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Abstract We present a study on the execution performance of APL and MATLAB on a suite of five 

programs ranging from one of highly iterative nature to ones mainly do array operations. The 

comparison on performance is carried out in three different modes of execution: interpreted, compiled 

and parallel.  We found that MATLAB interpreter is in general much faster than APL; and compiled 

MATLAB code executes not necessary faster while in APL the compiler provides significant 

performance improvement. The strategies for parallel execution in MATLAB and APL are different: 

one is interpreter-based, the other compiler-based.  We discuss some insights into programming 

language implementation from this study. 

    

1. Introduction  

 

Execution efficiency is one of the most important issues in the study of programming language 

implementations, and there are many studies in that area, especially that concerning compiler 

optimization.  Most studies of programming language execution performance confine to one language 

but with different implementations such as the performance differences due to different compilation 

techniques or parallelization strategies.  It is rare to find a cross-language study which compares 

performance of different languages, other than general acknowledgement that programs written in a 

lower-level language such as C execute much faster than those written in a higher-level, or interpreter- 

based languages.  Therefore, it is worthwhile to do a comparison study on execution performances of 

two existing languages to gain insights into various programming language implementation issues.  

To this end, we selected two language systems that have long been used in a wide range of real-world 

applications: APL and MATLAB. 

        

Both APL and MATLAB are very high-level array-based languages; they are similar in providing 

arrays as the main programming data structure but have different implementation heritages.  Both 

execute much slower with scalar data in interpretative mode compared with that of C, while there are 

compilers for each which can possibly improve execution performance.  Moreover, there are recent 

works in both language systems to improve the execution performance further by utilizing the parallel 

computation power afforded by modern multi-core machines.  Hence, it is interesting and feasible to 

compare the execution performance of equivalent programs written in these two languages under 

various implementations, i.e. interpreted, compiled and parallelized. 

 

For this purpose, we picked a suite of five programs: floyd, poisson, jacobi, rprime and morgan; these 

programs are chosen for their different characteristics.  floyd is a typical scalar iterative program while 

poisson and jacobi are typical array-oriented programs.  rprime involves recursion and morgan has 

function calls.  None of the five programs is a large application, but neither are they trivially simple. 

All comparisons are measured on a Window-based platform.  With one exception, MATLAB 



 

 

interpreter is at least twice faster than APL.  On the other hand, the improvement of MATLAB code in 

execution time after compilation is often modest if exist at all; in case of APL, the compiler gives 

significant performance improvement: APL outperforms MATLAB after compilation with one 

exception.  For parallel execution, MATLAB provides a toolbox of parallelization facilities for user to 

use; in APL parallelization is done to compiled code by a new component of the compiler without user 

intervention.  

 

While our study is limited to a small sample set, it does provide concrete data on the execution 

performance of this program-set for us to compare and study.  This study gives us valuable insights 

into several programming language implementation issues, and these in turn suggest pragmatic 

methods to improve performance of existing programming languages in the age of parallelism.  In 

particular, many techniques we developed in implementing a parallelizing APL compiler can be 

adopted by other very high-level languages to benefit from multi-core machine currently available; on 

the other hand, MATLAB suggests the importance of linking to highly efficient linear algebra routines 

which we believe are already parallelized on multi-core machines, thus provide parallelism transparent 

to the user. 

 

In the next section, after a brief history of each language, we describe the relevant information about 

the particular systems of APL and MATLAB which we used for our experiment.  In Sec.3, we present 

five example programs, their characteristics and the performance data for different mode of execution.  

In Sec.4, we state what we learned from the performance comparison and discuss its implications.  

The paper ends with a conclusion.  

 

2. APL and MATLAB, languages and systems 

 

Both APL and MATLAB are array-oriented programming systems invented by university professors of 

mathematics.  APL was invented by Ken Iverson at Harvard for teaching applied mathematics around 

1960, and later he joined IBM T. J. Watson Research Center, where Larry Breed and colleagues 

implemented the first APL interpreter on S/360 using assembly language in 1966.  MATLAB was 

invented by Cleve Moler of MathWorks; he wrote the first implementation in FORTRAN around 1980 

while he was a professor of mathematics and computer science at the University of New Mexico.  

