. The process repeats after a single step in the target transformation. We

show the equivalent, explicit debugging scenario on the right in Figure 5–16. After

advancing the target execution the debugging rules are checked in sequence. The first

rule to succeed breaks the debugging scenario’s execution for further processing.The

execution of the target remains paused and the control is handed over to the next

rule in the debugging scenario.

166

Figure 5–15: A syntactic sugar debugging scenario on the left and its equivalent
explicit scenario on the right.

Constructs for coarser granularity may also be interesting to explore of course,

and the explicit debugging scenario form remains as a means to give the user full

control. We now proceed to discuss possible implementation.

5.6 Prototype Implementation

Evidence of the utility and practicality of our design is given by a sample im-

plementation. In this section, we discuss the realization of our debugger within an

existing research-oriented MT tool AToMPM used in our lab. We show how our

initial implementation can be reused to a certain degree in other MT tools such as

AToM3 [25] and ATL. We conclude this section with a discussion on performance

implications of our solution.

167

Figure 5–16: A watchpoint construct, watchpoint rules inside are tried until one is
applicable, resulting in a debugging action.

168

5.6.1 Implementation in AToMPM

AToMPM [59], a Tool for Multi-Paradigm Modeling, is a multi-formalism/multi-

abstraction meta-modeling and model transformation tool. The front-end of AToMPM

is a browser-based user interface. In AToMPM everything is modeled, from user in-

teraction to the tool bars in the browser. The tool provides the class diagram-like

meta-model used to create custom DSLs and the MTs. Finally, the graph rewriting

functionality of AToMPM is implemented in a Python-based back-end.

We begin by describing the general architecture and the high-level view of the

interaction process between the debugger and debugging target. We then proceed

by describing modeling activities we perform to produce the debugging formalism

artifacts described up to this point (for brevity, we do not include the meta-models

we modify), followed by the development activities performed.

General Architecture. In Figure 5–17 we show a general architecture of our

system in AToMPM. The squares in the figure represent components of the system.

This is a single process system where a debugging target, debugger and a Statecharts

controller have separate threads of execution. The components, however, have shared

memory access. Shared memory allows for an easy access to the debugging target

state. In this case, it was trivial to enable data exchange between two threads

of execution, one being the target model transformation, and another being the

debugging scenario. In a different implementation scenario, shared memory access

may not be possible. In such cases, extra effort may be needed to implement data

exchange through a network or other means.

169

Figure 5–17: A general architecture of our debugger in AToMPM. Debugging target
and debugger are two AToMPM instances (threads of execution) communicating
through a Statecharts and have a shared memory access.

170

The debugger and debugging target are two separate AToMPM instances. These

are typically two browser windows that have access to a Python back-end process

(each AToMPM instance has a separate thread of execution in the Python-based

back-end). The back-end is the heart of AToMPM MT system where the graph

rewriting and rule handling takes place. Further, in this section, we describe the

modifications to the back-end necessary to implement our debugger.

The heart of our debugger is realized in the debugger controller using the well-

known Statecharts formalism [38]. Statecharts were chosen because of their conve-

nience in describing autonomous, concurrent, and reactive systems. The inspiration

for our solution comes from work by others on reimplementing existing model exe-

cution engines in Statecharts with the addition of a debugger related functionality

[101]. We chose a different path and implement the main logic in a central Statecharts

model (Python-based). The Statecharts controller resides in the AToMPM back-end.

Its purpose is to receive debugger commands either from the debugger toolbar, for

interactive debugging, or from the debugging scenarios. In addition, the controller

receives the NPs from the debugging target and instructs the target whether to halt

or proceed with the execution. We will return to the actual Statecharts model later

in this section with more details. Finally, the shared data access model permits the

debugging scenario running in the debugger to access the state of the debugging tar-

get. The scenario can read the input model, the MT specification, and the pattern

matching/application related data.

Modeling activities. To implement our debugger, certain modeling activities

were necessary. We model navigation commands as visually shown in Figure 5–6.

171

This allowed us to place the commands in the existing MT rules without additional

modification to MT specification. The treatment of such rules had to be however

augmented in the internal implementation (recall the read-only debugging rules).

The scope formalism, as described in Chapter 3, is able to contain any formalism

(DSL). Recall, that we use the scope to indicate the location of a debugging query. We

reuse the scope formalism unchanged in this prototype. Some back-end modification

was necessary in order to associate the scopes with the debugging target data.

Toolbars in AToMPM are explicitly modeled, and therefore, for the debugger

interface, we modify the MT control toolbar to include the buttons corresponding

to the navigation operations. Pressing the button then sends a command to the

Statecharts controller resulting in the reaction of the debugging target. In essence,

the toolbar can be used for interactive debugging of the target without the need for

constructing a debugging scenario. In addition, it is possible to model the button

press as an execution of a debugging rule responsible for a particular navigation

command.

Debugging target development activities. The first major development

activity was to modify the back-end of AToMPM to generate a NP at every point of

interest. Here, the engineer should make choices to what NP values the target will

expose to the debugger. Our choices here are based on the debugging items and NP

values from the MT stack we describe in Section 5.3. We identify all locations in

the Python back-end code that are processing debugging items. These locations are

relevant to the changes in navigation pointers and processing of the items of interest.

We are mainly concerned with the schedule, individual rules, the LHS followed by the

172

RHS , down to the relevant action code evaluation and pattern matching/application

routines. We need to communicate debugging items, as NPs to the Statecharts

controller model. The items can also be hierarchical leading to other internal items.

Therefore, we need to indicate the beginning and the end of item processing in order

to have an image of the hierarchies. For example, the beginning of an item such

as the processing of an individual rule constitutes a beginning of a rule item. This,

followed by the processing of the LHS (before the end of rule item is announced)

indicates that the rule item is nested. The end of a rule item alerts the controller to

the completion of the composite item and that the particular VL is explored to the

end. We add extra information to the NP sent to the controller. This information

can contain action code line numbers, rule names and can be used for such purposes

as code line highlighting and highlighting of control flow in the debugging target, as

necessary.

The point where the debugging item begins also marks a place where the de-

bugging target may be paused before processing the item. The pausing functionality

is achieved by waiting for a message from the Statecharts controller to advance the

execution. This is achieved with a blocking queue provided by the Statecharts imple-

mentation. With these modifications on the debugging target side, we can already

have an interactive debugger. The debugger will have the pause/resume and other

debugging command support (ignoring, for now, the Statecharts controller imple-

mentation details).

More modifications are necessary in order to support the debugging scenarios.

We modify handling of the MT rules to support read-only rules issuing commands to

173

the Statecharts controller. We also ensure that the debugger executing a debugging

scenario waits for a notification from the controller about reaching paused states

after execution of the last debugging rule.

In summary, in AToMPM, the implementation of a simple interactive debug-

ger is achieved without complex, intrusive modifications to the debugging target.

Depending on the complexity of the debugging target, however, these modifications

may not be as straightforward, and for instance, involved additional complexity port-

ing our solution to ATL (described in the following sections). We now address the

Statecharts controller implementation.

The Statecharts controller. The Statecharts controller is implemented in

SCCDXML format [102]. This format is an extension to SCXML format5 specifying

Statecharts models. The extension adds support for runtime instantiation and de-

struction of objects that internally represent Statecharts models. This additional

functionality was not explored in this thesis. Instead, we utilize the SCCDXML

compiler for basic Statecharts model compilation, producing executable Python code

from an XML-based specification. The SCCDXML format is textual and we convert

it to the SCXML format with some modifications. For display purposes, we then

import and edit the resulting file in QTCreator’s6 Statecharts graphic editor. Due

to a particularity of the tool, not all of the information related to the Statecharts

transitions is displayed. For example, the tool hides transition guards. Where it is

5 https://www.w3.org/TR/scxml/

6 https://www.qt.io/ide/

174

important, we will describe these hidden transition attributes and add guards. If the

transition in the diagram is missing an event that triggers it, then that transition is

unconditional.

In Figure 5–18 we demonstrate the debugger Statecharts controller model. Note

that this is just one of the possible ways to implement the Statecharts controller

model. Our version of the Statecharts model deals with the navigation commands,

receives navigation pointer values from the debugging target, and permits the target

to advance the execution. The navigation pointer events from the target are pro-

cessed in the ProcessingItems state. Here, the parametrized newitem event signals

to the controller the beginning of the debugging item and arrival of a new NP. The

new item is processed in the nested PushingStack state. In this state, the custom

Python code, embedded in the Statecharts model reacts to the creation of a new item

and possibly newly nested VL. Once the target signals the end of the item with an

enditem event, the controller performs necessary computations to indicate the end

of a particular VL in the PoppingStack state.

