
Helping manage the concern of object cloning in Java programs
(COMP 762 Project 2 report)

Eric Bodden
Sable Research Group, McGill University

eric.bodden@mail.mcgill.ca

1. Introduction

In previous work [2] we investigated the concern of
tagging entities of various intermediate representationsof
the Soot [9] bytecode analysis and optimization framework
with meta-data. The study uncovered a problem with the
way such meta-data tags are currently being copied. The
latest implementation of Soot copies tags by manual method
calls to Host.addAllTagsOf(Host). This necessarily
leads to an inconsistent implementation over time, as calls
to this method might be forgotten. Indeed, in [2] we pointed
out places in the code where such calls were added years af-
ter the surrounding code was written, indicating that a latent
error was found caused by tags not being copied.

We also suggested that automatic copying of tags could
alleviate the problem of inconsistency. Such automatic
copying can be implemented by providing consistent imple-
mentations of theclone() method on all types which can
be tagged. (All such types implement theHost interface.)
Unfortunately, it turned out that almost all of the current
implementations ofclone() are flawed: Instead of calling
super.clone() they call a copy constructor. This leads to
tags not being copied. Furthermore, it leads to the fact that
anybody sub classing anyHost will lose that sub class in-
stance, when callingclone(). This may seriously impede
future extensibility of the Soot framework.

2. Solution

We propose a generic solution consisting of two compo-
nents. Firstly, we expose a set of four heuristic checkers that
intend to warn a user whenever cloning in a particular Java
class is implemented in a way that might impede software
evolution. The heuristics have been implemented as an ex-
tension to the Eclipse Integrated Development Environment
(IDE) 1. Whenever a heuristic finds a violation of its rule, it
attaches a warning to the resource in question. The user can

1Eclipse projecthttp://www.eclipse.org/

then invoke a “quick fix” to fix the violation by one of two
means depending on the type of warning. (see section 2.2)

2.1. Heuristics

In the following we describe the four heuristics in detail.
Each heuristic is implemented as a visitor that walks the
abstract syntax tree of each compilation unit in the change
set of an incremental (or full) compilation in Eclipse.

Consistent class annotation In Java, a class that imple-
mentsclone() most certainly does so because it wants to
provide the functionality of cloning objects of that class.
Consequently, this class should implement theCloneable

marker interface. On the other hand, any class that imple-
mentsCloneable should provide a non-default implemen-
tation ofclone() at least in one of its super classes.

Hence, this checker issues a warning whenever a class
(a) is concrete (not abstract), implementsCloneable but
only inherits theclone() implementation ofObject, or
(b) it declaresclone() itself but does not implement the
Cloneable interface.

The warning message given reflects the type of problem
detected. The available quick fix resolutions are (a) gen-
erating an implementation ofclone() or (b) making the
declaring type implement theCloneable interface.

Returning null During our initial investigation, we found
that frequently implementations ofclone() actually re-
turn null because cloning of those types is not actually
supported. As is known from Software Engineering re-
search, returningnull can lead to null-pointer exceptions
occurring far from the original error location. Causes
of such exceptions are consequently hard to track and
fix, especially if the contract of the defined method (here
Object.clone()) implies that a non-null pointer be re-
turned.

Hence, this checker looks for occurrences of the state-
mentreturn null; in the body of eachclone()method.



If an occurrence is found, we actually issue a warn-
ing message. The associated quick fix allows to gener-
ate a correct implementation ofclone(). The warning
suggests that the method, by contract, can also throw a
CloneNotSupportedException. No quick fix for gen-
erating such an implementation is provided at this time.

Not calling the super class As mentioned in the in-
troduction, Soot suffers from the problem of not calling
super.clone() in order to construct the actual clone ob-
ject. Instead it relies on the correct implementation of copy-
constructors. This causes multiple problems. (1) Copy con-
structors have to be created and maintained. (2) A copy
constructor has to be implemented on a classC even if C
does not add any fields to its super class. (3) If a classC is
sub classed by a classS andS callssuper.clone(), an in-
stance ofC is returned, which can lead to all sorts of errors
and violates the contract ofclone().