Iverson intended APL to be an executable mathematical notation (see his Turing Award Lecture [3]) 

while Moler’s original goal was far more practical, i.e. to provide engineers and scientists a way to 

access the efficient LINPACK and EISPACK without writing FORTRAN programs.  Consequently, 

APL with uniform syntax and succinct symbols has a programming style distinct from any other 

languages, while the syntax and notations of a MATLAB program are more conventional.   

 

The application areas of APL and MATLAB overlap but are far from the same.  APL is used more in 

actuaries and finance while MATLAB is used more in engineering and industrial simulation.  As 

mentioned earlier APL developed more than 15 years before MATLAB but its traditional focus on 

mainframe platform made it less popular when many of its existing business applications can be 

replaced by PC-based mass packages such as Excel.  On the other, the continuous development and 

improvement of MATLAB on workstations and PCs made it more popular and powerful.  Still, there 

are APL vendors other than IBM today while MATLAB is exclusively marketed by MathWorks!  We 



 

 

note here that Morgan Stanley has its own dialect of APL, called A+, which is an open source software 

(www.aplusdev.org); a line in APL executes from right to left with all primitives of equal precedence.           

 

As both APL and MATLAB are mainly implemented by interpreters, an APL or MATLAB program 

executes slower than a corresponding C program in general.  Of course, an APL or MATLAB user is 

well compensated in productivity and ease of use provided by the respective systems.  The systems 

we use for our base-line comparison are the following: the APL interpreter is a free demo version of 

APL2 on Windows XP downloaded from IBM (http://www-01.ibm.com/software/awdtools/apl); this 

does not imply that IBM APL2 represents the current state of performance of APL interpreters on the 

market such as those of Dyalog APL and APL2000.  It simply means that APL2 is easily available to 

us. The MATLAB version is a 7.8.0.347 (R2009a) release version on Windows XP from 

MathWorks(http://www.mathworks.com).  

 

MATLAB provides a compiler [6] to improve the efficiency of MATLAB code as well as to provide a 

way to execute MATLAB code independent of its system environment.  To compile and run, we need 

to develop an environment. We run “mbuild -setup” in MATLAB command window to setup compiler, 

and choose the second option which is named “Microsoft Visual C++ 6.0”; then follow instructions to 

the end.  Upon completion, we can switch to resulting M-file(s) for independent external execution by 

issuing the command “mcc –m Mainfile.m file1.m fiel2.m ..” to generate a standalone application.  

We note that each function in a MATLAB code will produce a separate m-file after compilation. 

 

IBM does not offer a compiler product for its APL system no are we aware of compilers offered by 

other APL vendors, but there exists a prototype compiler developed earlier at IBM T.J. Watson 

Research Center [1], and the APL compiler we use has this origin.  It consists of an APL workspace, 

called COMPC, of about 14k lines of APL and a small C library, apl3lib.cpp, to be linked with 

compiler generated C code to produce executables.  A compilation unit W is a group of APL functions 

in a workspace consisting of a main function F and all other functions called directly or indirectly by 

this main function.  To compile W, we prepare 2 variables: LPARM which a character string consists 

of the name of F followed by a blank and types of F’s parameters if any, and RPARM which is a 

numeric vector- started with the intended index origin of W followed by the shapes (rank, and 

dimensions if known) of F’s parameters.  To compile, simply call the main function COMPILE in 

COMPC 

 
           )LOAD COMPC 
             )COPY W 
             LPARM COMPILE RPARM   

 

MATLAB provides a toolbox to help users to parallel their code in the interpreter environment [7].  

Hence，a user need to modify his code appropriately to utilize the facilities in this toolbox such as 

parfor, distributed arrays and spmd.  For reasons to be explained in the next section we are able to 

parallelize only one example due to either limitations of facilities offered or it requires extensive 

recoding.  Moreover, MATLAB’s parallel tool box is really designed for structuring irregular code for 

parallelism; for array operations, which dominate in our examples, it provides no advantage in speed as 

we list the performance data of different ways to do a matrix assignment in MATLAB in the appendix.  

