
Int J Parallel Prog (2012) 40:514–531
DOI 10.1007/s10766-012-0197-6

Automatic Parallelization of Array-oriented Programs
for a Multi-core Machine

Wai-Mee Ching · Da Zheng

Received: 23 December 2010 / Accepted: 5 May 2012 / Published online: 24 May 2012
© Springer Science+Business Media, LLC 2012

Abstract We present the work on automatic parallelization of array-oriented
programs for multi-core machines. Source programs written in standard APL are
translated by a parallelizing APL-to-C compiler into parallelized C code, i.e. C mixed
with OpenMP directives. We describe techniques such as virtual operations and data-
partitioning used to effectively exploit parallelism structured around array-primitives.
We present runtime performance data, showing the speedup of the resulting parallel-
ized code, using different numbers of threads and different problem sizes, on a 4-core
machine, for several examples.

1 Introduction

Hardware technology for building general-purpose parallel computers has advanced
greatly during the past decade, resulting in parallel machines ranging from the
supercomputers on the Top500 list (http://www.top500.org) having as many as 224,162
cores to multi-core desktop computers readily available at offices and schools. On the
software side, the technology needed to effectively harness the computational power
offered by the currently available parallel hardware remains a grand challenge. The
research and development on how to program parallel machines is in a state of flux,
as summarized in a recent article from UC Berkeley’s ParLab [2]. One approach to
programming parallel machines is to write parallel code using thread-programming,

W.-M. Ching (B)
Department of Computer Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
e-mail: waimee_ching@yahoo.com

D. Zheng
Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21210, USA
e-mail: zhengda1936@gmail.com

123

http://www.top500.org

Int J Parallel Prog (2012) 40:514–531 515

open-source API OpenMP or MPI, but this is cumbersome and error-prone. Another
approach consists of inventing new parallel programming languages for program-
ming the parallel machines, but then one faces the challenge of adoption of these
new programming languages by the scientific and programming communities. Our
approach is part of a pragmatic yet ambitious effort to develop compiler technology of
automatic parallelization (autopar for short)—to turn programs written in an existing
language into working programs for parallel machines. Traditionally, autopar refers
only to sequential programs that are analyzed to uncover parallelism not explicitly
stated by the programmer, i.e. dusty-deck FORTRAN programs, as illustrated by the
Polaris work [3]. We instead used “dusty-deck” APL programs where parallelism is
evident but need not be explicitly stated by the programmer, and autopar here refers
to transforming array-style programs into low-level C programs to be compiled by a C
compiler with autopar capability [18]. While APL has inherently parallel semantics,
how to actually realize this parallelism on a parallel machine is not trivial since one has
to avoid inefficiencies of an interpreter as well as inefficiencies of naive mappings of
array operations. The work on autopar which we present emphasizes how to generate
efficient parallel code for combinations of array primitives on a multi-core machine.
Thus, by carrying out detailed experimentation in implementing and measuring par-
allelism for a set of sample APL programs on an actual machine, we show that by
utilizing very high-level array primitives in the source language one can effectively
exploit parallelism of multi-core machines without going through the traditional route
of extensive loop dependency analysis.

There are earlier papers on autopar of APL code by an APL compiler, on an exper-
imental IBM 64-way shared memory machine RP3 [8], and on a distributed memory
IBM SP-1 machine [11] exploiting data-parallelism inherent in APL primitives. The
main focus in [8] is simply to build an experimental run-time environment based on
the Mach operating system of RP3 for parallel execution of APL primitives. In our
case, the runtime environment is provided by the OpenMP on an Intel-architecture
4-core machine running under Linux, and we focus on how to generate parallel C
code with increased locality of reference and reduced data movement over code seg-
ments, to achieve good parallel result for modern multi-core machines. Most other
work on auto-parallelism typically involves some additional modification to the source
code by a user, such as data-layout declaration in HPF [13] or compiler directives for
data partitioning. No such annotations are required in our case. However, for array-
based autopar to be effective the source code needs to be array-oriented, i.e. it must
use array primitives, instead of sequential loops, whenever possible. That is it must
exhibit the dataflow style of programming—organizing tasks as chains of monadic or
dyadic functions and operators acting on arrays—a style long practiced by APL users
(monadic and dyadic refer to a function taking one or two arguments). This is because
the parallelism we implement is inferred from array primitives, in contrast to the scalar
language based approach where parallelism is reconstructed from loops. In theory, we
can use FORTRAN90 to do this autopar experimentation, but in practice there are
difficulties, which we will discuss later in Sect. 5. Another reason we chose APL is its
succinctness of syntax and symbols, yielding a compiler which is easily modifiable
for autopar experiments.

123

516 Int J Parallel Prog (2012) 40:514–531

We started with a base APL-to-C compiler [10], COMPC, i.e. a translator generating
C code from APL programs. We then experimented with parallelizing the generated
C code under Linux, by inserting light-weight synchronization directives provided
by OpenMP [20]. Next, we wrote a parallelizing module, PARAC, and integrated it
into the base compiler, to reorganize the generated C and insert additional parallel
directives required for low-level synchronization. A good portion of the work in the
PARAC module was inspired by examining the performance of programming patterns
found in the sample programs we used, and which we concluded can benefit APL
programs in general. The main techniques incorporated into PARAC to enhance par-
allel performance are virtual operations and data-partitioning; the first attempts to
reduce the number of data operations when implementing some combinations of array
primitives in certain contexts, while the second aims to increase locality of reference.
The parallelizing module and the use of OpenMP are based on the assumption that the
generated C code will run on a shared-memory machine, i.e. a current day multi-core
machine.