Hence, the checker searches the body of eachclone()

method for calls tosuper.clone(). If none is found, a
warning is issued. The associated quick fix allows to gener-
ate a correct implementation ofclone().

Use of Java 5 co-variant return types From Java 5 on-
wards, methods can have co-variant return types. For the
particular example of the methodclone(), it means that it
can return subtypes ofObject and in particular, if defined
in a classC, it should use return typeC to avoid casting on
the client-side.

Hence, to Java 5-enabled projects, we apply a checker
that flags implementations ofclone() which have a return
type different from the type of their declaring class. The flag
we create is of type “info” instead of “warning” because this
conversion does not really change the behaviour of the pro-
gram, just its style. The associated quick fix allows to gen-
erate an implementation ofclone() with co-variant return
type.

2.2. Quick fixes

As mentioned above, each of the four heuristics pro-
vides a set of “quick fixes” to quickly fix the detected
problem at hand. In the current implementation we pro-
vide two different fixes. One makes a class implement
theCloneable interface, while the other one generates an
implementation of theclone() method. Generally, one
could think of further fixes, like making aclone() method
throw a CloneNotSupportedException instead of re-
turningnull but we found that those solutions can easily
be coded by hand and also that the problems they solve do
not actually occur that often.

While the quick fix for adding theCloneable interface
is straightforward, generation of a correctclone() method

is not an easy task at all and hence we wish to discuss it in
more detail. (Note that our implementation allows to gener-
ateclone() methods also with no warning being present,
simply by a menu item in the context menu of an arbitrary
source type.)

Generation of clone() When designing the user inter-
face for the generation of theclone() method, we fol-
lowed a lot the currently existing support for generating
hashCode() andequals(..) methods within Eclipse be-
cause both methods share quite some concepts. In particu-
lar, all three implementations depend on the available types
of fields and have to call the super class in order to com-
pute their final result. Also, the available implementation
for hashCode() andequals(..) provided best practises
for proper integration with the Eclipse IDE.

Compared to generatinghashCode() or equals(..)
methods, a complete solution to the problem of generat-
ing a clone() method is hard. The problem is that not
every class implements theclone() method, while for
hashCode() andequals(..) this is always the case. Be-
cause of this fact, one cannot always assume thatclone()

can be called on any type of instance field. Also, there might
be different kinds of clones desirable. Some applications
might require a shallow copy where only field references
are copied, others might require deep copies where the en-
tire contents of all instance fields are copied (recursively).

At the latest when it comes to deep copies, a general so-
lution is virtually impossible. Creating a deep copy in gen-
eral requires that all field types and all field types of those
types are (again, recursively) cloneable. Furthermore, all
those implementations ofclone() must consistently cre-
ate deep copies. Virtually all collection classes of the Java
runtime library violate this second property; when calling
clone(), they create shallow copies. Other classes in the
runtime library are not cloneable at all, likeString or
StringBuffer. A general solution would hence have to
generate specialized code for cloning collections and for us-
ing copy constructors for non-cloneable classes (on a case-
by-case basis). A series of articles by Kreft and Langer
[4, 5, 6] (German) give a very detailed assessment of those
problems and possible solution strategies. As they show, a
general solution even has to make use of reflection in certain
situations.

For the scope of this work, we decided for an easier strat-
egy which solves most of the problem but might still leave
some manual work to the programmer for exceptional cases.
When opting to generate a clone method, our extension
presents the user the dialog shown in Figure 1. On the top
the user can select fields which should be deeply copied. We
allow the creation of deep copies of instance-fields which
are of a reference type (the notion of deep copies makes no
sense for primitive types) that implements theCloneable

2



Figure 1. Options dialog for code generation

interface.2

Furthermore, the dialog exposes options for automat-
ically generating method comments (as defined in the
Eclipse preferences or project properties), using the co-
variant return type (shown in Java 5-enabled projects
only) and softening theCloneNotSupportedException
thrown when callingsuper.clone(). Through soft-
ening, clients of this class do not have to catch
this exception again and again. Using softening
CloneNotSupportedException is common and good
practise if used at places where it is known to be safe and
can for example be found in many places inside the Java
runtime library, e.g. the classLinkedList:

try {
clone = (LinkedList<E>) super.clone();

} catch (CloneNotSupportedException e) {
throw new InternalError();

}

The option to (not) soften exceptions is shown only if the
super type declares this exception in its interface. In cases
whereCloneNotSupportedException is not declared, it
has to be softened in order to adhere to this interface. Con-
sequently, in such situations, the option on the dialog is re-
placed by an appropriate hint that softening will be forced
if necessary.

