
Flow-sensitive static optimizations for runtime monitors

Eric Bodden, Patrick Lam, Laurie Hendren

Sable Research Group
School of Computer Science

McGill University

Abstract
Runtime monitoring enables developers to specify code thatexe-
cutes whenever certain sequences of events occur during program
execution. Tracematches, a Java language extension, permit devel-
opers to specify and execute runtime monitors. Tracematches con-
sist of regular expressions over events, where each event may spec-
ify free variables that are bound to run-time objects. Naı̈ve imple-
mentations of runtime monitoring are expensive and can cause pro-
hibitive slowdowns. In previous work, we proposed optimizations
based on flow-insensitive pointer analyses. While these optimiza-
tions worked well in most cases, more difficult cases with large
overheads remained.

In this paper, we propose three novel intraprocedural optimiza-
tions with the goal of eliminating the overhead from runtimemon-
itors. Our optimizations rely on flow-sensitivity and precise local
may-alias and must-alias information. The first two optimizations
identify and remove unnecessary instrumentation, while the third
one hoists instrumentation out of loop bodies.

We applied our transformations to seven difficult combinations
of tracematches with programs from the DaCapo benchmark suite
which defeated our earlier analyses. Our results show that our three
optimizations, in combination, can remove much of the instrumen-
tation in this benchmark set. For two of the seven cases, we can re-
move all instrumentation: our analysis successfully showsthat the
benchmark programs will always satisfy the verification properties
stated in the tracematches. Our results furthermore suggest that our
analysis can detect hidden method preconditions which ought to
documented and visible to the developers.

After our optimizations, only three cases (out of an original
90 cases) still have noticeable runtime overheads. One of these
cases cannot possibly be optimized, because the runtime monitors
actually trigger. While our optimizations ought to be able to handle
the remaining two cases, only an imprecision in our underlying
global points-to analysis currently prevents us from removing the
overhead in those cases as well.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation; D.3.4 [Pro-
gramming Languages]: Processors—Optimization

General Terms Experimentation, Languages, Performance, Veri-
fication

Submitted to POPL 2008, a publicly-available technical report version is available as
abc Technical Report abc-2007-03 athttp://www.aspectbench.org/.

Keywords Program monitoring, runtime verification, points-to
analysis, static analysis, code motion

1. Introduction
A software system’s sequence of actions over an execution isa rich
source of information about the system’s behaviour on that execu-
tion and often gives insight into the system’s behaviour on other
executions. Certain sequences of runtime events indicate defects
in the system. Runtime monitoring can detect such sequencesof
events, enabling developers to handle the sequences with code that
reports errors or enables the system to recover from faults.

Tracematches [1] are a Java language extension which enable
programmers to specify traces via regular expressions of symbols
with free variables, along with some code to execute if the trace oc-
curs in an execution. A symbol’s free variables bind heap objects at
runtime. A tracematch executes its associated code if a suffix of the
symbols in the current execution trace contains 1) the rightsym-
bols with 2) a consistent variable binding (i.e. symbols’ free vari-
ables match up) in 3) an order which matches the regular expres-
sion. At the implementation level, our compiler and runtimesystem
implement tracematches using runtime monitors based on finite-
state machines. Compiler-generated instrumentation codeupdates
the monitor’s internal state each time an event of the execution trace
matches a declared symbol from the tracematch. When the monitor
finds a consistent match in the program’s execution trace, ittriggers
the code associated with the tracematch.

Unfortunately, naı̈ve implementations of runtime monitoring
can be impractical due to the run-time expense: as expected,instru-
mented code runs more slowly than uninstrumented code. There
are therefore two basic approaches for reducing the overhead due to
runtime monitoring: 1) run each instrumentation point faster (cor-
responding to dynamic improvements); or 2) reduce the number of
instrumentation points (static improvements).

Avgustinov et al. have developed optimized runtime monitor
implementations to make runtime monitoring usable, at least at de-
velopment time [3, 4]. For instance, they use a special encoding
for variable bindings at runtime. However, even after such opti-
mizations, 5x slowdowns over the uninstrumented code were not
uncommon, and some cases were even more expensive.

In [7], we explored the second alternative by proposing some
static optimizations for tracematches. These optimizations success-
fully eliminated overheads for all but 9 out of our 90 benchmark/-
tracematch combinations. The key idea was to identify instrumen-
tation points which could not trigger a complete match because
(1) the program did not contain enough symbols to give a com-
plete match, (2) the variable bindings among the symbols that the
program did contain were inconsistent, or (3) the symbol never
executed in an order which would be matched by the regular ex-

pression. We used a flow-insensitive pointer-based analysis to re-
move tracematches which were unnecessary because they satisfied
properties (1) and (2). This analysis proved very effective, reduc-
ing overheads to below 10% in most of our benchmarks. How-
ever, a significant number of pathological cases with much larger
overheads—from 18% to 260%—still remained. In the same work,
we also proposed a flow-sensitive whole-program analysis which
attempted to address property (3), but that analysis did notmanage
to identify any additional unnecessary instrumentation points.

We therefore set out to optimize the important cases that were
not susceptible to improvement by either more efficient moni-
tor implementations or previously developed static analyses. Our
approach was to identify the weaknesses of the previous static
analysis and to design new analyses targetted towards solving the
remaining—hard—problems. We found that, in many cases, much
of the overhead came from a few hot instrumentation points, which
we studied in detail. We observed that an intraprocedural analysis
ought be able to conclude that the hot shadows from our bench-
marks would never trigger the tracematches, if the analysiswas
flow-sensitive and used both may-alias and must-alias information.
In other words, exploiting property (3) would indeed allow us to
eliminate the hot shadows, given sufficiently strong alias informa-
tion. We therefore set out to develop a precise and accurate intrapro-
cedural analysis that would enable us to reduce the overheadof
runtime monitoring.

We found that accurately estimating the possible tracematch
configurations at each instrumentation point enabled a number of
optimizations based on property (3). We therefore describea static
analysis which abstractly models the possible runtime configura-
tions of tracematches. Based on our abstraction,

• we can remove an instrumentation point if it will never modify
the tracematch configuration at runtime;

• we can remove an instrumentation point if it will never be on a
path that reaches a final configuration; and

• we can either move instrumentation points within a loop body
outside the loop body or execute the instrumentation pointsonly
once per loop.

We applied our optimizations to the those cases from [7] with
remaining overhead. Our results show that using all three optimiza-
tions in conjunction with the flow-insensitive optimization from [7]
reduces the runtime overhead in all but three cases to below 10%. In
two cases, we were able to remove all instrumentation. Because our
tracematches detect error conditions, our analysis for those bench-
marks therefore guarantees that those error conditions cannever
occur.

Of the three cases with remaining overheads, one cannot be stat-
ically optimized because its monitor triggers at runtime. While our
optimizations ought to be able to handle the remaining two cases,
only an imprecision in our underlying global points-to analysis cur-
rently prevents us from removing the overhead in those casesas
well.

Contributions. This paper makes the following contributions:

• a novel intraprocedural flow-sensitive static analysis forstat-
ically estimating possible states of a tracematch automaton,
based on may-alias and must-alias information;

• three optimizations for eliminating overhead due to trace-
matches, all of which are based on our static analysis; and

• an experimental evaluation of our optimizations on a suite of
sizeable benchmark applications.

We believe that our results generalize beyond the immediate
context of optimizing tracematches. Section 6 discusses the appli-

cability of our analysis to other runtime monitoring frameworks
such as PQL [11]. Furthermore, our results suggest that our analy-
sis can help detect hidden—currently undocumented—methodpre-
conditions which ought to be visible to the developer.

The remainder of the paper is organized as follows. Section 2
introduces the syntax and runtime behaviour of tracematches. It
also points out some situations where unnecessary updates to the
tracematch monitor occur. Section 3 introduces an abstraction that
mimics the dynamic tracematch evaluation statically. Section 4
describes the tracematch optimizations, while Section 5 evaluates
the results of our optimizations. Finally, Section 6 discusses related
work and Section 7 concludes.