We measured the run time and speedups of several sample programs. These sample
programs are not large, but neither are they just simple linear algebra routines. They
are not massively parallel applications. Other than example 1, they come from real
scientific and financial applications. The speedup achieved is not linear yet reasonable,
and considering that the speedup comes at no cost to the programmer or the user, this
benefit of utilizing the power of a multi-core machine is quite attractive. The methods
we developed here are not specific to APL. Rather, they point to a promising approach
to auto-parallelism—to take advantage of the increased level of parallelism in the
primary data structures used in a program, whether array-oriented or object-oriented,
coupled with a supporting parallel implementation.

In Sect. 2, we summarize the basic features of the base APL compiler and the
overall framework for producing parallelized C code by judiciously inserting Open-
MP directives to implement fine-grain parallelism. In Sect. 3, we describe techniques
we developed to improve parallel performance of the generated C code. In Sect. 4,
we present the measurement of run times and speedups of several examples, some
specific compiler work related to each example and the impact of the cache on the
speedup. In Sect. 5, we discuss the effectiveness of our approach, and future exten-
sion, FORTRAN90’s limitation, and suggest a programming style that is suitable for
autopar of C++ programs. Finally, after the conclusion, we include in the appendix an
explanation of the APL primitives used in the sample APL programs.

2 The Base Compiler and the Parallelizing Back End

APL was invented by Ken Iverson at Harvard for teaching applied mathematics and
further developed at IBM T. J. Watson Research Center. For his work on APL Ken
Iverson received the Turing Award in 1979 [14]. A line of APL code executes from
right to left, all functions have equal precedence, and operators apply to primitive
functions. A symbol can represent either a monadic or a dyadic primitive function,
depending on whether it takes one or two arguments. Since an APL execution environ-
ment is usually implemented by an interpreter, APL programs execute much slower

123

Int J Parallel Prog (2012) 40:514–531 517

than corresponding C programs. For this reason, APL was not considered suitable
for computationally intensive jobs and largely ignored by the parallel programming
community.

In the 1980s, APL was extended to include nested arrays, but we restrict ourselves
to classical APL (i.e. flat arrays) as described in the ISO Standard [19]. Most of the
classical APL can be compiled with resulting efficiency comparable to that of FOR-
TRAN programs (see performance comparisons in [7]). The base APL compiler [10],
COMPC, translates APL into C. COMPC is written in 14K lines of APL with a small
C runtime library linked in with the C code produced by the COMPC translator, to
create the executables (see the figure below). Without the inefficiency of the inter-
preter, APL becomes a quite attractive research vehicle for studying the effectiveness
of various proposed compilation techniques aimed at exploiting parallelism implicit
in array-oriented language primitives. Unlike new languages explicitly designed for
parallelism, APL has been widely used for many years with a large body of array-
oriented programs on a wide range of applications (such as chip design, logistics,
financial applications, etc.).

APL program

APL compiler

Front End

Tables, parse trees,

Flow graphs

OpenMP supported

C Compiler

Parallelizing

Back End

Partitioned C code

with OpenMP directives

Parallel code

Apl3lib

Global dataflow analysis

Type-shape inference

COMPC accepts an unmodified (classical) APL program and produces a corre-
sponding ANSI C program. The main restriction on the input APL programs, with
respect to ISO standard in [19], is the exclusion of the execute function φ. No variable
declaration is required, but when invoking the compiler the user needs to specify the
type and rank of input parameter(s) to the top-level function. In general, compiled
APL programs execute about 10 times faster than the same programs running under
the interpreter on an IBM workstation (see [10]).

123

518 Int J Parallel Prog (2012) 40:514–531

The basic features of the COMPC are:

1. The parser is not yacc like, instead it uses a left-to-right two symbols look-ahead
algorithm [6].

2. The front end implements the full machinery of the Allen–Cocke interval-based
dataflow analysis [1] not for optimization, but for deducing type/shapes of all
variables from the input parameter(s).

3. The optimization strategy is primitive (function)-based [9]. The main function in
the back end, TREELIST, walks through a parse tree from the lower right node
up to the root in a semi-recursive fashion and for each internal node calls var-
ious PF-functions. PF-function stands for primitive function, i.e. for each APL
primitive/defined function encountered COMPC calls the corresponding code-
generating PF-function.

To reduce unnecessary temporary variables COMPC uses a simple algorithm to
find all streams, i.e. a group of consecutive scalar functions (arithmetic, logical, and
relational function) nodes, where the output of one feeds the input of another, in a
parse tree of a line. The back end then generates one fused loop, corresponding to the
classical loop-fusion for FORTRAN programs. For example, A← B +C ← D×E

is a stream, where the product D×E is assigned to C and added to B to produce A [6].
Primitive functions in APL are called scalar when they operate on same-shaped argu-
ments by applying the function to each pair of corresponding elements. All arithmetic
functions like +, −, ×, etc., are scalar, since they can be applied to two same-shaped
arrays A and B, as in A + B, A × B, etc., by applying the + or × function to the
corresponding pairs of individual (scalar) elements of the A and B arrays, regardless
of the dimensions of the arrays, as long as the two arrays have the same number of
dimensions, and the same number of elements in each dimension (same rank and
shape in array parlance). Similarly all logical (and, or, nor, etc.) and relational (<, >,
etc.) functions are scalar functions. All arithmetic dyadic scalar functions also have
a monadic scalar function version—for example there is the dyadic A − B and the
monadic−A. For the monadic scalar functions the arithmetic function is also applied
to each element of the argument array, independently of all other elements. It is a
sequence of such consecutive scalar functions which we call a stream, and which our
compiler optimizes.

Non-scalar functions in APL are called mixed functions. Examples of mixed func-
tions include membership, index of, rotate, etc. For mixed functions each argument’s
shape and rank can (or must) differ from the shape and rank of the other argument, and
the function is not applied element by element to the two array arguments. For example
membership (A ∈ B) returns a boolean array of the same rank and shape as A, with
a 1 for every element of A which exists in B, and a 0 for every element in A which
does not exist in B. It is the consideration of every element of B, when producing a
result for a single element of A, which makes membership a mixed function.

