
 

1 
 

 

 

 

 

     ELI for kids, a novel way to learn math and coding  

                                       by Wai-Mee Ching 

                           June, Aug, Sept. 2015, Jan., June 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   Copyrighted © 2015 

 



 

2 
 

Contents 
1. Arithmetic Computations and Algebra ................................................................................................................. 6 

1.1 Getting started ...................................................................................................................................................... 6 

1.2 Basic data types and how data are organized in ELI ........................................................................................... 8 

1.3 Rudimentary set theory ...................................................................................................................................... 12 

1.4 Numbers and arithmetic functions ..................................................................................................................... 13 

1.5 Short functions and how to save your work....................................................................................................... 19 

1.6 More numerical functions .................................................................................................................................. 22 

2. Comparisons, Compress and Operators .............................................................................................................. 25 

2.1 Comparisons of data .......................................................................................................................................... 25 

2.2 Boolean operations ............................................................................................................................................ 26 

2.3 Boolean selection ............................................................................................................................................... 27 

2.4 The reduction operator and mathematical induction .......................................................................................... 28 

2.5 The scan operator ............................................................................................................................................... 31 

2.6 The each operator .............................................................................................................................................. 33 

3. More Mathematical Functions ............................................................................................................................ 35 

3.1 The power function and roots ............................................................................................................................ 35 

3.2 Euler’s number e and the exponential function ................................................................................................. 37 

3.3 The logarithm and natural logarithm functions and groups ............................................................................... 39 

3.4 Complex Numbers ............................................................................................................................................. 41 

3.5 Trigonometric functions .................................................................................................................................... 44 

4. Coding with Arrays, Lists and Dictionaries ........................................................................................................ 49 

4.1 Accessing and changing array and list elements ................................................................................................ 49 

4.2 Operations on arrays .......................................................................................................................................... 52 

4.3 Set membership and linear locations of elements .............................................................................................. 56 

4.4 Outer product and inner product ........................................................................................................................ 59 

4.5 Sort functions ..................................................................................................................................................... 60 

4.6 Dictionaries ........................................................................................................................................................ 61 

5. Defined Functions, Script Files and Standard Library ........................................................................................ 63 

5.1 Defined functions and control structures ........................................................................................................... 63 

5.2 Recursion ........................................................................................................................................................... 65 

5.3 Script files and output variables ......................................................................................................................... 67 

5.4 The standard library ........................................................................................................................................... 69 

6. Data and Probability ........................................................................................................................................... 71 

6.1 studying numeric data ........................................................................................................................................ 71 



 

3 
 

6.2 basic combinatorics ........................................................................................................................................... 73 

6.3 elementary probability theory ............................................................................................................................ 76 

6.4 conditional probability ....................................................................................................................................... 79 

References.................................................................................................................................................................... 81 

 

      

  



 

4 
 

     By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced 

problems, and in effect increases the mental power of the race. 

 

                                -A.N. Whitehead, quoted in Ken Iverson’s Turing Lecture  
 
 

                                              Introduction 

     One difficulty in teaching mathematics to youngsters is the lack of instant response to show a correct answer 

unless the student has a private tutor, and even an experienced tutor cannot provide answers to complicated formulae 

instantaneously.  With the advent of modern computer and its associated ensemble of software programs, it becomes 

possible to teach mathematics to young students by interactive computer software.  However, most math teaching 

software packages on the market concentrate more on fairly simple arithmetic operations with great effort in 

showing fancy graphic images such as adding two apples with three apples.  Rarely such packages teach serious 

mathematical computations, not to say modern mathematical concepts.  On the other hand, there are books which 

intend to teach youngsters how to program.  A good example is the recent book “Python for Kids, a playful 

introduction to programming” by Jason Briggs.  Of course, Briggs’ book aims solely at teaching kids how to code 

not to learn math.  The purpose of this book is to teach kids real math and good coding at the same time based on an 

interactive programming system called ELI we developed which is freely available at http://fastarray.appspot.com/.    

     ELI is based on an old programming language called APL which was based on a set of mathematical notations 

developed by Ken Iverson at Harvard in the late 1950s to early 1960s for the purpose of communicating 

computational algorithms in an exact fashion while he was teaching applied mathematics there.  Iverson later joined 

IBM Research and continued his work on APL with Adin Falkoff.  In 1966 with the help of Larry Breed and 

collaborators at IBM T.J. Watson Research Center, APL became an executable programming language.  Since then 

it has been used in a variety of fields such as finance, insurance, logistics, electrical engineering, physics and 

economic data analysis.  It was particularly popular on Wall Street during 1980s.  But two factors prevented more 

wide use of APL, especially at schools: 1) APL font requires a special keyboard; 2) APL was quite expensive even 

though later there were free trial versions.  ELI addresses these two issues by: 1) ELI uses one or two ASCII 

characters to represent a primitive function symbol in an understandable way whereas in APL it is represented by 

one APL character, thus preserving the one-character one-symbol principle of APL code; 2) ELI is freely available 

on multiple platforms.  

     Why ELI?  Why not C, Java or Python?  First, ELI as a modern version of APL is particularly suited for teaching 

mathematics to young students as this was the original goal in designing APL by Ken Iverson.  More importantly, 

we would like to teach kids about serious programming with minimum amount of effort.  We do not intend to 

introduce all fashionable stuff in computer programming today such as object oriented programming constructs.  

Kids can learn those later or they may discover that for many programming tasks OO paradigm is an unnecessary 

burden.  ELI/APL is easy to learn, especially as a first programming language since it is devoid of unnecessary 

syntactic clutters of many other programming languages and it has a uniformity of design unburdened by numerous 

add-on functions or features of a language not well thought out in the beginning.  This book aims to train a kid’s 

mind, not to help one to find a job with a particular programming language requirement.  Nevertheless, after a 

student finishes studying this book he will find that the basic coding concepts are the same; the other languages just 

have more syntactic dressing or are more verbose.  In short, this book tries to introduce essential coding techniques 

to kids as quickly as possible.       

     ELI has four basic types of data: numbers, characters, symbols and temporal data (i.e. data relating to time and 

date); numbers include booleans, integers, real numbers and complex numbers.  A single datum in ELI is called a 

scalar; an array is a homogeneous rectangular collection of data (i.e. all elements in an array must be of the same 

type).   Each array has a shape, and one-dimensional arrays are called vectors (the shape of a vector is simply its 
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length).  A list is a linear sequence of data items where each item can be a scalar, an array or another list; data items 

in a list can be of different types.  And that is all as far as data in ELI is a concern. 

     ELI provides a large collection of built-in functions, called primitive functions, each represented by a symbol 

consisting of one or two ASCII characters and having one or two arguments.  The collection of arithmetic and 

relational primitive functions is called scalar functions since each operates on arrays as a uniform extension of its 

operation on array elements which are scalars. The other primitive functions are called mixed functions; some mixed 

functions take a portion of an array and some transform a whole array.  There are also five operators which apply to 

primitive functions to produce derived functions; of particular importance for lists is the each operator.  A user 

defined function takes none, one or two arguments and can return a result or return no result.  A line of ELI is a 

chain of operations execute from right to left with the output of one operation feeds as an input to the next operation 

in a dataflow style of programming.  All primitive functions (and user defined functions) are of the same precedence, 

thus ensues the simplicity and uniformity of ELI syntax.  In fact, ELI/APL code for mathematical computation can 

be looked upon as a linearization for a formula in mathematics.  