3. Validation

In order to validate the feasibility of our approach, first
we applied the four heuristics to the entire Soot code base
(as of revision 2665). Then, based on the warning markers,
we refactored Soot to implement cloning consistently, using
the code generation features explained above.

2Note that here we assume that the field type actually creates adeep
copy whenclone() is called. This behaviour is not validated.

3.1. Results of applying the heuristics

Altogether, this Soot revision contained 240 non-abstract
declarations ofclone() methods which we had to to
deal with. Out of those, the heuristic for not calling
the super class reported 237 implementations not calling
super.clone(). The heuristic for consistent class anno-
tation reported that almost all of those types implementing
clone() did not implement theCloneable interface. In
14 other cases, the interface was implemented but not the
clone() method. None of the implementations returned
null. All implementations usedObject as return type
which was consistently reported by our heuristic for sug-
gesting co-variant return types. This is because the Soot
developers have just currently started to convert Soot to a
Java 5 code base.

3.2. Effectiveness of code generation

We manually investigated all of the generated warnings
and used the quick fix feature provided by our tool to find a
better implementation that would eliminate the warning but
not change the behaviour of the program (at least in com-
bination with other changes of the same kind). The largest
changes could be made in the packages that resemble nodes
of abstract syntax trees for the various intermediate repre-
sentations in Soot. Formerly, each single node class would
implementclone() by calling a constructor and cloning
the arguments recursively. This requires an implementation
of clone() on every single node type. Interestingly, after
generating a few standard implementations ofclone() far
up in the hierarchy, it turned out that most of the implemen-
tations ofclone() in sub classes could be eliminated. This
can always be done when a sub class declares no instance
fields.

Altogether, we were able to remove 179 methods that
way. Another 37 methods could be replaced by standard
implementations we generated with the tool. Those were
all either cases where aclone() method was necessary be-
cause the type did declare instance fields or because the su-
per type of the type wasObject, whoseclone() method
has only protected visibility. In those cases, an implemen-
tation of clone() can be used to expose the method to
clients. In another 16 cases, we had to replace methods by
non-standard implementations. In order to do so, we first
generated a default implementation using our tool and then
modified it to our needs. Most modifications boiled down
to possible null-pointer checks (e.g. for linked lists) or deep
copying of arrays or collections.

In one case, an abstract class for constants, we return
this fromclone(), although it violates the contract. This
is because constants are immutable by definition and hence
need not to be cloned, hence saving memory. In three

3



cases, theclone() method had to be added to interfaces
so that it could be called on types implementing that inter-
face. We were happy to see that only few such additions
had to be made. This was the fact because almost all types
in Soot implement some relatively generic interface, such
asValue. In another eleven cases, abstract definitions of
clone() were replaced by concrete, generated implemen-
tations. This is because those methods had to be called by
sub classes viasuper.clone() and Java does not type-
check such calls to abstract methods.

In order to complete the implementation of cloning, we
had to add another 26 standard and two non-standard imple-
mentations. In seven cases, we refined the return types of
existing (correct, partially abstract) methods to the typeof
the declaring method. Eleven times we had to keep imple-
mentations ofclone() as they were, because they did ad-
ditional crucial work. In particular this is the case for types
representing method bodies in Soot. When cloning bodies,
one has to clone everything but local variables which then
have to be cloned separately and patched up in a second
step. In all those cases, we marked the respective meth-
ods with aSuppressWarnings annotation. (Currently, our
Eclipse plug-in does not yet manage to actually suppress the
warning but this will be solved in future versions.)

