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Abstract

Runtime monitoring enables developers to specify codeakat
cutes whenever certain sequences of events occur duriggaono
execution. Tracematches, a Java language extension,tpkavei-
opers to specify and execute runtime monitors. Tracematcbe-
sist of regular expressions over events, where each evenspea-
ify free variables that are bound to run-time objects. Mample-
mentations of runtime monitoring are expensive and canecpiss
hibitive slowdowns. In previous work, we proposed optintizas
based on flow-insensitive pointer analyses. While thesiniys-
tions worked well in most cases, more difficult cases witlydar
overheads remained.

In this paper, we propose three novel intraprocedural apéim
tions with the goal of eliminating the overhead from runtimen-
itors. Our optimizations rely on flow-sensitivity and preeilocal
may-alias and must-alias information. The first two optiatians
identify and remove unnecessary instrumentation, whigetliird
one hoists instrumentation out of loop bodies.

We applied our transformations to seven difficult combiradi
of tracematches with programs from the DaCapo benchmat& sui
which defeated our earlier analyses. Our results show tivgheoee
optimizations, in combination, can remove much of the imsgn-
tation in this benchmark set. For two of the seven cases, wesca
move all instrumentation: our analysis successfully shthas the
benchmark programs will always satisfy the verificationgenties
stated in the tracematches. Our results furthermore stitfgagour
analysis can detect hidden method preconditions which totogh
documented and visible to the developers.

After our optimizations, only three cases (out of an origina
90 cases) still have noticeable runtime overheads. Oneesieth
cases cannot possibly be optimized, because the runtim&arson
actually trigger. While our optimizations ought to be alddandle
the remaining two cases, only an imprecision in our undeglyi
global points-to analysis currently prevents us from reimgihe
overhead in those cases as well.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation; D.3.4Pio-
gramming LanguagésProcessors—Optimization

General Terms Experimentation, Languages, Performance, Veri-
fication

Submitted to POPL 2008, a publicly-available technicabrepersion is available as
abc Technical Report abc-2007-03natp: //www.aspectbench.org/.

Keywords Program monitoring, runtime verification, points-to
analysis, static analysis, code motion

1. Introduction

A software system’s sequence of actions over an execut@nd$
source of information about the system’s behaviour on thete
tion and often gives insight into the system’s behaviour tireo
executions. Certain sequences of runtime events indicfecis
in the system. Runtime monitoring can detect such sequesfces
events, enabling developers to handle the sequences withtbat
reports errors or enables the system to recover from faults.

Tracematches [1] are a Java language extension which enable
programmers to specify traces via regular expressionsrobeis
with free variables, along with some code to execute if thedoc-
curs in an execution. A symbol’s free variables bind heapabjat
runtime. A tracematch executes its associated code if xsifffhe
symbols in the current execution trace contains 1) the ght-
bols with 2) a consistent variable bindinge( symbols’ free vari-
ables match up) in 3) an order which matches the regular sxpre
sion. At the implementation level, our compiler and runtisgstem
implement tracematches using runtime monitors based ote-fini
state machines. Compiler-generated instrumentation opdates
the monitor’s internal state each time an event of the ei@ttitace
matches a declared symbol from the tracematch. When theononi
finds a consistent match in the program’s execution tratigders
the code associated with the tracematch.

Unfortunately, naive implementations of runtime moriigr
can be impractical due to the run-time expense: as expantty-
mented code runs more slowly than uninstrumented code.eTher
are therefore two basic approaches for reducing the oveithézto
runtime monitoring: 1) run each instrumentation pointéagtor-
responding to dynamic improvements); or 2) reduce the numibe
instrumentation points (static improvements).

Avgustinov et al. have developed optimized runtime monitor
implementations to make runtime monitoring usable, at latde-
velopment time [3, 4]. For instance, they use a special engod
for variable bindings at runtime. However, even after supti-o
mizations, 5x slowdowns over the uninstrumented code wete n
uncommon, and some cases were even more expensive.

In [7], we explored the second alternative by proposing some
static optimizations for tracematches. These optiminatguccess-
fully eliminated overheads for all but 9 out of our 90 benchitha
tracematch combinations. The key idea was to identify umsén-
tation points which could not trigger a complete match beeau
(1) the program did not contain enough symbols to give a com-
plete match, (2) the variable bindings among the symbolstiiea
program did contain were inconsistent, or (3) the symbolenev
executed in an order which would be matched by the regular ex-



pression. We used a flow-insensitive pointer-based asatgsie-
move tracematches which were unnecessary because theiesati
properties (1) and (2). This analysis proved very effectiegluc-
ing overheads to below 10% in most of our benchmarks. How-
ever, a significant number of pathological cases with muchela
overheads—from 18% to 260%—still remained. In the same work
we also proposed a flow-sensitive whole-program analysistwh
attempted to address property (3), but that analysis didnaoiage
to identify any additional unnecessary instrumentatioimiso

We therefore set out to optimize the important cases thag¢ wer
not susceptible to improvement by either more efficient moni
tor implementations or previously developed static aredy©ur
approach was to identify the weaknesses of the previoug stat
analysis and to design new analyses targetted towardsgaive
remaining—hard—problems. We found that, in many caseshmuc
of the overhead came from a few hot instrumentation pointsglav
we studied in detail. We observed that an intraprocedurallyais

ought be able to conclude that the hot shadows from our bench-

marks would never trigger the tracematches, if the anakysis
flow-sensitive and used both may-alias and must-aliasrimdtion.

In other words, exploiting property (3) would indeed allow 1@
eliminate the hot shadows, given sufficiently strong alidsrima-
tion. We therefore set out to develop a precise and accuntaggio-
cedural analysis that would enable us to reduce the overbead
runtime monitoring.

We found that accurately estimating the possible tracématc
configurations at each instrumentation point enabled a eurob
optimizations based on property (3). We therefore descristatic
analysis which abstractly models the possible runtime gardi
tions of tracematches. Based on our abstraction,

e We can remove an instrumentation point if it will never mgdif
the tracematch configuration at runtime;

e Wwe can remove an instrumentation point if it will never be on a
path that reaches a final configuration; and

e we can either move instrumentation points within a loop body
outside the loop body or execute the instrumentation poinls
once per loop.

We applied our optimizations to the those cases from [7] with
remaining overhead. Our results show that using all thréieniga-
tions in conjunction with the flow-insensitive optimizatirom [7]
reduces the runtime overhead in all but three cases to b&légv th
two cases, we were able to remove all instrumentation. Becaur
tracematches detect error conditions, our analysis faett@nch-
marks therefore guarantees that those error conditionseaer
occur.

Of the three cases with remaining overheads, one cannatse st
ically optimized because its monitor triggers at runtimehil&/our
optimizations ought to be able to handle the remaining tveesa
only an imprecision in our underlying global points-to aysid cur-
rently prevents us from removing the overhead in those cases
well.

Contributions. This paper makes the following contributions:
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¢ a novel intraprocedural flow-sensitive static analysis dtat-
ically estimating possible states of a tracematch automato
based on may-alias and must-alias information;

e three optimizations for eliminating overhead due to trace-
matches, all of which are based on our static analysis; and

e an experimental evaluation of our optimizations on a suite o
sizeable benchmark applications.

cability of our analysis to other runtime monitoring framaks
such as PQL [11]. Furthermore, our results suggest thatrmaly-a
sis can help detect hidden—currently undocumented—mgqired
conditions which ought to be visible to the developer.