     We believe that ELI’s austere notation with a minimum amount of relevant concepts makes it faster for kids to 

learn non-trivial computer programming.  We assume a student who takes this study has only a bare minimum of 

math on his/her part, i.e. he/she understands addition and multiplication, whole numbers and fractions.  We assume 

the student has no previous knowledge in coding whatsoever.  Able to read English, download files, type on screen 

and edit an ordinary text file is all the computer experience required to get on to learn ELI.  Once a kid is conversant 

in ELI programming, he/she would appreciate the beauty of its mathematical consistency and uniformity of its rules.  

These are ELI’s inheritance from APL.  But ELI also provides some convenience which is absent in classical APL, 

such as the easiness to input/output code/data files using ordinary text files and control structures common in other 

modern programming languages.  ELI has dictionaries which are present in other languages such as Python and Perl; 

we will briefly touch on dictionaries here.  In addition, ELI has tables and SQL like statements for database 

management which we’ll refer to A Primer for ELI on ELI website’s document section for students who have 

further interest to explore. 

Mount Kisco, New York, 2015 

Note on Aug. revision: The change mainly reflects the difference in entering a defined function between ELI version 

0.2 and version 0.3 (the current version) which is more like IBM APL2.  There are also some minor improvements. 

Note on Sept. revision: Change of mirror site and minor corrections.                                                                       

Note on June 2016 revision: Add chapter 6, Data and Probability.  
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1. Arithmetic Computations and Algebra  

1.1 Getting started    

 

     First, we go to the website http://fastarray.appspot.com to download the free ELI executable (for people reside in 

China please go to the mirror site http://www.sable.mcgill.ca/~hanfeng.c/eli/).  Click on the middle box [Download] 

in the top bar.  You would then see two sides in the download page: the left side is for ELI interpreter while the right 

side is for Ecc compiler.  We’ll pick the left side. 

• Both interpreters and compilers are called programming language processors, i.e. they accept the code you 

wrote in a particular programming language and execute it on a specific computer platform.  The difference 

between an interpreter and a compiler of a programming language is that when one uses an interpreter, he 

enters one line of code in that language, the interpreter processes that line, i.e. executes it on a particular 

computer platform and either spits out an error message or returns a result, if the execution is successful (it 

actually can take multiple lines or a whole program as we will explain in a later section).  For a compiler, it 

takes a whole program, digests it, i.e. checks its correctness, transforms it into some suitable form, and 

finally turns it into machine code called an executable ready for user to execute.  Clearly, an interpreter is 

more convenient for a user, especially if he is a newbie prone to make many mistakes since the compilation 

process is not instantaneous and usually takes longer time.  Why then people bother with a compiler?  That 

is because a compiled program in general runs much faster than an interpreted program and some programs 

require long time to run while some programs, so called production programs, will run millions of times.  

In fact, historically a compiler existed before there was an interpreter. 

     On the left side, we see choices of three platforms: Microsoft Windows, Apple Mac OS and Linux (Ubuntu).  

Choose the one you want and download the executable (there are readme files to help you install ELI for each 

platform).  On Windows as soon as you downloaded the executable, the system will create a subdirectory named eli 

in your program files directory and an ELI icon will appear in your desktop.  Inside the eli directory there are 

two sub-directories: bin which contains eli.exe and documents, and ws which contains workspaces and script 

files (we will explain these terms later).  In Mac OS these two directories are merged into one directory: elim, and 

in Linux these two are also merged into one elix. 

     We will assume that we are in the Windows platform.  The operations in Mac OS or Linux are essentially the 

same as those in Windows while each platform provides auxiliary features to help users entering code either 

interactively or in batch mode.  In Windows, we have the familiar cut and paste facility for the interactive mode and 

we recommend using Notepad+ for editing text to enter a code file in batch mode.  In Linux, one usually uses Emacs 

for text editing.   

     We click the ELI icon in Windows to start ELI or execute eli in a command line in Mac OS or Linux.  We shall 

see in Windows that a window will pop up with: 

ELI version 0.3 (C) Rapidsoft 

 CLEAR WS  

 

This means you are starting from a clean slate.   

• A workspace in ELI is a unit to organize a user’s work, including variables and functions defined so far, 
which can be saved after it is given a name, and a saved workspace can be recalled into play by loading it.  
In a clear workspace there is no variable or function exists except some predefined system variables.  

In Mac OS or Linux, you would not see a window, but you would see the same lines, i.e. in Mac OS or Linux it is 
line based.  To exit from ELI, you simply type 
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          )off      

If you type a line (displayed with an indentation) into the Window, you will see the system responses with a line 

without indentation: 

      3+2 

5 

 

You type 10* in front of 3+2 and hit enter, and you see  

 
      10*3+2 

50 

 

Uh! Should it be 32 since most other programming languages have a precedence rule that puts multiplication ahead 

of the addition?   But ELI’s precedence rule is rather egalitarian, i.e. all functions, including all primitive functions 

(the built-in functions in the ELI language) are of equal precedence and a line of code executes from right to left, 

evaluating one function at a time.  One reason for this rule is that ELI has a large number of primitive functions, as 

we will soon see, not just the usual addition and multiplication etc.  Hence, the equal precedence rule of ELI makes 

life simple and ensures a uniformity of ELI syntax.  Now, what if I do want to do 10*3 first?  Simple, you just put a 

pair of parentheses around it.  When ELI evaluates this line starting from the right, it sees the function already has a 

right operand and its left operand is in a pair of parentheses, so ELI evaluates the value of the expression enclosed 

inside the parentheses to get the left operand for +.  Hence, 

      (10*3)+2 

32 

 

     In ELI, as in other computer languages, we can store a value into a name and recall it for later use: 

 
      (a3<-10*3)+2 

32 

      a3 

30       

      a3%5 

6 

 

Such a name is then called a variable and <- is a two character primitive function symbol denoting the assign 

function, it assigns the value of the expression on the right side of <- to the variable on the left side of <-.  Primitive 

functions in ELI are denoted either by one ASCII character (such as +, *, %) or two ASCII characters like <-.  For a 

two character function symbol you must not put a blank between the characters since a blank is also a character.  A 

variable name in ELI must start with an alphabetic letter and possibly followed by additional an alphanumerical 

character (a letter or a digit) and possibly interspaced by the character _  (i.e. _ cannot be the ending character of a 

variable name).   So 6b and bcd_ are not legitimate names for a variable while b6, b_x and b6_x are. Needless to 

say that the names are case sensitive:  

 
      A3%5 

value error 

      A3%5 

        ^ 

The system responses with an error message because the name A3 has not been assigned a value yet; hence it is not 

a variable.  To see how many variables exist in the current workspace, we type  

 
     )vars 

a3 
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and see that so far a3 is the only variable in our workspace.   

 

1.2 Basic data types and how data are organized in ELI  

 

     There are four basic types of data in ELI: numbers, characters, symbols and temporal data, i.e. time and dates.  

