International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

A SUCCINCT PROGRAMMING LANGUAGE WITH
A NATIVE DATABASE COMPONENT

Hanfeng Chen' and Wai-Mee Ching®

'School of Computer Science, McGill University, Montreal, Canada
201 Kensington Way, Mount Kisco, NY 10549, USA

ABSTRACT

ELI is a succinct interactive programming language system organized around a few simple principles. Its
main data structures include arrays, lists, dictionaries and tables. In addition, it has an integrated database
management component which is capable of processing a basic set of SQL statements. ELI, with a
compiler, covering the array portion of the language, is also an excellent tool for coding scientific and
engineering solutions. Moreover, it is productive in writing complex applications as well, such as
compilers and trading systems.

1. INTRODUCTION

ELI is a succinct interactive programming language system with its heritage derived from the
classical array-based programming language APL invented by Ken Iverson [1]. Its organizing
principles, as those of APL, are: i) arrays are treated as first class citizens, ii) it provides a large
number of symbolically represented intrinsic (primitive) functions with equal precedence which
operate on arrays as a whole, iii) the symbolic representation of intrinsic function results in
succinctness of code that encourages a dataflow style of programming, i.e. the result of one
operation can feed as the input to the next operation in the same line. This greatly contributes to
the clarity of code and overall productivity. ELI has most of the functionality of ISO APL [2] (we
shall refer this from now on as APL1). The only difference of this core part of ELI and the APL1
is ELI’s adoption of ASCII characters instead of the original APL characters [3]. ELI is available
on Windows, Linux and Mac OS (http://fastarray.appspot.com/) and has both 32-bit and 64-bit
versions. The 64-bit version comes with a GUI feature called ELI Studio. The homepage of the
ELI site lists a group of one-line example codes to illustrate the style as well as the capability of
the ELI programming language. The documentation section of the ELI site provides the main
language reference [5] and two tutorials. One tutorial [6] aims to teach young students
mathematics and computer programming together, utilizing the interactive ELI system, dove tails
with Ken Iverson’s original intension in inventing APL: to teach applied mathematics at Harvard.

Later APL evolved from flat-arrays (i.e. each array cell element is either a number or a character)
to nested arrays where an array cell element can be another array as exemplified by the IBM
APL2 programming language [4]. ELI, following the earlier k language which also traces its
origin from classical APL (k later evolves into the Q language [7]) of kdb system (www.kx.com),
does not have nested arrays; instead it has /ists for handling non-rectangular or non-homogeneous
data. In addition, ELI and Q have six temporal data types which APL2 does not have. We shall
illustrate the usage of these temporal data types by two examples in the next section. However,
APL2 as well as ELI have complex numbers while Q does not provide complex numbers;

DOI : 10.5121/ijpla.2017.7101 1

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

complex numbers are quite important in many scientific and engineering applications (we note
that Q’s intended area of application is in financial analysis and algorithmic trading).

A dictionary in ELI and Q is a special kind of two items list, a domain and a range together with a
map between the two. We note that there are also dictionaries in the programming language
Python, and in Perl it is called hashes. The transpose of a column dictionary (to be explained in
Sec. 3) in ELI is a table and this is the foundation of a native database component in ELI,
following that of Q of the kdb system. In Sec. 4, we show that ELI has a set of SQL-like
statements, esql, to manipulate data in the tables of a database just like in other RDBM systems.
The most important thing is that esq/ statements are implemented as ELI functions. In Sec. 5, we
discuss the file processing facilities of ELI such like processing as well as writing CSV, XML
and JSON files in addition to standard ELI scripting files.

We remark that both APL1 and APL2 have no control structures while ELI has control structures
just like those in the C language (other modern APL system such as Dyalog APL has control
structures and Q has if-statement). This makes it easier to write complex software such as
compilers in ELI while still provides remarkable productivity due to the succinctness of code.

We shall discuss the features of an ELI compiler [8] (it only covers flat arrays) in Sec. 6 and its
role in providing competitive performance in term of run-time. We also will make relevant
comments on ELI in comparison with other programming languages relevant to software
engineering in that next to last section. The last concluding section summarizes what we have
presented.