The remainder of the paper is organized as follows. Section 2
introduces the syntax and runtime behaviour of tracematche
also points out some situations where unnecessary updathe t
tracematch monitor occur. Section 3 introduces an abgiratiat
mimics the dynamic tracematch evaluation statically. iBact
describes the tracematch optimizations, while Sectionafuates
the results of our optimizations. Finally, Section 6 disassrelated
work and Section 7 concludes.

2. Tracematches: Definition and examples

In this section, we describe tracematches, our mechanisnurfie
time monitoring, and explain some of the key concepts behavd
the compiler creates code that implements tracematchaatane.
We also include two examples which explain some of the réagon
behind our static analysis and optimizations.

In this work, we focus on verification tracematches. Ourdrac
matches typically encode API usage rules; in our examples, t
tracematch bodies report errors, but they could equally egsi-
tain error-recovery code which would enable the programoto ¢
tinue running.

2.1 HasNext example tracematch

Figure 1 presents théasNext verification tracematch. This trace-
match captures the fact that, given a@merator object i, it
is unsafe to calli.next() twice in a row without a call to
i.hasNext () in between. Each tracematch may declare formal
variables that bind to objects at runtime. Here, line 1 deslahe
formal variablei of type Iterator. Tracematches also declare a
set of symbols establishing the alphabet for the tracerisatetular
expression. These symbols define events on the runtime téxecu
trace using AspectJ pointcuts. In the example, lines 2—%adec
symbolshasNext andnext. These symbols capture method calls
to thehasNext () andnext () methods of our iteratoi. Finally,
a tracematch declares a regular expression over this aplaalol
some code to execute when the regular expression matchéixa su
of the execution trace with a consistent variable bindingrelline
7 declares the tracematch’s regular expressi@xt next, and
states the code to executenxt next Occurs in some execution
with bothnext symbols binding the same iterator

Note that the sequenagxt hasNext next iS not matched
by our tracematch: no suffix of this sequence is matchedesyt
next.

tracematch( Iterator i) {
sym hasNext
before: call (x java. util . lterator +.hasNext()) &&arget(i);
sym next
before: call (x java. util . lterator +.next()) &&arget(i);

next next{ System.err. printin ("Trouble with "+i);}

}

Figure 1. Tracematch definition for thBasNext tracematch.

Tracematch implementation. The AspectBench compiler [2]
(abc) implements tracematches by compiling Java source or byte-
code, together with any desired tracematches, into insmnoea
Java programs augmented with runtime monitoring. dtecom-

We believe that our results generalize beyond the immediate piler first creates dracematch automatofrom the tracematch’s

context of optimizing tracematches. Section 6 discusseayipli-

regular expression. It then identifies a set of instrumenigioints,
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Figure 2. Automaton for thelasNext tracematch from Figure 1.

or shadows[12], corresponding to the points in the code where
symbols will potentially execute (and thereby update tleedr
match state). Note that these shadows bind a subset of tee tra
match'’s variables, as specified by the symbol’s definition.

While the tracematch automaton resembles the standard fi-
nite automaton induced by the tracematch’s regular exjpress 1
the tracematch machinery uses the automaton in an unusyal wa
Normally, an automaton is in one state at a time. But recall ¢h =
tracematch binds a set of heap objects to its variables. rHoe-t
match automaton must therefore track possible states &br szt
of bindings of the tracematch variables. If a set of bindireggches
the final state of the automaton, then the runtime systemuéec
the body of the tracematch.

Figure 2 presents the tracematch automaton forHthxNext
tracematch. Solid lines represent state transitions, eMiiished
lines represent special skip loops.

State transitions are fairly standard: Whenever a shaddtv wi
label ¢ executes, the tracematch runtime processes all trarsition

s & t, for each possible pair of statesandt. If state s holds
a variable binding that is consistent with the binding iretlidy
the shadow, the runtime propagates this binding to stafighis
propagation ensures that the tracematch automaton rethehfazal
state whenever the regular expression matches with a temisset
of bindings.

On the other hand, the tracematch runtime machinery must
also discard candidate matches as they become invalid&ted.
instance, in thélasNext tracematch, the runtime must discard any
candidate match binding an iteratorin the event of a call to
i.hasNext (), because the tracematch should only trigger if two
adjacent calls td .next () occur withnocall to i .hasNext () in
between. Hence, at any call iohasNext (), for i, the match has
to start all over again. Skip loops instruct the runtime tscerd
invalidated candidate matches.

4
5
6

2.2 Dynamic tracematch configurations

A configuration for a tracematch automatghis a function map-
ping states of4 to constraints. Figure 3 presents the grammar for
these constraints. Constraints are stored in disjunctivenal form.

A constraint can be a disjunction of disjunct®, or one of the
boolean literalssrue and false. Each disjunct is a conjunction
of bindings B, each of which is either a positive binding= o

or a negative binding # o. The left hand side is a tracematch
variable, as declared in the tracematch. At runtime, thiet tigind
sideo is a heap object. We also maintain the invariant that each dis
junct only contains one positive binding for each tracetmasari-
able. One way to think of a disjunct is as a partial functiconir
tracematch variables to heap objects; when the functioarigah,

the negative bindings give additional information abowt dbjects
that may be bound to a tracematch variable.

Example. We next present an example of dynamic tracematch
configurations. Theabc compiler generates instrumentation that
manipulates such tracematch configurations at runtime abym
configurations are especially useful to understand because
static abstraction of tracematch configurations mimicglgheamic
configuration information.

Figure 3. Grammar for configuration formulas.

We will present the evolution of dynamic configurations foe t
HasNext tracematch from Figure 1. Recall that this tracematch
detects the case where thext method of somé@terator object
is called twice without an intervening call tasNext. Consider
the tracematch’s behaviour on the following method:

void m( lterator it) {
it .hasNext();
it . next ();
it .hasNext();
it .hasNext();

}

This method clearly does not trigger thasNext tracematch.
Furthermore, it is possible to deduce the state of the opj@iated
to by it after each statement in the method.

To explain dynamic configurations, we describe the dynamic
configuration at each program point of methad Note that,
throughout the execution of method, there is only one object
bound to variable t. We denote this object hy.

Initial configuration when enteringm. In our diagrams, we dis-
play constraints for automaton states below the statessiless.
Because the tracematch semantics state that a tracenigtprdr
whenever its regular expression matches a suffix of the cuere
ecution trace, any variable binding can start a new canelichatch
at any time. We represent this fact with the constrainie at the
initial state. No objects are bound in the final state: hittihe fi-
nal state triggers the tracematch body, so objects are inanedd
consumed as soon as they reach the final state. At runtimey whe
enteringm, the constraint ag; is known; we symbolically repre-
sent this known constraint k.

next, hasNext

O

next next
start—( qo q1
C1

true

(=)

false

After line 2 (hasNext shadow). We learn thab is not in statey,
due to the skip loop o, SO we conjoin the negative binding# o
atqg::

next, hasNext
O

next next
start—( ¢qo q1 q2

true c1 N1 # o false

This conjunction models the fact thatcan certainly not be
in stateq;. The runtime engine optimizes the constraintseiif
contained a disjunctl with a positive bindingz o, and we
conjoin ¢; with the negative binding: # o, then we gettalse,
which means that disjunetcan simply be dropped from .