We have already seen numbers.   Character data are strings (or arrays) of characters (or just one character) enclosed 

by a pair of single quote characters (’) when we enter them; but when we display their values that pair of quotes are 

not present.  For example, 

 
      c2<-'Hello World!' 

      c2 

Hello World! 

 

      A symbol is a string of characters qualified to be a variable name (see the preceding section) prefixed by a back-

tick character (`).  For example, 

 
      c3<-`Smith 

      c3 

`Smith 

      

     To see a temporal datum we type  

 
      []TS 

2015.01.15T17:31:05.348 

 

where []TS is the system variable indicating the current time.  It is of a subtype of temporal data called datetime; the 

part before the character T indicates the date while the part after T indicates the time: hour, minute, second up to 

millisecond.  We will not go into details on the other subtypes of temporal data; please see § 2.4 of [1]. 

  

     A single data item is called a scalar, the variables a3, c3 and []TS are  all scalars and so are the values they each 

holds.  c2 is not a scalar because it consists of more than one character (while ’3’ is a scalar).  c2 is an array, a 

one-dimensional array which we usually call a vector and we call a two-dimensional array a matrix.   

 

• ELI organizes multiple elements of the same type into rectangular cubes called arrays; a one dimensional 

array is called a vector and a two dimensional array is called a matrix.   

 

     We have already seen how to enter a character vector as a string of characters in ELI.  To enter a numeric vector, 

we simply enter each number separated by one or more spaces: 

 
      v1<-10 0.5 78 0 1.2 

      v1 

10 0.5 78 0 1.2 

 

We enter a vector of symbols and a vector of dates (a temporal data type) in a similar fashion: 

 
      v3<-`Smith `Jobs `Bates 

      v4<-2015.01.03 2015.01.07 2015.01.10 2015.01.15 

      v3 

`Smith `Jobs `Bates 

      v4 

2015.01.03 2015.01.07 2015.01.10 2015.01.15 
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Note that we can freely mix integers and fractional numbers in v1, but in entering a fraction number less than 1 one 

must put a 0 in front the ‘.’.  This is because in ELI ‘.’ frequently is part of a two-character symbol representing a 

primitive function which differs from the one with no ‘.’: 
 

      2*0.5 

1 

      2*.5 

32              

 

The second expression is 2 to the power 5.    

 

     Each array has a shape which indicates the lengths in each dimension of the rectangular cube constituting the 

array.  For a vector, its shape is just its length.  

 

• In ELI a primitive function is either monadic if it has only one argument (i.e. the right argument) or dyadic 

if it has two arguments, one on the right and one on the left.    

  

To query the shape of an array, we apply the monadic shape function # to an array: 

 
      #c2 

12 

      #v1 

5 

      #v3 

3 

      #v4 

4 

 

All these are just lengths of vectors.  For a 3 by 4 matrix, its shape should be 3 4.  But how do we enter such a 

matrix?  To do this we deploy the dyadic reshape function #:   

 
      m2<-3 4#c2 

Hell 

o Wo 

rld! 

      #m2 

3 4 

 

Therefore, whether # is interpreted as the reshape function or the shape function depends on whether there is an 

argument to the left of #.  We see that the shape of the result of a reshape is equal to the left argument of the reshape: 

 
                                                                  #shp#v �� shp 

                      

for all data v and a non-negative integer vector shp.  The shape of an array is called a shape vector; since each 

element of that vector denotes the length of one of a cube’s dimension, it must be a non-negative integer, i.e. an 

integer li≥0.  For an array a, the shape of the shape vector #a, i.e. ##a, is called the rank of a; we see that the rank 

of an array a is the dimension of a.  For a vector a, its rank is 1, for a matrix the rank is 2 and we’ll see later that for 

a scalar a, its rank is 0.    

 

     With reshape, we can enter not only matrices but also high dimensional arrays.  For example, 

 
      a3<-2 3 4#v3 
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      a3 

`Smith `Jobs  `Bates `Smith 

`Jobs  `Bates `Smith `Jobs  

`Bates `Smith `Jobs  `Bates 

 

`Smith `Jobs  `Bates `Smith 

`Jobs  `Bates `Smith `Jobs  

`Bates `Smith `Jobs  `Bates 

  

We observe a property of reshape: that if the right argument v does not have enough elements to fill in the required      

number of elements of the resulting array it then keeps reusing elements of v.  On the other hand, if the right operand 

v has more elements than what is required for a reshape operation then the tail part of v would be left out: 

 
      m1<-2 2#v1 

      m1 

10 0.5 

78 0 

 

     For non-homogeneous data, i.e. items in the data are not of the same type, or data of non-rectangular shape, i.e. 

items are of different length even though they are of the same type, ELI organizes them into lists.  A list is entered 

with a pair of parentheses and items in a list are separated by ‘;’ and when displayed, each item is prefixed with ‘<’: 

 
      l1<-(c2;v3;v1) 

      l1 

<Hello World! 

<`Smith `Jobs `Bates 

<10 0.5 78 0 1 

      l2<-(1;v1;5 9 8) 

      l2 

<1 

<10 0.5 78 0 1 

<5 9 8 

     

     The shape of a list is its length, i.e. the number of items in it:  

 
      #l1 

3 

      #l2 

3 

 

The reshape function does apply to lists in a limited fashion, i.e. a list can’t be reshaped into a scalar or an array but 

can be reshaped into another list. We remark that an item in a list can be a scalar, an array or another list.  Hence, a 

list is the most general data structure in ELI.  So, scalar, array and list are all there are for organizing data in ELI.      

 

     Finally, what is the shape of a scalar, say c3 or 8, we haven’t tried that yet?  

 
        #c3 
 

      #8 

 

Uh, should we get 0 or 1?  To make sure we assign it to a variable and query that further: 

 
      ss<-#c3 

      #ss 

0 
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This tells us that the shape vector of a scalar is a vector of length 0, that is what we call an empty vector, i.e. a vector 

of length zero with no element.  To get 1 as a resulting shape, we reshape c3 into a vector of one element first: 
       

      cv<-1#c3 

      #cv 

1       

      cv  

`Smith 

 

c3 and cv hold the same value but are of different structure, one is a scalar while the other is a one element vector.  

This is rather mysterious and annoying.  But we’ll leave it there and move on as we have just gotten started.  Later 

we shall see that the reason behind such a mystery is to maintain mathematical consistency.  For many cases, there is 

no practical difference between a scalar and a one element vector holding the same value. 

 

     In fact, there is another way to turn a scalar into a one element vector.  This is achieved by the monadic function 

ravel denoted by the character ‘,’: 

 
      #,c3 

1       

      ,c3  

`Smith 

 

If the argument a to the ravel function is an array then ,a turns a into a vector consisting of all elements of a in row-

major order.  The ravel function has no effect on a vector or a list.  For example, 

 
      m1 

10 0.5 

78 0   

      ,m1 

10 0.5 78 0 

      m3 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

 

13 14 15 16 

17 18 19 20 

21 22 23 24 

      ,m3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

 

     We can also see that the shape (i.e. length) #,a of  ,a is the product of elements in the shape of a: the shape 

of ,m1 is 2*2 and the shape of  ,m3 is 2*3*4.  To this end, we introduce one more monadic function related to the 

shape function #: the count function ^ which is defined as 

  

                                                  ^a         ←→          #,a 

 

Consequently, we have 

 
      ^c3 

1 

      ^v2 

4 

      ^m3 

24  



 

12 
 

              

So ^a  just counts the number of elements in a whether it is a scalar, a vector or a higher dimensional array.        