Upon receiving an item, a new event called newitemtrig is raised. It is pro-

cessed in the MTSpecificActionsVisualization state. Each newitemtrig transition has

additional guards to distinguish between various new items. Only one is shown for

brevity in the model. New items may carry information such as rule names, action

code line numbers, etc. In this state, we use the additional information to perform

such actions as visualization or highlighting in the target user interface. For exam-

ple, action code line number highlighting. This state is the place where we would

add processing of new types of items, if necessary. For example, an engineer wants

175

Figure 5–18: A Statecharts model of the debugger controller. Orthogonal compo-
nents are responsible for processing navigation commands, navigation pointers, and
implementation specific items corresponding to navigation pointers. Empty transi-
tions are unconditional.

176

to introduce highlighting of a function body in the action code, in addition to al-

ready present line-by-line highlighting. The MTSpecificActionsVisualization state is

intended to be implementation specific, as opposed to other states aiming to be as

generic as possible, because it mostly deals with the user interface of a specific tool.

The pausing functionality of the target is achieved through the transition from

states NavPointerNew to ItemProcessing. This transition is taken if the paused state

of the DebuggerControl state is inactive as indicated with a guard. On taking the

transition an event is raised, that is sent to a halted debugging target, signaling the

target to proceed with the execution.

Runtime context is maintained in the DebuggerControl state, where we process

the navigation commands. The controller can be in three main states. The state

paused indicates that the debugging target is paused. From there, the target can run

continuously as indicated by continuous state. Finally, when the target is paused,

navigation commands can take place, placing the runtime context into a running

state. The duration of the running state depends on the navigation command. The

execution will be automatically halted by a transition from GoingToPause state to

the paused state. For example, issuing a Next command will enter the running state,

after which the single item in the given VL is processed. Upon receiving an end item

event, the controller will ensure that the paused state is entered before the next item

on the same VL arrives. Finally, the running state is also equipped to run the target

until an NP with a manual breakpoint is encountered.

User interface. In Figure 5–19 we show a screenshot of the tool. The symbol

outlined in red with a number one indicates the button that opens the second window

177

to load a debugging scenario for the transformation within the current window. The

set of symbols outlined with number two shows the debugger toolbar. Left to right

are symbols for loading a debugging scenario (transformation), continue, Next, pause,

stop, Down, and Up. (As we reused an existing symbol set here these symbols slightly

differ from the ones we showed earlier.) It is possible to use the debugging toolbar

Figure 5–19: A screenshot of our tool and the debugging toolbar.

without the use of a debugging scenario for an interactive target control.

The workflow of the debugging scenario is the following. We load the input

model and the transformation. We press the bug icon to open a second window

where we load a debugging scenario (a transformation) using the toolbar outlined in

Figure 5–19. We play the debugging scenario which in turn controls the target MT.

Action code. Treatment of action code (AC) used in MT rules deserves addi-

tional explanation. The implementation is approached by utilizing the AC’s language

facilities. In the case of AToMPM, the AC is Python, which provides an interface to

develop custom Python debuggers called BdB. By extending this class, we can then

178

process Python code specific events and initiate communication with the Statecharts

model to announce changes in navigation pointers and debugging item processing.

For example, here, the navigation pointers change on events such as when the control

flow descends into the function or the next code line/statement is processed. The

navigation pointers can carry line numbers to the Statecharts controller that we can

use for highlighting in the action code as demonstrated in Figure 5–20. In addition,

the same Python language facilities allow us to inspect variables if necessary. The

Figure 5–20: A screenshot of our tool and processing of action code.

newly added debugging window displayed in Figure 5–20 is also used to display the

IP and LP comprising the NP. In a similar fashion to dealing with AC, we envision

dealing with MTs specified entirely in AC (a loop calling a function representing the

MT rule for example).

179

In reusing an AC’s built-in debugging API our solution to debugging AC is

expedient, but also not entirely seamless with our overall approach. With a simpler,

standardized AC design more structured views may be possible, such as by, which

would let us expose deeper levels in terms of NP values. We now move on to a

discussion on our experience in porting our debugger implementation to other MT

tools.

5.6.2 Porting Implementation

In order to give validity to our debugger solution beginning from the unified,

structured view to the Statecharts controller, we port the implementation to two

additional MT tools. One of the two is the industry standard ATL tool described

in Section 2.5. Another tool AToM3, is a precursor tool to AToMPM. These ports

realize interactive debuggers without the debugging scenario support, which would

require language engineering efforts beyond the scope of this thesis.

AToM3 is a MT tool. Compared to AToMPM, it has a different MT language,

implementation, and user interface. Both tools, however, share the Python-based

implementation language. Therefore, it was easy to reuse the Statecharts controller

in AToM3. At the beginning, we modify the Statecharts state responsible for domain

specific actions, such as the action code highlighting, to adopt the new tool’s user

interface specifics. Other states, for runtime context and NP processing, remain

largely unchanged. Similar to AToMPM, we identify the locations in the tool’s

implementation that treat the items of interest, such as rules, rule parts, and action

code. In those spots, we communicate with the Statecharts controller, signaling the

debugging items and pausing the debugging target execution if necessary.

180

We modify the MT controller window adding new buttons issuing debugger

commands. We also add a text field area, in order to display some state of the

debugging target. In Figure 5–21 we show a screenshot of AToM3 debugging a MT

simulating Petri Net execution. In this figure, we demonstrate line by line debugging

Figure 5–21: A screenshot of AToM3 tool debugging action code.

of action code similar to the one we showed in AToMPM. Porting the action code

treatment was relatively easy because both tools use Python as their AC and we use

the same approach.

181

ATL tool was chosen with an aim to demonstrate the applicability of our con-

cept to a widely used MT tool. The situation is different with ATL and several

complications hindered a seamless porting of our solution.

ATL is an Eclipse7 and Java-based tool. Because the Statecharts compiler

used initially does not produce Java code, we reimplemented the controller model

in another tool, Yakindu8 Statecharts tool. Yakindu does not support embedding of

custom executable code within the Statecharts model. Instead, external functions

need to be implemented. This results in an additional implementation effort because

of a widened cognitive gap when modeling the controller.

Instead of interpreting the transformation specification, ATL compiles them into

bytecode, suitable for execution in its own virtual machine (VM). In porting our

solution to ATL, we thus need to work at the level of VM. This certainly increases

the complexity of identifying items of interest and the NP values coming out of the

debugging target as these are based on different, custom bytecode sequences and API

entry points. The MT language of ATL is also textual, with a mix of declarative and

imperative constructs. In debugging such transformations a line-by-line approach,

based on stepping through the VM operations, is used by ATL itself. We aim for a

similar way to interactive debugging of ATL. Note that is is not our goal to implement

a fully featured ATL debugger or build a graphical user interface environment, but

rather to sufficiently demonstrate the applicability of our concept and approach.

7 http://www.eclipse.org/

8 https://www.itemis.com/en/yakindu/state-machine/

182

We know (from the ATL documentation and VM investigation) that there is a

certain structure to the ATL rule application inside the VM. It consists of several

nested functions that are applicable to each rule execution. The main function is the

top level routine containing three-stage rule application: helper function initializa-

tion, rule matching, and rewriting. These main functions themselves consist of many

other functions and VM operations (such as stack load operation), perhaps too low-

level to be considered of interest in a typical debugging use case. We approach this

situation explicitly, by providing the debugger and the controller with as fine-grain

items as possible. Certainly, with more implementation effort and investigation, we

can filter our the low-level VM operations and concentrate on the high-level ones only

or more appropriately integrate low-level operations into our multi-level navigation

approach. We now move to the Statecharts controller implementation.