After line 3 (next shadow). We label the resulting constraint at
q1 With c2. Now o is in the intermediate statg, giving the binding
t=oatq:
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public aspect TMFailSafelter {
pointcut collectionupdate ( Collection c):
( call(x java. util . Collection +.adé(..)) || ... ||
call (x java. util . Collection +.remove(..)) ) && target(c);

tracematch(Collection c, Iterator i){
sym createiter after returning (i):
call (x java. util . Collection +. iterator ()) &&arget(c);
sym call_next before:
call (x java. util . lterator +.next ()) &&arget(i);
sym updatesource after : collectionupdate (c);

createiter

}
}

Figure 4. FailSafeIter tracematch: detect updates to a
Collection which is being iterated over.

calLnexts updatesource+ callnext { ... }
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next, hasNext

o
next next
start—( qo q1 q2

true caVi=o0 false

Here, objecb is definitely bound ta at statey; .

After line 4 (hasNext shadow). After line 4 we compute the
constraintcz A i # o, which is equal tac; A i # o. Hence, we
effectively return to the same configuration as after line 2.

next, hasNext
O

next next
start—( ¢qo q1 q2

true ca N1 # o false

After line 5 (hasNext shadow). The shadow at line 5 does not
have any effect on the configuration, @s already known not to
be ing;.

Discussion. Our example has presented the evolution of runtime
configurations through a simple method. We have seen hoabihe
runtime maintains a constraint for each tracematch corgtour,
this constraint tracks states of various runtime objects.

We can deduce several propertiesnodind its interaction with
theHasNext tracematch. First of allp never triggers the final state
of this tracematch on any object: the only objectan affect is
o, and we know whai does too. Secondly, observe that, despite
knowing nothing aboub at method entry, we can deduce precise
information about the state afat each program point: after exe-
cuting thehasNext shadowp can only be in statgy. Finally, note
that the shadow at line 5 is unnecessary because it doesargyeh
the automaton configuration. This type of observation hsgiiad
the optimizations that we present in this paper.

2.3 FailSafelIter example tracematch

We present an additional example illustrating the case eviaer
tracematch binds two variables. Figure 4 presentBdh@Safelter

create, create,
update, update,
next next

O O
create update next
start—( qo @ @ q3

Figure 5. Automaton forFailSafeIter from Figure 4.

public int findVariableHere ( Collection c)
for ( lterator i =c. iterator (); i.hasNext(); )
Object 0 = i.next ();
if (0 ==null)
return 0O;

}

return 1;

}

This method simply creates an iteratoand iterates over it. We
can observe that never hits the final state, because it does not
escape th&indVariableHere method, so that all shadows an
can safely be disabled.

Our static analysis computes possible configurations fer th
tracematch automaton after every program point. We observe
that findVariableHere certainly never updates the collection
bound toc. Furthermore, the iterator bound 4ds only live within
findVariableHere. We can therefore conclude that the combina-
tion of 4 andc can never reach a final state in the automaton. Our
static analysis will be able to remove all shadows in thishoeét

Flow-sensitivity is crucial here: The collection is cenligi up-
dated somewhere in the program. We can only safely remove the
shadows infindVariableHere because the collection is not be-
ing updatedvhile the iterator is in uséWe designed our analysis to
use a flow-sensitive abstraction so that it would be able tiompe
situations like this one.

Note that tracematches bind multiple variables simultaskso
which enables them to express relationships between reufip-
gram objects. This feature complicates our analysis—wéoaced
to track sets of bindings to objects, rather than trackiagestof ob-
jects, one object at a time—but increases the expressiverpoiv
our language feature: in particular, tracematches careszpnore
sophisticated properties than approaches based on tig¢8ia
Section 6.2 describes the relationship between traceestahd
typestate verification in more detail.

3. Analysis abstraction

Our static abstraction of tracematch configurations esabteto
1) reason about the state of tracematch automata throughout
program and 2) perform optimizations based on informatfat t
we collect about possible tracematch configurations. Tédsien
presents our analysis abstraction and the update rulesufoats
straction.

Our static abstraction closely models the runtime traceimat
configuration information, but substitutes local variabémes for
runtime objects. We next present an example of our statilysisa

3.1 Example of static analysis
We return to ouHlasNext example from Section 2.2 and explain

tracematch, which reports cases where the program modifies athe result of our static analysis on that example. Note that t

Collection while anIterator is active on thatCollection.
Figure 5 shows the corresponding automaton.

Consider thefindVariableHere method from one of our
benchmarkspmd, a static analysis tool which detects potentially
problematic patterns in Java source code.

analysis actually operates on the instrumented code, wjihcit
shadows. A simplified version of this instrumented codeofed-:

Lin this text, we refer to the variables used in advice apjitioa asadvice
actuals but theabc compiler calls these variableglvice formals



void m( lterator it) {
uniqueArgLocal7 = it;
adviceformal$782 = uniqueArgLocal7;
theAspect$TMReader .beforeAfter$14 (adviceformal$782)
it .hasNext ();
adviceformal$783 = uniqueArgLocal7;
theAspect$TMReader .beforeAfter$15 (adviceformal$783)
it . next ();
adviceformal$784 = uniqueArgLocal7;
theAspect$TMReader .beforeAfter$14 (adviceformal$784)
it .hasNext ();
adviceformal$785 = uniqueArgLocal7;
theAspect$TMReader .beforeAfter$14 (adviceformal$785)
it .hasNext ();

This intermediate code clearly shows the need for pointer in
formation. Without pointer information, it would be impdsie to
keep track of which shadows apply to which heap objects. &Vhil
simple transformations would be sufficient to pushthroughout
the method in this case, they are not enough in general. Guiepo
analyses will determine that all of the local variables is thethod
must-alias each other.

Initial approximation. We will present the result of the static
analysis when we initially approximate the valuegofwith true.

next, hasNext

’ \
next next
start—( qo q1 q2

true true false

After line 4 (hasNext shadow). Statically, we know that variable
adviceformal$782 is not in statey;, due to the skip loop on,
so we create the negative binding: adviceformal$782 atq;:

next, hasNext

N\

[
next next
start—( qo q1 q2
true i # af$782 false

After line 8 (next shadow). We must add the binding= af$783
atq1, since we know thaaf$783is now in statey; . Becausaf$782
must-aliaseaf$783 we can drop thé £ af$782binding due to the
next skip loop.

next, hasNext
O

next next
start—{ qo q q2
true 1 = af$783 false

After line 12 (hasNext shadow). We generate the negative bind-
ing 7 # af$784. Furthermore, becausd$784 must-aliasesaf$783,
we drop the positive binding= af$783.

next, hasNext
O

starta@ next next
true 1 7 af$784 false

After line 15 (hasNext shadow). We now generate the negative
binding i« # af$785 Becauseaf$785 must-aliasesaf$784, we
consider both values equal and store only one of them. Hérge t
configuration is equal to the previous configuration; we uksc
equality of configurations in more detail below. Our unnseeg
shadow elimination optimization (Section 4.2.1) wouldwefiate
this shadow.