2. Tracematches: Definition and examples
In this section, we describe tracematches, our mechanism for run-
time monitoring, and explain some of the key concepts behindhow
the compiler creates code that implements tracematches at runtime.
We also include two examples which explain some of the reasoning
behind our static analysis and optimizations.

In this work, we focus on verification tracematches. Our trace-
matches typically encode API usage rules; in our examples, the
tracematch bodies report errors, but they could equally well con-
tain error-recovery code which would enable the program to con-
tinue running.

2.1 HasNext example tracematch

Figure 1 presents theHasNext verification tracematch. This trace-
match captures the fact that, given anIterator object i, it
is unsafe to calli.next() twice in a row without a call to
i.hasNext() in between. Each tracematch may declare formal
variables that bind to objects at runtime. Here, line 1 declares the
formal variablei of typeIterator. Tracematches also declare a
set of symbols establishing the alphabet for the tracematch’s regular
expression. These symbols define events on the runtime execution
trace using AspectJ pointcuts. In the example, lines 2–5 declare
symbolshasNext andnext. These symbols capture method calls
to thehasNext() andnext() methods of our iteratori. Finally,
a tracematch declares a regular expression over this alphabet and
some code to execute when the regular expression matches a suffix
of the execution trace with a consistent variable binding. Here, line
7 declares the tracematch’s regular expression,next next, and
states the code to execute ifnext next occurs in some execution
with bothnext symbols binding the same iteratori.

Note that the sequencenext hasNext next is not matched
by our tracematch: no suffix of this sequence is matched bynext
next.

1 tracematch(Iterator i) {
2 sym hasNext
3 before: call (∗ java . util . Iterator +.hasNext ()) &&target(i);
4 sym next
5 before: call (∗ java . util . Iterator +.next ()) &&target(i);
6

7 next next { System.err . println (”Trouble with ”+i);}
8 }

Figure 1. Tracematch definition for theHasNext tracematch.

Tracematch implementation. The AspectBench compiler [2]
(abc) implements tracematches by compiling Java source or byte-
code, together with any desired tracematches, into instrumented
Java programs augmented with runtime monitoring. Theabc com-
piler first creates atracematch automatonfrom the tracematch’s
regular expression. It then identifies a set of instrumentation points,

q0start q1 q2

next next

next, hasNext

Figure 2. Automaton for theHasNext tracematch from Figure 1.

or shadows[12], corresponding to the points in the code where
symbols will potentially execute (and thereby update the trace-
match state). Note that these shadows bind a subset of the trace-
match’s variables, as specified by the symbol’s definition.

While the tracematch automaton resembles the standard fi-
nite automaton induced by the tracematch’s regular expression,
the tracematch machinery uses the automaton in an unusual way.
Normally, an automaton is in one state at a time. But recall that a
tracematch binds a set of heap objects to its variables. The trace-
match automaton must therefore track possible states for each set
of bindings of the tracematch variables. If a set of bindingsreaches
the final state of the automaton, then the runtime system executes
the body of the tracematch.

Figure 2 presents the tracematch automaton for theHasNext
tracematch. Solid lines represent state transitions, while dashed
lines represent special skip loops.

State transitions are fairly standard: Whenever a shadow with
label ℓ executes, the tracematch runtime processes all transitions

s
ℓ
→ t, for each possible pair of statess and t. If states holds

a variable binding that is consistent with the binding induced by
the shadow, the runtime propagates this binding to statet. This
propagation ensures that the tracematch automaton reachesthe final
state whenever the regular expression matches with a consistent set
of bindings.

On the other hand, the tracematch runtime machinery must
also discard candidate matches as they become invalidated.For
instance, in theHasNext tracematch, the runtime must discard any
candidate match binding an iteratori in the event of a call to
i.hasNext(), because the tracematch should only trigger if two
adjacent calls toi.next() occur withno call toi.hasNext() in
between. Hence, at any call toi.hasNext(), for i, the match has
to start all over again. Skip loops instruct the runtime to discard
invalidated candidate matches.

2.2 Dynamic tracematch configurations

A configuration for a tracematch automatonA is a function map-
ping states ofA to constraints. Figure 3 presents the grammar for
these constraints. Constraints are stored in disjunctive normal form.
A constraint can be a disjunction of disjunctsD, or one of the
boolean literalstrue andfalse. Each disjunct is a conjunction
of bindingsB, each of which is either a positive bindingv = o
or a negative bindingv 6= o. The left hand sidev is a tracematch
variable, as declared in the tracematch. At runtime, the right hand
sideo is a heap object. We also maintain the invariant that each dis-
junct only contains one positive binding for each tracematch vari-
able. One way to think of a disjunct is as a partial function from
tracematch variables to heap objects; when the function is partial,
the negative bindings give additional information about the objects
that may be bound to a tracematch variable.

Example. We next present an example of dynamic tracematch
configurations. Theabc compiler generates instrumentation that
manipulates such tracematch configurations at runtime. Dynamic
configurations are especially useful to understand becauseour
static abstraction of tracematch configurations mimics thedynamic
configuration information.

C ::= true | false |
_

D

D ::=

^

B

B ::= v = o | v 6= o

Figure 3. Grammar for configuration formulas.

We will present the evolution of dynamic configurations for the
HasNext tracematch from Figure 1. Recall that this tracematch
detects the case where thenext method of someIterator object
is called twice without an intervening call tohasNext. Consider
the tracematch’s behaviour on the following method:

1 void m(Iterator it) {
2 it .hasNext ();
3 it . next ();
4 it .hasNext ();
5 it .hasNext ();
6 }

This method clearly does not trigger theHasNext tracematch.
Furthermore, it is possible to deduce the state of the objectpointed
to byit after each statement in the method.

To explain dynamic configurations, we describe the dynamic
configuration at each program point of methodm. Note that,
throughout the execution of methodm, there is only one object
bound to variableit. We denote this object byo.

Initial configuration when enteringm. In our diagrams, we dis-
play constraints for automaton states below the states themselves.
Because the tracematch semantics state that a tracematch triggers
whenever its regular expression matches a suffix of the current ex-
ecution trace, any variable binding can start a new candidate match
at any time. We represent this fact with the constrainttrue at the
initial state. No objects are bound in the final state: hitting the fi-
nal state triggers the tracematch body, so objects are immediately
consumed as soon as they reach the final state. At runtime, when
enteringm, the constraint atq1 is known; we symbolically repre-
sent this known constraint byc1.

q0start q1 q2

true c1 false

next next

next, hasNext

After line 2 (hasNext shadow). We learn thato is not in stateq1,
due to the skip loop onq1, so we conjoin the negative bindingi 6= o
atq1:

q0start q1 q2

true c1 ∧ i 6= o false

next next

next, hasNext

This conjunction models the fact thato can certainly not be
in stateq1. The runtime engine optimizes the constraints: ifc1

contained a disjunctd with a positive bindingx = o, and we
conjoin c1 with the negative bindingx 6= o, then we getfalse,
which means that disjunctd can simply be dropped fromc1.

After line 3 (next shadow). We label the resulting constraint at
q1 with c2. Nowo is in the intermediate stateq1, giving the binding
i = o at q1:

1 public aspect TMFailSafeIter {
2 pointcut collection update (Collection c):
3 (call (∗ java . util . Collection +.add∗(..)) || ... ||
4 call (∗ java . util . Collection +.remove∗(..))) && target(c);
5

6 tracematch(Collection c, Iterator i){
7 sym createiter after returning (i):
8 call (∗ java . util . Collection +. iterator ()) &&target(c);
9 sym call next before:

10 call (∗ java . util . Iterator +.next ()) &&target(i);
11 sym updatesource after : collection update (c);
12

13 createiter call next∗ updatesource+ callnext { ... }
14 }
15 }

Figure 4. FailSafeIter tracematch: detect updates to a
Collection which is being iterated over.

q0start q1 q2

true c2 ∨ i = o false

next next

next, hasNext

Here, objecto is definitely bound toi at stateq1.