In Figure 5–22 we demonstrate the Statecharts controller model. The model

Main

System

r2

init
entry / D.log("r2.init")

WaitForItem

NewItem
entry / D.log("In New Item");
D.processNew(D.nitem)

EndItem
entry / D.log("In EndItem");
D.processEnd(D.eitem)

r1

DebuggerControl
entry / D.init()

r1

continuous
entry / D.log("continuous")

running
entry / D.log("running")

paused
entry / D.log("paused")

always

D.up / D.command="up";D.pause=false

3

D.run / D.pause=false

1

D.down / D.command="down";D.pause=false
2

D.newitem / D.nitem=valueof(D.newitem)

1
always[!active(Demo.Main.System.r1.DebuggerControl.r1.paused)] /
 raise D.go:D.command

D.break / D.pause=true

D.enditem / D.eitem=valueof(D.enditem)

2

always[D.toPause()]
2

always

D.break / D.pause=true

1

D.next / D.command="next";
D.pause=false

4

Figure 5–22: A Statecharts controller for ATL debugger.

183

contains all main components from the Statecharts model in AToMPM except the

domain-specific state to handle extra information from the NP and perform custom

user interface actions. This Statecharts model, however, allows for interactive control

of ATL program execution, with stepping based on the NP generated from within

the VM handling individual VM operations. The controller receives the navigation

commands from the Eclipse toolbar in the ATL perspective.

We show a screenshot of the ATL tool with our debugging toolbar added in Fig-

ure 5–23. The toolbar buttons have the same behavior as described in the AToMPM

Figure 5–23: A screenshot of ATL debugger. Note a debugging toolbar similar to
the one used in AToMPM.

implementation. We conclude this section by discussing performance implications of

our debugging approach.

5.6.3 Efficiency Considerations

It is important for a debugger to have as little overhead as possible. In case of

an interactive debugger we desire responsiveness, and in automated contexts, we are

concerned with the increase in total runtime.

184

It is evident that the context switching from the MT to the debugger MT will im-

pact performance. In our prototype design, each implicit navigation pointer change

waits for a breakpoint evaluation, and this can become expensive depending on

the number of breakpoints and their complexity. Additionally, and more generally,

query evaluation in debugger rules is based on the same computationally expensive

pattern-matching problem as in general MTs.

To better understance performance, we executed the ALAP MT from Section

3.4.1 in AToMPM, estimating the load of NP creation and communication with the

Statecharts controller. The transformation was run with and without debugging

enabled. More specifically, when debugging is enabled, the tool communicates NPs

from all specified points in the target and the Statecharts controller processes them.

We disable the action code NPs from being created in this test and concentrate on

the MT schedule treatment consisting of transformations, rules, and their respective

parts. From this we discovered that the implicit pointer evolution approximately

triples the total runtime of the MT in question. Although an order-of-magnitude time

increase is not unreasonable for a debugger, there is clearly a substatial performance

impact.

A comprehensive performance evaluation is well beyond the scope of the basic

design we introduce here (or our initial prototype). Different optimizations, how-

ever, are clearly possible that can mitigate many efficiency concerns. We notice, for

instance, that while we may conceptually be checking rules at a fine granularity, de-

bugger rules that are based on input model queries need only be actually re-verified

after MT rule application (within/after CRUD operations), and even then only for

185

MTs which have potential to affect the debugger query results. Our use of scope of-

fers another means of performance improvement. We have previously discussed the

manual use of scopes to improve performance (end of Section 5.4). This process can

be partly automated, either through (conservative) analysis or at runtime through

the use of dynamic scopes [47]. As our debugging rules are fundamentally MT rules,

many of the other MT optimizations also apply. Incremental pattern matching tech-

niques [10], for instance, could improve complex queries, by enabling partial matches

to be cached.

The particularities of our Statecharts controller implementation may also open

avenues for exploring different controller models resulting in improved runtime per-

formance. Different designs are possible, and custom solutions without the use of

Statecharts-generated implementation code are also viable options to consider. This

is motivated by the fact that the generated, executable Statecharts model itself is

open to various optimizations. This situation is similar to compiler optimisation.

Finally, modern textual debuggers may benefit from hardware support for code

and data breakpoints to improve performance. Our system is missing such facili-

ties but we can imagine the performance benefits such support can provide in MT

debugging contexts.

5.7 Conclusions and Future Work

In this chapter, we explored the design of a model transformation debugger based

on model transformations themselves. The debugger allows for the specification

of debugging scenarios using the syntax and semantics of MTs. This reduces the

learning curve as the user is operating within the familiar domain of MTs. The

186

existing MT formalisms allow us to reuse, without any additional implementation

effort, the DSL found in the target MT specification. We use the DSLs to define

debugging rules with declarative queries, which facilitate the discovery of complex

MT execution artifacts and allow us to reason about the MT specification as in

higher-order transformations. The advantage of a debugging scenario, just like the

MT itself, is that it can be left to run unattended and perform the desired tasks. This

is particularly useful in considering model transformations with significant execution

times where close interactivity is less desired, and also applies to cases where a

combination of declarative queries and actions is part of an automated investigation.

A modeled solution to debugging has other benefits as well. Debugging sce-

narios can be exchanged between engineers, reused and analyzed, facilitating the

repetition of investigation common to practical debugging. We envision that debug-

ging scenarios can also be used to perform MT testing. In such case, the debugging

transformation can be tailored to test at runtime alternative MTs.

Our approach was further based on a structured view over the general debugging

process. This allows us to bring clarity to the notion of a step in the declarative

context of model transformations. Our non-trivial prototype implementation, based

on this view, allows us to evaluate the feasibility of our debugger. Many of the

manual steps necessary to instrument the MT engine in order to support navigation

pointers, commands, and pause/resume functionality could, however, be automated

with the help of a suitable, and simple interface. This would enable us to explore

means of generating such debuggers and applying the solution to other, existing MT

tools with reduced development efforts. We do however evaluate our concept and

187

approach on two relevant MT tools AToM3 and ATL. We discover that our structured

view is portable to interactive debugger implementations and observe a substantial

degree of Statecharts controller reuse in AToM3. However, in case of ATL, we had to

repeat certain Statecharts development activities because our Statecharts compiler

did not support Java code generation.

For future work, we look to address the performance evaluation of debugging

scenarios. We have tried to ensure our prototype is sufficiently responsive, but mon-

itoring breakpoints necessarily slows down execution, which can be a concern when

MT execution is time-sensitive, such as when processing real-time input or in cyber-

physical systems. We expect, however, that the ability to debug model transforma-

tions in a way presented in this paper may outweigh the runtime effects on the whole

system.

Finally, another important aspect of designing a debugger is verifying that the

choices we made, including the proposed formalisms and granularity of the debugging

steps are suitable for actual engineers and the debugging problems they encounter.

Lack of a test or benchmarking test suite is a concern in text-based debugger designs,

and we inherit that limitation here. Practically, of course debugger evaluation is

best achieved with a user study. The intent of such study, would be to combine the

feedback from multiple users involved at various stages of MDE and use it to improve

the debugger functionality and capabilities.

Chapter 6
Related Work

This thesis discusses topics with broad underlying theories and technologies.

Below is relevant related work grouped into two topics. We begin with a section on

scopes and move to a section related to debugging in MTs.

6.1 Scope

Our focus on scope in this work explores an aspect of graph transformation

that has not been deeply investigated in the past. Formal models of scope do exist

[2], but the majority of scope applications in model transformation contexts are

aimed towards using rule applications as the scope of subsequent rule productions,

rather than incorporating scope directly into the host graph. In the graph rewriting

community, rule-based scope is a variation on amalgamated rules [98, 83, 13]. This

is demonstrated, for example, in GXL—a graph transformation language with rule-

based scoping and graph parameters [84]. GXL inherits greatly from TXL, a tree

transformation language [20], but operates on graphs rather than on trees. Scoping

in GXL means that a scope produced by one rule application can be passed by value

and used by other rules, and so on. To ensure unambiguous host graph segmentation

into subscopes, selection of a match for a rewrite out of multiple available matches

in GXL must be deterministic. Our extension to the transformation system does not

impose a match selection strategy. In addition, we create scope hierarchies that can

be transformed.

188

189

Scope in the host graph is most typically approached in terms of the natural

structure of the host graph domain. A subtree of an abstract syntax tree (AST),

for instance, defines scope in term rewriting systems. Stratego/XT [15], a program

transformation, term rewriting language and a collection of tools, allows for scoping

of dynamic rewrite rules by limiting their lifetime to a specific rewriting strategy,

localizing application of a rewrite rule to a part of a program’s AST.

A somewhat similar approach is taken by MGS, a domain specific language

(DSL) aimed at simulating biological systems [34]. MGS was designed to express

and manipulate local transformations of entities structured by abstract topologies.