2. TWO ILLUSTRATIVE EXAMPLES

In this section we use two examples involving temporal data to show the usage of some important
ELI primitive functions and thus illustrate the ELI programming style. There are 12 atomic data
types in ELL: numbers, which includes boolean, integer, floating point and complex number,
symbols, characters and 6 temporal data types which includes date, time, month, minute, second
and datetime. A single data item is called a scalar while a group of data items of the same type
forms an array. Each array a has a shape (#a) and can be reshaped (sv#a). There is a system
variable []IO which by default is 1 but can be reset to 0. The primitive function interval n
generates n integers:

110
12345678910
[110<-0
110

0123456789

ELI has a system variable timestamp [|TS which reports the current datetime and the other
temporal data types can be seen as a different parts of a datetime type data:

TS
2016.08.22T21:47:39.312

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

The portion before the letter T is the date while the portion after T is the time part of a datetime
value and 21:47:39 is the second part of the current time.

Two distinctive features of ELI/APL are i) a line of code executes from right to left but respects
parentheses, ii) primitive functions in ELI are either monadic (which takes a right argument) or
dyadic (which takes a right and a left argument) and they all (including defined functions) have
equal precedence. These two rules greatly encourages a dataflow style of ELI/APL programming.
Two consecutive dashes (/) start a comment to its right. Before we present the first example, we
describe the compress function b/a where b must be a Boolean vector and the right operand a
must be a vector of equal length or a matrix with its width equal to the length of b; the result is a
vector of elements in a corresponding to 1s in b, or a matrix of columns in a corresponding to 1s
in b:

010010001 1/110//[]10=1
25910

The first example is to print out a weekly calendar of August 2016, knowing that 2016.07.30 is a
Saturday. We proceed as follows:

5 7#2016.07.30+!5%7 //35 days after 7/30/2016 and reshape it into a 5 by 7 matrix of dates

2016.07.31 2016.08.01 2016.08.02 2016.08.03 2016.08.04 2016.08.05 2016.08.06
2016.08.07 2016.08.08 2016.08.09 2016.08.10 2016.08.11 2016.08.12 2016.08.13
2016.08.14 2016.08.15 2016.08.16 2016.08.17 2016.08.18 2016.08.19 2016.08.20
2016.08.21 2016.08.22 2016.08.23 2016.08.24 2016.08.25 2016.08.26 2016.08.27
2016.08.28 2016.08.29 2016.08.30 2016.08.31 2016.09.01 2016.09.02 2016.09.03

w<-+. 5 7#2016.07.30+!5*7 //format fn +. turns above into its character representation
#w //w is a 5 by 76 character matrix

576

b<-76#(6#0),5#1 //b is a boolean vector of length 76 with 6 Os followed by 5 1s

b
0000001111100000011111000000111110000001111100000

01111
1000000111110000001111

b/w //the *2016.0’ parts have been eliminated from w

7.31 8.01 8.02 8.03 8.04 8.05 8.06
8.07 8.08 8.09 8.10 8.11 8.12 8.13
8.14 8.158.16 8.17 8.18 8.19 8.20
8.21 8.22 8.23 8.24 8.25 8.26 8.27
8.28 8.29 8.30 8.31 9.01 9.02 9.03

hd<-'Sun Mon Tue Wed Thu Fri Sat ' /prepare heading

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

#hd

34

#b/w

534

wl<-b/w

wl[1;!4]<-"" //blank out 7.31
w1[5;20+!14]<-"" //blank out Sept days
wl

8.01 8.02 8.03 8.04 8.05 8.06
8.07 8.08 8.09 8.10 8.11 8.12 8.13
8.14 8.158.16 8.17 8.18 8.19 8.20
8.21 8.22 8.23 8.24 8.25 8.26 8.27
8.28 8.29 8.30 8.31

hd,.b/w1 //glue the heading to w1 by the catinate along 1st axis ,. Func.
Sun Mon Tue Wed Thu Fri Sat

8.01 8.02 8.03 8.04 8.05 8.06
8.07 8.08 8.09 8.10 8.11 8.12 8.13
8.14 8.158.16 8.17 8.18 8.19 8.20
8.21 8.22 8.23 8.24 8.25 8.26 8.27
8.28 8.29 8.30 8.31

At the heart of the second example is the special primitive function execute !.tx which executes
its operand tx as a text input to the ELI/APL interpreter. In the simplest case, !. can be regarded as
the inverse of the format function +., i.e. it turns the character representation of a data item into a
data which the operand character string represents:

1.2.3'

23
1.'19:20:55'
19:20:55
1.3+2

5

We note here that current ELI compiler covers most features of ELI corresponding to APL1 with
the execute function as the most notable exception. While this function can easily be avoided in
scientific and engineering applications it is essential in implementing ELI’s esql statements (see
Sec. 4).