3.2 How our static analysis works

We continue by describing our static analysis in detail. dmpute
our static abstraction of the tracematch state for a method
we perform a fixed-point iteration om, starting with the initial
approximation at the start of the method.

Soundness properties.We have designed our approximation to
be sound in the following sense:

1. if a shadow can trigger a final state at some program pabie, t
our approximation at that point must also flag the fact that th
tracematch may hit the final state;

2. if two tracematch configurations may be different, them ou
approximation identifies that these configurations arerhfift.

Property 1 supports transformations which estimate whasretr
matches cannot possibly reach their final state, enablicly tsans-
formations to eliminate shadows that cannot contributert@gch.
Property 2 supports transformations which recognize andredte
shadows that do not have any effect at runtime.

Contents of bindings. Formally, our grammar for static configu-
rations replaces runtime objects from Figure 3 with localalales;
the definition for bindings therefore becomes

Bi=z=v|z#wv.

Instead of stating that tracematch variablés bound to runtime
objecto (x = o), we state that tracematch variahlés bound to

the contents of local variable (x = v), and we keep in mind that
v could point to a number of different objects.

3.3

At runtime, the tracematch automaton may be in an arbitrany ¢
figuration upon method entry. We model this arbitrary configu
tion by running the static analysis with a set of configuragicone
configuration hasrue at the initial state only andlalse at other
states; other configurations haweue at the initial state and at each
of the non-final states in turn, add1se elsewhere. This initial ap-
proximation enables us to detect all cases where a binding ma
potentially be propagated to a new state. (Note that stawtiith
true at all non-final states would mask some updates.)

Initial approximation

3.4 Update rules

We next describe how our static analysis updates the abistrac
at shadows. Statically, at each shadow, our analysis Ex&ivo
inputs: (1) the symbol name, and (2) a partial function froate-
match variables to local variables. Our analysis updatalbistrac-
tion by (1) taking automaton transitions, and generatingatiee
bindings at skip loops, for every local variable that magslihe
advice actuals (which represent the objects bound at tlaatosh)
and (2) dropping disjuncts when the disjuncts contain local-
ables that are must-aliased with the advice actuals.

Need for aliasing information. Recall that our dynamic configu-
ration example used a single objeces the object whose trace-
match state was being tracked. Unfortunately, as we hawe, see
the abc compiler creates a number of temporary local variables
and uses these temporary variables as advice actuals. @néyaf
these variables point ta Our static analysis must determine which
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local variables must point to and which local variables may not  which local variable we are asking about: are we asking ateut
point too. Our use of aliasing information enables our analysis to current value of or about old¢? Because our static analysis uses

properly handle cases where different objects are aliaseédlzad- local variables in the analysis abstraction, it cannot bserésults
ows occur on some of these aliases. of the must-alias analysis directly. We therefore add aritiatl
Our analysis uses must-alias and not-may-alias pointernird- step to our static analysis rules for tracematches: if d heanrdable
tion. We gather this information using naive intraprocatianal- appears on the right-hand side of a binding and this locahlvie
yses that estimate whether local variableat program poinip; is redefined, we replace the variable and all of its muskafa

must-aliases, or may not alias, local variaBjeat program point with a specialUNKNOWN value at variable bindings. ThisNKNOWN
p2; the key idea is that if the value d@f and/» originate at the value never must-aliases any value. Note that this spad@abives
same expression and flow £p and/ by a sequence of copy state- us exact information within the first iteration of the loophile
ments, then they are must-aliased, and;ifand /> contain heap distinguishing values of local variables between différmrations.
objects known to be disjoint (for instance, they are alledain the Our loop optimizations use information about the first itiemato
heap at differenhew expressions), then they may not alias. Our determine when it is safe to hoist shadows out of loops.

must-alias analysis is modelled on Extended SSA Numbeti@ . . .
Y b Formula transformations. We found that our analysis sometimes

Weak updates. When the runtime encounters a shadewn a generated formulas which are equivalenttae; for instance, we
non-skip tracematch automaton edge, it updates the stateeof  found that our analysis generates
heap objecb bound to a tracematch variable; because the runtime r=ovVz £
knows the precise identity af, it only needs to update the state
of o. However, at static analysis time, our compiler only has an in one particular example. We apply an optimization to fix up
estimate of the set of variables which may poinbt@Because our formulas which are trivially seen to be-ue.
analysis attempts to find out all variable bindings which imger
a final state, it must update the state of all local variatiies may
potentially point too with the effect ofs. (In fact, we omit updates
at shadows only for those local variables which may-nosdtiaal
variables pointing t@).

Our analysis also handles skip loops by creating negativa- bi
ingsx # v if there are no positive disjuncts which must-aligs
reflecting the fact that we know thatis not in states after shadow

Method calls. Because our analysis is intraprocedural, we con-
servatively assume the worst of any calls to methods thakgon
shadows. After any such method call, taet the configuration (ef-
fectively marking the configuration unknown) and propadatet-
edness to all of the method call’s successors. Our optiimizat
refrain from program transformations which would be basad o
tainted information.

s executes. Hit counters. The final state keeps no bindings, but we need to
We next describe a crucial optimization for the weak update know when the final state may be triggered. Recall that whest a s
rule. Consider the following code with tf#ailSafeIter trace- of bindings hits a final state, the runtime executes the imateh
match from Figure 4. Method (. .) iterates over a collectios. body and immediately throws out the bindings, leaving thalfin
Assume that this collection has been populated elsewhere. state empty. Even if the tracematch configuration stays dhees

we need to record the fact that something has changed in the

Collecti . L
m(Collection s){ program configuration .the tracematch body executed) to ensure

Iterator it = s. iterator ();

while( it .hasNext () { Soundness Property 2. _ _
it . next (); To record this information, we keep gt counter as part of
our abstraction. The hit counter is an integer that we iner@m
} each time we potentially hit the final state. Clients of ouatist

analysis can read the hit counter and know when the final staye

We next consider the analysisof. .), referring to the trace- potentially be hit.

match automaton in Figure 5. When processingrdéet shadow
at line 4 with an initial assumption afrue in stateg., we infer that Equality of configurations. Two configurationsc; and c, are
thenext shadow can actually lead to a final state, a false positive. equal if: 1) they have equal hit counters and 2) the conggdian
Consider the set of states at whith can possibly be bound  each state are equal up to must-aliasing. Note that the effective-
at thenext shadow. Thecreate shadow ensures thatand it ness of our optimizations therefore depends on the accofatye
are bound at state;, and also ensures thatand it are not must-aliasing information.
in ¢2. Therefore,g2 could only contain a binding=it if some
collection besidess’ # s was associated witht. While we
as programmers know that there can only always be one single
collection per iterator, our analysis has no way of deteimgithis.
We have therefore implemented the following approximation
The structure of the tracematch automaton ensures thattat st
g2, tracematch variables and i must be both bound. Therefore, while (...) {v =c. iterator (); v.next();}
if no shadows outside methad which share a shadow group with . . L
thenext shadow binat andi (possibly separately), then itis sound ~ Because is redefined within the loop body, we must assume that
to omit the weak update anat thenext shadow: becausecould it is bound to a different object within each iteration, peting

not have reacheg, it cannot advance tg,’s successor state. our analysis from reaching the fixed point. The iteratiorat thid
terminate did so in no more than 10 iterations. We therefooetad