After line 4 (hasNext shadow). After line 4 we compute the
constraintc2 ∧ i 6= o, which is equal toc1 ∧ i 6= o. Hence, we
effectively return to the same configuration as after line 2.

q0start q1 q2

true c2 ∧ i 6= o false

next next

next, hasNext

After line 5 (hasNext shadow). The shadow at line 5 does not
have any effect on the configuration, aso is already known not to
be inq1.

Discussion. Our example has presented the evolution of runtime
configurations through a simple method. We have seen how theabc
runtime maintains a constraint for each tracematch configuration;
this constraint tracks states of various runtime objects.

We can deduce several properties ofm and its interaction with
theHasNext tracematch. First of all,m never triggers the final state
of this tracematch on any object: the only objectm can affect is
o, and we know whatm does too. Secondly, observe that, despite
knowing nothing abouto at method entry, we can deduce precise
information about the state ofo at each program point: after exe-
cuting thehasNext shadow,o can only be in stateq0. Finally, note
that the shadow at line 5 is unnecessary because it does not change
the automaton configuration. This type of observation has inspired
the optimizations that we present in this paper.

2.3 FailSafeIter example tracematch

We present an additional example illustrating the case where a
tracematch binds two variables. Figure 4 presents theFailSafeIter
tracematch, which reports cases where the program modifies a
Collection while an Iterator is active on thatCollection.
Figure 5 shows the corresponding automaton.

Consider thefindVariableHere method from one of our
benchmarks,pmd, a static analysis tool which detects potentially
problematic patterns in Java source code.

q0start q1 q2 q3

create update

create,
update,

next

next

create,
update,

next

Figure 5. Automaton forFailSafeIter from Figure 4.

1 public int findVariableHere (Collection c){
2 for (Iterator i = c. iterator (); i .hasNext ();){
3 Object o = i . next ();
4 if (o == null)
5 return 0;
6 }
7 return 1;
8 }

This method simply creates an iteratori and iterates over it. We
can observe thati never hits the final state, because it does not
escape thefindVariableHere method, so that all shadows oni
can safely be disabled.

Our static analysis computes possible configurations for the
tracematch automaton after every program point. We observe
that findVariableHere certainly never updates the collection
bound toc. Furthermore, the iterator bound toi is only live within
findVariableHere. We can therefore conclude that the combina-
tion of i andc can never reach a final state in the automaton. Our
static analysis will be able to remove all shadows in this method.

Flow-sensitivity is crucial here: The collection is certainly up-
dated somewhere in the program. We can only safely remove the
shadows infindVariableHere because the collection is not be-
ing updatedwhile the iterator is in use. We designed our analysis to
use a flow-sensitive abstraction so that it would be able to optimize
situations like this one.

Note that tracematches bind multiple variables simultaneously,
which enables them to express relationships between multiple pro-
gram objects. This feature complicates our analysis—we areforced
to track sets of bindings to objects, rather than tracking states of ob-
jects, one object at a time—but increases the expressive power of
our language feature: in particular, tracematches can express more
sophisticated properties than approaches based on typestate [8].
Section 6.2 describes the relationship between tracematches and
typestate verification in more detail.

3. Analysis abstraction
Our static abstraction of tracematch configurations enables us to
1) reason about the state of tracematch automata throughouta
program and 2) perform optimizations based on information that
we collect about possible tracematch configurations. This section
presents our analysis abstraction and the update rules for our ab-
straction.

Our static abstraction closely models the runtime tracematch
configuration information, but substitutes local variablenames for
runtime objects. We next present an example of our static analysis.

3.1 Example of static analysis

We return to ourHasNext example from Section 2.2 and explain
the result of our static analysis on that example. Note that the
analysis actually operates on the instrumented code, with explicit
shadows. A simplified version of this instrumented code follows1:

1 In this text, we refer to the variables used in advice applications asadvice
actuals, but theabc compiler calls these variablesadvice formals.

1 void m(Iterator it) {
2 uniqueArgLocal7 = it ;
3 adviceformal$782 = uniqueArgLocal7;
4 theAspect$TMReader.beforeAfter$14(adviceformal$782);
5 it .hasNext ();
6 adviceformal$783 = uniqueArgLocal7;
7 theAspect$TMReader.beforeAfter$15(adviceformal$783);
8 it . next ();
9 adviceformal$784 = uniqueArgLocal7;

10 theAspect$TMReader.beforeAfter$14(adviceformal$784);
11 it .hasNext ();
12 adviceformal$785 = uniqueArgLocal7;
13 theAspect$TMReader.beforeAfter$14(adviceformal$785);
14 it .hasNext ();
15 }

This intermediate code clearly shows the need for pointer in-
formation. Without pointer information, it would be impossible to
keep track of which shadows apply to which heap objects. While
simple transformations would be sufficient to pushit throughout
the method in this case, they are not enough in general. Our pointer
analyses will determine that all of the local variables in this method
must-alias each other.

Initial approximation. We will present the result of the static
analysis when we initially approximate the value ofq1 with true.

q0start q1 q2

true true false

next next

next, hasNext

After line 4 (hasNext shadow). Statically, we know that variable
adviceformal$782 is not in stateq1, due to the skip loop onq1,
so we create the negative bindingi 6= adviceformal$782 at q1:

q0start q1 q2

true i 6= af$782 false

next next

next, hasNext

After line 8 (next shadow). We must add the bindingi = af$783
atq1, since we know thataf$783is now in stateq1. Becauseaf$782
must-aliasesaf$783, we can drop thei 6= af$782binding due to the
next skip loop.

q0start q1 q2

true i = af$783 false

next next

next, hasNext

After line 12 (hasNext shadow). We generate the negative bind-
ing i 6= af$784. Furthermore, becauseaf$784must-aliasesaf$783,
we drop the positive bindingi = af$783.

q0start q1 q2

true i 6= af$784 false

next next

next, hasNext

After line 15 (hasNext shadow). We now generate the negative
binding i 6= af$785. Becauseaf$785 must-aliasesaf$784, we
consider both values equal and store only one of them. Hence this
configuration is equal to the previous configuration; we discuss
equality of configurations in more detail below. Our unnecessary
shadow elimination optimization (Section 4.2.1) would eliminate
this shadow.

3.2 How our static analysis works

We continue by describing our static analysis in detail. To compute
our static abstraction of the tracematch state for a methodm,
we perform a fixed-point iteration onm, starting with the initial
approximation at the start of the method.

Soundness properties.We have designed our approximation to
be sound in the following sense:

1. if a shadow can trigger a final state at some program point, then
our approximation at that point must also flag the fact that the
tracematch may hit the final state;

2. if two tracematch configurations may be different, then our
approximation identifies that these configurations are different.

Property 1 supports transformations which estimate when trace-
matches cannot possibly reach their final state, enabling such trans-
formations to eliminate shadows that cannot contribute to amatch.
Property 2 supports transformations which recognize and eliminate
shadows that do not have any effect at runtime.

Contents of bindings. Formally, our grammar for static configu-
rations replaces runtime objects from Figure 3 with local variables;
the definition for bindings therefore becomes

B ::= x = v | x 6= v.

Instead of stating that tracematch variablex is bound to runtime
objecto (x = o), we state that tracematch variablex is bound to
the contents of local variablev (x = v), and we keep in mind that
v could point to a number of different objects.

3.3 Initial approximation

At runtime, the tracematch automaton may be in an arbitrary con-
figuration upon method entry. We model this arbitrary configura-
tion by running the static analysis with a set of configurations: one
configuration hastrue at the initial state only andfalse at other
states; other configurations havetrue at the initial state and at each
of the non-final states in turn, andfalse elsewhere. This initial ap-
proximation enables us to detect all cases where a binding may
potentially be propagated to a new state. (Note that starting with
true at all non-final states would mask some updates.)