A set of entities organized by an abstract topology is called a topological collection,

meaning that each collection type defines a neighborhood relationship of locality and

subcollections as well. Transformation in MGS involves an identification of subcol-

lections, followed by its rewriting and insertion back into the host collection. MGS

explores the neighborhood relationships of collection types to define subcollections

within the host collection. Both Stratego and MGS exploit the natural hierarchy of

an underlying model. In contrast, our static scope approach is applicable to graphs

irrespective of the hierarchy of the underlying model.

In the context of dynamic scope, topological activity [74, 80] computation in

MGS explores the active and inactive regions in the model. Active regions are exclu-

sively used to find the pattern matches. Nodes that are hot, in our application, can

be considered an activity region in MGS language terms. However, our approach

takes a temperature node coloring approach instead of computing active regions

based on system state evolution. In addition, nodes in our concept “cool down” at

190

a specified rate, whereas in the MGS case topological areas become inactive at the

next iteration.

A more flexible representation of scope is found in other existing systems. The

standard QVT-Operational (QVT-O) [76] language, for instance, provides a feature

that can also be used to implement a scoping mechanism, and indeed demonstrates

how we can map our design into an existing transformation system. In QVT-O a

transformation may define intermediate properties (with simple or complex types)

in the context of the transformation itself (e.g., Transformation1::scope1) or a given

metaclass referenced by it (e.g., Class1::scope1), in which case it dynamically gets

added to the metaclass. Such properties can be used to dynamically define scopes

for the model elements being transformed. The value of such a property can be ex-

pressed in Object Constraint Language (OCL)1 . In addition, intermediate property

values can also be cached and reused, potentially resulting in performance gains.

Our approach here provides a less ad hoc, more formal integration of scope, directly

exposing scope in the rule design, constraining the representation with an eye to effi-

ciency, and making it an integral to the matching process. This allows the matching

engine to more easily take advantage of the scope concept.

Scoping properties are also found in container-based approaches, where event-

driven grammars have also been defined to manipulate the associated spatial rela-

tionships [37]. A container housing several elements, for example, can be considered

a scope over the enclosed elements. Mechanisms that ensure the containment (or

1 http://www.omg.org/spec/OCL/

191

association) relationship is maintained when the container is moved could then be

repurposed to automatically maintain scoping relationships, and so provide similar

functionality.

Our interest in scope was originally driven by a desire to improve the perfor-

mance of graph transformation by reducing the size of the potential match set. Other

techniques have also been applied to this problem. The idea of pivots, [1] for exam-

ple, is to exploit the fact that subsequent rule matches may have dependencies that

reduce the number of candidates. Initial partial matches (pivots) can be passed as pa-

rameters to the matching algorithm which then performs localized matching starting

from and around the pivots. The approach of using pivots in model transformations

has been implemented in a number of modeling tools; in AToM3 [25], pivots are

passed between transformation rules, and similarly, the tool GReAT [1] performs

localized searches in the host graph using pivots, called pivoted pattern matching.

T-Core, a collection of transformation primitives [94], also supports pivots. T-Core

operates on graphs encapsulated in packets and pivots can be added to these packets.

The packets are then exchanged between the matching and rewriting transformation

primitives. An important difference between scope and pivots is that pivots are as-

sumed to induce a valid binding produced from the previous rule application, while

scope may not necessarily contain valid bindings, due to the heterogeneous concept

of scope as a “bag” of host graph elements. We view scopes as complementary to

pivots, providing another way to reduce the search space for graph pattern matching.

Other techniques attempt to prioritize parts of the matching process so as to

reduce cost in practice. The high-level, multi-paradigm language PROGRES [87],

192

for instance, employs the technique of discarding graph pattern match candidates as

early as possible. Restriction and attribute verifications are given priority, which,

along with attribute indexing, improves efficiency. In our design, we prioritize scope

verification on the host graph to achieve a similar result.

Incremental bidirectional model transformations is another area where efficiency

of pattern matching is important [53]. For example, in [35] the authors avoid match-

ing in the whole input model by keeping track of the triple graph grammar correspon-

dence nodes. Exploring application of scope to bidirectional MTs is an interesting

topic for future work.

A very fast pattern matching technique is based on incremental pattern match-

ing, as discussed in [104, 100], and notably used in the VIATRA tool [7]. In essence,

the incremental pattern matchers cache the matches as the input model is “con-

sumed” during a warmup phase. Subsequent changes to the model are propagated

to the engine and the matches are accordingly updated. This technique delivers

matches extremely fast at the expense of memory and match update costs (when

model changes are frequent). Therefore it is beneficial to use local search-based

techniques, described in the next paragraph, when memory is at a premium or a MT

performs frequent updates. For such cases, an adaptive approach switching between

incremental and search plan-based matching is presented in [9].

Generation of model dependent search plans from patterns was presented by

Varro et al. [107], with GrGen used to demonstrate implementation [33]. A dynamic

programming-based, generalized search plan algorithm was presented in [106]. Search

plans are an efficient way to match graph patterns as they incorporate a fail-first

193

matching strategy and heuristics to prioritize match operations. Match operations

are given weights based on heuristics; in the simplest case, weights can be based on

statistical information about the host graph, e.g., number of nodes and edges of a

particular type. Operations are then sorted and executed, such that more expensive

operations that can result in a large number of match candidates are executed after

less expensive operations, where the number of candidates is as small as possible.

The search plan can be constructed before execution. An example of such func-

tionality can be found in various tools [43, 115, 30, 68]. Dynamic search plan creation

is demonstrated in [36, 19], and can also be selected adaptively from preprocessed

search plan candidates [107, 105].

Heuristics used for constructing efficient search plans rely upon different sources

of information. Metamodel-specific heuristics like [115, 30, 36, 45, 3] exploit the

containment and cardinality constraints of a metamodel e.g. by navigating first

along edges with at most one multiplicity. Model-specific search plans [107, 33, 105]

evaluate statistical information of the underlying instance model (e.g. the number

of edges of a certain type) to start the search from promising candidate nodes. In

fact, initial bindings can be explicitly provided to the pattern matching process by

pivot (or input) nodes as in [30, 43, 110, 105].

GrGen also provides facilities for scope implementation. The use of containers,

such as sets and dictionaries in rules, constrains the search effort to a selection of

the input model, and model attribute indices can also be used to filter the search

space. The GrGen manual suggests using additional edges in the model to guide

the search and thus improve the performance. These so-called reflexive edges are

194

well suited to the implementation of our scope concept. The SP-based techniques

mentioned in this paragraph can be used in our approach without modification to the

SP algorithm, as we demonstrated with GrGen in Section 3.4. This is possible due

to the fact that the patterns augmented with scope are treated as regular patterns.

However, in order to harness scope performance benefits the SP algorithm should be

either model sensitive, or allow prioritization of bindings, such as in GrGen through

the prio flags.

In the context of search plans our use of static scope aims at reducing the

number of match candidates for selected match operations: scope information is

used to produce a search plan with reduced costs.

Our dynamic scope technique is unique and complementary to the local search-

based approaches in the sense that it aims to exploit the transformation process as

heuristics by reducing the scope of the candidates to those elements touched by recent

transformation rules. Our approach is also complementary (and thus applicable) to

both compiled [103, 30, 5] and interpreted [3, 45, 49, 103] model transformation

approaches. Finally, our scope can be viewed as way of caching relevant parts of the

model during transformation. Caching is common in various programming contexts

and is a way to reduce computation and facilitate resource access [90].

6.2 Model Transformation Debugging

In this section, we outline related work in the area of MT debugging and de-

bugging in general. In particular, we are interested in approaches to automated

debugging, originally applied to general programming languages. We first discuss

the topics related to general debugging, followed by MT debugging related work.

195

General debugging. A variety of approaches exist for framing debugging

designs. A prominent approach is to follow an event-based view of a debugging

process, where a debuggee produces a stream of events that a debugger analyzes.

Events can be inspected directly, combined to produce domain-specific events [17]

or fully recorded for the purpose of forensic debugging [41]. Computation over time

ordered event traces is presented in [4]. We have not focused specifically on events,

but our work does rely on the implicit events exchanged between MT target and the

debugging host. These events drive the debugging process automatically until the

process is interrupted by a user or a breakpoint.

Another fairly generic approach is found in the moldable debugger (MD) [17].