The second example is a daily scheduler: to run different tasks, i.e. calling various trading
modeling functions written in ELI with appropriate parameters every 15 minutes from 9:00 to
21:00. The code is as follows where dt2S is a short-form function (see §4.2 in [5]) and tasktab is a
49-row text of possibly distinct tasks stored in the file jobs, i.e. function calls with specified
parameters, to be executed at 15 minutes interval:

[1I0<-0

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

{dt2S: 1._41.111.+.x} /Iconvert a datetime to a second type
timelst<-09:00:00+15*60%149

Yfcopy jobs /fimport jobs file which contains tasktab
j<-0

while ((j<49) { //execute a preset task every 15 minutes

while (timelst[j]>dt2S []TS) */1000#@1 //multiply pi 1000 times to spin
l.tasktablj;] //when the time comes, execute the j-th job

j<j+1

}
3. DICTIONARIES, TABLES AND KEYED TABLES

ELI offers list for non-homogeneous or non-rectangular data. The shape (=count) of a list is its
length, and an element in a list can be a scalar, an array or another list. For example,

L1<-(ABC';’s1 "s2;3 4#1 5 6)
L1
<ABC
<sl°s2
<1561
5615
6156
L2<-(1.2 11 3.5;4 8.1;!10)
L2
<1.2113.5
<4 8.1
<12345678910

A most important operator on lists is the each operator ”: for a function f, f’L applies f to each
element of list L. For example,

#'L1
<3
<2
<34

+/"L2
<15.7
<12.1
<55

where +/ is the derived function sum. The function f can be a user-defined function if it is well-
defined on each elements of the list L.

A dictionary D is a two item list, a domain d and a range r of equal count and a correspondence
between the two by the dyadic function map :, D<-d:r; a pair of system functions then return its
components: key(D) gives the domain d and value(D) the range r. The domain d must be a simple
list of unique elements such as a vector of symbols, characters or integers with no duplicates, the

5

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

range r is a list of the same count as that of d whose items can be scalar, array or list of any type.
For example,

Mx<-1 10 20:(‘Washington’;”Hamilton’;’ Jackson’)
M

1| Washington
10l Hamilton
201 Jackson

MJ[10]
Hamilton
M[1 20]

<Washington
<Jackson

Hence, a dictionary is a generalization of a list, instead of indexing by position values are indexed
by keys in its domain. A dictionary whose domain is a vector of symbols and whose range is a list
of equal length vectors (some of them can be a scalar or a character matrix with the number of
rows matches that length) is called a column dictionary. For example,

D<-("sym “price “hq:(appl “ibm “hp “goog;449.1 108.2 24.5 890.3;4 2#CANYCACA"))
D

sym | appl ibm hp goog
pricel 449.1 108.2 24.5 890.3
hq | 'CANYCACA'

The transpose of a column dictionary is called a table. A table can also be directly defined by
listing its columns:

&.D
sym price hq
appl 449.1 CA
ibm 108.2 NY
hp 24.5 CA
goog 890.3 CA

T<-([]sym<-"appl “ibm “hp “goog;price<-449.1 108.2 24.5 890.3;hq<-4 2# CANYCACA")
T

sym price hq

appl 449.1 CA

ibm 108.2 NY

hp 24.5 CA

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017
goog 890.3 CA

Note that with ‘(" followed immediately by ‘[’ it signifies the definition of a table so T is not a
mere list but a table. Column values can be accessed by symbol indexing and updated:

T[price]