3.4 Update rules

We next describe how our static analysis updates the abstraction
at shadows. Statically, at each shadow, our analysis receives two
inputs: (1) the symbol name, and (2) a partial function from trace-
match variables to local variables. Our analysis updates the abstrac-
tion by (1) taking automaton transitions, and generating negative
bindings at skip loops, for every local variable that may alias the
advice actuals (which represent the objects bound at that shadow)
and (2) dropping disjuncts when the disjuncts contain localvari-
ables that are must-aliased with the advice actuals.

Need for aliasing information. Recall that our dynamic configu-
ration example used a single objecto as the object whose trace-
match state was being tracked. Unfortunately, as we have seen,
the abc compiler creates a number of temporary local variables
and uses these temporary variables as advice actuals. Only some of
these variables point too. Our static analysis must determine which

local variables must point too and which local variables may not
point too. Our use of aliasing information enables our analysis to
properly handle cases where different objects are aliased and shad-
ows occur on some of these aliases.

Our analysis uses must-alias and not-may-alias pointer informa-
tion. We gather this information using naı̈ve intraprocedural anal-
yses that estimate whether local variableℓ1 at program pointp1

must-aliases, or may not alias, local variableℓ2 at program point
p2; the key idea is that if the value ofℓ1 and ℓ2 originate at the
same expression and flow toℓ1 andℓ2 by a sequence of copy state-
ments, then they are must-aliased, and ifℓ1 and ℓ2 contain heap
objects known to be disjoint (for instance, they are allocated on the
heap at differentnew expressions), then they may not alias. Our
must-alias analysis is modelled on Extended SSA Numbering [10].

Weak updates. When the runtime encounters a shadows on a
non-skip tracematch automaton edge, it updates the state ofthe
heap objecto bound to a tracematch variable; because the runtime
knows the precise identity ofo, it only needs to update the state
of o. However, at static analysis time, our compiler only has an
estimate of the set of variables which may point too. Because our
analysis attempts to find out all variable bindings which maytrigger
a final state, it must update the state of all local variables that may
potentially point too with the effect ofs. (In fact, we omit updates
at shadows only for those local variables which may-not alias local
variables pointing too).

Our analysis also handles skip loops by creating negative bind-
ings x 6= v if there are no positive disjuncts which must-aliasv,
reflecting the fact that we know thatv is not in states after shadow
s executes.

We next describe a crucial optimization for the weak update
rule. Consider the following code with theFailSafeIter trace-
match from Figure 4. Methodm(..) iterates over a collections.
Assume that this collection has been populated elsewhere.

1 m(Collection s){
2 Iterator it = s . iterator ();
3 while(it .hasNext ()) {
4 it . next ();
5 }
6 }

We next consider the analysis ofm(..), referring to the trace-
match automaton in Figure 5. When processing thenext shadow
at line 4 with an initial assumption oftrue in stateq2, we infer that
thenext shadow can actually lead to a final state, a false positive.

Consider the set of states at whichit can possibly be bound
at thenext shadow. Thecreate shadow ensures thats and it
are bound at stateq1, and also ensures thats and it are not
in q2. Therefore,q2 could only contain a bindingi=it if some
collection besidess’ 6= s was associated withit. While we
as programmers know that there can only always be one single
collection per iterator, our analysis has no way of determining this.
We have therefore implemented the following approximation.

The structure of the tracematch automaton ensures that at state
q2, tracematch variablesc andi must be both bound. Therefore,
if no shadows outside methodm which share a shadow group with
thenext shadow bindc andi (possibly separately), then it is sound
to omit the weak update oni at thenext shadow: becausei could
not have reachedq2, it cannot advance toq2’s successor state.

Strong updates. At static analysis time, our compiler handles a
skip loop with variablev bound by discarding positive bindings in
the configuration which must-aliasv.

Loops and redefinitions. When a local variableℓ is redefined
within a loop, it no longer must-aliases its value from previous
iterations (oldℓ). However, our must-alias analysis cannot tell

which local variable we are asking about: are we asking aboutthe
current value ofℓ or about oldℓ? Because our static analysis uses
local variables in the analysis abstraction, it cannot use the results
of the must-alias analysis directly. We therefore add an additional
step to our static analysis rules for tracematches: if a local variable
appears on the right-hand side of a binding and this local variable
is redefined, we replace the variable and all of its must-aliases
with a specialUNKNOWN value at variable bindings. ThisUNKNOWN
value never must-aliases any value. Note that this special rule gives
us exact information within the first iteration of the loop, while
distinguishing values of local variables between different iterations.
Our loop optimizations use information about the first iteration to
determine when it is safe to hoist shadows out of loops.

Formula transformations. We found that our analysis sometimes
generated formulas which are equivalent totrue; for instance, we
found that our analysis generates

x = v ∨ x 6= v

in one particular example. We apply an optimization to fix up
formulas which are trivially seen to betrue.

Method calls. Because our analysis is intraprocedural, we con-
servatively assume the worst of any calls to methods that contain
shadows. After any such method call, wetaint the configuration (ef-
fectively marking the configuration unknown) and propagatetaint-
edness to all of the method call’s successors. Our optimizations
refrain from program transformations which would be based on
tainted information.

Hit counters. The final state keeps no bindings, but we need to
know when the final state may be triggered. Recall that when a set
of bindings hits a final state, the runtime executes the tracematch
body and immediately throws out the bindings, leaving the final
state empty. Even if the tracematch configuration stays the same,
we need to record the fact that something has changed in the
program configuration (i.e.the tracematch body executed) to ensure
Soundness Property 2.

To record this information, we keep ahit counter as part of
our abstraction. The hit counter is an integer that we increment
each time we potentially hit the final state. Clients of our static
analysis can read the hit counter and know when the final statemay
potentially be hit.

Equality of configurations. Two configurationsc1 and c2 are
equal if: 1) they have equal hit counters and 2) the constraints for
each states are equal up to must-aliasing. Note that the effective-
ness of our optimizations therefore depends on the accuracyof the
must-aliasing information.

Termination. To conservatively approximate control flow, our
static analysis performs a fixed point iteration over the control
flow graph for each shadow-bearing method. Note that Soundness
Property 2 is incompatible with reaching the fixed point in certain
situations. Consider:

while (...) { v = c. iterator (); v.next ();}

Becausev is redefined within the loop body, we must assume that
it is bound to a different object within each iteration, preventing
our analysis from reaching the fixed point. The iterations that did
terminate did so in no more than 10 iterations. We therefore aborted
our fixed point iteration after a maximum of 20 iterations, tobe on
the safe side.

Sources of inaccuracy. The sources of inaccuracy in our analysis
are: 1) as with any static analysis, we must estimate the control
flow—we guess that each branch of a conditional might be taken; 2)
because our analysis is intraprocedural, we conservatively estimate

original
program tracematches

create
weaving plan

and weave

quick check

collect whole-
program points-
to information

flow-
insensitive
analysis

unnecessary
shadow

elimination

cannot-
trigger-final
elimination

collect loop
information

loop
optimizations

re-weave final code

Figure 6. Weaving Process.

the initial state at the beginning of each method; and 3) we identify
variables with the set of heap objects that it points to.

Concurrency. As described, our static analysis does not handle
concurrent programs; we verify that our benchmark applications
are single-threaded before optimizing them. A number of straight-
forward extensions would enable our analysis to handle concur-
rency. First, we can conservatively assume that any shadow in an-
other thread may occur at any point in our methods. We could then
improve our results by considering only shadows that may actu-
ally occur in parallel with our shadows, for instance by determining
thread-local objects as in [9].

4. Optimizations
The AspectBench Compiler [2] (abc) implements tracematches. It
weaves together Java or AspectJ code with tracematches and emits
instrumented Java bytecode. Figure 6 presents the entire weaving
process, including our three optimizations. To weave a program
with a tracematch, the compiler matches the symbol definitions of
the input tracematch against the given program, giving a weaving
plan. The weaving plan contains a complete description of the in-
strumentation needed to implement the runtime monitoring spec-
ified in the tracematches. Next, the compiler weaves together the
program and the tracematch according to the weaving plan. All sub-
sequent analyses are conducted on the woven program.