We set as our objective the automatic restructuring of the translated C code, through
a parallelizing compiler back end, with added OpenMP directives, to make the result-
ing program execute efficiently in parallel, without the need for the end user to modify
the source APL program. OpenMP is a very popular API for writing parallel applica-
tions in C/C++ and FORTRAN, for shared-memory parallel machines. As OpenMP

123

Int J Parallel Prog (2012) 40:514–531 519

is supported by all major hardware and software vendors, applications using OpenMP
are quite portable across a wide variety of hardware, making OpenMP an attractive
platform for our research. In particular, gcc supports OpenMP [18]. Using OpenMP
has a clear advantage over hand-threaded approaches to parallelism such as using
Pthreads because using OpenMP eliminates the need to create and manage individual
threads manually. Instead, one only needs to insert directives into the sequential code
to tell the OpenMP compiler where the parallel portions reside inside the sequential
code, to execute in parallel by multi-threads on a multiprocessor. However, to achieve
good performance and scalability, one needs to identify the right portions of the code
for parallelization, inserts appropriate directives into the code, partition the data in a
proper manner, and sometimes one even needs to rewrite some portions of the sequen-
tial code. So to manually parallelize an existing C/C++ code, using OpenMP, is no
simple matter and requires a thorough understanding of the sequential code. In short,
while OpenMP provides convenience and portability for parallel programming, it does
not provide automatic parallelization.

Most work on automatic parallelization, if not based on a new parallel language,
assumes the source code comes from a sequential language such as C/C++ or FOR-
TRAN, and uses compilation techniques to free the developers from having to:

• find loops that are good work-sharing candidates,
• perform the dependence analysis to verify the correctness of parallel execution,
• partition the data for threaded code generation as is needed in programming with

OpenMP directives.

The source-to-source transformation by the Cetus compiler infrastructure [4] gives a
good example of the extensive analysis involved.

In contrast, our approach assumes that the original source code is written in an
array language which uses array primitives, not loops, to perform calculations, and
manipulates arrays, whenever possible. Hence, even though the source to be parallel-
ized with OpenMP is C, we know that it came from APL and we know where and how
to effectively put OpenMP directives without extensive loop analysis. For example,
we know which loops perform reduction as our base compiler already takes note of
this in its front-end analysis.

Our modification to the base compiler goes beyond inserting OpenMP directives
intelligently—more importantly we need to restructure the translated C code to achieve
good parallel performance. This task was neither straightforward nor excessively com-
plicated. Most modifications were to the code generating back end of the base compiler.
The base compiler COMPC is an APL workspace consisting of 307 functions. The
module for parallelization added to the base compiler is a smaller APL workspace
named PARAC consisting of 37 functions (and 2,461 lines of APL code). When the
PARAC workspace is copied, after loading COMPC, the resulting workspace has 324
functions and 14,560 lines of code (many functions in PARAC replaced old functions
in COMPC). Hence the module results in 17 new functions and 610 lines of new code,
and it does add a bit to the compilation time (for the PRIME example in Sect. 4,
the uniprocessor C version is generated in 0.016 vs. 0.032 s for the parallel version).
The PF-functions modified by PARAC include PFSCALAR, PFINNERP, PFOUT-
ERP, PFROTATE, PFDROP, PFCATENA, which respectively generate code for scalar

123

520 Int J Parallel Prog (2012) 40:514–531

functions, inner product, outer product, rotate, drop and catenate. For example, the fol-
lowing is a segment of generated C code for outer-product ◦.× in the PRIME example:

/* PFOUTERP generates the following code */
lo1 = (int *) v25.valp; ro1 = (int *) v23.valp;
cad[2]= v25.reall; cad[3]= v23.reall;
r0 = v25.reall*v23.reall; cad[1]=r0;
#pragma omp parallel for default(shared) private(v1, v2)
for (v1=0; v1<v25.reall; v1++)
for (v2=0; v2<v23.reall; v2++)
v5[v1*v23.reall+v2] = lo1[v1]*ro1[v2];

As we described earlier, a stream is a group of consecutive scalar function nodes
where the output of one scalar function feeds the input of another. The back end
attempts to generate one fused loop as in classical loop-fusion for FORTRAN/C pro-
grams. We use the term streaming to refer to the process of generating a fused loop for
the execution of a stream of scalar primitives. COMPC has two ad hoc restrictions in
forming a stream: no boolean operand and no left sub-tree operand (expressions inside
parentheses) can occur in a stream. In PARAC, we removed these two restrictions so
streams with boolean operands and left sub-tree operands can be fused by the back
end now. To do this we added a new way to access boolean variables (BOPERAND in
PARAC), since COMPC packs 8 boolean values into one byte thus breaking a stream.
PARAC also modified two functions TREEWALK and QSTREAM in COMPC. As a
result for the stream (line 7 in jacobi Sect. 4) A–Z←C+0.25×F×R4+R3+R2+R1
(note there is no operator precedence in APL: from right to left the sum of Ri is multi-
plied by the boolean variable F, then multiplied by 0.25, added to C, and assigned to
Z; the result in Z is subtracted from A), the compiler generates a compact C code loop:

for (v1 =0; v1<r0; v1++){
p20[v1]=lo22[v1]+0.25*BVAL(v19,v1)*(lo21[v1]+(lo20[v1]+(lo2[v1]+ro2[v1])));
p2[v1] = fabs((lo23[v1]-p20[v1]));

}

In addition to the new and modified functions we introduced in the workspace
PARAC, we also introduced new macros in Aplc.h and functions in Apl3lib.c to make
it easier to generate parallel C code. We further parallelized some functions in the
library Apl3lib, which comes with COMPC.