In contrast, our recent work on automatic parallelism [2] provides an extensive and transparent 

parallelizing tool which is quite simple to use.  It consists of a new workspace PARAC which needs to 



 

 

be copied in right after loading COMPC to produce C code embedded with OpenMP directives for 

parallel execution.  To execute the parallelized C code, one just compile the resulting code with any C 

compiler which supports OpenMP and link to a new version of the small C library apl3lib.cpp (we refer 

to [2] for a brief description of the base compiler COMPC as well as the new parallelizing component 

PARAC).  The speedup thus gained greatly depends on the nature of the programs to be parallelized, 

but it requires no additional effort from the user other than compilation.  We do not claim that the 

work on automatic parallelization used here is necessary the most advanced result of parallelization in 

research on APL-like functional languages.   

  

3. Examples programs and execution time measurement  

 

One of the difficulties in making a cross-language study is to wisely select a small sample of programs 

which is both representative but has distinct characteristics.  The first program is the well known 

Floyd algorithm of minimum weighted distance between cities.  This program is inherently iterative.  

All other 4 examples are from the testing suite of [1], hence originally written in APL.  The 4
th
 

example is to find primes up to N using a recursive sieve method.  The other three are all 

array-oriented, i.e. they involve large array operations.  The last one involves function-calls.  We 

listed floyd in MATLAB, and others in APL here (MATLAB counterparts are available upon request). 

 

All measurements are run-time on a 4-core computer, an AMD Athlon II X4 620, clocked at 2.6GHz 

and with 4 x 512KB L2 cache under Window XP.  For parallel performance, we run all 4 threads.  

We note that parallel speedup is counted against execution time of compiled code in case of APL, and 

against interpretation time in case of MATLAB.  We run each program in both languages at least 5 

times to get average timing for all cases.  In APL, ⍝ starts a comment. 

 

1. floyd The first example is a graph analysis algorithm for finding shortest paths in a weighted graph. 

The output is a matrix of the shortest distance (summed weights) between all pairs of vertices,    

without the detail of paths. The program is a triply nested loop.  We can see that MATLAB interpreter 

is much faster than APL; but compiled APL is markedly faster than compiled MATLAB.  The input 

data type used is double-precision floating point.   

 
function floyd(D) 
[n,n] = size(D); 
for k=1:n 
    for i=1:n 
        for j=1:n 
            D(i,j) = min(D(i,k)+D(k,j),D(i,j)); 
        end 
    end 
end 

 

floyd(200x200) interpreter compiled speedup parallelized speedup 

APL 42352 ms 78 ms 542.97 65.2 ms  1.1963 

MATLAB 423 ms 416 ms 1.0168  *  * 

ratio 100.123 0.1875    

 

We did make an effort to parallelized the MATLAB code by using parfar facility in [7]; but as the for 

loops are nested and data dependent, it ended up in a much worse performance than the original code 



 

 

which we did not list here (around 33 sec.), and we cannot ascertain its correctness formally.   

 

2. poisson The second example is to solve a Poisson equation with boundary condition. The input data 

type used is double-precision floating point.   

 

[0]   Z←POISSON RMINBU;P;Q;L;M;S;T;V 
[1]   Z←0 0⍴0                                   ⍝ set up an empty matrix 
[2]   →(2≠⍴⍴RMINBU)/0                       ⍝ check to see whether it is 2-dim  
[3]   P←1+¯1↑⍴RMINBU                        ⍝ P is dim2+1 
[4]   Q←1+1↑⍴RMINBU                          ⍝  Q is dim1+1 
[5]   L←¯4×(1○○(⍳Q-1)÷2×Q)*2             ⍝ W*2 is square of W. ⍳5 is 0 1 2 3 4 
[6]   M←¯4×(1○○(⍳P-1)÷2×P)*2             ⍝ ○A is pi×A. 1○A is sin A 
[7]   S←1○○(⍳Q-1)∘.×(⍳Q-1)÷Q   
[8]   S←S÷(+/S[1;]*2)*0.5                 ⍝ +/V is sum of V 
[9]   T←1○○(⍳P-1)∘.×(⍳P-1)÷P   
[10]  T←T÷(+/T[1;]*2)*0.5 
[11]  V←L∘.+M                                      ⍝ V is the addition table of L and M 
[12]  Z←S+.×((S+.×RMINBU+.×T)÷V)+.×T ⍝ W+.×T is the matrix multi. of W & T 
 

poisson(501x501) interpreter compiled speedup parallelled speedup 

APL 1110 ms 718 ms   1.546 354 ms  2.028 

MATLAB 146 ms 213 ms   0.685 154 ms *  0.948 

ratio  7.603  3.37  2.299   

 