1.3 Rudimentary set theory 

 

     A set S={a1,a2, …} is a collection of distinct elements a1, a2, … which can either be enumerated or defined by 

other precise means; and for each element ai in S, we say ai belongs to S, denoted by ai�S.  A set S is well-defined if 

given an item a, either a is a member of S. i.e. a� S or a\� S, i.e. a does not belong to S.  We only consider well-

defined sets.  Two sets are the same if they contain the same elements, in other words the order you list them doesn’t 

matter.  A set can contain other sets as its members just like a list can contain other lists as its elements. 

 

     A set S is finite if it contains no element (i.e. an empty set) or only a finite number of elements; otherwise it is 

infinite.  For a finite set S, we can, in principle, list all its elements.  For an infinite set we must define it by other 

means.  Usually, we define an infinite set S by 

 

                                                        S = {x | P(x)} 

 

where P is some proposition for which we can decide whether P(x) is true (then x�S) or not true (then x\�S).  We 

have the following examples of sets, 

 

                 Se= {} is the empty set 

                 S1={1}  has one element 

                 S0={{}}also has one element, i.e. the empty set  

                 S2={`Smith, `Jobs, `Bates} has 3 symbols as its elements   

                 S3={`Jobs, `Smith, `Bates} is the same set as S2 

                 S4={0,1} 

                 S5={`Jobs, 2011, {‘Apple Company’,’ Pixar’}} 

                 S6={x | 0<x<1} 

                 S7={x | x is a prime number} 

                 S8={x | x is a prime number and x+2 is also a prime number} 

 

We know that the set S6 is infinite and not enumerable (which we will not prove here).  We already know that the set 

S7 is infinite (proved by Euclid, the same Greek guy who gave us the famous geometry text book more than two 

millennia ago) and we even know how fast that set grows by the prime number theorem first proved near the end of 

the 19th century by Hadamard and de la Vallee-Poussin.  We don’t know yet whether S8 is infinite, i.e. are there  

infinite pairs of twin prime numbers {p, p+2}?  This is the twin primes conjecture.  But we are tantalizingly close to 

confirm this conjecture due to an amazing result of Yitang Zhang on bounded gaps in 2013.    

 

     A set A is a subset of set B, denoted by A⊂B if the statement: an element a belongs to A implies a belongs to B, 

i.e.        

 

                                                                  a�A  →   a�B 

 

Now we can define precisely that two sets A and B are the same set if A⊂B and B⊂A, and we denote it by A=B.  We 

define the union of two sets A and B, denoted by A∪B, as the set whose elements either belong to A or belong to B:  

 

                                                     A∪B= {x | x�A or x�B } 

 



 

13 
 

We define the intersection of two sets A and B, denoted by A∩B, as the set whose elements belong to both A and B:  

 

                                                     A∩B = {x | x�A and x�B } 

 

Two sets A and B are disjoint if they have no elements in common, i.e. their intersection is the empty set: 

 

                                                                 A∩B = {} 

  

     A map f from a set A to a set B  

 

                                                                  f: A  →   B 

 

is an assignment from A to B so that for each a�A , there is a unique f(a)�B.  This is what we usually called a 

function from A to B (There are multi-valued maps fm from A to B where for some a�A, fm(a) consists of more than 

one element in B; we would not consider such maps here).  A is called the domain of the function f, and the set 

 

                                                               {f(x) | x�A } 

 

is called the range of f which by definition is a subset of B.  If A=B, the function Id defined as 

 

                                                              Id(a) = a  for all a�A 

 

is called the identity function of A, i.e. it just map every element in A to itself.  If for a function f, there is an element 

c�B such that 

 

                                                              f(a) = c  for all a�A 

 

f is then called a constant function.  We introduced the basic terminology of set theory in modern mathematics here 

to make our later discussion about computations involving arithmetic operations more convenient.   

 

     In addition, we define the Cartesian product of two sets A and B, denoted by A•B, as the set of all pairs (x,y) with 

first component x belongs both A and the second component belongs to B:  

 

                                                           A•B = {(x,y) | x�A, y�B } 

 

For example, if A= {1, 2, 3} and B= {`apple, `orange} then  

  

                    A•B = {(1,`apple), (1,`orange), (2,`apple), (2,`orange), (3,`apple), (3,`orange)} 

 

1.4 Numbers and arithmetic functions 

 

     Let us start with the set of natural numbers N, i.e. the whole numbers we used to count items, be they apples or 

oranges,  

 

                                                             N ={1, 2, 3, ….} 
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When people realize that counting apples is essentially the same as counting oranges, they developed the abstract 

idea of whole numbers which we now call integers.  So, in the long history of human progress, counting is the 

beginning of mathematics.  It took people a long time to invent the notion of zero, i.e. no items, no apple or no 

orange, and to denote it by the number 0.  Let us add this new number to the set N and denote the new set by N0, i.e. 

N0=N∪{0}, or we can define N0 as the set of all non-negative integers, i.e. whole numbers greater than or equal to 0: 

 

                                                              N0={0, 1, 2, ….} 

 

The subset B={0, 1} of N0 is called the set of Boolean numbers, or just booleans.   In a clear workspace, you can 

type: 

 
      []IO 

1 

 

[]IO is a system variable called the index origin, like []TS, which pre-exists in a workspace set by the ELI system.  

But unlike []TS,  you can reset the value of  []IO if you like: 

 
      []IO<-0 

      []IO 

0 

 

And these are the only two values the system variable []IO can take.  What is the purpose of having two different 

values for []IO?  The answer lies in the monadic primitive function interval generator !, for a number n in N0, !n 

generates n consecutive whole numbers starting from the value of []IO: 

 
      !10 

0 1 2 3 4 5 6 7 8 9 

 

And if we reset []IO back to its original value in a clear workspace, we get  

 
      []IO<-1 

      !10 

1 2 3 4 5 6 7 8 9 10 

 

So []IO tells where do we start counting, 1 or 0.  We’ll see later that the values give out by many primitive 

functions in ELI depend []IO on in a way similar to the interval generator !.     

 

     Let us store that vector of ten integers into a variable v10 and do some operations to it: 

 
     100+5*v10<-!10 

105 110 115 120 125 130 135 140 145 150 

 

We multiply v10 by 5 and then add 100 to it.  Notice that 5 is multiplied to each element of v10 and 100 is added to 

each element of that result.  For addition, multiplication and many other similar dyadic primitive functions f in ELI 

(remember such a function takes a left and a right argument, and is built into the ELI system) the value of a 

singleton operand (i.e. it is either a scalar or a one-element vector) on one side of f would be repeatedly used against 

the elements in the operand on the other side of f.  And the other operand involved can be an array in general, such 

as a matrix: 

       3 4#v10   

1  2 3 4 

5  6 7 8 
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9 10 1 2 

      (3 4#v10)-1   

0 1 2 3 

4 5 6 7 

8 9 0 1 

 

This rule is called is called scalar extension and these functions (to be explained more in detail later) where scalar 

extension hold are called scalar functions.  All arithmetic functions in ELI are scalar functions.       