4. Related Work

The work mostly related to ours is the automatic genera-
tion of equals(..) andhashCode() methods in Eclipse.
As mentioned above, opposed to the case ofclone(), gen-
erating those methods is possible in a complete manner,
since all types in Java do provide a publicequals(..) and
hashCode() method. Also the semantics of those meth-
ods is completely defined, while forclone() this is not the
case (e.g. compare the notions of a deep or shallow copy).

The issue of whether returningnull from a clone()

that is not actually capable of cloning or throwing a
CloneNotSupportedException instead boils down to
whether or not to use the so-called “return code idiom”. The
work of Bruntink et al. [3] analyzes large-scale C programs
using this idiom and shows that its use is very error-prone.
We take this as a justification for our “return null” heuristic.

The effect of needing less implementations ofclone()

when calling super.clone() than when using copy-
constructors can be explained by the power of virtual dis-
patch. If a sub class does not add any instance fields, it can
reuse the implementation ofclone() from its super class
and virtual dispatch is the most natural form of code reuse
in Java. While we that way exploit the natural Java seman-
tics, related work on the topics of Traits [8], Mixins [1] and
Virtual Classes [7] tries to maximize code reuse by using
different forms of dispatch.

5. Conclusion

As we showed in this work, quite simple heuristics can
be use to find flaws in the implementation of cloning in Java.
Moreover, we were able to provide an Eclipse plug-in that
generates a default implementation forclone() methods
which was useful in almost all cases we investigated. Im-
plementing cloning using code generated that way allowed
us to safely eliminate more than 50% of allclone() meth-
ods, significantly alleviating the problem of code mainte-
nance for Soot. All convertedclone() methods use co-
variant return types. We recommend the use of co-variant
return types, as in one case this even revealed a bug: One
of theclone() methods we converted was previously not
even returning an object of the right type.

For future we plan to look into extending the code gener-
ation to be able to deal with deep copies of the Java collec-
tion classes and arrays. Our study revealed that such cases
probably occur less often than one might think, however au-
tomated support might be useful for certain applications.

Despite the fact that our experiment went well and
helped to support our claims, we came to the conclusion
that actually real language support for cloning would be
very desirable. For example, annotations could be used to
state whether an instance field should be deeply cloned or
not. The actual cloning could then be left entirely to the
virtual machine. The same could hold forequals() and
hashCode() methods which could be parametrized by the
same annotations. We believe that the use of aspect-oriented
programming could yield such automation, however, using
current technologies, only by the use of reflection which
comes at a huge runtime cost.

References

[1] D. Ancona, G. Lagorio, and E. Zucca. Jam - A Smooth Ex-
tension of Java with Mixins. InECOOP ’00: Proceedings of
the 14th European Conference on Object-Oriented Program-
ming, pages 154–178, London, UK, 2000. Springer-Verlag.

[2] E. Bodden. COMP 762 Project 1 report, February 2007.
[3] M. Bruntink, A. van Deursen, and T. Tourwé. Discovering

faults in idiom-based exception handling. InICSE ’06: Pro-
ceeding of the 28th international conference on Software en-
gineering, pages 242–251, New York, NY, USA, 2006. ACM
Press.

[4] K. Kreft and A. Langer. Das Kopieren von Objekten - Der
Sinn und Zweck von clone().JavaSPEKTRUM, September
2002.

[5] K. Kreft and A. Langer. Das Kopieren von Objekten - Prinzip-
ien einer Implementierung von clone().JavaSPEKTRUM,
November 2002.

[6] K. Kreft and A. Langer. Das Kopieren von Objekten -
Die CloneNotSupportedException.JavaSPEKTRUM, Jan-
uary 2003.

4



[7] K. Ostermann, M. Mezini, and C. Bockisch. Expressive point-
cuts for increased modularity. In A. P. Black, editor,ECOOP,
volume 3586 ofLecture Notes in Computer Science, pages
214–240. Springer, 2005.

[8] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. InEuropean Conference on
Object-Oriented Programming, 2003.

[9] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In CASCON ’99: Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative research,
page 13. IBM Press, 1999.

5