3 Virtual Operations and Data-Partitioning

For multi-core computers, parallel performance greatly depends on keeping the needed
data in the cache as long as possible, since any swapping of relevant data in-and-out of
the cache, during computation, will drastically degrade performance. This is similar
to trying to keep the most frequently used data items in registers in classical compiler
optimization, and loop fusion we described above certainly serves this purpose.

The technique we called virtual operations (v-ops) is also a way of combining
array operations; but unlike streaming it combines an array transformation primitive
with other primitives. It is similar in spirit to the delayed evaluation scheme outlined

123

Int J Parallel Prog (2012) 40:514–531 521

in Guibas and Wyatt [12]. We note parenthetically that the recent work of Liu et al.
[17] is a comprehensive study of optimizing array computations, but it considers gen-
eral loops. The idea of v-ops is to eliminate avoidable memory copy operations for
APL primitives which rearrange the contents or alter the shape of an array. For exam-
ple, when a rotate, or drop, on an array A is followed by calculations involving A,
instead of carrying out the rotate and following it with the computational operation,
the compiler virtualizes the rotate by a transformation of array indices for the next
computation, to produce a semantically equivalent result (see example 3 in Sect. 4).
We call the result of a v-op a pseudo array which occupies the same memory location
as the original array (input to the v-op). At present, we only implemented v-ops for
drop, rotate and catenate, but the technique we used can be applied to the take and
indexing APL primitives as well.

To implement v-ops, we introduced a list PSUEDOV in the compiler to indicate
which variable is pseudo, and if so what v-op applies to it. PSUEDOV[10]<0 means
v10 is a normal variable; PSUEDOV[11]=4 means v11 is a pseudo variable as the
result of a virtual drop (primitive function number 4). At the entry to a basic block,
PSUEDOV is initialized to all -1. Later the compiler calls ISPSUEDOV to check
whether a variable is a psuedo variable. To generate the correct code for v-ops, we
added two fields in the struct representing the shape of a variable which is an array
of known rank but undetermined dimensions (see sec. 4 in [6]):

union pseudo_u *pseudo;
int flags;

where union pseudo_u stores additional shape information for calculating indices.
pseudo_u has two structures: moref and pinfo: pinfo is used by the original
array to keep track all pseudo arrays that point to it; moref stores information about
a pseudo array using three 3 fields: s_startp stores the starting location of each
dimension in the original array, orig points to the original array and data_avail
is used by data partitioning.

When a pseudo array pa, based on original array a, is accessed, the com-
piler chooses a corresponding macro to generate code. Basically, references to
array elements pa[i;j] are transformed to references to array elements in a,
a[f(i);g(j)], where functions f and g depend on the v-op involved. For exam-
ple, to access a pseudo floating-point matrix rotated along the last dimension by 1, the
macro LROTATED_DVAL2 is called (The names of these macros are derived using
the following rule: the first part (before “_”) indicates the v op, D indicates the data
type of the array (double), and 2 indicates the number of dimensions). In this case f

is the identity function, and g is leng2|j+1, where leng2 is the length of the last
dimension of a as the compiler uses index origin 0 as in C. f and g for drop is very
similar to rotate while they are more involved for the catenate primitive since it glues
two arrays.

The other technique we used for effective parallelization is data partitioning: we
partition an input array into groups and process each group in one core through all
the code execution corresponding to a sequence of APL primitives. Once the proper
size is determined, each core only needs to load its partition for the entire sequence of
primitive functions. This can be considered an extension of streaming, but instead of

123

522 Int J Parallel Prog (2012) 40:514–531

processing one element through a stream of primitive functions, we process a portion of
the data. Moreover, unlike in streaming, data partitioning can include mixed functions
(i.e. those that do change the shape of an array) like rotate, take, drop etc. To increase
the effectiveness, we allow data partitioning to be mixed with virtual operations. This
complicated the implementation a bit, since one partition may rely on another partition
which is processed in another iteration or even in another core. Hence before executing
each function on a partition, the generated code checks the data dependency of parti-
tions at run time. To implement this checking the compiler generates macro wrappers
around the generated C code. Before processing a partition, the generated code calls
NEXT_CHUNK to find the next partition to process. Then it calls DATA_AVAIL() to
check whether the partitions, on which this next partition relies, are available. After
finishing processing, the code calls UPDATE_RANGE() to mark that the current par-
tition has been processed. We call the execution of one sequence from NEXT_CHUNK
through UPDATE_RANGE() an iteration. If any of the depended-on partitions are
not yet available, the execution jumps to the next primitive in the sequence, instead
of blocking and waiting for the data to become available, i.e. in each iteration, only
the partitions for which depended data is already available are processed. This guar-
antees that there is no dead lock in the generated code. We record information of all
processed partitions in records describing variables. Thus each variable can not be
assigned multiple times.