 

     We take a quick detour to introduce the dyadic primitive function deal ?. (this is a two-character symbol, a ? 

followed immediately by a dot) which is not a scalar function.  Both arguments m and n to the deal function m?.n 

must be positive integers and m≤n.  For such two arguments m?.n randomly picks m distinct integers from !n.  

Consequently, the dyadic deal function is []IO dependent.  For example,      

 
w10<-10?.100 

      w10 

14 76 46 54 22 5 68 94 39 52 

 

Hence, the deal function provides a convenient way for us to generate an irregular sequence of integers to play with.  

We call a computation F(a,b,…) functional if the result of F(a,b,…) purely depends on the values of it arguments no 

matter how one carries out the computation.  All the primitive functions in ELI are functional except the dyadic deal 

function and its monadic companion, the roll function ?..  To see this, we type the deal function two more times 

 
10?.100 

84 4 6 53 68 1 39 7 42 69 

10?.100 

59 94 85 53 10 66 42 71 92 77 

            

This shows that giving the same arguments 10 and 100, each time the deal function m?.n gives out a different 

answer just like when you throw a dice you most likely would see different results.  However, in a clear workspace, 

the first execution of 10?.100 would always give the same result as that of w10.  This mystery is due to the fact that 

in the execution of m?.n there is another participant, a system variable called []RL, the random seed.  In a clear 

workspace []RL has the value 16807, and after each execution of ?. , either dyadic or monadic, this value of []RL 

would change.  For a positive integer n, the monadic roll function ?.n randomly picks an integer from !n, and for a 

vector v each component of (?.v)[i] is defined to be ?.v[i].  For example,  

       ?.30 90 100 

4 69 46 

?.30 

16 

?.90 

20 

?.100 

5 

 

Note that 4 69 46 is not the same as 16 20 5 because each execution of ?. changes the random seed []RL and 

hence the result.  

 

     Now, let us resume our discussion of arithmetic operations.  We can add w10 to v10:   

 
w10+v10 

15 78 49 58 27 11 75 102 48 62 
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The result is as expected, i.e. each element in w10 adds to the corresponding (in terms of its position) element in v10 

to yield a whole result.  However, if we type  

 
 w10+7 11 10 

length error 

 w10+7 11 10 

         ^  

     

We get a length error, i.e. ELI informs us that the operation runs into an error because the left and right operands are 

of different lengths as one is 10 and the other is 3.  Remember that the shape of a vector is its length.  In general, for 

two operands A and B of a dyadic primitive function f, and let R be the result (which needs not be assigned to a 

variable) of   

 
                   A f B                   

 

then R is well-defined and f is called a scalar function if either  

 

1) A and B are two scalars or two arrays of the same shape (i.e.(#A)=#B) then R is a scalar or an array of the 

same shape as that of A or B with the value of each element Rij in R is AijfBij calculated from the 

corresponding elements in A and B, or  

2) one of the operands, A or B is a singleton, then R is of the same shape as the other array operand and  each 

element Rij of R is AijfBij with either Aij or Bij being of a repeat value of the scalar.       

     The requirement on A and B that either they are of the same shape or one of them is a singleton is called that A 

and B are conformable.  A monadic primitive function f B can be similarly defined to be a scalar function if each 

element Rij of the result R is calculated as fBij.  Let us see some more cases of dyadic scalar function’s operation: 

       5*3 4#v10   

 5 10 15 20 

25 30 35 40 

45 50  5 10 

      w2<-3 4#w10 

      w2 

14 76 46 54 

22  5 68 94 

39 52 14 76 

      w2+5*3 4#v10   

19  86  61  74 

47  35 103 134 

84 102  19  86 

      w2+3 5 

rank error 

      w2+3 5 

        ^ 

      w2+3 5#!15 

length error 

      w2+3 5#!15 

        ^  

The first case is ok because 5 is a scalar and the second case is ok because w2 and 5*3 4#v10 are of the same shape.  

The third case runs into problem because w2 is a matrix, i.e. an array of rank (dimension) 2 while 3 5 is a vector, 

i.e. of rank 1.  The last case runs into problem because w2 and the other side of + are of different shape, one is a 3 

by 4 matrix while the other is a 3 by 5 matrix.  

     Let us see some monadic primitive scalar functions.  First, we show that the dyadic function subtract -, i.e. minus, 

and the monadic function negate - are both scalar functions: 
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       0-v10 

_1 _2 _3 _4 _5 _6 _7 _8 _9 _10 

      -v10 

_1 _2 _3 _4 _5 _6 _7 _8 _9 _10 

      -3 -4 

1 

      -3 4 

_3 _4 

      -3 +4  

_7 

          

For the first expression, we see that 0- is applied to each element in v10 to yield ten negative numbers.   We note 

that a negative number is prefixed with an under bar character ‘_’,  just like a fractional number such as tenth is 

prefixed by a ‘.’ in 0.1; there should be no space between ‘_’  and the digit following it (and for a negative number 

what follows ‘_’ must be a digit; remember that a fractional number less than 1 must start with a 0 because _.1 

will result in a 1 as we’ll see later while _0.1 is the correct way to input the number negative tenth).  The second 

expression just exemplifies the fact that the monadic function -v is defined as 0-v for all numeric expression v, i.e. 

the negate function is simply a shorthand of the subtract function with the left argument fixed to 0.  The third 

expression above looks like two negative numbers in most other programming languages.  But for the ELI parser, it 

looks from right to left and seeing (3 -4) as the first item to evaluate which results in _1; it then applies the monadic 

- to that with 1 as the result.  In the last expression above the parser sees (3 +4) first with 7 as the result and then 

applies - to it getting _7.  All these look different from that of other programming languages, but are all very logical 

and succinct.            

     We also notice that for a character c representing a primitive dyadic or monadic function f with left and/or right  

argument a and/or b, it is not required to have a blank between them to express a f b, may a and/or b be numbers or 

variables.  On the other hand, there is also no harm to insert one or several blanks between them, sometimes for the 

sake of readability.   This rule also applies to functions f which are represented by two-character symbols such as the 

deal function ?..  The rule removes a programmer’s burden to check whether there is a blank between  f  and its 

arguments in his/her code. 

     The divide function is represented by the percent character ‘%’.  For example,  

      1%v10 

1 0.5 0.3333333333 0.25 0.2 0.1666666667 0.1428571429 0.125 0.1111111111 0.1 

      %v10 

1 0.5 0.3333333333 0.25 0.2 0.1666666667 0.1428571429 0.125 0.1111111111 0.1 

      w10%v10 

14 38 15.33333333 13.5 4.4 0.8333333333 9.714285714 11.75 4.333333333 5.2 

      w10%1 

14 76 46 54 22 5 68 94 39 52 

      w10*1 

14 76 46 54 22 5 68 94 39 52 

 

We see first that fractional numbers, which are part of so the called floating- point numbers in computer 

terminology, are printed out up to 10 decimal digits even if a number resulting from a division has mathematically 

many more digits or infinite number of digits such as one third (1%3).   