Strong updates. At static analysis time, our compiler handles a our fixed point iteration after a maximum of 20 iterationsb&oon
skip loop with variablev bound by discarding positive bindings in  the safe side.
the configuration which must-alias

Termination. To conservatively approximate control flow, our
static analysis performs a fixed point iteration over theti@dn
flow graph for each shadow-bearing method. Note that Sowsdne
Property 2 is incompatible with reaching the fixed point intaie
situations. Consider:

Sources of inaccuracy. The sources of inaccuracy in our analysis
Loops and redefinitions. When a local variable is redefined are: 1) as with any static analysis, we must estimate theraont
within a loop, it no longer must-aliases its value from poes flowm—we guess that each branch of a conditional might be téen
iterations (old¢). However, our must-alias analysis cannot tell because our analysis is intraprocedural, we conservaggtimate
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Figure 6. Weaving Process.

the initial state at the beginning of each method; and 3) watitly
variables with the set of heap objects that it points to.

Concurrency. As described, our static analysis does not handle
concurrent programs; we verify that our benchmark appboat
are single-threaded before optimizing them. A number @fight-
forward extensions would enable our analysis to handle wenc
rency. First, we can conservatively assume that any shad@m-i
other thread may occur at any point in our methods. We codd th
improve our results by considering only shadows that may-act
ally occur in parallel with our shadows, for instance by deiieing
thread-local objects as in [9].

4. Optimizations

The AspectBench Compiler [2hbc) implements tracematches. It
weaves together Java or AspectJ code with tracematchesrared e
instrumented Java bytecode. Figure 6 presents the entaeinge
process, including our three optimizations. To weave a g
with a tracematch, the compiler matches the symbol defirstinf
the input tracematch against the given program, giving avimga
plan. The weaving plan contains a complete description @firih
strumentation needed to implement the runtime monitorpers
ified in the tracematches. Next, the compiler weaves togetee
program and the tracematch according to the weaving plasubt
sequent analyses are conducted on the woven program.

We optimize our input program as follows. First, we apply two
optimizations from [7], the quick check and the flow-insémsiop-
timization. We then apply the three optimizations propaiseithis
paper: unnecessary shadow elimination, cannot-reachdiimai-
nation and shadow motion. Because each optimization mayirin
ciple, enable other optimizations, we iterate the optitiires, as
illustrated by the back edge in the figure.

4.1 Previous analyses

In previous work [7], we described some techniques for calyi
optimizing tracematches. Because this paper builds on sbmer
previous work, we briefly summarize some key points. The main
idea in all of our work is to use static analyses to move orldésa
shadows which cannot possibly trigger a final state.

4.1.1 Quick check

Thequick checkechnique uses the following insight. A tracematch
automaton can only hit its final state if the program execatss-
qguence of shadows which lead to the final state. If a critidgkdn
the automaton has no corresponding shadows in the progeam: (|
ing the automaton disconnected), then the automaton caer nev
reach its final state. In that case, the quick check may rerathve
other shadows belonging to that tracematch.

For example, consider thiasNext tracematch and a target pro-
gram that does not call theext () method. Since such a program
can never trigger th#asNext tracematch, we remove the all in-
strumentation for this tracematch, including at calladeNext ().

4.1.2 Flow-insensitive analysis

The flow-insensitiveanalysis uses the following main idea: given
a set of shadows which contain transitions reaching the final
state, the automaton can only actually trigger on those astad

if each shadow’s tracematch variables are potentially dotn
the same objects. For thiasNext tracematch, if a program calls
i.hasNext () onsome iteratot, but neveri.next () on the same

i, then it is sound to remove the shadowi ahasNext ().

Shadow groups. A shadow group consists of a collection of shad-
ows that may drive the tracematch into a final state, alony wit
the points-to sets for each shadow’s bound objects. Theoshad
group can only lead to a match at runtime if there potentiaiy
ists at least one actual heap object for each bound varideeall
such shadow groups consistent. Our analysis determinethertee
shadow group is consistent or not by testing whether thesete
tion of the points-to sets for bound variables is empty or Guoir
flow-insensitive analysis disables all shadows that do efairg to
at least one consistent shadow group.

In this work, we only use the following property:

If two shadows might ever collaborate to drive a tracematch
configuration into a final state at runtime, then there exsts
shadow group that contains both of these shadows.

Shadow groups enable us to soundly handle method calls in
our analysis: if methodn transitively calls method, and m
and n have shadows in the same shadow groups, then we must
taint the configuration after calls to, since we are performing an
intraprocedural analysis. If they do not have any commodalva,
thenn has no effect on the configurations we are trackinguin

4.2 Novel optimizations

Our static analysis enables novel program optimizatioas &ne
based on an estimate of the possible tracematch statesi@aiis/ar
program points. In this section, we present three transitions
that use the information collected by our static analysig ®f the
transformations disable shadows that cannot contributeaoh-
ing a final state. Other shadows are not unnecessary—thdyt mig

Whenever any of the optimizations proves that a shadow can contribute to reaching a final state—but only need to exeznte.

be removed, it updates the weaving plan accordingly. Thatitan
terminates when no optimization removes any shadows. We the
re-weave the program according to the updated weaving plan.

Our other transformation therefore manipulates loops soenthat
such shadows are only executed once, either by hoistingoalsad
out of loops, or by guarding them with special Boolean flags.
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4.2.1 Unnecessary Shadow Elimination

Recall that a program executes a shadow every time it enecat
pointcut corresponding to a symbol definition. Generalshadow
triggers a change in the tracematch configuration. Howéveiay
turn out that a particular shadow will never change the trateh
configuration, given a set of known possible input configores to
that shadow. Consider théasNexttracematch (Figure 1) and the
following typical example of printing the contents of a eation:

while(it .hasNext()) {
if (it .hasNext()) {
System.out. printin (*,”);

System.out. println (it . next ());

}

Observe that the inner call ez . hasNext (), on line 2, cannot
possibly affect the tracematch automaton: the calktchasNext ()
on line 1 has already cleared all disjuncts bindirgrom stateg,
so that the call on line 2 is always a no-op. We can therefdadysa
disable the shadow at line 2.

Note that this transformation is only possible because the

shadow at line 2 must execute immediately after the shadow at

line 1, ensuring that the iteratdrt must be in the initial state.
Flow-sensitivity is crucial for this transformation.

Implementation. We have implemented the unnecessary shadow
elimination transformation as follows:

e Collect the static analysis results for methed
e If the analysis did not reach the fixed point, abort.
¢ For each shadow-bearing statement

= If, for every input state reaching s generates an identical
output state, and is not tainted, then disable shadows at

Note that we perform the verification state-by-state: thawie
split the input configuration into a collection of input teawatch
states (one input per non-final automaton state) and vendy t
the output on that state is unchanged. This ensures thatvewr o
estimation of the input configuration does not mask casesevhe
one input state changes the configuration to a differeng shatt
that new state is invisible because it is already in the inpuatigu-
ration.