We illustrate the above discussion with the C code generated for the APL source
code out←in1+in2, where in1 and in2 are two floating-point matrices, with the
data partition loop, where the OpenMP directive is only used to create threads while
DATA_PART_LOOP is responsible for distributing data to each thread and initializing
the current thread for data partitioning:

#pragma omp parallel for default(shared) private(thread_num)
DATA_PART_THREAD_LOOP
DATA_PART_LOOP {
ITERATION_START;
NEW_ASSIGN(out); NEXT_CHUNK(out);
if (DATA_AVAIL(in1)&&DATA_AVAIL(in2)) {

FORALL2_CACHE(out)
DVAL2(out)=DVAL2(in1)+DVAL2(in2);
UPDATE_RANGE(out);}

}DATA_PART_THREAD_LOOP_END

4 Parallel Speedups of Sample APL Programs

We report the performance of our parallelizing APL compiler for four moderate-size
examples, together with indications of different techniques deployed to speed up these
programs. The multi-core computer we used is an AMD Athlon II X4 620, clocked
at 2.6 GHz and with 4 × 512 KB L2 cache. The computer was equipped with 2GB
DDR3-1333 memory with good access speed. The desktop computer ran Debian/
Linux 5.0. The C compiler we used to generate machine code is gcc v4.4 for
Linux, which supports OpenMP 3.0. We attached one thread to each CPU and ran the

123

Int J Parallel Prog (2012) 40:514–531 523

compiled programs with a higher priority to reduce the interference from other pro-
cesses with our program’s execution. We ran each program at least 5 times to get the
average timing. We also measured the runtimes of these C programs using Intel’s icc
compiler, which has interesting variations but similar speedups (the timings are not
listed here). We note that in the tables below the timing for 1 thread for prime and
poisson is the time for running C code produced by the base compiler, while timing
for jacobi and morgan is from the C code produced by the compiler with the paralle-
lizing module. We did this because the parallelized C code for jacobi and morgan is
very different from the code produced by the base compiler (COMPC) and the PARAC
version is significantly faster than the original COMPC version, even when run in a
single thread.

The first example is pedagogical: finding primes up to the integer N, using a single
line of APL code. The APL code starts by building a vector V of odd numbers starting
from 3, on the right side of the reduce operator (‘/’). ι�(N-1)÷2 generates the integer
list from 1 to about half N. The expression then builds a multiplication table of suitable
size (the left argument) using an outer product (◦.×) of two integer lists with the first
2 integers dropped. Finally, those numbers in V which are not in the multiplication
table are primes. The integer 2 is pre-pended to the vector of calculated primes, since 2
is prime but the vector V and the generated multiplication table contain odd numbers
only. Two primitive array operations in this line of APL are suitable for parallelization:
the outer product and the membership. The outer product is parallelized by the com-
piler by inserting an OpenMP directive, while the membership function is parallelized
directly in the Apl3lib.c library, through a newer parallelized implementation of the
membership function.
[0] Z←PRIME N;V
[1] Z←2, (∼V∈(2↓ ι�N*0.5)◦.×2↓ ι� N÷3)/V←1+2× ι�(N-1)÷2

PRIME < 100,000 Time (ms) Speedup Outer product (ms) Speedup Membership (ms) Speedup
1 thread 216.8 1 59.4 1 157.2 1
2 thread 140.8 1.54 30 1.98 110.4 1.42
4 thread 96.6 2.24 17 3.50 79.2 1.98

1
2

4
50,000

100,000

200,000

0

0.5

1

1.5

2

2.5

3

sp
ee

du
p

number of threads

N

prime

50,000
100,000
200,000

123

524 Int J Parallel Prog (2012) 40:514–531

We see that outer product (◦.×) has an almost linear speedup while membership
(∈), with its implementation by a library C function membspi, does not show very
good speedup. membspi searches for elements of the left argument in the right argu-
ment and it is implemented with a hash table. Searches using a hash table are not
easy to parallelize, and we only did the minimum amount of work to hand parallelize
the membspi code. We need to further study the pattern and behavior of searching,
and come up with some innovative implementation approaches to better parallelize
membspi. We measured the performance of this prime generator with different input
sizes for N : 50,000, 100,000 and 200,000 and show the results in the diagram above.

The second example is poisson, which solves the Poisson equation with boundary
condition. Here we achieved a good speedup for all 4 inner products +.×, i.e. the
matrix multiplications on line 12.

[0] Z←POISSON RMINBU;P;Q;L;M;S;T;V
[1] Z←0 0ρ0 ∩◦ set empty matrix
[2] →(2�= ρ ρRMINBU)/0 ∩◦ if not 2 dims exit
[3] P←1+¯1↑ ρRMINBU ∩◦ 1+2nd dim of input matrix
[4] Q←1+1↑ ρRMINBU ∩◦ 1+1st dim of input matrix
[5] L←¯4×(1◦◦(ιQ-1)÷2×Q)*2 ∩◦ 1◦ is sin fn, ◦v is pi×v
[6] M←¯4×(1◦◦(ιP-1)÷2×P)*2
[7] S←1◦◦(ιQ-1)◦.× (ιQ-1)÷Q
[8] S←S÷(+/S[1;]*2)*0.5
[9] T←1◦ ◦ (ιP-1)◦.× (ιP-1)÷P
[10] T←T÷(+/T[1;]*2)*0.5
[11] V←L◦.+M
[12] Z←S+.×((S+.×RMINBU+.×T)÷V)+.×T

POISSON (300× 300) Time (ms) Speedup Inner prod (ms) Speedup
1 thread 432.8 1 113.8 1
2 thread 220.75 1.96 52.25 2.18
4 thread 134.75 3.21 30.5 3.73

1
2

4
200x200

300x300

400x400

0

0.5

1

1.5

2

2.5

3

3.5

sp
ee

du
p

number of threads

size

poisson

200x200
300x300
400x400

The total runtime, for a 300×300 input matrix, and the time for one inner product,
are shown in the table above. We note that inner product achieves superlinear speedup

123

Int J Parallel Prog (2012) 40:514–531 525

on 2 threads. We also measured the performance of poisson with different size inputs:
200×200, 300×300 and 400×400 with the results shown in the diagram above. For
the poisson example, we noticed that the Intel compiler exhibited better performance.
The main reason is that the Intel compiler automatically vectorized many C loop oper-
ations (http://software.intel.com/sites/product). Both prime and poisson have no loop
in their APL source.