449.1 108.2 24.5 890.3
T[price]<-T[price]+1 2 _3 0.5
T

sym price hq

appl 450.1 CA

ibm 110.2 NY

hp 21.5 CA

goog 890.8 CA

The shape of a table is defined to be the number of records in it which is equal to the length of its
column vectors. A group of columns in a table ¢ is said to be the primary key of table ¢ if values in
that group uniquely define records in table ¢. Let rk be the (smaller) table composed of the
primary key column(s) of ¢ and tv defined to be the table with the rest of columns in 7. Then a
keyed table kt is defined to be a mapping kt:vt between these two tables. We can also enter a
keyed table directly as a table by putting key columns inside []:

kT<-([sym<-"appl “ibm “hp “goog] price<-449.1 108.2 24.5 890.3;hq<-4 2#CANYCACA")
kT

sym | price hq

S O

appll 449.1 CA

ibm 1 108.2 NY

hp 124.5 CA

googl 890.3 CA

To access a record or records in a keyed table we do indexing by value(s) from the table k¢ of
keys (not by position):

kT[ibm]
pricel 108.2
hq I'NY'

KT[Cappl; goog)]
price hq

Records in a keyed table just as in an ordinary table can be updated similar to indexed assignment
(see §5.3 [5]). For a variable u of unique symbols and a variable v with values belong to u, there
is a construct called enumeration “u: of u over v and “u:v the enumerated values (see §5.1 [3]).
This can be extended to that of a table pT with a primary column as domain and entries in a

7

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

column of another table ¢, whose values all belong to that of pT, as its range; this is denoted as
"pT:. Hence, we define a foreign key column in a table as an enumerated value over a z.

pT<-([cux<-1 3 5] sex<-'fmm';age<-35 18 51)
pT

cux| sex age

sals<-([] mech<-"p1 p2'p3 p4 p2;amt<-2.3 1.2 5 20.1 50.7;cust<-"pT:3515 3)
sals

mech amt cust

A foreign key establishes a relation between the enumeration domain kt and the enumerated
value table dt, i.e. it has a column fk<-"kt:...; then the values of a column cO in kt can be accessed
via fx with the dot notation dt.fk.cO from dt, and this is called a virtual column.

sals.cust.age
18 513551 18

4. QUERIES: ESQL AND AN EXAMPLE DATABASE

ELI provides a basic set of query statements, esql, which is quite similar to standard SQL
statements for traditional relational database management systems. While not every SQL
statement has a ready counterpart in esgl yet, some esql statements can be more powerful than
their corresponding SQL statements. One prepares an esql statement as a text string, and then
executes that string by applying the reserved function do to it: do txt.

The create statement is of the following form:
CREATE TABLE tbl (fields;types;width)

where bl is the name of the empty table to be created, fields is a list of column names separate by
blanks, types is a character string indicating the types of column values and width is a vector
indicating the width of character valued columns. For example,

do stm10c<-'CREATE TABLE tl (abc de f;"SICEIC";8 1)'
table t1 created.
t1

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

The load and insert statements are of the following form:
LOAD TABLE tbl (fld1s<-vall;...; fldn<-valn)
INSERT INTO tbl (vall;...; valn)
One can also load a table using the method of setting up a table in the previous section.

The select statement is of the most used query in any database system and it is of the following
form:

SELECT [fields] [BY group] FROM tbl [WHERE wherespe]

where each expression inside [...] is optional, bl is the name of the table we are selecting data
from; fields selects the columns of bl while wherespe selects which rows of records in bl to be
included in the final result. The WHERE clause is processed first, if it is absent then all rows of
thl are selected; similarly, if fields is empty then all columns are selected corresponding to the
statement SELECT * FROM bl ... in SQL. wherespe is of the following form:

constraint [,constraintl[, constraint2,.. 1]

See §6 [5] for details of fields, group and constraint; the meaning of BY group clause is similar
to that of GROUP BY in SQL.