In this example, we see some that MATLAB interpreter is not only more than 7 times faster than APL, 

it is faster than its’ compiled code and that of compiled APL.  At first glance, this is counter-intuitive, 

but a closer look explains why.  We note that ∘.× is outer-product, +.× is inner-product, i.e. matrix 

multiplication, and the whole program running time is dominated by these huge matrix operations.  If 

we recall the root of MATLAB, i.e. to provide a user to have access of the most efficient FORTRAN 

linear algebra packages, we realize that the efficiency thus gained overshadows minor cost of 

interpretation.  And in this case, although compiled APL improves upon interpreter, it is no match for 

the efficiency of BLAS routines, even with a respectable parallel speedup of more than 2.   

 

We parallelized the MATLAB code by using distributed arrays facility from [7] by simply adding the 

following lines in front of the existing code (where oRMINBU stands for input data): 

 

[q,p] = size(oRMINBU); 

RMINBU = codistributed(oRMINBU,'convert'); 

 

Notice that the execution performance is actually a bit worse than the original interpreter number.  We 

believe this is because matrix multiplication in MATLAB already takes advantage of multi-cores 

hardware whether one uses its parallel toolbox or not.  In fact, our use of distributed arrays may well 

have incurred the cost of extra data movement.   

  

3. jacobi The third example is to iteratively averaging temperature from a rectangular boundary to 

interior to reach within a pre-set error bound. The input data type is double-precision floating point.   

 

[0]   Z←F JACOBI A;C;E  ⍝ A with values on boundary and 0s in interior 
[1]   E←0.1                  ⍝ F is 0s on boundary and 1s in interior 
[2]   C←(Z←A)×~F          ⍝ ~0 1 1 0 0 1 is 1 0 0 1 1 0 



 

 

[3]  L:R1←¯1⊖A←Z           ⍝ ̄ 1⊖A rotates A upwards by one row 
[4]   R2←1⊖A                 ⍝ 1⊖A rotates A downwards by one row 
[5]   R3←1⌽A                 ⍝ 1⌽A rotates A rightwards by one column 
[6]   R4←¯1⌽A                ⍝ ̄ 1⌽A rotates A leftwards by one column 
[7]   →(E<Q/|,A-Z←C+0.25×F×R4+R3+R2+R1)/L ⍝ if max of abs(A-Z)> E jump to L([3]) 
 

jacobi(101x101) interpreter compiled speedup parallelized speedup 

APL 448 ms 93 ms   4.817 78 ms  1.1923 

MATLAB 126 ms 128 ms 0.984   *   * 

ratio  3.556 0.726    

 

First we note that in case APL, we can achieve better parallel speedup here as well as in poisson by 

using a bigger matrix [2].  For MATLAB, jacobi is a good example for using spmd from the toolbox 

[7] as it requires data exchange while splitting data to multiple cores; but we do not have time to work 

out the necessary communication details between adjacent grids here.  We see in this example, unlike 

in poisson, compiled and parallelized APL outperform MATLAB; and this is likely due to the fact the 

matrix operations involved here have fewer opportunities for optimization and fine-tuning.    

 

4. rprime The fourth example is to find prime numbers less than or equal to N, using a recursive sieve 

method starting with the set of primes less than 100.  It uses a Boolean vector to indicate prime-ness 

of an integer at its corresponding bit-position.  The data types used are integer and Boolean.   