The third example is jacobi, which iteratively computes temperatures of interior
points from those at the edges of a rectangle, by averaging their neighbors tempera-
tures (R1–R4). The left argument F is a boolean matrix with 0s on the boundary and
1s at interior, right argument A is a floating point matrix denoting initial temperatures
with interior points all 0. Here both streaming and virtual operations are crucial to
achieving optimized parallel result.

[0] Z←F JACOBI A;C;E
[1] E←0.1
[2] C←(Z←A)× ∼F ∩◦ Z,C get A as initial value
[3] L:R1←¯1A←Z ∩◦ upper rotate A by 1 row
[4] R2←1A ∩◦ down rotate A by 1 row
[5] R3←1φA ∩◦ right rotate A by 1 column
[6] R4←¯1φA ∩◦ left rotate A by 1 column
[7] ←(E< �/|,A-Z←C+0.25×F×R4+R3+R2+R1)/L ∩◦ taking ave-

rage and diff

The result shown below is with the optimization of merging scalar primitives only, i.e.
only using streaming:

JACOBI (1, 000× 1, 000) Time (ms) Speedup
1 thread 7,174 1
2 threads 6,031 1.19
4 threads 5,937 1.21

Initially, we found almost no speedup when running on 4 threads compared to run-
ning on 2 threads. The main reason is that whenever the program executes the rotate
operation, it generates a new array. Hence, the program has to load many arrays during
each iteration. Since these rotated arrays are read-only in this program, we can avoid
doing a real rotation. That is, by applying a virtual rotation, no new array needs to be
created to carry out the rotation operation. Instead, the indices are calculated to access
the array, at the position where the element ends up after the rotation (the index-calcu-
lating code is generated by the PFROTATE function in PARAC). With virtual rotation,
the performance, as shown in the table below, has a very good speedup on 4 threads.

JACOBI (600× 600) Time (ms) Speedup In stream (ms) Speedup Reduction (ms) Speedup
1 thread 3, 046 1 2,587 1 188.2 1
2 thread 1, 791 1.7 1,398 1.85 146 1.29
4 thread 1, 082 2.8 705.4 3.67 105.8 1.78

The rest of time in jacobi is consumed by the memory copy in the loop, but outside
of the stream. We noticed that the Intel compiler almost always produced a better
result except, for the stream running on 4 threads. By inspecting the assembly code,

123

http://software.intel.com/sites/product

526 Int J Parallel Prog (2012) 40:514–531

we realized that the code segment for stream and reduction is vectorized automatically
by the icc compiler, with the resulting code running much faster.

1
2

4
300x300

600x600

1000x1000

0

0.5

1

1.5

2

2.5

3

sp
ee

du
p

number of threads size

jacobi

300x300
600x600
1000x1000

We also measured the performance of jacobi with different size inputs and we
illustrate the results in the figure above. We see from the graph that jacobi has sig-
nificantly worse speedup with the input size of a 1, 000 × 1, 000 matrix running on
4 threads. Execution on 2 thread still has quite a good speedup, but 4 threads have
only 23 % speedup over 2 threads. The speedup of the streaming operation running
on 2 threads is 72.6 % and only 40 % on 4 threads, because the memory bandwidth
becomes the bottleneck. We estimate the memory bandwidth according to this result:
the execution of the stream in the last line of the APL code takes 8ms on 4 threads.
Because the arrays are very large, all data has to be loaded from the memory and
the stream needs to read or write 8*6 MB data. Suppose that all memory pre-fetch is
accurate, the memory access rate is 8*6/0.008 = 6,000 MB/s. The memory bandwidth
we measured with some professional software is about 7,000 MB/s. Since we need to
calculate indices to access each element in the rotated matrix, this takes a considerable
amount of time, so we believe we have reached the bottleneck of memory access in
this example. Unless we adopt a different way to take advantage of the cache (in our
current code, a bigger cache cannot help the performance), it is difficult to make the
program run faster.

The last example morgan is extracted from a real-life financial application. The
APL source has two user-defined functions. Since parameter passing in an APL func-
tion call is call-by-value, we implemented a limited in-line expansion capability in
the compiler front-end to avoid huge data copying in the 5 function calls to MSUM.
The whole calculation in the last line of morgan is done in a single stream. Hence,
allowing left operands to be subtrees in a stream made substantial contribution to the
performance improvement. Currently, data partitioning only works on a sequence of
operations on arrays of the same rank. In the case of morgan, lines 3–8 are in a range
of one data partitioning. We point out that data partitioning plays a crucial role in
achieving good parallel performance in this last example. The speedups are shown in

123

Int J Parallel Prog (2012) 40:514–531 527

the diagram below and the details for the middle size input data are in a table above
that diagram.

[0] R←N MORGAN A;X;Y;SX;SX2;SY;SY2;SXY
[1] X←A[1;;]
[2] Y←A[2;;]
[3] SX←N MSUM X
[4] SY←N MSUM Y
[5] SX2←N MSUM X*2
[6] SY2←N MSUM Y*2
[7] SXY←N MSUM X×Y
[8] R←((SXY÷N)-(SX×SY)÷N*2)÷(|((SX2÷N)+(SX÷N)*2)*0.5)×

(|(SY2÷N)-(SY÷N)*2)*0.5
[0] R←N MSUM A
[1] R←((0,N-1)↓T)-0,(0,-N)↓T←+\A

MORGAN (2× 700× 700) Time (ms) Speedup Data partitioning (ms) Speedup
1 thread 115.2 1 108.2 1
2 thread 70.8 1.6 64.6 1.67
4 thread 40.2 2.9 34.2 3.16

1
2

4
2x500x500

2x700x700
2x1000x1000

0

0.5

1

1.5

2

2.5

3

sp
ee

du
p

number of threads

MORGAN

2x500x500

2x700x700

2x1000x1000

In summary, we see that all the sample programs always have quite good speedup
running on 2 threads, but not necessarily on 4 threads. This is understandable because
the memory bandwidth for one CPU is the same, no matter whether we use 1 core,
2 cores or 4 cores. But the bottleneck due to memory speed becomes more and more
pronounced when we use more cores. We can have better performance either with
faster memory access or bigger cache. The four examples show the challenges in
programming for the multi-core architecture: how to adjust emitted code properly so
that the needed data can reside in the L2 cache as long as possible, and how to avoid
naive implementation of carrying out all array operations one at a time. Indeed, one
problem with array-oriented programs is that a strict interpretation frequently incurs
a large number of avoidable operations resulting in longer execution times.