This a flexible approach based on several primitive debugging events resulting from

a debugging target operations. These include reading, writing attributes, method

calls, sending messages and checking object state. These events are combined to

produce domain-specific events/operations. It is a powerful approach that can be

used to implement the event-based part of our debugger, and our view of a debug-

ging language also builds on primitive debugging events. We, however, take a more

structure-focused perspective, considering debugging as a process of navigating ex-

ecution within and across hierarchical levels, and integrating that into automated

debugging scenarios with declarative queries.

Query-based debugging [56, 79, 55] plays an important part in this paper. First

used in general purpose language debugging, it allows the user to explore the pro-

gram state based on explicitly constructed queries. Whyline debugger [48] on the

other hand proposes to user the queries that can be applied to the recorded program

196

execution history. In this thesis, we employ declarative queries as natural in the MT

context to explore relevant input/output models (including the MT models being

debugged), as well as variables and data structures pertaining to underlying imple-

mentation details. Generic query designs can, of course, bring performance concerns.

EMF-IncQuery tool [16] performs efficient, incremental declarative query evaluations

and is used for MT verification. We can potentially utilize similar incremental pat-

tern matchings to improve the performance of our query evaluation.

The GDL debugging language [21] was a significant source of inspiration for our

work. GDL defines debugging operations that are embedded into a general program-

ming language, and complex debugging scenarios can then be specified program-

matically. Similarly, we embed the MT debugging language elements into the MT

language. This allows us to use branch and loop constructs and create user-specified

transformations for the purpose of debugging. Another example of debugging au-

tomation is the scriptable debugging tool MzTake [62, 61]. This tool, for debugging

Java programs, operates on a stream of events and permits the creation of a variety

of higher abstraction applications from primitive ones. Our approach aims at cre-

ating an executable model akin to a MT that works with complete MT stack from

schedule down to pattern matcher implementation.

MT debugging. MT and model debugging have of course been explored in the

past. AToMPM [95], for instance, already supports MT debugging at the level of the

MT schedule and down to individual rules with pause, resume, and step functionality,

as previously described [60]. In addition, AToMPM supports runtime, manual input

model adaptation once the transformation is paused.

197

MT debugging solutions have also been described in other contexts. Stratego,

for example, a textual, imperative transformation language is debugged using an

event-based debugger [57]. Fujaba “story diagrams” are debugged at the model level

using Eclipse and Java debugging facilities [32]. In this, however, there is no clear dis-

tinction between match/rewrite stages, nor is stepping through the pattern matching

process at a fine-grained level of match discovery provided. A visual DSL processor

debugging for VMTS is presented in [67]. The authors use event handlers to wrap

the transformation engine, with visualization addressed by means of various events.

Visualization of matches and the modified output model is available, although inter-

mediate steps in the matcher or rewriter components that expose their functionality

are not presented. Finally, GrGen also supports visual debugging and input model

visualization [33], but again does not support stepping through the pattern matching

process.

A stepwise, manual rule-level debugging and manual match selection can be

observed in the AGG graph transformation tool [97]. A deeper exploration of rule

application is not included. Fine grain debugging is also found in Tefcat [52] and

ATL [45], which utilize Eclipse source level debugging. This permits the user to

investigate MT through its implementation in terms of very low code level. We

aim to raise the level of abstraction with our unifying concepts related to pattern

matching and application.

Related work is also found in terms of the more specific elements of a debugger,

such as in the process of stepping through the matching/application process. Visual

MT debugging, for instance, includes the presentation of matching and execution

198

views demonstrated in [92]. Detailed stepping through the match process, however,

is not available in their design. Tools for debugging of local search-based pattern

matching itself have also been created [16]. Their approach allows for stepping

through the search plan in its textual form, augmented by visualization of the input

model and the match result. Our work here aims at taking a general view of pattern

matching process through the use of sets describing that process.

Schoenboeck et al. (2010) present a DSL (based on colored Petri Nets) that

explicitly models MTs completely. This allows one to visualize all inner workings

of an MT, address non-determinism and use the formalism for formal verification

of MT. The use of a single formalism, however, has some disadvantages in being

complex to learn, and in terms of its ability to display complex transformations

and large models. In [66], the authors describe debugging support in VMTS with

a constant debugging step granularity, allowing for exploration of match, rewrite,

etc. Our approach is more flexible, in that we introduce a variable notion of a

debugging “step” depending on the level of debugging (rule granularity at schedule

level, rule parts at the rule level). Finally, our approach aims to address potential

non-determinism during the debugging of the matching phase, giving the user the

ability to control the resulting pattern match binding, and thus closely explore the

pattern matching process.

Chapter 7
Conclusions

In this thesis, we explore the avenues addressing model transformation efficiency

and usability. Efficiency is still an issue in MTs, as pattern matching is the most

expensive operation in rule-based systems. On the other hand, usability concerns,

especially in terms of model transformation debugging is an active area of research

due to the complexity of MT systems. Below is the summary of contributions made

in this thesis.

In Chapter 3 we address scope in MTs. Scoping is a common concept of locality

and grouping. In this chapter, we make scope a first-class citizen in MTs. The

scope is no longer an abstract concept or an intermediate artifact of computation.

The engineer can reason about and manipulate scope in a similar fashion to the way

he or she manipulates models. Efficiency is a factor in our design, as is flexibility,

and we build on a hierarchical representation, designed to be a part of the input

model and intended to be applicable to any DSL used in the transformation. In

order to manipulate scope, we extend the MT language to allow for scope hierarchy

manipulation in conjunction with the regular input model modifications.

We demonstrate, with a non-trivial evaluation, that our scope concept can bring

performance benefits, in particular in the context of SP-based matching. This is

due to the fact that the introduction of scope to the input model creates favorable

conditions for the SP matching.

199

200

Our scope concept is also applicable to scope-unaware systems. In such cases, we

can model scope directly as a scoped graph or use the tool/language-specific facilities

to simulate scope. For example, direct scope encoding within the graph was proven

to be beneficial in the GrGen, already a highly efficient MT tool.

Static scope is intended to be used in MT rules. In Chapter 4, we propose a

dynamic scope approach to address MT efficiency in cases when user-modification

to MT rules is not available. This can happen when the MT is compiled or part

of proprietary information. The dynamic scope technique is intended to discover

scopes within the input model that are necessarily smaller than the whole input

model. We employ a heatmap-based approach in order to discover areas of activity

in the input model. These areas of activity represent scopes of interest and are

used for pattern matching. In addition, we incorporate machine learning into model

transformation process allowing us to reduce scope areas further. The evaluation

of dynamic scope demonstrated a reduction in search space for search plan-based

matching and favorable success rates for machine learning application.

In Chapter 5, we address debugging of MTs. First, we take the structured

view of a general debugging process and apply it to the MT execution stack. The

complexity of the MT stack is due to the hierarchical nature of the stack layers

consisting of various formalisms at the different levels of abstraction. Our structured

view aims at resolving this issue striving for a consistent debugging throughout MT

stack, including debugging of action code.

We define a debugging language which allows for modeling interactions with a

debugger. The language is based on the familiar MT rules. The rules when executed,

201

issue debugging commands, such as stepping, and control the debugging target ex-

ecution. The rules can also contain declarative queries intended to investigate the

state of the debugging target. The static scope formalism is used here to indicate the

location of the query application within the debugging target. The reuse of DSLs

from the MT being debugged is also beneficial as the engineer stays at the level of

models and MTs themselves when debugging. The debugging rules can be combined,

by means of rule scheduling, into debugging scenarios. These can encode complex in-

teraction with a debugger and automatically monitor the state of the target program

when human involvement is not required or necessary.

Finally, we model the heart of our debugger using the Statecharts formalism and

investigate the applicability of our approach within three prototype implementations

in different MT tools. We discover, that depending on the initial, underlying technol-

ogy the degree of reuse can be high when porting to similar tools and reduced when

porting to a dramatically different system. Regardless of reuse level, our approach

seems to apply well to MT debugging.

There was a number of possible future work directions identified and described

in each chapter. Here we provide a big picture summary. Certainly, it would be

interesting to investigate the evolution of static scope syntax and semantics. To do

that, a user study into scope use would provide invaluable input. The goal of the

study would give us an evaluation of choices we made in our scope concept and give us

insight into the possible scope syntax and semantics adaptations necessary to tailor

scope for wider use. In a dynamic scope context, the application of machine learning

within the MT process opened interesting opportunities for an array of applications

202

in MDE in general. We envision the increase of machine learning application in MDE

in the near future. The collection of data from users in MT tools can be used for

training ML algorithms, and it would be interesting to investigate recent advances

in deep learning [54] for learning more from MTs.