We optimize our input program as follows. First, we apply two
optimizations from [7], the quick check and the flow-insensitive op-
timization. We then apply the three optimizations proposedin this
paper: unnecessary shadow elimination, cannot-reach-final elimi-
nation and shadow motion. Because each optimization may, inprin-
ciple, enable other optimizations, we iterate the optimizations, as
illustrated by the back edge in the figure.

Whenever any of the optimizations proves that a shadow can
be removed, it updates the weaving plan accordingly. The iteration
terminates when no optimization removes any shadows. We then
re-weave the program according to the updated weaving plan.

4.1 Previous analyses

In previous work [7], we described some techniques for statically
optimizing tracematches. Because this paper builds on someof our
previous work, we briefly summarize some key points. The main
idea in all of our work is to use static analyses to move or disable
shadows which cannot possibly trigger a final state.

4.1.1 Quick check

Thequick checktechnique uses the following insight. A tracematch
automaton can only hit its final state if the program executesa se-
quence of shadows which lead to the final state. If a critical edge in
the automaton has no corresponding shadows in the program (leav-
ing the automaton disconnected), then the automaton can never
reach its final state. In that case, the quick check may removeall
other shadows belonging to that tracematch.

For example, consider theHasNext tracematch and a target pro-
gram that does not call thenext() method. Since such a program
can never trigger theHasNext tracematch, we remove the all in-
strumentation for this tracematch, including at calls tohasNext().

4.1.2 Flow-insensitive analysis

The flow-insensitiveanalysis uses the following main idea: given
a set of shadows which contain transitions reaching the final
state, the automaton can only actually trigger on those shadows
if each shadow’s tracematch variables are potentially bound to
the same objects. For theHasNext tracematch, if a program calls
i.hasNext() on some iteratori, but neveri.next() on the same
i, then it is sound to remove the shadow ati.hasNext().

Shadow groups. A shadow group consists of a collection of shad-
ows that may drive the tracematch into a final state, along with
the points-to sets for each shadow’s bound objects. The shadow
group can only lead to a match at runtime if there potentiallyex-
ists at least one actual heap object for each bound variable.We call
such shadow groups consistent. Our analysis determines whether a
shadow group is consistent or not by testing whether the intersec-
tion of the points-to sets for bound variables is empty or not. Our
flow-insensitive analysis disables all shadows that do not belong to
at least one consistent shadow group.

In this work, we only use the following property:

If two shadows might ever collaborate to drive a tracematch
configuration into a final state at runtime, then there existsa
shadow group that contains both of these shadows.

Shadow groups enable us to soundly handle method calls in
our analysis: if methodm transitively calls methodn, and m
and n have shadows in the same shadow groups, then we must
taint the configuration after calls ton, since we are performing an
intraprocedural analysis. If they do not have any common shadows,
thenn has no effect on the configurations we are tracking inm.

4.2 Novel optimizations

Our static analysis enables novel program optimizations that are
based on an estimate of the possible tracematch states at various
program points. In this section, we present three transformations
that use the information collected by our static analysis. Two of the
transformations disable shadows that cannot contribute toreach-
ing a final state. Other shadows are not unnecessary—they might
contribute to reaching a final state—but only need to executeonce.
Our other transformation therefore manipulates loops to ensure that
such shadows are only executed once, either by hoisting shadows
out of loops, or by guarding them with special Boolean flags.

4.2.1 Unnecessary Shadow Elimination

Recall that a program executes a shadow every time it encounters a
pointcut corresponding to a symbol definition. Generally, ashadow
triggers a change in the tracematch configuration. However,it may
turn out that a particular shadow will never change the tracematch
configuration, given a set of known possible input configurations to
that shadow. Consider theHasNexttracematch (Figure 1) and the
following typical example of printing the contents of a collection:

1 while(it .hasNext ()) {
2 if (it .hasNext ()) {
3 System.out . println (” ,”);
4 }
5 System.out . println (it . next ());
6 }

Observe that the inner call toit.hasNext(), on line 2, cannot
possibly affect the tracematch automaton: the call toit.hasNext()
on line 1 has already cleared all disjuncts bindingit from stateq1,
so that the call on line 2 is always a no-op. We can therefore safely
disable the shadow at line 2.

Note that this transformation is only possible because the
shadow at line 2 must execute immediately after the shadow at
line 1, ensuring that the iteratorit must be in the initial state.
Flow-sensitivity is crucial for this transformation.

Implementation. We have implemented the unnecessary shadow
elimination transformation as follows:

• Collect the static analysis results for methodm.

• If the analysis did not reach the fixed point, abort.

• For each shadow-bearing statements,

If, for every input state reachings, s generates an identical
output state, ands is not tainted, then disable shadows ats.

Note that we perform the verification state-by-state: that is, we
split the input configuration into a collection of input tracematch
states (one input per non-final automaton state) and verify that
the output on that state is unchanged. This ensures that our over-
estimation of the input configuration does not mask cases where
one input state changes the configuration to a different state, but
that new state is invisible because it is already in the inputconfigu-
ration.

4.2.2 Cannot-trigger-final Elimination

Our unnecessary shadow elimination handles shadows that donot
change the tracematch configuration. Some shadows do change
the tracematch configuration, but can still never lead to thefinal
state. Consider, for instance, the following code with theHasNext
tracematch:

Iterator i = c. iterator ();
while (i .hasNext ()) {

Object o = i . next ();
}

Clearly, this code can itself never trigger the final state, regard-
less of the input configuration. Furthermore, ifi is a local variable
and does not escape its defining method, no other shadow in the
program can cause the tracematch to hit the final state oni. Al-
ternately, if the shadows in the rest of the program cannot subse-
quently trigger a final state on the objects in our method of interest,
then we can remove the shadows in our method of interest. In gen-
eral, local variables that do not escape are candidates for removal
by our “cannot-trigger-final” transformation, as are objects that do
escape but whose potentially-dangerous shadows are confined to
one method.

Our static analysis identifies all shadows that may reach thefinal
state within a particular methodm. However, even if the shadows
of m do not trigger the final state whilem is executing, they could
leave the tracematch automaton in a state where a shadow in some
subsequently-executed method will trigger the final state.

We therefore model future actions as follows. First, using our
flow-insensitive whole-program analysis (as described in Sec-
tion 4.1), we identify a set ofrelevantshadows. A shadow is rele-
vant for methodm if it is an active shadow, does not belong tom,
and shares a shadow group with some shadow inm. Note that only
the shadows which share a shadow group with shadows inm can
possibly be affected bym; the definition of shadow groups ensures
that all other shadows operate on a disjoint set of bound objects and
are therefore unaffected bym.

To use the information about future actions, we create an ex-
tended control flow graph, augmented with the relevant shadows,
and feed the extended CFG to our static analysis. We augment the
control flow graph ofm by replacing each exit statementse of the
graph with a jump fromse to asyntheticnode. The synthetic node
is a fresh node that we create and to which we add all relevant shad-
ows.

next(i) return; next(j);

Figure 7. Extended control flow graph.

Figure 7 presents an example of an extended control flow graph
for a method with one shadow,next(i). Assume that the program
contains one other shadow,next(j), in some other method (a
foreign shadow). We replace thereturn; statement with a jump
to a synthetic node that triggers the foreignnext(j) shadow.

If the next(i) shadow from the current method andnext(j)
from the foreign method belong to the same shadow group, then
i and j may be aliased,i.e. may at runtime point to the same
object. In that case, our analysis would have to keepnext(i) alive.
Otherwise, the analysis may safely remove thenext(i) shadow.