123

528 Int J Parallel Prog (2012) 40:514–531

Though the examples chosen here are of only moderate size, they do cover a wide
range of features in APL programs, including iterations and function calls. Thus the
parallelizing techniques we implemented do apply to typical APL programs, involving
array primitives and frequently used operators.

5 Discussion

People familiar with APL may suggest another approach to attaining parallel execu-
tion of APL: using the shared variables facility of the interpreter, together with the
each operator in APL2. However, without removing the inefficiency of interpretation,
achieving good performance is problematic. This approach would also incur the over-
head of using the shared variables facility, which adds to the execution code path. In
any case it would require a user to reorganize the program around the use of the each
operator to explicitly express parallelism in the application.

The general ideas of data partitioning, interchanging and merging is well known,
and presumably we could carry out our experiment in FORTRAN90 or HPF. Indeed,
there is a study of parallelizing array language primitives on an early shared-mem-
ory machine using examples from LINPACK recoded in FORTRAN90 by Ju et al.
[15]. However, we note that this is done in a language with variable declaration and
data layout indication to the compiler, neither of which is needed in our approach.
In other words, while FORTRAN90 and its compiler expect some cognizance from
the programmer that the program will run in a parallel execution environment, our
work on parallelizing the execution of APL programs allows the APL programmer to
remain oblivious to the execution environment. Our goal in this research is to show that
we can achieve significant speed up parallelizing array-oriented source code, without
imposing on the source code programmer the need to consider anything other than
the application logic of their program. The APL programmer needs not care whether
the program will run under an APL interpreter, or be executed on a multi-core after
compilation by our parallelizing compiler. After all, the main job for the APL pro-
grammer is to write good APL code. Furthermore, while FORTRAN90 has many
array operations borrowed from APL, the set of array operations is not nearly as rich
as in APL. A number of APL array operations, such as membership and drop, are
missing entirely from FORTRAN90. We demonstrated a detailed yet elegant scheme
for parallelizing array-based programs, without the need for variable declarations or
data layout compiler directives.

From the performance data listed in the previous section, we see that the effective-
ness of our approach to automatic parallelization depends critically on a program being
written in an array-oriented fashion, i.e. on using array primitives whenever possible.
Just as in a typical computation intensive FORTRAN or C program most computation
time is spent in loops, in an array-oriented program most computation time is spent
in array primitives. We achieved data parallelism by parallelizing array operations in
an integrated fashion by the compiler, without any knowledge of the structure of the
application involved, nor did we do any elaborate scalar-loop analysis. The additional
compiler work of partitioning arrays and optimizing the use of temporary variables,

123

Int J Parallel Prog (2012) 40:514–531 529

introduced in the data partitioning process, can further reduce the cache miss ratio and
improve performance.

To achieve automatic parallelism on a wider range of applications, we need to
implement task parallelism in addition to data parallelism. This would involve doing
dependency analysis to identify independent tasks in basic blocks, and a more appli-
cation specific coarse-grained analysis of programs (for massively parallel machines).
Nevertheless, in all these efforts, having a source program written in a very high-
level language still has a distinct advantage: the usage of very high-level primitives
naturally enlarges basic blocks and reduces the complexity of flow graphs for intra-
procedural analysis and call graphs for inter-procedural analysis. To extend our work
in another direction, i.e. to cover distributed memory or hybrid memory parallel
machines such as Cell processors or CUDA, we need data distribution analysis as
done in [11], use MPI instead of OpenMP, or a more specific underlying support infra-
structure, e.g. a parallel environment/library for executing appropriately parallelized
code.

The automatic parallelization approach presented here is not restricted to APL.
A similar effort can be applied to other very high-level array languages such as MAT-
LAB and its open source siblings. Interestingly, from a recent comparison study [5], we
see that MATLAB currently offers a two-pronged approach to extracting parallelism:
an automated approach of implementing highly optimized and parallelized runtime
routines, such as matrix multiplication, for the interpreter to call, and a non-automated
approach of a set of tools available to the user to parallelize the code manually [21].
Neither approach involves compiler manipulation, thus differing from our approach.
The recent work of Li et al. [16] on the scripting array language R is also on paral-
lelizing its run-time routines but it did use sophisticated compiler technology to do
this.

The demonstrated success of our approach to automatic parallelism described here
can even suggest a restricted way of writing C++ programs for auto-parallelization,
i.e. a programmer uses functions in STL instead of loops whenever possible, coupled
with an enriched C++ compiler which automatically includes OpenMP directives in
its implementation of array handling functions in STL (an effort along this line has
apparently been initiated by a research team including Stroustrup, the designer of C++,
at Texas A&M University, see http://parasol.tamu.edu/stapl/). While such a restric-
tion may initially cause inconvenience to programmers used to writing scalar loops,
the improved performance is still a bargain compared to the effort required to write
hand-crafted parallel code or to write in a completely new parallel language to harness
the parallel power built into today’s multi-core machines.