     The second expression above just indicates the fact that the monadic function reciprocal % is simply a shorthand 

for the dyadic function % with fixed left argument 1 similar to the relationship between the monadic - and dyadic -. 

The third expression above just indicates that % is a dyadic scalar function and two of its arguments need to be of 

the same length for two vectors.  For a dyadic arithmetic function f and a number b in ELI, we denote the map 

                                                                        a  →  a f b 
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from domain D to range R by fb.  We call b the identity element of f  if fb(a)= a for all a in D, i.e. fb is the identity 

map on D.  The last two expressions above just show the fact that 1 is the identity element for both dyadic % and *.  

And from what we studied earlier, we see that 0 is the identity element for dyadic + and –(but a is on the right side).              

     We now introduce the equal function a=b.  It is a dyadic scalar function.  We can try out for a few examples: 

      1=1.0 

1 

      0.25=1%4 

1       

      0.3333333333=1%3 

0 

      0.3333333333*3 

0.9999999999 

      (1%3)*3 

1 

               

First, we notice that the answer to the query a=b for two singleton operands is either 1 or 0.  In ELI 1 represents the  

Boolean value true and 0 represents the Boolean value false.  This is why we called the set B={0,1} the set of 

Boolean numbers.  We shall see in later sections that this representation has a tremendous advantage over using the 

words true and false for Boolean values.    

     Back to inspect examples above, the first expression yields a 1; it just says that when we write a whole number 

either as an integer or in a floating point number format, it is the same number.  The second expression also yields a 

1 because 0.25 is exactly one fourth.  In the third expression, it looks like we copied the third item from the print 

out result of 1%v10 which corresponds to 1%3 but we end up in a 0, i.e. a false indicating that the two sides are not 

equal.  Why?  When we multiply the left side of = by 3 we get 0.9999999999 which we know it is not exactly 1, 

but when we multiply the right side of that = by 3 we get 1.  Recall that we remarked earlier that ELI only displays 

a fractional number up to 10 decimal digits.  So the third element displayed in the result of 1%v10 is not its true 

value; the true value of 1%3 is stored in the computer according to a standard floating point number representation 

scheme which we are not going into details here.  But that true value stored in the computer by ELI certainly 

contains more decimal digits than ten 3s.  What is stored is still an approximation to the fractional number 1%3.    

     Let us define the set Z of all integers to be the union of N0 (the set of natural numbers plus 0) and its negative 

counterpart:  

                                                 Z = N0 ∪ {n | -n�N}   

And we defined the set R0 of all fractional numbers, more formally called the set of rational numbers as follows:  

                                                R0 = {n%m| n,m� Z, m≠0, n and m have no common factor other than 1} 

Note that the last requirement on n and m in defining R0 can also be satisfied by canceling out the common factor in 

m and n if there is one.  With this requirement 2%6 would not be an element of R0 since it is the same number as 1%3.  

     A minor puzzle: why ELI doesn’t use n/m to denote a fraction?  This is because the character ‘/’ is used for other 

primitive function and operators in ELI as we shall see soon.  Finally, we define the set R of real numbers to be: 

                                                  R = {x | x can be approximated arbitrary close by a y�R0} 

This is a good definition except that the phrase ‘approximated arbitrary close’ need to be more precisely defined 

and which we will do in section 1.6.  For now we have the following: 
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                                                 B⊂ N0⊂Z ⊂R0⊂R 

All sets above are infinite except B, and all sets above are countable except R.  We’ll explain the concept of 

countable later.  To say R is uncountable just means that R is a much larger set than R0 even though both are infinite. 

     Going back to the definition of the set of rational numbers R0, one wonders what happens if m=0?  A domain 

error?  Let us try: 

      1%0 

0w 

      _1%0 

_0w 

      0%0 

1 

      0w+100 

0w       

      0w*100 

0w 

  

Here 0w represents infinity (its mathematical notation is ∞).  When a positive number n is divided by a smaller and 

smaller positive number m, the result is getting larger and larger and after a long while people devise the concept of 

infinity (∞) to denote the ultimate limit of this process instead of just saying division by 0 (when m reaches 0) results 

in an error.  And there are infinities in two directions, one positive (0w) and one negative (_0w).  However, 0%0 is 1.  

This is consistent with the rule that some number a divided by itself always results in 1.  The last two expressions 

above are also easy to understand since an infinite is so huge that adding any finite number to it or multiplying a 

finite number to it results in an infinity.  Now we can extend our definition of R0 above to remove the restriction 

m≠0 as follows: 

 

                                                 R0* = {n%m| n,m� Z}=  R0  ∪{∞,-∞}  

                                                 R*  =  R ∪{∞,-∞}        

         

1.5 Short functions and how to save your work 

 

     Let us have a simple quiz: a man paid $1.1 for a pencil and a piece of paper; the pencil is $1.0 more expensive 

than the paper.  What is the price for the pencil and what is the price for the piece of paper?  A quick minded person 

may answer right the way: one dollar and ten cents for each respectively.  But he soon realizes that the pencil then 

becomes only $0.90 more expensive than the paper.  To solve the problem in a more thoughtful way, we lay out the 

facts in two equations:  

 

                                                  x + y = 1.1                  (1) 

                                                  x - y = 1                     (2) 

 

where x stands for the price of the pencil and y stands for the price of the paper.  When we add equation (2) to 

equation (1), and separately subtract (2) from (1) we get the following answer for x and y: 

 

                                             2x = 1.1+ 1  divide both side by 2  →     x= (1.1+ 1) %2 = 1.05 

                                             2y = 1.1- 1  divide both side by 2  →      y= (1.1- 1) %2 = 0.05 

 

So the answer is the pencil costs one dollar plus 5 cents and the paper costs 5 cents.  This is just an instance of what 

we call the sum and difference problem: two items of possibly different sizes, we know the sum of the sizes of the 
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two items as well as the difference of the sizes, what is the size of the larger item and that of the smaller item?  If we 

replace 1.1 above by the name sum and replace 1 above by the name diff, we then have the following: 

 

                                                        size_a = (sum + diff) %2 

                                                        size_b = (sum - diff) %2 

 

This solution can surely be applied to many similar situations disguised with items and sizes of different names such 

as knowing the total length of two pieces of wood and how much one piece is longer than the other.  It would be 

handy if we can write an ELI function to remember the formulae involved.  

 

     Primitive functions in ELI are the functions provided by the ELI systems and they are represented symbolically 

by one or two ASCII characters, and many times the same character symbol can represent either a monadic or a 

dyadic primitive function depending on whether there is a left argument to that function symbol.  So far we have 

seen the following: +, -, *, %, =, #, !, ?. (only the last is a two character symbol).  In ELI one can write one’s own 

function with a piece of code for later use; such a function is called a defined function.  A defined function is 

represented by its function name.  The rule to form a legitimate function name is the same as that for a variable 

name. Like primitive functions, a defined function can be monadic, i.e. it takes a right argument only, or dyadic, in 

other words it takes a left argument and a right argument.  But it is ok for a defined function to take no argument; a 

defined function with no argument is called a niladic function.  We note that every primitive function yields a result 

(even an empty vector is a result); but it is also ok for a defined function to return no explicit result (even though it 

may print out intermediate values and possibly changes the values of other variables). 