In general, we interpret the results of the static analysis on the
extended control-flow graph as follows. Ifm never hits any final
states, we remove all shadows inm. Otherwise, we must make
sure that we do not remove any shadow that can contribute to a
final state. A shadow can contribute to a final state if any of its
successors is either tainted (we therefore assume that the successor
will potentially trigger the final state) or contains a shadow that
leads into a final state.

Implementation. We use the following algorithm for the cannot-
hit-final transformation on methodm:

• Augment methodm with a synthetic node which contains all
relevant shadows from other methods.

• Collect the static analysis results for augmented methodm.

• Remove all shadows that do not reach final states or statements
with tainted configurations.

4.2.3 Shadow Motion

Some shadows, of course, are not amenable to optimization with
either the unnecessary-shadow or the cannot-trigger-finalelimina-
tion. For instance, the optimizations that we have presented so far
would not help for a shadow that may potentially contribute to a fi-
nal state in some potential execution; our optimizations sofar only
eliminate shadows that provably do nothing. Our next insight is that
many shadows occur in loops; if we can somehow reduce the num-
ber of times that these shadows are executed, then we will speed up
the program.

hasNext-shadow
if (it.hasNext())

it.next() rest of code

Figure 8. Candidate for
shadow motion.

if (it.hasNext())

it.next()
hasNext-shadow
rest of code

Figure 9. After shadow mo-
tion.

Shadow motion optimizes loops by hoisting shadows out of
loops. If the set of shadows in a loop body collectively leavethe
tracematch state unchanged (except, possibly, for the firsttime that
these shadows execute), and if these shadows can never trigger
a final state, then the shadows can be hoisted out of the loop.
Note that shadows can be hoisted whether or not they contribute
to reaching a final state later on. Consider the following example
code with theHasNext tracematch:

1 while(it .hasNext ()) {
2 it . next ();
3 }
4 it . next ();
5 it . next ();

Figure 8 graphically illustrates the situation. No shadow in the
code can be eliminated by the “unnecessary shadow” analysis.
Further, line 5 can trigger the final state onit, so the “can’t-trigger-
final” optimization will not remove any of the shadows either,
because line 5 can be reached from all those shadows.

Observe, however, the following two properties of the loop at
lines 1-3: (1) the loop can never trigger a final state; (2) thestate
upon exit from the loop is known, and in particular, it is equivalent
to the state obtained by callingit.hasNext() exactly once.

Note that thehasNext shadow must execute at least once, as it
may change the tracematch state. We move thehasNext shadow to
run after the loop exit, as shown in Figure 9.

Because we know that the loop never triggers the final state, it
is sound to move the shadows around. In particular, any effect of
these shadows will not be visible until after the loop exits.

Hitting the final state: Execute Shadows Once.If the code in a
loop body may actually trigger the final state, it is unsafe tohoist
the shadows out of the loop body: if the final state is actuallyhit at
runtime, the tracematch body must execute right away. Here is an
example of such a case. Consider theFailSafeIter tracematch
from Figure 4, which detects collections that are modified while
they are iterated on, with the following program:

1 Iterator it = c. iterator ();
2 if (...)
3 c.add(new Object ());
4 while(it .hasNext ()) {
5 it . next ();
6 }

Clearly, the shadow on line 5 may trigger the final state of the
FailSafeIter tracematch, so that we cannot remove, or even
move, that shadow: it must stay where it is. A naı̈ve compiler, of
course, will execute the shadow on line 5 every time through the
loop. However, our static analysis allows us to conclude that sub-
sequent iterations of the loop do not affect the tracematch automa-
ton; the shadow at line 6 is dead on subsequent iterations (both the
hit counter and configuration stays the same after that shadow). In
such cases our transformation does not move shadows out of the
loop. Instead, it copies shadows to loop exits and then guards the
shadows in the loop so that they execute exactly once after the loop
header executes.

Our execute-shadows-once transformation is equivalent toun-
rolling the loop once, leaving the shadows in the unrolled code, and

disabling the shadows in the loop itself. We chose to implement this
transformation using a boolean flag for practical reasons.

Implementation. We have implemented our “shadow motion”
transformation as follows.

• Find all (reducible [13]) loops in methodm.

• For each loopℓ (inner loops first):

Apply our static analysis to only the statements ofℓ.

During this analysis, store (for each statement) the output
configurations after the first iteration of the analysis.

If, at any loop existe, the outgoing configurations after the
first iteration differ from the outgoing configurations at the
fixed point, continue with the next loop.

Having reached this point, we know that the method’s static
configurations reach their fixed points in one iteration: no
subsequent execution of the loop body has any effect on the
tracematch configuration. Because of our second soundness
property, this also holds for all dynamic configurations.
Executing the shadows in subsequent iterations is therefore
unnecessary. We only need to execute the set of shadows in
the loop once.

If some statement inℓ potentially triggers a final state, guard
the shadows inℓ with conditionals so that they only execute
once.

Else, disable all shadows inℓ, and for each loop exite:

− Determine the set of shadowsS which lie on some path
from the loop header toe. (Note that the choice of path
does not matter: if it did matter, we would not have
a stable configuration ate after one iteration. Given a
stable configuration, we do not need to worry about
infinite paths through inner loops, nor do we have to
worry about possible branches within the loop.)

− Determine the unique post-loop successors of e. Add a
nop statementn befores, and maken the new successor
of e. Annotaten with all of the shadowsS, in order; they
will be woven into the code at the next reweaving.

5. Results
To validate the effectiveness of our optimizations, we applied them
to several combinations of tracematches and benchmarks from ver-
sion 2006-10-MR2 of the DaCapo benchmark suite [5]. We have
previously identified [7] a number2 of benchmark/tracematch com-
binations as being resistant to our flow-insensitive analysis: even af-
ter the flow-insensitive analyses, these benchmark/tracematch com-
binations still had relatively large overheads.

The tracematches that we use all validate safety properties.
We assume that our benchmark applications are mature systems
which will not trigger our tracematches. We should therefore—in
principle—be able to remove all instrumentation from our bench-
marks.

Our tracematches specify usage constraints for frequentlyused
Java Runtime Environment data structures, including collections,
iterators, readers and writers. These tracematches tend toinduce
reasonably hot instrumentation points and can therefore incur sub-
stantial instrumentation overheads at runtime without static opti-

2 We reported nine pathological combinations in [7]. However, Avgustinov
et al. have recently further optimized the implementation of the generated
runtime monitor [4] so that only seven of those combinationsstill showed
overhead at submission time. We hence conducted experiments on those
seven cases.

pattern name description
FailSafeIter do not update a collection

while iterating over it
HashMap do not change an object’s hash code

while it is in a hash map
HasNextElem always callhasNextElement before

calling nextElement on anEnumeration
HasNext always callhasNext before

calling next on anIterator
Reader don’t use aReader after closing it

or its underlyingInputStream

Table 1. Tracematches applied to our benchmarks

be
nc

hm
ar

k

re
ac

ha
bl

e

flo
w

-in
se

ns
iti

ve

un
ne

ce
ss

ar
y-

sh
ad

ow
s

ca
nn

ot
-t

rig
ge

r-
fin

al

sh
ad

ow
m

ot
io

n

flo
w

-in
se

ns
iti

ve
-2

#
m

ov
ed

antlr/Reader 43 15 15 0 0 0 0
bloat/HashMap 29 28 28 28 28 28 0
bloat/HasNext 640 640 640 630 438 417 359

chart/FailSafeIter 110 110 107 107 107 107 0
luindex/HasNextElem 16 16 15 3 0 0 1

pmd/FailSafeIter 130 91 90 90 90 90 0
pmd/HasNext 88 87 87 73 47 42 43

Table 2. Number of shadows remaining after each analysis stage,
plus number of shadows moved by shadow motion

mization. Table 1 summarizes our example tracematches and the
properties that they ensure.

Tested configurations. We performed our experiments on four
different versions of the benchmark programs:

raw no tracematch present (raw benchmark program)
no-opt tracematch present, no whole-program optimizations
flowins tracematch present, flow-insensitive analysis [7] only
full tracematch present, flow-insensitive analysis and

new intra-procedural analyses enabled
Our new intra-procedural analyses took several minutes to execute
in the worst case, and usually substantially less.