 
[0]   P←RPRIME N;I 
[1]   P←2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 
[2]   →(~N≤100)/L0 
[3]   P←(N≥P)/P 
[4]   →0 
[5]  L0:PL←⍴P←RPRIMEWN*0.5 
[6]   B←N⍴0 
[7]   I←1 
[8]  L2:B←B∨N⍴(-P[I])↑1 
[9]   →(PL≥I←I+1)/L2 
[10]  P←P,1↓(~B)/⍳N 

 

Finding prime number < 88000 

rprime(88000) interpreter compiled speedup parallelled speedup 

APL 16 ms 10 ms   1.6  10ms 1 

MATLAB 56 ms 61 ms   0.918   * * 

ratio 0.2857 0.1639    

 

In this example, we see that APL handles bits-vectors and recursion quite efficiently compared with 

MATLAB; and compiled APL also has efficient bits-vector implementation.  As in the last example, 

compiled MATLAB incurred some additional setup cost without giving any speedup.  The automatic 

parallelism capability implemented in PARAC does not apply to operations in rprime.  Hence, it has 

no parallel speedup at all.  For MATLAB, the limitation that indices in a parfor loop must be 

contiguous precludes its use for parallelization of rprime. 

 

5. morgan The fifth example is some calculation from a financial application; it is the only 

non-recursive example here with a function call; and we note that MATLAB compiler generates two 

m-files for the two functions.  The input data type used is double-precision floating point.   

 



 

 

 
[0]   R←N MORGAN A;X;Y;SX;SX2;SY;SY2;SXY ⍝ N is a number, A a 3-dim array 

[1]   X←A[1;;]                                       ⍝ X the 1st hyperplane of A 
[2]   Y←A[2;;]                                       ⍝ Y the 2nd hyperplane of A 
[3]   SX←N MSUM X 
[4]   SY←N MSUM Y 
[5]   SX2←N MSUM X*2 
[6]   SY2←N MSUM Y*2 
[7]   SXY←N MSUM X×Y 
[8]   R←((SXY÷N)-(SX×SY)÷N*2)÷(|((SX2÷N)+(SX÷N)*2)*0.5)×(|(SY2÷N)-(SY÷N)*2)*0.5 
     
[0]   R←N MSUM A                          ⍝ A is a matrix. (0,-N)↓T drop last columns of T 
[1]   R←((0,N-1)↓T)-0,(0,-N)↓T←+\A        ⍝ T is the partial sum of A on each row  

 

morgan(2×1510×2010) interpreter compiled speedup parallelled speedup 

APL 2578 ms 516 ms  4.996  182 ms  2.835 

MATLAB 1345 ms 1343 ms  1.0014    *   * 

ratio 1.9167 0.3842    

 

In this last example, run-time is also dominated by large operations; we see that MATLAB is twice as 

fast as APL, but after compilation, APL is 3 times faster.  The difference with poisson is that the 

matrix operations here do not have ready counterparts in BLAS.  We also see that in this example, 

parallelized APL code achieved very good result due to virtual operations and streaming [2].  For 

MATLAB, we cannot use the distributed array facility from Parallel Toolbox here due to the limitation 

that it cannot contain function calls.  

   

4. Implications of the comparative performance data 

 

From the timing data in the previous section, we have three general observations: First MATLAB 

interpreter is much faster than that of APL if computation is dominated by nested for-loops (floyd) or 

can directly call highly optimized linear algebra routines either provided by Intel’s MKL (Math Kernel 

Library) or packages based on FORTRAN (poisson) which most likely are already parallelized to take 

advantage of multi-core hardware.  It is also twice faster than APL on morgan where there are also 

large array computations.  APL interpreter is only faster than MATLAB when there is recursion or 

bits-operations (rprime). 

 

Second, compiled MATLAB code executes only modest faster than in its interpreter, if at all, while in 

APL that performance improvement can be significant, especially on inherently sequential code like 

floyd.  Indeed, COMPC provides speedup to all programs in our samples, but the amount of speedup 

gained by compilation greatly depends on the nature of the program.  With the exception of poisson 

where matrix multiplications dominated computation time, compiled APL substantially outperforms 

MATLAB counterpart.  As we mentioned earlier, COMPC’s strategy of compiling APL is to translate 

APL into an equivalent C program after extensive type-shape analysis of a program’s variables.  There 

is also substantial work on compiling MATLAB such as de Rose [5].  We do not have technical 

information on the implementation of the MATLAB product compiler.  But it seems that the product 

adopted a rather conservative strategy and generally geared more towards providing a tool for 

producing independently executable module than for faster execution. 