4.2.2 Cannot-trigger-final Elimination
Our unnecessary shadow elimination handles shadows thadtdo

change the tracematch configuration. Some shadows do chang

the tracematch configuration, but can still never lead tofithe
state. Consider, for instance, the following code withiHaeNext
tracematch:

lterator i = c. iterator ();
while (i.hasNext()) {
Object 0 = i.next ();

}

Clearly, this code can itself never trigger the final stadgard-
less of the input configuration. Furthermoreij ifs a local variable

Our static analysis identifies all shadows that may reacfirthe
state within a particular methad. However, even if the shadows
of m do not trigger the final state while is executing, they could
leave the tracematch automaton in a state where a shadomim so
subsequently-executed method will trigger the final state.

We therefore model future actions as follows. First, using o
flow-insensitive whole-program analysis (as described @t-S
tion 4.1), we identify a set aklevantshadows. A shadow is rele-
vant for methodn if it is an active shadow, does not belongrtg
and shares a shadow group with some shadaw.ihote that only
the shadows which share a shadow group with shadows @an
possibly be affected by ; the definition of shadow groups ensures
that all other shadows operate on a disjoint set of bouncctzbgand
are therefore unaffected by.

To use the information about future actions, we create an ex-
tended control flow graph, augmented with the relevant shado
and feed the extended CFG to our static analysis. We augiment t
control flow graph ofn by replacing each exit statementof the
graph with a jump frons. to asyntheticnode. The synthetic node
is a fresh node that we create and to which we add all reletaats
ows.

’ next() }—>’ Fetum}—>’ next(); D

Figure 7. Extended control flow graph.

Figure 7 presents an example of an extended control flow graph
for a method with one shadowext (i). Assume that the program
contains one other shadowext (j), in some other method (a
foreign shadow). We replace theturn; statement with a jump
to a synthetic node that triggers the foreiggxt (j) shadow.

If the next (i) shadow from the current method anelxt (j)
from the foreign method belong to the same shadow group, then
i and j may be aliasedi.e. may at runtime point to the same
object. In that case, our analysis would have to keeft (i) alive.
Otherwise, the analysis may safely removertbet (i) shadow.

In general, we interpret the results of the static analysithe
extended control-flow graph as follows./H never hits any final
states, we remove all shadows sm. Otherwise, we must make
sure that we do not remove any shadow that can contribute to a
final state. A shadow can contribute to a final state if any ®f it
successors is either tainted (we therefore assume thaithessor
will potentially trigger the final state) or contains a shadihat
leads into a final state.

efmplementation. We use the following algorithm for the cannot-

hit-final transformation on methaoak:

e Augment methodn with a synthetic node which contains all
relevant shadows from other methods.

e Collect the static analysis results for augmented method

o Remove all shadows that do not reach final states or statement
with tainted configurations.

4.2.3 Shadow Motion

and does not escape its defining method, no other shadow in theSome shadows, of course, are not amenable to optimizatidn wi

program can cause the tracematch to hit the final state. @i-
ternately, if the shadows in the rest of the program cannbsesu
quently trigger a final state on the objects in our method @frast,
then we can remove the shadows in our method of interest.nn ge
eral, local variables that do not escape are candidateehooval

by our “cannot-trigger-final” transformation, as are olgethat do
escape but whose potentially-dangerous shadows are cdrifine
one method.

either the unnecessary-shadow or the cannot-triggerdiimalna-

tion. For instance, the optimizations that we have presestefar
would not help for a shadow that may potentially contribate fi-

nal state in some potential execution; our optimizationfasonly
eliminate shadows that provably do nothing. Our next insigithat
many shadows occur in loops; if we can somehow reduce the num-
ber of times that these shadows are executed, then we wétlsge

the program.
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hasNext-shadow
if (it.hasNext())

if (it.hasNext())

hasNext-shado
rest of code

Figure 8. Candidate for Figure 9. After shadow mo-
shadow motion. tion.

‘ it.next() ‘ \ rest of codé

Shadow motion optimizes loops by hoisting shadows out of
loops. If the set of shadows in a loop body collectively ledwe
tracematch state unchanged (except, possibly, for thdifiretthat
these shadows execute), and if these shadows can nevesrtrigg

a final state, then the shadows can be hoisted out of the loop.

Note that shadows can be hoisted whether or not they coteribu
to reaching a final state later on. Consider the followingnepia
code with theélasNext tracematch:

while( it .hasNext()) {
it . next ();

it . next ();
it . next ();

Figure 8 graphically illustrates the situation. No shadawtie
code can be eliminated by the “unnecessary shadow” analysis
Further, line 5 can trigger the final state 0ty so the “can’t-trigger-
final” optimization will not remove any of the shadows either
because line 5 can be reached from all those shadows.

Observe, however, the following two properties of the lobp a
lines 1-3: (1) the loop can never trigger a final state; (2)dtae
upon exit from the loop is known, and in particular, it is eqléent
to the state obtained by calling . hasNext () exactly once.

Note that thenasNext shadow must execute at least once, as it
may change the tracematch state. We mova#adiext shadow to
run after the loop exit, as shown in Figure 9.

Because we know that the loop never triggers the final state, i
is sound to move the shadows around. In particular, any teffec
these shadows will not be visible until after the loop exits.

Hitting the final state: Execute Shadows Oncelf the code in a
loop body may actually trigger the final state, it is unsaf@aest
the shadows out of the loop body: if the final state is actuaitiat
runtime, the tracematch body must execute right away. Heam i
example of such a case. Consider Hai1SafeIter tracematch
from Figure 4, which detects collections that are modifiedlevh
they are iterated on, with the following program:

Iterator
if

it =c. iterator ();

(--)

c.addpew Object ());
while (it .hasNext()) {

it . next ();

Clearly, the shadow on line 5 may trigger the final state of the
FailSafelIter tracematch, so that we cannot remove, or even
move, that shadow: it must stay where it is. A naive compadér
course, will execute the shadow on line 5 every time throungh t
loop. However, our static analysis allows us to concludé¢ shi-
sequent iterations of the loop do not affect the tracemattbnaa-
ton; the shadow at line 6 is dead on subsequent iteratiornis {he
hit counter and configuration stays the same after that stjadio
such cases our transformation does not move shadows oué of th
loop. Instead, it copies shadows to loop exits and then gutue
shadows in the loop so that they execute exactly once aftdotip
header executes.

Our execute-shadows-once transformation is equivaleohio
rolling the loop once, leaving the shadows in the unrollegec@nd

disabling the shadows in the loop itself. We chose to implarttés
transformation using a boolean flag for practical reasons.

Implementation. We have implemented our “shadow motion”
transformation as follows.

e Find all (reducible [13]) loops in methaab.
e For each loog (inner loops first):
= Apply our static analysis to only the statement<.of

During this analysis, store (for each statement) the output
configurations after the first iteration of the analysis.

If, at any loop exisk, the outgoing configurations after the
first iteration differ from the outgoing configurations aeth
fixed point, continue with the next loop.

Having reached this point, we know that the method’s static
configurations reach their fixed points in one iteration: no
subsequent execution of the loop body has any effect on the
tracematch configuration. Because of our second soundness
property, this also holds for all dynamic configurations.
Executing the shadows in subsequent iterations is therefor
unnecessary. We only need to execute the set of shadows in
the loop once.