5.1 Shadow removal

Table 2 presents measurements of the effectiveness of our opti-
mizations. In particular, it reports on the number of shadows that
each of our optimizations removes. The first column containsthe
benchmark/tracematch combination. The second number is the to-
tal number of reachable shadows in the program. The third column
contains the number of shadows remaining after performing the
flow-insensitive optimizations from [7]. This column constitutes
the baseline; the techniques in this paper seek to show improve-
ments over this baseline number.

Although our three transformations could, in principle, syner-
gistically work together to enable optimizations upon iteration, we
found that, in practice, one iteration of each optimizationwas suf-
ficient to ensure maximal results. In terms of Figure 6, we only
needed to run through the optimization loop once; a second it-
eration had no effect. The next three columns of Table 2 show
the number of remaining shadows after the “unnecessary-shadow”,
“cannot-trigger-final” and “shadow motion” optimizations.

After these optimizations, we found that a second iteration
of the flow-insensitive analysis did sometimes remove additional
shadows. The second-to-last column therefore contains thenumber

of shadows remaining after the second application of the flow-
insensitive analysis. This is the number of shadows remaining in
the fully optimized program.

Because shadow motion does not necessarily reduce the number
of shadows in the program, we evaluate its static effectiveness by
presenting the number of shadows moved during shadow motionin
the rightmost column.

Complete success: Static verification.We were happy to find
that our optimizations removed all shadows for theantlr/Reader
and luindex/HasNextElem benchmarks. Such a result has two
benefits: the runtime overhead will obviously be nil, and better yet,
the benchmarks are statically safe with respect to the verification
property encapsulated in the tracematch.

No improvement forbloat/HashMap. TheHashMap tracematch
differs from the other tracematches: it does hit its final state. For
this tracematch, part of the verification occurs in the tracematch
body, which compares objects’ current hash codes with previously-
stored hash codes. We therefore did not expect to improve this case;
instead, this benchmark helped ensure soundness for our analyses.

Other improvements. In the remaining four cases, our optimiza-
tions removed more shadows than the first flow-insensitive pass
did. Forbloat/HasNext, we removed 223 shadows, but 417 shad-
ows remained. We believe that this is becausebloat uses a num-
ber of highly non-local data structures, and iterators are frequently
passed across method boundaries.bloat therefore does not lend
itself very well to the optimizations described in this paper. In
pmd/HasNext, some of the examples cannot be verified with any
intraprocedural analysis; consider the following:

if (! c. isEmpty()) { foo(c . iterator . next ());}

Although this use of an iterator is innocuous, a conservative ini-
tial approximation for theIterator returned byc.iterator()
must assume that this (fresh)Iterator may already have had
next() called once on it.

We found situations which were more worrisome from a main-
tenance perspective. Consider the following code sketch:

void bar () { if (!c. isEmpty()) { foo(c. iterator ()); } }

private void foo(Iterator i) { doIt (i . next ()); }

This code is safe as long asfoo(..) is only called bybar(..).
However,foo(..) does rely on the fact that its inputIterator
still has more elements. Of course, there is no documentation of
this assumption (except in theprivate scope offoo). An unwary
developer could easily callfoo and crash the program.

Remaining shadows. Our optimizations were not able to improve
on the flow-insensitive analysis in thechart/FailSafeIter and
pmd/FailSafeIter benchmarks. We carefully investigated these
cases and found the following idiom: methodm iterates over a col-
lectionc with a fresh iteratori, and methodm′ updates this collec-
tion. We described an optimization for weak updates in Section 3.4.
This optimization was designed to handle such cases. If we can de-
termine that no method butm creates any iterator aliased toi (as
is always the case), then our analysis ofm will be able to omit the
weak update at the call toi.next(). This weak update is currently
preventing us from applying both cannot-trigger-final elimination
and shadow motion tom. Unfortunately, our global points-to anal-
ysis currently does not provide enough precision to determine that
no object in other methods may possibly aliasi, due to a lack of
context information.

Applicability of optimizations. Our results show that different
transformations help differently on different benchmarks. While
shadow motion removed by far the most shadows forbloat,

cannot-trigger-final was very effective forlucene. Unnecessary
shadow elimination did not remove many cases, but was easy toim-
plement, and we hope that generalizations of unnecessary shadow
elimination will be useful.

5.2 Runtime improvements

We executed all of the relevant benchmark/tracematch combina-
tions to measure the runtime overhead. Because some of the bench-
marks require a Java 1.4 Virtual Machine, we executed all of our
benchmarks on Sun’s HotSpot 32-Bit Client VM (build 1.4.212-
b03), with 2GB of maximal heap space on a machine with a AMD
Athlon 64 X2 Dual Core Processor 3800+ running Ubuntu 6.06
with kernel version 2.6.15-28. We used the standard workload size
for the benchmark and enabled the-converge option, which tries
to assure timing within a confidence interval of 3%.

Table 3 shows the results of those measurements. The “raw”
column shows the running time of the raw benchmark without
any tracematches. The “no-opt” column shows the slowdown with
tracematches but without any whole-program program optimiza-
tions. Next, the “flowins” column presents the slowdown withthe
flow-insensitive analysis from [7] has been applied. Finally, the
“full” column contains the slowdown after applying the optimiza-
tions in this paper.

benchmark raw no-opt flowins full
antlr/Reader 4.1s 5.50x 1.07x 1.00x

bloat/HashMap 9.6s 1.88x 1.89x 1.89x
bloat/HasNext 9.6s 15.55x 14.75x 13.78x

chart/FailSafeIter 14.7s 1.09x 1.09x 1.09x
luindex/HasNextElem 17.3s 1.12x 1.10x 1.02x

pmd/FailSafeIter 12.8s 2.12x 1.87x 1.84x
pmd/HasNext 12.8s 1.62x 1.63x 1.08x

Table 3. Runtime overheads after different analysis stages

As we would expect, the two benchmarks where we removed all
shadows suffer no overhead. Forpmd/HasNext, even though we re-
moved just over half of the original shadows, the runtime overhead
shrinks from 63% to just 8%. This is by design: our analysis was
targetted towards typical situations where hot shadows would be
likely to occur.pmd has only two pairs (each containingnext and
hasNext) of such shadows, which account for 90% of the over-
head. Our cannot-trigger-final optimization removes one ofthese
pairs, while shadow motion improves the other pair. For the other
benchmarks, speedups are in line with the proportion of shadows
removed. The final result leaves us with only three benchmarks
(one unoptimizable), out of an initial set of 90 benchmarks,that
carry a runtime overhead of more than ten percent.

Our benchmark set and our current version ofabc are avail-
able athttp://www.aspectbench.org, along with an extended
technical report version of this paper (abc-2007-2). As usual, our
optimizations will be part of the upcoming release ofabc.

6. Related Work
We next discuss a number of areas of related work. We first describe
the relationship between our work and the ASTREE project, which
uses static analysis to ensure that programs never trigger runtime
errors. We compare our work on tracematches to research on the
alternate specification languages encapsulated in typestate-based
approaches, PQL, and Spec#. Finally, we explain the relationship
between the standard loop hoisting compiler optimization and our
loop optimizations for shadows.

6.1 Eliminating runtime errors

The ASTREE static analyzer [6] has successfully verified millions
of lines of automatically genrated C code for the absence of runtime
errors. ASTREE verifies that programs never trigger the runtime
errors defined in the C language specification. Examples of such
errors include out-of-bounds array accesses and arithmetic over-
flow. It combines a number of different static analyses to statically
verify program properties, and in general, ASTREE uses abstract
interpretation over a number of specialized abstract domains.