We illustrate the use of esql by running query examples against a sample database of a store in
the ws directory of eli distribution: after type)fload store2 in ELI session, we see the following:

customer<-([cux<-!tc] name<-na;sex<-se;age<-ag;addr<-ad;cardn<-cn)

stock<-([stx<-!ts] m_name<-mn;in_stk<-in;uni_prc<-up)

employee<-([empx<-!te] e_name<-en;e_age<-ea;e_phone<-ep)
sales<-([salx<-sa]cust<-"customer:cu;stk<-"stock:it;amount<-am;payment<-py;dat_time<-dt;
empl<-"employee:sp)

One can type do 'SELECT FROM sales' to see the content of the main table sales with salx as its
primary key and cust,stk,empl as foreign keys pointing to tables customer,stock,employee
respectively. We can do the following:

do stm2c<-'SELECT yng_sal<-amount, dat_time FROM sales WHERE 25 > cust.age'

yng_sal dat_time

7.1 2012.05.25T09:50:21.000
45 2012.05.25T10:37:03.000
23.52012.05.25T11:56:45.000
28.52012.05.25T12:00:22.000
51.22012.05.25T13:17:04.000
23.12012.05.25T13:23:41.000

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017
26.5 2012.05.25T15:30:05.000

do 'SELECT amount, dat_time FROM sales WHERE 50 > amount, stk.m_name IN “hammer
“screw “tape'

amount dat_time

36.5 2012.05.25T10:13:42.000
28.52012.05.25T12:00:22.000
18.52012.05.25T13:43:25.000
30.2 2012.05.26T12:43:46.000
23.12012.05.25T13:23:41.000
39 2012.05.25T14:10:23.000

26.52012.05.25T15:30:05.000
48.2 2012.05.26T14:30:26.000
17.52012.05.25T15:33:42.000

do stm10c<-'SELECT gender<-FIRST cust.sex, total<-SUM amount BY purchase<-cust.cux
FROM

sales'

purchasel gender total
|

01m 30.6

11£138.3

21m174.3

31f398.4

41m 296.8

5112531

61f150.1

The exec statement in esq/ is of the same format as that of the select statement simply with the
key word EXEC replacing SELECT. Instead of returning a table as in the case of the select
statement, the exec statement returns a dictionary corresponding to the table for the alike select
statement; for a one column table it just returns the column values. Through this statement, we
can bring the powerful set of primitive functions and operators on array/list in ELI to the data
involved for further processing and analysis outside the constraint of esgl.

The update statement is also of the same format as that of the select statement but with fields
being replaced by updfields which is a group of one or several assignments to column names:

UPDATE [updfields] [BY group] FROM tbl [WHERE wherespe]

Tables can be saved and reloaded as part of a workspace, or they can be exported to an esf file
(see §4 [5]). Finally we remark that esql statements are implemented as ELI defined functions but
packaged by the ELI system to make them as system function calls instead of as ordinary function
calls. In the ELI source code for various esgl statements, the ELI primitive function execute !.
played a crucial role. In addition, two monadic primitive functions where ?b and grouping >.m
proved to be very handy in implementing corresponding esq/ statements of the similar name. We

10

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

explain the first one where (?) here and refer the second one grouping (>.) to §2.2 [5]. For a
Boolean vector b, 7b gives the positions of 1s in b depending on []IO:

w
1375455321467933851

w<50
1010110010

Tw<50 /[110=0
02458

w[?w<50]

134521438

5. FILE HANDLING FACILITIES IN ELI

The basic work unit of the ELI system, as in APL, is called a workspace. In §3 of [3], we
described the scripting file facility of ELL In short, ordinary text file of type txt containing ELI
data (with prescribed heading indicating variable name, type and shape information), defined
function definitions and executable ELI statements can be loaded or copied into an ELI
workspace by the ELI system command)fload or)fcopy as a *.esf file. Conversely, the content of
an ELI workspace such as variables and/or defined function definitions can also be put out into an
*.esf file. Hence, the tables of a database built in an ELI workspace are permanently saved as a
*.esf file; subsequently, these saved tables in an ELI database can be loaded or copied into an
active ELI workspace for data accessing, manipulation and analysis.

In this section, we briefly describe additional file facilities of ELI, which accepts several
commonly used file formats as well writing the data context of a particular ELI workspace to files
of these common file formats. ELI has a construct called file handle to support writing data to
files and there are two system functions [Jopen and []close to deal with file handles:

h<-[Jopen ‘file.txt’
[Iclose h

where the first statement opens the file file.txt and save the file handle to variable h and the
second statement closes h, return O if h is successfully closed, return 1 otherwise.