 

• a (right) parameter p to a defined function df is a place holder in the body (i.e. a piece of code 

implementing df) of df so when the function is called with an actual argument a: 

 

                                      df a        (or  b df a in case df is dyadic) 

 

              the value a is assigned to p (in case of dyadic df, b is assigned to q, the left parameter at the same time),  

• then the body of df is executed.        

 

     We will explain how to write a defined function in general in Chapter 5.  For the moment, we would like to show 

how to write a kind of simple defined functions in a short function form.  You start a short function with a 

‘{‘ followed by the function name and a ‘:’, then one or several expressions separated by ‘;’ and end it with a ‘}’ as 

in the following (the notation a = b | c below means that a is either b or c): 

 
                        {fnam: expressions} 

                      expressions = expression | expression;..;expression 

 

There are the following assumptions made about the expressions: 

 

• It must contain a variable x which is the right parameter of fnam, i.e. the variable stands for the right 

argument to the function fnam (when the function is called x gets the value of the right argument).   

• If it contains a variable y then y is the left parameter of fnam.  Hence fnam is then a dyadic function.     

• If it contains a variable z then z is the result of fnam.  Otherwise, the result of the last expression in 

expressions is the result of the short function fnam.       

It is easier to see how these rules work by a concrete example.  So let us write a function, the one we named for our 

sum and difference problem.  The function has two inputs: the sum and the difference.  We designate the sum to be 
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the left parameter y and the difference to be the right parameter x; and we return a result as a two-element list with 

the first element the size of the larger item and the second element the size of the smaller item:  

      {sum_diff: ((y+x) %2;(y-x) %2)} 

sum_diff       

       1.1 sum_diff 1 

<1.05 

<0.05 

 

We see that after we type in a short function the system responds by printing out the name of the function, signals 

that there is no error and the function is established in the workspace.  One can then apply the function by feeding it 

a pair of arguments (because it is a dyadic function).  And after we tried, the system gives out a result in response; in 

this case it is a list of two numbers, one for the larger item and the other for the smaller item.  Just like primitive 

functions, we could assign the result of a function application to a variable, say items, then the value would not be 

displayed but a variable would be created holding that value.     

     There are several commands you can type into the ELI interpreter to query about your workspace or ask the 

system to do something, not to evaluate an expression.   They are called system commands.  The first system 

command we encountered is )off which asks the ELI interactive system to close the current session.  The second 

system command we have seen is )vars which queries about user defined variables exist in the current workspace.    

Similarly, the system command )fns queries about existing user defined functions in the current workspace.   We 

try  

      )fns 

sum_diff 

      )vars 

 

That means we now have one defined function named sum_diff in the current workspace.  We see that the response 

to )vars is empty.  What happened?   Even though we didn’t assign the result to a variable, but what about the 

variables y and x we used inside the function body?  The reason is that in ELI, the parameters to a defined function 

as well as the result of a defined function, if it exists, are local; that means they disappear after the execution of a 

function finishes.  In general, a defined function can have variables in its body which are not local as we shall see 

later.  But for a short function all variables in its body expressions are all local, not just the parameters and the 

result z.      

 

     All this will go away once we log off from the system by typing )off.  To save what we have done for later use 

we need the save it.  The system command for save is )save.  However, when we just do that 

 
      )save 

not saved, this is a clear ws 

domain error 

 

What happened is that we started in a clear workspace and that remains to be the name of the workspace despite the 

fact that we did some work including adding a defined function.  But a clear workspace cannot be saved.  To save a 

workspace, you need to give it a name.  The system command )wsid can be used both to query the name of the 

current workspace and to change the name of the current workspace:  

 
      )wsid 

CLEAR WS 

      )wsid ABC 

was CLEAR WS 

      )save 
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2015.02.05 01:06:45 (gmt-5) ABC 

      )wsid 

ABC 

        

Once a workspace is saved we can call it back later by the system command )load after you logged off.  You can 

also start all over with a clean slate by issuing the system command )clear:             

 
           )clear       
      )wsid 

CLEAR WS 

      )fns 

      )load ABC 

saved 2015.02.05 01:06:45 (gmt-5) 

      )fns 

sum_diff 

 

We see that after )clear there is no function there since it becomes a clear workspace.  But after loading our saved 

workspace ABC the function sum_diff is there.  This would be the same for variables including []IO if it is modified. 

   

1.6 More numerical functions 

 

     There is a dyadic function residue a|b which relates to division: while a%b gives the result of a divided by b, 

a|b gives the remainder when b is divided by a, for a pair of single numbers a and b (notice that the divisor has 

changed sides).  And its definition on numerical arrays is by scalar extension.  For example, 

      w10 

14 76 46 54 22 5 68 94 39 52 

      3|5 

2 

      2|v10 

1 0 1 0 1 0 1 0 1 0 

      v10|w10 

0 0 1 2 2 5 5 6 3 2 

      0.25|v10 

0 0 0 0 0 0 0 0 0 0 

      0.4|v10 

0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 

      5|w10+0.1 

4.1 1.1 1.1 4.1 2.1 0.1 3.1 4.1 4.1 2.1 

            

We see that when the left argument is 2 the result of the residue function just indicates which element of the right 

argument is an odd number and which is an even number.  The residue function is also called the modulo function.   

 

     The monadic counterpart to the residue function is the absolute value function|, i.e. given a number a, |a is 

equal to a if a≥0 or equals to -a if a<0.  So |a is always non-negative, it just flips the sign of a number if it is a 

negative number.  The usual mathematical notation for the absolute value of a number a is |a|.  For example,       

 
      |v10 

1 2 3 4 5 6 7 8 9 10 

      |_2.1 0 7.5 _10 

2.1 0 7.5 10 

 

     It would be handy if there is a function in ELI which converts a floating-point number a to its nearest integer ai.  

Indeed, there are two primitive monadic functions, floor _.  , and ceiling ~. to do precisely that in ELI.  For a� R,                
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• _.a is the largest number in Z which is less than or equal to a, i.e. _.a is the nearest integer 

approximating a from below in terms of size.  

• ~.a is the smallest number in Z which is greater than or equal to a, i.e. ~.a is the nearest integer 

approximating a from above in terms of size.  

 

It is clear that for all a� Z, _.a and ~.a map a into itself.  For example, 

 
      _. 1.2 2.7 5 _2.3 _10.9 

1 2 5 _3 _11 

      ~. 1.2 2.7 5 _2.3 _10.9 

2 3 5 _2 _10 

 

So for a positive number a, _.a just gets rid of the fractional part of a, but for a negative a, _.a adds _1 to it after 

getting rid of the fractional part.  On the other hand, for a negative number a, ~.a just gets rid of the fractional part 

of a, but for a positive a, ~.a adds 1 to it after getting rid of the fractional part.  To name these two functions floor 

and ceiling and assign the two-character symbols  _. and  ~. to them is quite suggestive for their functionalities.  

This is much clearer than to name a similar functions such as  int(a) in many other programming languages.       