We would like to investigate the use of MT syntax to define debugging scenarios

in other MT contexts. This applies most notably to the MT languages used in other

MT tools discussed in this thesis. Again, a user study for evaluating the choices we

made here is an important future work direction and could also be used to validate

our implicit assumption that a ”deep debugging” approach, allowing exploration of

the full MT is useful in practice. It is also interesting to explore the use of auto-

mated debugging scenarios to specify MT tests. This is motivated by the possibility

of applying higher-order transformations to MT models. Another important aspect

of MT debugging presented here is performance. The initial performance evaluation,

as expected, indicated negative performance impact in our prototypes. The situa-

tion is akin to early designs for debugging injective languages, which have benefited

tremendously from hardware support. The optimization of our debugging solution we

leave for future work as that essentially represents an optimization problem outside

the scope of this thesis.

In conclusion, in this thesis, we attempted to address the efficiency and usability

of MTs. This is a vast topic to explore and there are certainly more things that can

be done within the span of graduate students’ theses. We hope that the research

presented here finds application in the MDE and the industry in one form or another.

References

[1] Aditya Agrawal, Gabor Karsai, Zsolt Kalmar, Sandeep Neema, Feng Shi, and
Attila Vizhanyo. The design of a language for model transformations. Software
& Systems Modeling, 5(3):261–288, 2006.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[3] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: Advanced concepts and tools for in-place EMF
model transformations. In Model Driven Engineering Languages and Systems -
13th International Conference (MODELS 2010), volume 6394 of LNCS, pages
121–135. Springer, 2010.

[4] M. Auguston, C. Jeffery, and S. Underwood. A framework for automatic de-
bugging. In Proceedings 17th IEEE International Conference on Automated
Software Engineering,, pages 217–222, 2002.

[5] András Balogh, Gergely Varró, Dániel Varró, and András Pataricza. Compiling
model transformations to ejb3-specific transformer plugins. In Hisham Haddad,
editor, Proceedings of the 2006 ACM Symposium on Applied Computing (SAC),
Dijon, France, April 23-27, 2006, pages 1288–1295. ACM, 2006.

[6] Gernot Veit Batz. An optimization technique for subgraph matching strategies.
Technical report, Universität Karlsruhe, Fakultät für Informatik, April 2006.

[7] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth,
Zoltán Ujhelyi, and Dániel Varró. Proceedings of the International Conference
on Theory and Practice of Model Transformations: ICMT, Held as Part of
STAF, L’Aquila, Italy., chapter VIATRA3: A Reactive Model Transformation
Platform, pages 101–110. Springer International Publishing, 2015.

203

204

[8] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. A benchmark
evaluation of incremental pattern matching in graph transformation. In Hart-
mut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors,
Graph Transformations, volume 5214 of Lecture Notes in Computer Science,
pages 396–410. Springer Berlin Heidelberg, 2008.

[9] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. Proceedings
of the International Conference on Theory and Practice of Model Transforma-
tions: ICMT Zurich, Switzerland., chapter Efficient Model Transformations by
Combining Pattern Matching Strategies, pages 20–34. Springer Berlin Heidel-
berg, Berlin, Heidelberg, Germany, 2009.

[10] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely
Varró. Incremental pattern matching in the VIATRA model transformation
system. In Gabor Karsai and Gabriele Taentzer, editors, Proc. Graph and
Model Transformations (GRAMOT 2008). ACM, 2008.

[11] S. Berner, S. Joos, M. Glinz, and M. Arnold. A visualization concept for hierar-
chical object models. In Proceedings of the 13th IEEE International Conference
on Automated Software Engineering, pages 225–228, October 1998.

[12] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation
of consistent EMF model transformations by algebraic graph transformation.
Software & Systems Modeling, 11(2):227–250, 2011.

[13] Paul Boehm, Harald-Reto Fonio, and Annegret Habel. Amalgamation of graph
transformations: A synchronization mechanism. Journal of Computer and
System Sciences, 34(2–3):377 – 408, 1987.

[14] Steven Bosems. A performance analysis of model transformations and tools.
Technical report, Enschede, The Netherlands, March 2011.

[15] Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. Pro-
gram transformation with scoped dynamic rewrite rules. Fundamenta Infor-
maticae, 69(1-2):123–178, July 2005.

[16] Márton Búr, Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró. Local search-
based pattern matching features in EMF-IncQuery. In Graph Transforma-
tion - 8th International Conference, ICGT 2015, Held as Part of STAF 2015,
L’Aquila, Italy, July 21-23, 2015. Proceedings, pages 275–282, 2015.

205

[17] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. The moldable debugger: A
framework for developing domain-specific debuggers. In Benôıt Combemale,
David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, Software Lan-
guage Engineering: 7th International Conference, SLE 2014, Väster̊as, Swe-
den, September 15-16, 2014. Proceedings, pages 102–121. Springer Interna-
tional Publishing, 2014.

[18] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, STOC
’71, pages 151–158, 1971.

[19] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub)graph isomorphism algorithm for matching large graphs. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(10):1367–1372, Oc-
tober 2004.

[20] J.R. Cordy, C.D. Halpern, and E. Promislow. TXL: a rapid prototyping sys-
tem for programming language dialects. In Proceedings of the International
Conference on Computer Languages, pages 280 –285, October 1988.

[21] Richard H. Crawford, Ronald A. Olsson, W. Wilson Ho, and Christopher E.
Wee. Semantic issues in the design of languages for debugging. Computer
Languages, 21(1):17–37, April 1995.

[22] Gábor Csárdi and Tamás Nepusz. igraph reference manual, 2012. http://

igraph.sourceforge.net.

[23] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621–645, July 2006.

[24] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike
Prange, and Gabriele Taentzer. Fundamentals of Algebraic Graph Transfor-
mation, chapter Typed Attributed Graph Transformation with Inheritance,
pages 259–281. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[25] Juan de Lara and Hans L. Vangheluwe. Using AToM3 as a meta-CASE envi-
ronment. In 4th International Conference On Enterprise Information Systems,
pages 642–649, 2002.

[26] Jack Edmonds. Optimum Branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240, 1967.

206

[27] Hartmut Ehrig. Tutorial introduction to the algebraic approach of graph gram-
mars, pages 1–14. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.

[28] Joost Engelfriet and Grzegorz Rozenberg. Graph grammars based on node
rewriting: an introduction to NLC graph grammars, pages 12–23. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1991.

[29] M. A. Finney. FARSITE: Fire area simulator – model development and eval-
uation. USDA Forest Service Research Paper, RMRS-RP-4 Revised, 2012.

[30] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new
graph transformation language based on UML and Java. In Proc. Theory
and Application to Graph Transformations (TAGT’98), volume 1764 of LNCS.
Springer, 2000. H. Ehrig and G. Engels and H.-J. Kreowski and G. Rozenberg.

[31] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17 – 37, 1982.

[32] Leif Geiger. Model level debugging with Fujaba. In Uwe Aßmann, Jendrik
Johannes, and Albert Zündorf, editors, Proceedings of 6th International Fujaba
Days, 18-19 Sep 2008, Dresden, Germany, 2008.

[33] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam M.
Szalkowski. GrGen: A fast SPO-based graph rewriting tool. In Graph Trans-
formations - ICGT 2006, Lecture Notes in Computer Science, pages 383 – 397.
Springer, 2006.

[34] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Premyslaw
Prusinkiewicz. Computational models for integrative and developmental bi-
ology. In Actes du Colloque Modélisation et simulation de processus biologiques
dans le contexte de la génomique, page 43, Autrans, France, 2002.

[35] Holger Giese, Stephan Hildebrandt, and Leen Lambers. Bridging the gap be-
tween formal semantics and implementation of triple graph grammars. Software
& Systems Modeling, 13(1):273–299, 2012.

[36] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. Improved flexibility
and scalability by interpreting story diagrams. Electronic Communications of
the EASST, 18, 2009.

207

[37] Esther Guerra and Juan de Lara. Event-driven grammars: relating abstract
and concrete levels of visual languages. Software & Systems Modeling, 6(3):317–
347, 2007.