The system function, []get, is used to read a raw text file as a whole while the system function,
[ICSV, is used to load a csv file into a workspace as a table. On the other hand, a table in ELI can
be outputted to a file of certain common data formats like CSV, XML, JSON and TXT. Suppose
contact is a table in an ELI workspace containing a database, The table contact can be saved into
contact.csv by the system command [[write. We can try three more commands to save the table
into three different formats as follows:

[Jwrite ‘contact.xml’
contact.xml

[]write ‘contact.json’
contact.json

[Jwrite ‘contact.txt’
contact.txt

11

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

More details on ELI file handling facilities can be found in §4.3 of ELI Primer [5].

6. DISCUSSION ON ELI AND RELATED PROGRAMMING LLANGUAGES AND
SYSTEMS

Since ELI inherits its core from APL, it is an array-oriented interpreter-based programming
language system with obvious similarities to FORTRAN and MATLAB. FORTRAN, as the first
high level programming language developed before APL, is a compiler based language system;
later when FORTRAN evolved into the current version FORTRANO90, it borrowed many, but not
all, array features from APL. FORTRAN is still actively used in scientific research, especially in
HPC (high performance computing) circle since it has the best run-time performance and
especially, FORTRAN is the only stable programming language tool available on many parallel
supercomputers. MATLAB, on the other hand, is interpreter-based but its coding style follows
that of FORTRAN; MATLAB is currently far more popular than FORTRAN. Naturally, both
APL and MATLAB suffer greatly in run-time efficiency. To close that performance gap, in 1980s
the second author developed the APL/370 compiler [9] (later it evolved into the APL-to-C
compiler [10]) at IBM T.J. Watson Research Center which has been shipped to some selected
IBM customers with reports of good performance [11]. Similarly, ELI offers an ELI-to-C
compiler which covers language features corresponding to APL1 with the notable exclusion of
the execute function (!.) whose argument value can only be known at run-time. MATLAB took a
route quite different from the traditional compiler approach followed by [9], [10]: starting in 2004
it developed the JIT (just-in-time) compilation technology to seamlessly accelerate MATLAB
applications in its interpreter based environment (especially those written in the scalar looping
form) [12]. We have not yet made a comparison between the run-time performances of compiled
code on a good sample of equivalent code in ELI and MATLAB under [8] and [12]. We intend to
carry such a study soon.

Unlike FORTRAN and MATLAB, APL and ELI’s application areas are not limited to scientific
and engineering areas (we listed many of these in [3]). One good example to illustrate the
versatility of APL/ELI is the fact that both APL compilers [9], [10] are written in APL and the
ELI compiler [8] is written in ELIL. One difference between the compilers in [10] and [8] is that
the ELI compiler has been self-compiled; hence it operates independent of the ELI interpret
environment, i.e. as a compiled C object code operates on a text file representing the ELI source
code intended for compilation while in [8], [9] the compiler is a saved workspace (in this effort,
the new scripting file facility of ELI played a crucial role). We hardly would image a compiler of
such complexity being written in FORTRAN or MATLAB. We further note that the control
structures in ELI, which is absent in APL1, greatly helps in writing complex software such as
compilers. Thus ELI can be a suitable implementation language for complex software in many
application areas.

Compared with C/C++, ELI is not as versatile since it is not a good system implementation
language due to its lack of links to low level system calls as well as its poor run-time efficiency.
Of course, ELI/APL is far more productive in term required manpower to complete an application
of considerable complexity such as financial processing and logistics systems. This is largely due
to its succinctness and the interactive nature of programming for easy testing and
experimentation. Moreover, we note that ELI is not an oo (object-oriented) programming
language such as C++, Java or Python. ELI utilizes a well-thought out group of high level
primitives operating on arrays and lists in an integrated fashion to reduce program complexity and

12

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

speed up program construction. An oo language uses classes to offer a modular approach to
manage large program complexity. ELI offers conceptual simplicity while oo languages offer
scalability in building large scale system software. This discussion brings us to the current most
popular teaching language in computer science, Python. Python is also interpreter-based. It has
array features in addition to being an oo language. Moreover, Python can be linked to many low
level system features to build versatile systems. In comparison with ELI, Python greatly depends
on abundance of many available packages. For example, to do scientific computation in Python,
one imports the NumPy or SciPy module. In ELI these are already built into the ELI system itself.
However, we are not aware of efforts to compile a substantial part of Python to increase its run-
time efficiency.