While, like ASTREE, we use static analyses to detect cases
where error conditions might occur, our goals differ substantially
from those of ASTREE. ASTREE attempts to remove all possible
runtime errors from the code; we instead flag possible matching
tracematches and to evaluate them at runtime. Furthermore,instead
of detecting a set of runtime errors that is fixed in the C language
specification, our specification language is flexible: we enable de-
velopers to choose the properties that are important to them, by
supporting any property that can be specified as a regular expres-
sion over symbols. Finally, ASTREE generally verifies that integers
and floating-point numbers fall within acceptable ranges, while we
verify relationships between events on heap objects.

6.2 Typestate

Typestate properties [14] have been enjoying renewed interest;
recently, Fink et al. presented a static analysis for the runtime
checking of typestate properties [8]. Their approach, likeours, uses
a staged analysis which starts with a flow-insensitive pointer-based
analysis, followed by flow-sensitive checkers. Note that Fink et al.
aim to verify properties fully statically, and emit a warning or error
message if they fail to verify the property, rather than inserting
instrumentation code as we do. Also, Fink et al. do not discuss how
developers might specify properties to be verified. Tracematches
enable developers to specify the properties that are to be verified.

Tracematches are more expressive than typestate. Typestate de-
scribes the state of heap objects one-at-a-time: for instance, heap
objecti is in states at program pointp. Tracematches enable de-
velopers to relate the state of multiple heap objects. Tracematches
are therefore more difficult to optimize than typestate properties:
they change the worldview from one where it is sufficient to focus
on a particular object to one where arbitrary objects can affect the
property of interest. Consider the following two concrete cases.

Our HasNext example binds one free variable,i, for the
Iterator object being considered. After any call toi.hasNext(),
we know that the object bound toi must be in its initial state; in
principle, we could tracki from its creation site throughout its life-
time. Because tracematches bind multiple objects simultaneously,
it is no longer clear where to start tracking the tracematch state for
tracematches with multiple variables.

Next, consider theFailSafeIter example, which ensures
that anIterator does not suffer from changes in its underly-
ing Collection during iteration. To analyze a call toc.add(),
we need to know about all of the iterators that might be activeover
c; in principle, anyIterator in the program might be based on
theCollection objectc. Because typestate properties only con-
strain one object at a time, an analysis for typestate properties can
always derive enough context information just from lookingat the
actions on the object itself. These two issues—where do we start
the analysis? which objects are bound simultaneously?—drove us
to use constraints in our static abstraction. These constraints cannot
specify precisely which objects are related, but they encapsulate the
information that we need for our analyses.

6.3 Program Query Language

The Program Query Language [11] is similar to tracematches in
that it enables developers to specify properties of Java programs,

where each property may bind free variables to runtime heap ob-
jects. PQL supports a richer specification language than trace-
matches, since it is based on stack automata rather than finite
state machines. Runtime overhead is a problem for both PQL and
tracematches, and the authors show that a flow-insensitive,pointer-
based analysis can eliminate much of the overhead incurred by
using PQL. Their approach inspired the flow-insensitive optimiza-
tions in our earlier work [7].

Because PQL uses a flow-insensitive approach to static analy-
sis, we believe that it would suffer comparable overheads tothose
in [7]; no flow-insensitive analysis can remove any more instru-
mentation in the cases that we consider in the present paper.We
have shown that our novel flow-sensitive approach can successfully
handle more cases than older approaches, and we believe thatour
approach would apply to PQL as well. A static abstraction of PQL
stack automaton configurations which satisfies the properties from
Section 3 would therefore enable the use of our optimizations.

7. Conclusions
In this paper we have presented a novel approach to optimize the in-
strumentation required for runtime monitoring. We have proposed
three different intra-procedural optimizations that identify unnec-
essary instrumentation using local flow-sensitive state and alias in-
formation. All three optimizations use a sound static abstraction of
finite state machines for tracematches, the particular runtime mon-
itoring system we developed. We see no reason that our approach
should be restricted to tracematches. In general, our optimizations
could use any sound static abstraction of runtime configurations.

Our results show that our three optimizations can remove most
of the instrumentation in our benchmark set. We greatly improved
the performance of four benchmarks which each had perceiv-
able runtime overheads before our optimizations. For two ofthese
benchmarks, we showed that the given tracematches never apply,
making instrumentation unnecessary: for tracematches which cap-
ture error situations, our analysis proves that the error situations
can never arise, and the program is proven safe with respect to that
error. Another benchmark is not amenable to improvement by any
static instrumentation-elimination technique, as it actually executes
its body. For the remaining two benchmarks, we removed some in-
strumentation but did not reduce the observed runtime overhead.
We believe that an improvement in the global points-to analysis
that we use will enable our optimizations to remove most of the
overhead in these cases.

Implications. We discuss broader implications of our research.
Many static analyses attempt to discover properties of the pro-

gram being analyzed. Our analysis instead focusses on the be-
haviour of the runtime monitor—something external to the pro-
gram. Because our analysis verifies properties that are specified
apart from the program itself, each developer is free to specify the
properties that are most useful to him or her.

Our static analysis is intraprocedural; we were somewhat sur-
prised to find that it worked as well as it did. We believe that an
intraprocedural analysis is powerful enough to handle manyuseful
cases for the following reason. Recall that our use of tracematches
aims to guarantee certain constraints on the program’s behaviour;
we want to ensure that the program never executes certain patholog-
ical sequences of events. When implementing a method, defensive
programming on the developer’s part will often (but not always)
ensure that the program state is appropriate before proceeding with
the method’s actions. Because such defensive programming en-
sures that the program is in a desirable state, the static analysis can
also use the fact that the defensive code has successfully completed
to conclude that the tracematch will never be triggered.

Currently, runtime monitoring is usable during development but

not for deployed programs: the runtime overhead is tolerable but
noticeable. A goal of our research is to make runtime monitoring
feasible in deployed code. This paper contributes to our goal by
significantly reducing the runtime overheads for our benchmark ap-
plications; most of our benchmark programs suffer no performance
loss at all under our benchmark runtime monitors.

Acknowledgements. We owe thanks to Manu Sridharan for help
with using his demand-driven points-to analysis. We also thank the
entireabc group for their continuing support.

References
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,

O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding Trace Matching with Free Variables to AspectJ. InObject-
Oriented Programming, Systems, Languages and Applications, pages
345–364. ACM Press, 2005.

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Optimising AspectJ. InProgramming Language Design and
Implementation (PLDI), pages 117–128. ACM Press, 2005.

[3] P. Avgustinov, J. Tibble, E. Bodden, O. Lhoták, L. Hendren,
O. de Moor, N. Ongkingco, and G. Sittampalam. Efficient trace
monitoring. Technical Report abc-2006-1, abc, March 2006.

[4] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors
feasible. InACM Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, 2007. To appear.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. InOOPSLA06, pages 169–190, 2006.

[6] B. Blanchet, P. Cousot, R. Cousot, J. me Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A Static Analyzer for Large
Safety-Critical Software. InACM PLDI, San Diego, California, June
2003. ACM.

[7] E. Bodden, L. J. Hendren, and O. Lhoták. A staged static program
analysis to improve the performance of runtime monitoring.In
ECOOP07, 2007.

[8] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. InProc. 2006
International Symposium on Software Testing and Analysis, 2006.

[9] R. Halpert, C. Pickett, and C. Verbrugge. Component-based lock
allocation. InPACT, September 2007. To appear.

[10] C. Lapkowski and L. J. Hendren. Extended SSA numbering:
Introducing SSA properties to languages with multi-level pointers.
In Proc. 1998 International Conference on Compiler Construction,
volume 1383 ofSpringer LNCS, pages 128–143, March 1998.

[11] M. Martin, B. Livshits, and M. S. Lam. Finding application errors
using PQL: a program query language. InProc. 20th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 365–383, 2005.

[12] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilationand
optimization model for aspect-oriented programs. InCompiler
Construction, volume 2622 ofSpringer Lecture Notes in Computer
Science, pages 46–60, 2003.

[13] S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[14] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability.IEEE Transactions on
Software Engineering, 12(1):157–171, 1986.