[38] David Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[39] Reiko Heckel. Compositional verification of reactive systems specified by graph
transformation. In International Conference on Fundamental Approaches to
Software Engineering, pages 138–153, 1998.

[40] Reiko Heckel and Annika Wagner. Ensuring consistency of conditional graph
grammars - a constructive approach. In Proceedings of SEGRAGRA Graph
Rewriting and Computation, Electronic Notes of TCS, page 2, 1995.

[41] Mark Hibberd, Michael Lawley, and Kerry Raymond. Forensic debugging of
model transformations. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt,
and Frank Weil, editors, Model Driven Engineering Languages and Systems:
10th International Conference, MoDELS 2007, Nashville, USA, September 30 -
October 5, 2007. Proceedings, pages 589–604, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[42] Ákos Horváth, Gábor Bergmann, István Ráth, and Dániel Varró. Experimental
assessment of combining pattern matching strategies with VIATRA2. The
International Journal on Software Tools for Technology Transfer, 12(3-4):211–
230, 2010.

[43] Ákos Horváth, Dániel Varró, and Gergely Varró. Generic search plans for
matching advanced graph patterns. Electronic Communications of the EASST,
6, 2007. Selected papers of GT-VMT 2007: Graph Transformation and Visual
Modelling Techniques 2007.

[44] Phil Hughes. Python and TKinter programming. Linux Journal, 2000(77es),
September 2000.

[45] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A
model transformation tool. Science of Computer Programming, 72(1-2):31–39,
2008.

[46] Māris Jukšs, Clark Verbrugge, Maged Elaasar, and Hans Vangheluwe. Scope
in model transformations. Software & Systems Modeling, pages 1–26, 2016.

208

[47] Māris Jukšs, Clark Verbrugge, Dániel Varró, and Hans Vangheluwe. Dynamic
scope discovery for model transformations. In Proceedings of the 7th Inter-
national Conference on Software Language Engineering, SLE 2014, Väster̊as,
Sweden, September 15-16, pages 302–321, 2014.

[48] Andrew J. Ko and Brad A. Myers. Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior. In Proceedings of
the 30th International Conference on Software Engineering, ICSE ’08, pages
301–310, New York, NY, USA, 2008. ACM.

[49] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon Trans-
formation Language. In Theory and Practice of Model Transformations, First
International Conference, ICMT 2008, Zürich, Switzerland, volume 5063 of
LNCS, pages 46–60. Springer, 2008. Antonio Vallecillo and Jeff Gray and Al-
fonso Pierantonio.

[50] P. Kourtz and W.G. O’Regan. A model for a small forest fire...to simulate
burned and burning areas for use in a detection model. Forest Science, 17:163–
169, June 1971.

[51] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Modeling,
5(4):369–385, 2006.

[52] Michael Lawley and Jim Steel. Practical declarative model transformation with
tefkat. In Jean-Michel Bruel, editor, Satellite Events at the MoDELS 2005 Con-
ference: MoDELS 2005 International Workshops Doctoral Symposium, Educa-
tors Symposium Montego Bay, Jamaica, October 2-7, 2005 Revised Selected
Papers, pages 139–150, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[53] Erhan Leblebici, Anthony Anjorin, Andy Schürr, Stephan Hildebrandt, Jan
Rieke, and Joel Greenyer. A comparison of incremental triple graph grammar
tools. In Proceedings of the 13th International Workshop on Graph Transforma-
tion and Visual Modeling Techniques, volume 67 of Electronic Communications
of EASST. European Assoc. of Software Science and Technology, 2014.

[54] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE,
pages 2278–2324, 1998.

[55] Raimondas Lencevicius. On-the-fly query-based debugging with examples. In
Proceedings Fourth International Workshop on Automated Debugging, 2000.

209

[56] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Query-based debug-
ging of object-oriented programs. In Proceedings of the 12th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA ’97, pages 304–317, New York, NY, USA, 1997. ACM.

[57] Ricky T. Lindeman, Lennart C.L. Kats, and Eelco Visser. Declaratively defin-
ing domain-specific language debuggers. In Proceedings of the 10th ACM Inter-
national Conference on Generative Programming and Component Engineering,
GPCE ’11, pages 127–136, New York, NY, USA, 2011. ACM.

[58] Michael Löwe. Algebraic approach to single-pushout graph transformation.
Theoretical Computer Science, 109(1):181 – 224, 1993.

[59] Raphaël Mannadiar. A Multi-Paradigm Modelling Approach to the Founda-
tions of Domain-Specific Modelling. PhD thesis, McGill University, Montreal,
Quebec, Canada, 2012.

[60] Raphael Mannadiar and Hans Vangheluwe. Debugging in domain-specific mod-
elling. In Proceedings of the Third International Conference on Software Lan-
guage Engineering, SLE’10, pages 276–285, Berlin, Heidelberg, 2011. Springer-
Verlag.

[61] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Reiss. A dataflow lan-
guage for scriptable debugging. In Proceedings 19th International Conference
on Automated Software Engineering, 2004., pages 218–227, Sept 2004.

[62] Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shriram Krish-
namurthi, and Steven P. Reiss. The design and implementation of a dataflow
language for scriptable debugging. Automated Software Engineering, 14(1):59–
86, 2007.

[63] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and infor-
mation retrieval. Journal of the ACM, 7(3):216–244, 1960.

[64] S. J. Mellor, K. Scott, A. Uhl, D. Weise, and R. M. Soley. MDA distilled:
principles of model-driven architecture, volume 88. Addison-Wesley, 2004.

[65] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in
graph databases. SIAM Journal on Computing, 24(6):1235–1258, December
1995.

210

[66] Tamás Mészáros, Péter Fehér, and László Lengyel. Visual debugging support
for graph rewriting-based model transformations. In Proceedings of Eurocon
2013, International Conference on Computer as a Tool, Zagreb, Croatia, July
1-4, 2013, pages 482–488. IEEE, 2013.

[67] Tamás Mészáros and Tihamér Levendovszky. Visual specification of a DSL
processor debugger. In Proceedings of the 8th OOPSLA Workshop on Domain-
Specific Modeling, pages 67–72, Nashville, USA, 2008.

[68] Tamás Mészáros, Gergely Mezei, Tihamer Levendovszky, and Márk Asztalos.
Manual and automated performance optimization of model transformation sys-
tems. Software Tools for Technology Transfer, 12(3-4):231–243, 2010.

[69] Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling
languages. Science of Computer Programming, 76(12):1223 – 1246, 2011. Spe-
cial Issue on Software Evolution, Adaptability and Variability.

[70] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object
Management Group (OMG), 2003.

[71] P. J. Mosterman and Hans Vangheluwe. Computer automated multi-paradigm
modeling: An introduction. Simulation, 80(9):433–450, September 2004.

[72] Jens Müller. Speeding up graph transformation through automatic concate-
nation of rewrite rules. Technical report, Universität Karlsruhe, Fakultät für
Informatik, 2007.

[73] A. Muzy, J.J. Nutaro, B.P. Zeigler, and P. Coquillard. Modeling and simulation
of fire spreading through the activity tracking paradigm. Ecological Modelling,
219(1–2):212 – 225, 2008.

[74] Alexandre Muzy, Luc Touraille, Hans Vangheluwe, Olivier Michel, David R.C.
Hill, and Mamadou Kaba Traoré. Activity regions in discrete-event systems. In
Symposium On Theory of Modeling and Simulation - DEVS Integrative M&S
Symposium (DEVS’10), Spring Simulation Conference, pages 176–182. Society
for Computer Simulation International (SCS), April 2010. Orlando, FL.

[75] Alexandre Muzy, Luc Touraille, Hans Vangheluwe, Olivier Michel, Ma-
madou Kaba Traoré, and David R. C. Hill. Activity regions for the specification
of discrete event systems. In SpringSim, pages 136:1–136:7, 2010.

211

[76] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation, Version 1.1, January 2011.

[77] Wojciech Palacz. Algebraic hierarchical graph transformation. Journal of Com-
puter and System Sciences, 68(3):497 – 520, 2004.

[78] Chris Parnin and Alessandro Orso. Are automated debugging techniques actu-
ally helping programmers? In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA ’11, pages 199–209, New York, NY,
USA, 2011. ACM.

[79] A. Potanin, J. Noble, and R. Biddle. Snapshot query-based debugging. In
Proceedings Australian Software Engineering Conference., pages 251–259, 2004.