The most important feature of the ELI programming language system is the existence of a native
RDMS system as a group of related tables and a set of SQL-like statements, esgl, applicable to
these ELI tables just like SQL applied to tables in a RDMS system such as IBM DB2, Oracle and
MySQL. We acknowledge the fact that we followed the direction of k/Q of kdb in this effort, and
we also point out that k/Q are not mainly aimed financial/trading applications. The programming
language R has dataframes similar to tables in ELI but not exactly the same and no corresponding
SQL-like statements to manipulate them. Python has packages to do data analytics but none of
these has true tables as in a relational database system with SQL-like statements. Many
programming languages such as Python and Perl offer DBI package to interface with an existing
database system such as MySQL to get data for further processing/analysis under the particular
programming language interfaced to. In ELIL the database, i.e. a group of related tables, exists
inside an ELI workspace as native data objects ready to be processed by esg/ statements or further
manipulated by other ELI code. This integration of a database and its analysis code greatly speed
up data analysis in terms of speed and effort. However, we should point out that the database
system inside an ELI system has its limitations. First, esgl contains most used SQL statements is
not as complete as SQL in a fullfledged RDMS system. Second, it lacks locking facility. Hence,
databases built inside ELI are more suitable for large data analysis than for transactional
applications.

The ELI system itself is implemented in C++; in particular, each ELI primitive function is written
in C++. The most intriguing fact about ELI having a native database subcomponent is that all esg/
statements are implemented in ELI as ELI defined functions and later packaged as system calls.
In implementing esql statements, many ELI primitive operations on arrays and lists are used, and
most importantly the execute function is used. This presents a challenge in case we attempt to
speed up esqgl statements through compilation since our current ELI compiler method excludes
the execute function. This challenge will guide our future effort in improving the run-time
efficiency of more ELI applications.

7. CONCLUSIONS

We have presented the ELI programming language system. After tracing its heritage from APL
we have shown two examples to illustrate some of its newer features. We described lists,
dictionaries and tables in ELI as the base of having a native database component in ELI. Later,
we introduced SQL-like statements, esql/, in ELI together with an example database. We
discussed ELI in comparison with several related programming language systems from many
different angles. Finally, in explaining the implementation of esq/, we brought our attention to a
challenge to our effort in extending the coverage of ELI compilation.

13

International Journal of Programming Languages and Applications (IJPLA) Vol.7, No.1, January 2017

REFERENCES

[1] Ken. Iverson, Notation as a Tool of Thought, Comm. ACM, vol.23, no.8, 444-465, 1980.

[2] International Organization for Standardization, ISO Draft Standard APL, ACM SIGAPL Quote
Quad, vol.4, no.2, December, 1983.

[3] H. Chen, W.-M. Ching, ELI: a simple system for array programming, vol. 26, No.1, Sept. 2013,
94-103, Vector,

[4] IBM APL2 Programming: Language Reference.

[51] W.-M. Ching, A Primer for ELI, a system for programming with arrays, 2011-
2016, http://fastarray.appspot.com/.

[6] W.-M. Ching, ELI for kids, a novel way to learn math and coding, 2015-
2016, http://fastarray.appspot.com/.

[7] Jeffery Borror, q for Mortals version 3, an introduction to Q programming, g4m LLC, New York,
2015.

[81 ecc: the ELI-to-C Compiler User’s Guide,2013, http://fastarray.appspot.com/.

[9] W.-M. Ching, Program analysis and code generation in an APL/370 compiler, IBM Jour. Res.
Dev. , vol.30, no.6, 594-602, 1986.

[10] Ching, W.-M, Ju, D.: An APL-to-C compiler for the IBM RS/6000: compilation, performance and
limitations, APL Quote Quad 23(3), 15-21, 1993.

[11] Bates, J.: Some observation on using Ching’s APL-to-C translator, APL Quote Quad 25(3), 47-48,
1995.

[12] The MathWorks, The MATLAB JIT-Accelerator, 2004.

14