 

Third, MATLAB thru Parallel Toolbox provides very comprehensive solutions for parallelism: it has 

distributed arrays to parallelize vector operations, parfor, which is equivalent to the OpenMP parallel 



 

 

for directive, and spmd, which is a more general and more powerful tool than parfor but requires more 

effort to write a parallel program.  Nevertheless, there are quite number of limitations in utilizing 

these set of facilities as mentioned separately in the previous section.  More importantly, the whole 

aim of the Toolbox is to speedup interpretation in parallel, not parallelizing compiled code by a 

compiler.  We can see then a two prongs strategy of MATLAB to give a user the benefit of parallelism: 

one explicit, i.e. to let a user do some work using the toolbox, the other implicit, i.e. linking highly 

optimized and parallelized underlying routines in the interpreter.  In case of APL we championed the 

approach of parallelizing compiled code by a parallelizing component of the compiler, i.e. parallelism 

is automatically provided by the compiler, at least for data parallelism.  Not only this lessens the 

burden of studying parallelism on user’s part but it is also shown to be effective in examples 2, 3 and 5 

where the programs are written in an array-oriented style.  The possibility of automatic parallelism is 

one advantage a very high level language such as MATLAB or APL has over C.  We note that there is 

research work on parallel MATLAB compiler such as that in [4].   

 

Finally, from the performance data in example 2, the only example where compiled/parallelized APL 

executes slower than MATLAB, we learned the importance of utilizing highly optimized routines of 

frequently used linear algebra operations which may even be hand-crafted by hardware vendors’ 

developers with particular knowledge of the underlying machine architecture.  Highly efficient 

routines for some common functions, when their computation dominates run-time, can easily 

compensate inefficiency incurred by an interpreter.  However, other than linking to ultra-efficient 

routines, fine-tuning the performance of an interpreter, or parallelizing its execution, is not necessary a 

wise approach.  For instance, had we called the efficient package BLAS or MKL in our APL compiler, 

our compiled code would have performed at least on par with that of MATLAB.  We believe to 

optimize and/or parallelize compiled code is a more effective approach to enhance execution 

performance of very high level programs as it will cover more general type of programs, and this is 

supported by the performance data from our sample programs.    

 

5. Conclusion 

 

We presented a study on the execution performance of MATLAB and APL.  We measured and 

compared the run-time of 5 example programs of various characteristics executed under interpreter, 

after compilation or parallelization.  We gained valuable insights into some important issues in 

program language implementation.  We believe that cross-fertilization in language implementation 

research is quite desirable, especially for languages which are not too dissimilar.  Works done in APL 

compiler and parallelization can be profitably adopted in MATLAB; and conversely APL and its 

compiler implementation can learn from the MATLAB interpreter’s efficient call to existing highly 

optimized math routines.    
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Appendix (timing of different mode of coding matrix assignment in MATLB in milliseconds)   

 

    data size 100x100  time/ratio 500x500  time/ratio 1000x1000time/ratio 

1. C = A    8.263 1   9.626 1   10.160 1 

2. C(i,:) = A(i,:)  10.782 1.30  22.858 2.37   54.378 5.35 

3. C(i,j) = A(i,j)  13.176 1.59  38.879 4.04   67.510 6.64 

4. parfor i; C(i,:) = A(i,:) 177.791 21.5 185.138 19.2  395.315 38.9 

5. parfor ; cell use  196.321 23.8 762.237 79.2 2907.148 286 

 

Initialization: 

n = 100; %n = 100/500/1000 

A = rand(n,n);            //A is of type double-precision floating point 

C = zeros(n,n); 

 

Note: Initialization not included in timing; parfor uses two labs with command “matlabpool open”   

2. 

for i=1:n 

    C(i,:) = A(i,:); 

end 

 

3. 

for i=1:n 

    for j=1:n 

        C(i,j) = A(i,j); 

    end 

end 

4. 

parfor i=1:n 

    C(i,:) = A(i,:); 

end 

  

5.   

n = 100; 

A = rand(n,n); 

C = cell(n,1); 

parfor i = 1:n 

    for j = 1:n 

        C{i}(j) = A(i,j); 

    end 

end 

C = cell2mat(C); %this step is necessary 

 

 

 

  