[80] Martin Potier, Antoine Spicher, and Olivier Michel. Topological computation of
activity regions. In Proc. of the 2013 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM-PADS ’13, pages 337–342, New York,
NY, USA, 2013. ACM.

[81] Marc Provost. Himesis : A hierarchical subgraph matching kernel for model
driven development. Master’s thesis, McGill University, Montreal, Quebec,
Canada, 2005.

[82] Arend Rensink. The GROOVE simulator: A tool for state space generation. In
John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance, Second International Workshop,
AGTIVE 2003, Charlottesville, VA, USA, volume 3062 of LNCS, pages 479–
485. Springer, 2003.

[83] Arend Rensink and Jan-Hendrik Kuperus. Repotting the geraniums: On nested
graph transformation rules. Electronic Communications of the EASST, 18,
2009.

[84] Medha Shukla Sarkar, Dorothea Blostein, and James R. Cordy. GXL - a graph
transformation language with scoping and graph parameters. Technical report,
Kingston, Ontario, Canada, 1998.

212

[85] Johannes Schoenboeck, Gerti Kappel, Angelika Kusel, Werner Retschitzegger,
Wieland Schwinger, and Manuel Wimmer. Catch me if you can – debug-
ging support for model transformations. In Proceedings of the 2009 Inter-
national Conference on Models in Software Engineering, MODELS’09, pages
5–20, Berlin, Heidelberg, 2010. Springer-Verlag.

[86] Johannes Schönböck. Testing and Debugging of Model Transformations. PhD
thesis, E188 Institut für Softwaretechnik und Interaktive Systeme, 2012.

[87] Andy Schürr, Andreas J. Winter, and Albert Zündorf. Graph grammar engi-
neering with PROGRES. In 5th European Software Engineering Conference,
volume 989, pages 219–234. Springer-Verlag, 1995.

[88] Mirko Seifert and Stefan Katscher. Debugging triple graph grammar-based
model transformations. In Uwe Aßmann, Jendrik Johannes, and Albert
Zündorf, editors, Proceedings of 6th International Fujaba Days, 18-19 Sep 2008,
Dresden, Germany, 2008.

[89] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart
and soul of model-driven software development. IEEE Software, 20(5):42–45,
September 2003.

[90] Alan Jay Smith. Cache memories. ACM Computer Survey, 14(3):473–530,
September 1982.

[91] Herbert Stachowiak. Allgemeine Modelltheorie. Springer Verlag, Wien, New
York, 1973.

[92] Yu Sun and Jeff Gray. End-user support for debugging demonstration-based
model transformation execution. In Pieter Van Gorp, Tom Ritter, and Louis M.
Rose, editors, Proceedings Modelling Foundations and Applications: 9th Euro-
pean Conference, ECMFA 2013, Montpellier, France, July 1-5, 2013, pages
86–100, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[93] Eugene Syriani. A Multi-paradigm Foundation for Model Transformation Lan-
guage Engineering. PhD thesis, Montreal, Quebec, Canada, 2011.

[94] Eugene Syriani and Hans Vangheluwe. De-/re-constructing model transforma-
tion languages. Electronic Communications of the EASST, 29, 2010.

213

[95] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Si-
mon Van Mierlo, and Hüseyin Ergin. AToMPM: A web-based modeling envi-
ronment. In Demos/Posters/StudentResearch@MoDELS, pages 21–25. CEUR,
2013.

[96] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor
Bergmann, and Dániel Varró. Incquery-d: A distributed incremental model
query framework in the cloud. In Juergen Dingel, Wolfram Schulte, Isidro
Ramos, Silvia Abrahão, and Emilio Insfran, editors, Model-Driven Engineer-
ing Languages and Systems, pages 653–669, Cham, 2014. Springer International
Publishing.

[97] Gabriele Taentzer. AGG: A graph transformation environment for model-
ing and validation of software. In John L. Pfaltz, Manfred Nagl, and Boris
Böhlen, editors, Applications of Graph Transformations with Industrial Rele-
vance: Second International Workshop, AGTIVE 2003, Charlottesville, VA,
USA, September 27 - October 1, 2003, Revised Selected and Invited Papers,
pages 446–453, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[98] Gabriele Taentzer and Martin Beyer. Amalgamated graph transformations and
their use for specifying AGG – an algebraic graph grammar system. In Graph
Transformations in Computer Science: International Workshop Dagstuhl Cas-
tle, Germany, January 4–8, 1993 Proceedings, pages 380–394. Springer, 1994.

[99] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean
Bézivin. On the use of higher-order model transformations. In Richard F.
Paige, Alan Hartman, and Arend Rensink, editors, Model Driven Architec-
ture - Foundations and Applications: 5th European Conference, ECMDA-FA
2009, Enschede, The Netherlands, June 23-26, 2009. Proceedings, pages 18–33,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[100] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó,
István Ráth, Zoltán Szatmári, and Dániel Varró. EMF-IncQuery: An inte-
grated development environment for live model queries. Science of Computer
Programming, 98, Part 1:80 – 99, 2015. Fifth issue of Experimental Soft-
ware and Toolkits (EST): A special issue on Academics Modelling with Eclipse
(ACME2012).

214

[101] Simon Van Mierlo. Explicitly modelling model debugging environments. In
Proceedings of the ACM Student Research Competition at MODELS 2015 co-
located with the ACM/IEEE 18th International Conference MODELS 2015,
pages 24–29, 2015.

[102] Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and
Hans Vangheluwe. SCCD : SCCDXML exhended with class diagrams. In
Proceedings of the Workshop on Engineering Interactive Systems with SCXML,
pages 1–6, 2016.

[103] Gergely Varró, Anthony Anjorin, and Andy Schürr. Unification of compiled
and interpreter-based pattern matching techniques. In Modelling Foundations
and Applications - 8th European Conference, ECMFA 2012, Kgs. Lyngby, Den-
mark, July 2-5, 2012. Proceedings, volume 7349, pages 368–383. Springer, 2012.

[104] Gergely Varró and Frederik Deckwerth. Proceedings of the International Con-
ference on Theory and Practice of Model Transformations: ICMT Budapest,
Hungary., chapter A Rete Network Construction Algorithm for Incremental
Pattern Matching, pages 125–140. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

[105] Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr. An algo-
rithm for generating model-sensitive search plans for emf models. In Zhenjiang
Hu and Juan de Lara, editors, Theory and Practice of Model Transformations
- 5th International Conference, ICMT 2012, Prague, Czech Republic, volume
7307 of LNCS, pages 224–239. Springer, 2012.

[106] Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr. An
algorithm for generating model-sensitive search plans for pattern matching on
EMF models. Software & Systems Modeling, 14(2):597–621, 2013.

[107] Gergely Varró, Katalin Friedl, and Dániel Varró. Adaptive graph pattern
matching for model transformations using model-sensitive search plans. Electr.
Notes Theor. Comput. Sci., 152:191–205, 2006. Proceedings of the Interna-
tional Workshop on Graph and Model Transformation (GraMoT 2005).

[108] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph trans-
formation. In 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05), pages 79–88, 2005.

215

[109] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph trans-
formation. Technical Report TUB-TR-05-EE17, Budapest University of Tech-
nology and Economics, March 2005.

[110] Attila Vizhanyo, Aditya Agrawal, and Feng Shi. Towards generation of efficient
transformations. In Proc. of 3rd Int. Conf. on Generative Programming and
Component Engineering (GPCE 2004), volume 3286 of LNCS, pages 298–316,
Vancouver, Canada, October 2004. Springer-Verlag.

[111] W3C. XML path language (XPath) version 1.0. W3C recommendation, 1999.

[112] Ying Yang and Geoffrey I. Webb. Discretization for naive-Bayes learning:
Managing discretization bias and variance. Machine Learning, 74(1):39–74,
2009.

[113] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[114] Andreas Zeller. Debugging debugging: ACM SIGSOFT impact paper award
keynote. In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Founda-
tions of Software Engineering, ESEC/FSE ’09, pages 263–264, New York, NY,
USA, 2009. ACM.

[115] A. Zündorf. Graph pattern-matching in PROGRES. In Proc. 5th Int. Workshop
on Graph Grammars and their Application to Computer Science, volume 1073
of LNCS, pages 454–468. Springer-Verlag, 1996.