If some statement ihpotentially triggers a final state, guard
the shadows i with conditionals so that they only execute
once.

= Else, disable all shadows ihand for each loop exi:

— Determine the set of shadowswhich lie on some path
from the loop header te. (Note that the choice of path
does not matter: if it did matter, we would not have
a stable configuration at after one iteration. Given a
stable configuration, we do not need to worry about
infinite paths through inner loops, nor do we have to
worry about possible branches within the loop.)

Determine the unique post-loop successof e. Add a
nop statement, befores, and make: the new successor
of e. Annotaten with all of the shadows, in order; they
will be woven into the code at the next reweaving.

5. Results

To validate the effectiveness of our optimizations, we egojpthem

to several combinations of tracematches and benchmanksvieo-
sion 2006-10-MR2 of the DaCapo benchmark suite [5]. We have
previously identified [7] a numb&of benchmark/tracematch com-
binations as being resistant to our flow-insensitive anslgsen af-

ter the flow-insensitive analyses, these benchmark/trat@mtom-
binations still had relatively large overheads.

The tracematches that we use all validate safety properties
We assume that our benchmark applications are mature system
which will not trigger our tracematches. We should therefein
principle—be able to remove all instrumentation from oundie
marks.

Our tracematches specify usage constraints for frequesty
Java Runtime Environment data structures, including ctitas,
iterators, readers and writers. These tracematches teimditce
reasonably hot instrumentation points and can therefa isub-
stantial instrumentation overheads at runtime withouticstapti-

2We reported nine pathological combinations in [7]. Howeyergustinov
et al. have recently further optimized the implementatidthe generated
runtime monitor [4] so that only seven of those combinatistil showed
overhead at submission time. We hence conducted expesnoenthose
seven cases.



pattern name
FailSafelter

description
do not update a collection
while iterating over it
do not change an object’s hash code
while it is in a hash map
always callhasNextElement before
calling nextElement On anEnumeration
always callhasNext before
calling next on anIterator
don’t use aReader after closing it
or its underlyingInputStream

HashMap
HasNextElem
HasNext

Reader

Table 1. Tracematches applied to our benchmarks
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antlr/Reader| 43 15 15 0 0 0 0
bloat’HashMap| 29 28 28 28 28 28 0
bloat/HasNext| 640 | 640 | 640 | 630 | 438 | 417 || 359
chart/FailSafelter| 110 | 110 | 107 | 107 | 107 | 107 0
luindex/HasNextElem| 16 16 15 3 0 0 1
pmd/FailSafelter| 130 | 91 90 90 90 90 0
pmd/HasNext| 88 87 87 73 47 42 43

Table 2. Number of shadows remaining after each analysis stage,
plus number of shadows moved by shadow motion

mization. Table 1 summarizes our example tracematcheshend t
properties that they ensure.

Tested configurations. We performed our experiments on four
different versions of the benchmark programs:

raw no tracematch present (raw benchmark program)
no-opt tracematch present, no whole-program optimizations
flowins tracematch present, flow-insensitive analysis [7] only
full tracematch present, flow-insensitive analysis and

new intra-procedural analyses enabled
Our new intra-procedural analyses took several minutesdoute
in the worst case, and usually substantially less.

5.1 Shadow removal

Table 2 presents measurements of the effectiveness of auir op
mizations. In particular, it reports on the number of shasltmat
each of our optimizations removes. The first column contdies
benchmark/tracematch combination. The second numbee i®th
tal number of reachable shadows in the program. The thitchzol
contains the number of shadows remaining after performiireg t
flow-insensitive optimizations from [7]. This column coistes
the baseline; the techniques in this paper seek to show epro
ments over this baseline number.

Although our three transformations could, in principlensy
gistically work together to enable optimizations uponatean, we
found that, in practice, one iteration of each optimizaticas suf-
ficient to ensure maximal results. In terms of Figure 6, weyonl
needed to run through the optimization loop once; a second it
eration had no effect. The next three columns of Table 2 show
the number of remaining shadows after the “unnecessagesiia
“cannot-trigger-final” and “shadow motion” optimizatians

After these optimizations, we found that a second iteration
of the flow-insensitive analysis did sometimes remove &ttt
shadows. The second-to-last column therefore containsutmber

of shadows remaining after the second application of the-flow
insensitive analysis. This is the number of shadows remgim
the fully optimized program.

Because shadow motion does not necessarily reduce the numbe
of shadows in the program, we evaluate its static effecéisserby
presenting the number of shadows moved during shadow miation
the rightmost column.

Complete success: Static verificationWe were happy to find
that our optimizations removed all shadows for éhe1r/Reader
and luindex/HasNextElem benchmarks. Such a result has two
benefits: the runtime overhead will obviously be nil, anddreget,
the benchmarks are statically safe with respect to the watifin
property encapsulated in the tracematch.

No improvement fobloat/HashMap. TheHashMap tracematch
differs from the other tracematches: it does hit its finatest&or
this tracematch, part of the verification occurs in the tnaaeh
body, which compares objects’ current hash codes with pusly-
stored hash codes. We therefore did not expect to improseaisi;
instead, this benchmark helped ensure soundness for dysasa

Other improvements. In the remaining four cases, our optimiza-
tions removed more shadows than the first flow-insensitivas pa
did. Forbloat/HasNext, we removed 223 shadows, but 417 shad-
ows remained. We believe that this is becabseat uses a hum-
ber of highly non-local data structures, and iterators eggifently
passed across method boundarigisat therefore does not lend
itself very well to the optimizations described in this pape
pmd/HasNext, some of the examples cannot be verified with any
intraprocedural analysis; consider the following:

if (Ic.isEmpty()) { foo(c. iterator .next ()); }

Although this use of an iterator is innocuous, a consergatii+
tial approximation for thelterator returned byc.iterator()
must assume that this (fresiterator may already have had
next () called once onit.

We found situations which were more worrisome from a main-
tenance perspective. Consider the following code sketch:

void bar () { if (!c.isEmpty()) { foo(c. iterator ()); } }

private void foo( Iterator i) { dolt(i.next ()); }

This code is safe as long &so (. .) isonly called bybar (. .).
However,foo(..) does rely on the fact that its inplterator
still has more elements. Of course, there is no documentatio
this assumption (except in theivate scope offoo). An unwary
developer could easily catbo and crash the program.

Remaining shadows. Our optimizations were not able to improve
on the flow-insensitive analysis in thart/FailSafeIter and
pmd/FailSafeIter benchmarks. We carefully investigated these
cases and found the following idiom: methediterates over a col-
lectionc with a fresh iterato¥, and methodn’ updates this collec-
tion. We described an optimization for weak updates in $a@i4.
This optimization was designed to handle such cases. If welea
termine that no method but creates any iterator aliased tgas

is always the case), then our analysisofvill be able to omit the
weak update at the call to.next (). This weak update is currently
preventing us from applying both cannot-trigger-final eéfiation
and shadow motion to:. Unfortunately, our global points-to anal-
ysis currently does not provide enough precision to detegrttiat
no object in other methods may possibly aliaslue to a lack of
context information.