6 Conclusion

We presented a work on automatic parallelization of array-oriented programs for desk-
top multi-core machines. The source programs were not modified for parallelization,
but written in an array-oriented style. The parallelization was done by a parallelizing
APL compiler which is based on an APL-to-C translator. The parallelizing module
not only inserts OpenMP directives to the C program for parallel execution under

123

http://parasol.tamu.edu/stapl/

530 Int J Parallel Prog (2012) 40:514–531

Linux but also restructures the emitted code, using the techniques of streaming, vir-
tual operations and data partitioning, to achieve optimal results. Good speedups, which
come at no cost to the user other than the need for compilation, were observed in
our sample programs, typical of APL applications. We also discussed issues such
as cache miss ratios and memory access with respect to the speedup we observed,
and possible enhancements to the compiler. Our work shows that by writing in a
very high-level (array-oriented) programming style one can effectively utilize the
parallelism inherent in current multi-core machines through a parallelizing compiler
of moderate complexity, without any explicit awareness of a parallel programming
model or a need to include in some parallel abstractions in the design of the pro-
gram.

Acknowledgments We thank Dr. Alex Katz for his help in editing the manuscript to improve its English.
We also thank referees for their help in improving this paper.

Appendix

See Table 1.

Table 1 APL notations used in the sample programs

Name Symbol Function

Interval ιR Generate ascending integers, i.e. ι4 generates a vector 1 2 3 4

Catenate L, R Concatenate two vectors or arrays L and R, i.e. 1 2,3 0 4 is 1 2 3 0 4

Drop L↓R Removes the first (last) L items of array R, if L > 0 (<0)

Outer product L◦.f R Applied f between all pairs of items from L and R

Compress B/R Selects subarrays along last axis according to boolean vector B

Reshape LρR Generates an array of shape L with the items of array R

Pi times ◦R The product of π and R

Circle functions L◦R L specifies a trig. function on R, i.e. 1◦R is sin R

Reduce f/ R For f=+, it is sum; f=×, it is product

Inner product Lf.g R For f=+, g=×, L +.× R is matrix multiplication

Magnitude | R Absolute value of R

Rotate LR, LφR Rotate array R |L positions along the first or last axis

Conditional jump →(cond)/L Jump to the line with label L if the condition is true

References

1. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM 19(3), 137–147 (1976)
2. Asanoic, K., et al.: A view of the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)
3. Blume, W., et al.: Parallel programming with polaris. IEEE Comput. 29, 78–82 (1996)
4. Dave, C., Bae, H., Min, S., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-to-source compiler

infrastructure for multi-cores. IEEE Comput. 36–42 (2009)

123

Int J Parallel Prog (2012) 40:514–531 531

5. Chen, H., Ching, W.-M., Zheng, D.: A comparison study on execution performance of MATLAB and
APL. Vector J. Br. APL Assoc. (to appear)

6. Ching, W.-M.: Program analysis and code generation in an APL/370 compiler. IBM J. Res.
Dev. 30, 594–602 (1986)

7. Ching, W.-M., Xu, A.: A vector code back end of the APL370 compiler on IBM 3090 and some
performance comparisons. In: Proceedings of APL’88 Conference, pp. 69–76 (1988)

8. Ching, W.-M., Ju, D.-c.: Execution of parallel APL on RP3. IBM J. Res. Dev. 35(5/6), 767–777 (1991)
9. Ching, W.-M., Carini, P., Ju, D.: A primitive-based strategy for producing efficient code for very high

level programs. Int. J. Comput. Lang. 23(3), 41–50 (1993)
10. Ching, W.-M., Ju, D.: An APL-to-C compiler for the IBM RS/6000: compilation, performance and

limitations. APL Quote Quad 23(3), 15–21 (1993)
11. Ching, W.-M., Katz, A.: An experimental APL compiler for a distributed memory parallel machine.

In: IEEE Proceedings of Supercomputing’94, Washington, D.C., pp. 59–68 (1994)
12. Guibas, L., Wyatt, D.: Compilation and delayed evaluation in APL. In: Proceedings of 5th ACM

Symposium on Principles of Programming Languages, pp. 1–8 (1978)
13. Gupta, M., Midkiff, S., Schonberg, E., Seshadri, V., Shields, D., Wang, K., Ching, W., Ngo, T.: An

HPF compiler for IBM SP2. In: Proceedings of Supercomputing 95
14. Iverson, K.: Turing award lecture: notation as a tool of thought. Commun. ACM 23(8), 444–465 (1980)
15. Ju, D., Lin, C., Carini, P.: The classification, fusion and parallelization of array Language primi-

tives. IEEE Trans. Parallel Distrib. Syst. 5(10), 1113–1120 (1994)
16. Li, J., Ma, X., Yoginath, S., Kora, G., Samatova, N.: Transparent runtime parallelization of the R

scripting language. J. Parallel Distrib. Comput. (to appear)
17. Liu, Y., Stoller, S., Li, N., Rothamel, T.: Optimizing aggregate array computations in loops. ACM

Trans. Program. Lang. Syst. 27(1), 91–125 (2005)
18. Novillo, D.: OpenMP and automatic parallelization in GCC. In: GCC Developers’ Summit, Ottawa,

Canada, June 2006
19. International Organization for Standardization: ISO Draft Standard APL. APL Quote Quad 14(2),

7–272 (1983)
20. van der Pas, R.: An Overview of OpenMP 3.0. Sun Microsystems, Santa Clara, CA (2009)
21. The MathWorks: Parallel computing toolbox 4. User’s guide (2010)

123

	Automatic Parallelization of Array-oriented Programs for a Multi-core Machine
	Abstract
	1 Introduction
	2 The Base Compiler and the Parallelizing Back End
	3 Virtual Operations and Data-Partitioning
	4 Parallel Speedups of Sample APL Programs
	5 Discussion
	6 Conclusion
	Acknowledgments
	Appendix
	References