Applicability of optimizations. Our results show that different
transformations help differently on different benchmarighile
shadow motion removed by far the most shadows Hdoat,



cannot-trigger-final was very effective famucene. Unnecessary
shadow elimination did not remove many cases, but was easy to
plement, and we hope that generalizations of unnecessadosh

elimination will be useful.

5.2 Runtime improvements

We executed all of the relevant benchmark/tracematch amamnbi
tions to measure the runtime overhead. Because some ofribb-be
marks require a Java 1.4 Virtual Machine, we executed alluof o
benchmarks on Sun’s HotSpot 32-Bit Client VM (build 1.4.2-
b03), with 2GB of maximal heap space on a machine with a AMD
Athlon 64 X2 Dual Core Processor 3800+ running Ubuntu 6.06
with kernel version 2.6.15-28. We used the standard wodk$ize

for the benchmark and enabled theonverge option, which tries

to assure timing within a confidence interval of 3%.

Table 3 shows the results of those measurements. The “raw”
column shows the running time of the raw benchmark without
any tracematches. The “no-opt” column shows the slowdovih wi
tracematches but without any whole-program program op#mi
tions. Next, the “flowins” column presents the slowdown witie
flow-insensitive analysis from [7] has been applied. Finaihe
“full” column contains the slowdown after applying the opikza-
tions in this paper.

| benchmark] raw | no-opt| flowins | full |
antlr/Reader| 4.1s| 5.50x 1.07x | 1.00x
bloat/HashMap| 9.6s| 1.88x 1.89x | 1.89x
bloat/HasNext| 9.6s| 15.55x | 14.75x | 13.78x
chart/FailSafelter] 14.7s| 1.09x 1.09x | 1.09x
luindex/HasNextElem| 17.3s| 1.12x 1.10x | 1.02x
pmd/FailSafelter| 12.8s| 2.12x 1.87x | 1.84x
pmd/HasNext| 12.8s| 1.62x 1.63x | 1.08x

Table 3. Runtime overheads after different analysis stages

As we would expect, the two benchmarks where we removed all
shadows suffer no overhead. fpaid/HasNext, even though we re-
moved just over half of the original shadows, the runtimerogad
shrinks from 63% to just 8%. This is by design: our analysis wa
targetted towards typical situations where hot shadowsldvba
likely to occur.pmd has only two pairs (each containingxt and
hasNext) of such shadows, which account for 90% of the over-
head. Our cannot-trigger-final optimization removes on¢hete
pairs, while shadow motion improves the other pair. For tteio
benchmarks, speedups are in line with the proportion of ahad
removed. The final result leaves us with only three benchsnark
(one unoptimizable), out of an initial set of 90 benchmatkst
carry a runtime overhead of more than ten percent.

Our benchmark set and our current versionabt are avail-
able athttp://www.aspectbench.org, along with an extended
technical report version of this papeibc-2007-2). As usual, our
optimizations will be part of the upcoming releaseabt.

6. Related Work

We next discuss a number of areas of related work. We firstitbesc
the relationship between our work and the ASTREE projeciclvh
uses static analysis to ensure that programs never triggénte
errors. We compare our work on tracematches to researcheon th
alternate specification languages encapsulated in typdsésed
approaches, PQL, and Spec#. Finally, we explain the relstip
between the standard loop hoisting compiler optimizatiath aur
loop optimizations for shadows.

6.1 Eliminating runtime errors

The ASTREE static analyzer [6] has successfully verifiedioms
of lines of automatically genrated C code for the absencerdfme
errors. ASTREE verifies that programs never trigger theimmt
errors defined in the C language specification. Examples af su
errors include out-of-bounds array accesses and aritbroeér-
flow. It combines a number of different static analyses tticsifly
verify program properties, and in general, ASTREE usesraftst
interpretation over a number of specialized abstract dosai

While, like ASTREE, we use static analyses to detect cases
where error conditions might occur, our goals differ subtsadly
from those of ASTREE. ASTREE attempts to remove all possible
runtime errors from the code; we instead flag possible madchi
tracematches and to evaluate them at runtime. Furtherinstead
of detecting a set of runtime errors that is fixed in the C laugu
specification, our specification language is flexible: webénae-
velopers to choose the properties that are important to ,them
supporting any property that can be specified as a regulaeexp
sion over symbols. Finally, ASTREE generally verifies tingers
and floating-point numbers fall within acceptable rangdsjewe
verify relationships between events on heap objects.

6.2 Typestate

Typestate properties [14] have been enjoying renewedesiter
recently, Fink et al. presented a static analysis for theimen
checking of typestate properties [8]. Their approach, dilkes, uses
a staged analysis which starts with a flow-insensitive goibased
analysis, followed by flow-sensitive checkers. Note thakFet al.
aim to verify properties fully statically, and emit a wargiar error
message if they fail to verify the property, rather than itisg
instrumentation code as we do. Also, Fink et al. do not dstasv
developers might specify properties to be verified. Tradehes
enable developers to specify the properties that are totifeede

Tracematches are more expressive than typestate. Typdstat
scribes the state of heap objects one-at-a-time: for instdmeap
objecti is in states at program poinp. Tracematches enable de-
velopers to relate the state of multiple heap objects. Tnatehes
are therefore more difficult to optimize than typestate prtps:
they change the worldview from one where it is sufficient tou®
on a particular object to one where arbitrary objects caecathe
property of interest. Consider the following two concredses.

Our HasNext example binds one free variable, for the
Iterator object being considered. After any callitchasNext (),
we know that the object bound tomust be in its initial state; in
principle, we could track from its creation site throughout its life-
time. Because tracematches bind multiple objects simedtasly,
it is no longer clear where to start tracking the tracematategor
tracematches with multiple variables.

Next, consider theFailSafeIter example, which ensures
that anIterator does not suffer from changes in its underly-
ing Collection during iteration. To analyze a call ©.add (),
we need to know about all of the iterators that might be acixer
c; in principle, anyIterator in the program might be based on
the Collection Objectc. Because typestate properties only con-
strain one object at a time, an analysis for typestate ptiegeran
always derive enough context information just from lookatghe
actions on the object itself. These two issues—where do ar¢ st
the analysis? which objects are bound simultaneously?vedns
to use constraints in our static abstraction. These canttreannot
specify precisely which objects are related, but they esidape the
information that we need for our analyses.

6.3 Program Query Language

The Program Query Language [11] is similar to tracematches i
that it enables developers to specify properties of Javgrams,



where each property may bind free variables to runtime héap o not for deployed programs: the runtime overhead is tolerabi
jects. PQL supports a richer specification language thacetra noticeable. A goal of our research is to make runtime moimi¢or
matches, since it is based on stack automata rather thaa finit feasible in deployed code. This paper contributes to out gpa
state machines. Runtime overhead is a problem for both P@L an significantly reducing the runtime overheads for our berathmap-
tracematches, and the authors show that a flow-insengtater- plications; most of our benchmark programs suffer no peréorce
based analysis can eliminate much of the overhead incuryed b loss at all under our benchmark runtime monitors.
using PQL. Their approach inspired the flow-insensitiverojaa-
tions in our earlier work [7].

Because PQL uses a flow-insensitive approach to static-analy
sis, we believe that it would suffer comparable overheadhdse
in [7]; no flow-insensitive analysis can remove any morerinst
mentation in the cases that we consider in the present paer. References
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