 

     Now one may wonder what are the dyadic versions of  _. and  ~.?  The answer is that they are the minimum and 

maximum functions in ELI.  Giving two numbers a and b, a_.b yields smaller of the two as its result; and for two 

numbers a and b, a~.b yields larger of the two as its result.   Naturally, both definitions on a pair of numbers extend 

to arrays element-wise as scalar functions do.  We try out some samples: 

 
       v10_.w10 

1 2 3 4 5 5 7 8 9 10 

       v10~.w10 

14 76 46 54 22 6 68 94 39 52 

 

v10_.w10*0.1 

1 2 3 4 2.2 0.5 6.8 8 3.9 5.2 

v10~.w10*0.1 

1.4 7.6 4.6 5.4 5 6 7 9.4 9 10 

 

     The monadic form of * is the signum function:  

 
*0 is 0, *p is 1 for any number p>0, and *n is _1 for any number n<0.    

 

Suppose V and P are the volumes and prices of a stock trade in the first minute of market opening, P0 (=20) is the 

closing price of that stock in the previous day.   To mark the volumes of up-trades positive and down-trades negative 

we do the following:    

      V 

86 25 55 48 78 95 36 36 14 65  

      P 

17.3 22.3 24.3 17.5 21.4 18.4 17.2 15 20.8 21.8 

      *P-P0<-20 

_1 1 1 _1 1 _1 _1 _1 1 1 

      V**P-P0 

_86 25 55 _48 78 _95 _36 _36 14 65 
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2. Comparisons, Compress and Operators 

2.1 Comparisons of data 

 

     We have already briefly seen the equality function = in section 1.4 during our study of the precision of the divide 

function where the two operands are numbers.  The equality function is a scalar function and all other scalar 

functions we encountered in the last chapter take only numeric arguments.  For the equality function, not only it can 

take non-numeric arguments but it can also take two arguments of different data types or even different data 

structures.  Let us illustrate this point by the following examples and note that the results are all Boolean numbers: 

      v10<-!10 

      v10=5 

0 0 0 0 1 0 0 0 0 0 

      'abcde'='awcue' 

1 0 1 0 1 

      `abcde=`awcue 

0 

      `abcde='abcde' 

0 0 0 0 0 

      v10='abcde' 

length error 

      v10='abcde' 

         ^ 

      v10=10#'abcde' 

0 0 0 0 0 0 0 0 0 0 

      3 8=3 9 

1 0 

      3 8=(3;8) 

0 0 

      2015.02.07=2015.01.31+!7 

0 0 0 0 0 0 1 

      2015.02.07=20150131+!7 

0 0 0 0 0 0 0 

 

• The first comparison is easy to understand as only the fifth element of v10 is equal to 5; so is the second 

comparison since the first, the third and the last characters are the same on both sides.   

• The third comparison yields all 0 because the left side is a scalar of type symbol while the right side is a 

vector of type character, or a string; they are not the same.   

• The 4th comparison fails because one side is a vector of length 10 while the other is a vector of length 5.   

• The 5th comparison can be carried out but yields all 0 because one side is of numeric type while the other is 

of type character.   

• The 6th comparison is easy as the first pair of numbers to compare is equal while the second pair is not.   

• The 7th comparison gives 0 0 as the left side is a vector of length 2 while the right side is a list.   

• In the 8th comparison, the left side is the date of Feb. 7, 2015 which the right side is seven days following 

Jan. 31.   

• The last comparison gives 7 0s because the right side is a vector of 7 numbers, not dates. 

      In ELI, you can also compare two data items by size.  There are four dyadic scalar functions to do that: less than 

<, greater than >, less than or equal <= and greater than or equal >=, , the last two are represented by two character 

symbols.    We can see a few examples: 

      'abcde'<='awcue' 

1 1 1 1 1 

      'abcde'<'awcue' 
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0 1 0 1 0 

      2015.01.31<2015.02.07 

1 

      3 5 6 20 28>2*!5 

1 1 0 1 1 

      3 5 6 20 28>=2*!5 

1 1 1 1 1 

      3 5 6 20 28<2*!5 

0 0 0 0 0 

      3 5 6 20 28<=2*!5 

0 0 1 0 0       

      0.3333333333<1%3 

1 

   

The comparison of the size of two character data items is carried out according to lexicographical order, i.e. ‘a’ is 

ahead of ‘b’, etc.  The size of dates is determined by that the older date is less than a more recent date.  

   

2.2 Boolean operations  

 

     We see from the previous section that all comparisons result in Boolean values, be they single items or arrays.  In 

this section we first introduce three operations among Boolean data which yield Boolean results.  The three Boolean 

functions on Boolean data are the monadic not function ~a, and the dyadic and function a^b and the dyadic or 

function a&b, for Boolean operands a and b.   

     From elementary logic we have 

• not true implies false and not false implies true.   Hence, ~1 is 0 and ~0 is 1. 

• true and true implies true, true and false implies false and false and false implies false.  Hence, 1^1 is 1, 

1^0 is 0 and 0^0 is 0. 

• true or true implies true, true or false implies true and false or false implies false.  Hence, 1&1 is 1, 1&0 

is 1 and 0&0 is 0. 

For more general vectors, we have 

      ~0 1 1 0 0 1 0 1 

1 0 0 1 1 0 1 0 

      0 1 1 0 0 1 0 1^1 0 0 1 1 1 0 0 

0 0 0 0 0 1 0 0 

      0 1 1 0 0 1 0 1&1 0 0 1 1 1 0 0 

1 1 1 1 1 1 0 1 

 

     There is one more comparison function called not equal (~=) we have not mentioned yet; its meaning is fairly 

easy to figure out: a~=b if a=b is not true for two data items a and b.  In other words, we have the following formula:      

                                                             a~=b      ←→      ~a=b 

     Combined with other comparison functions introduced in the previous section we have more identities as follows: 

                                                             a>=b      ←→      ~a<b 

                                                             a<=b      ←→      ~a>b 

                                                             a>=b      ←→      (a>b)&(a=b) 

                                                             a<=b      ←→      (a<b)&(a=b) 
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for conformable data items (singletons or arrays) a and b.  One certainly can try them out in ELI.  

                  

2.3 Boolean selection 

 

     Booleans are useful because they can be used as the left argument b of the dyadic function compress b/a to select 

the elements in its right argument a which correspond to 1s in the left argument b and eliminates the elements in a 

corresponding to 0s in b.  We illustrate this selection functionality of / by the following examples:  

      (' '~=cv)/cv<-'from sea to shining sea.' 

fromseatoshiningsea. 

      (0=2|v10)/v10<-!10 

2 4 6 8 10 

      ((2<v10)^9>v10)/v10 

3 4 5 6 7 8 

      ((0=2|v10)&0=3|v10)/v10<-!10 

2 3 4 6 8 9 10 

 

In the first compress, the Boolean expression on left of / yields a Boolean value with 1s indicating a character in cv 

which is not a blank.  Hence, it results in the elimination of all blanks in cv.  In the second compress, the expression 

on the left of / gives a 1 to all even numbers in v10, i.e. those when divided by 2 end up having a remainder 0.  

Hence, the second compress selects all even numbers in v10.  The Boolean vector on the left of  / of the third 

compress is b1 and b2 with b1 indicating elements in v10 which are greater than 2 and b2 indicating elements in v10 

which are less than 9.  Hence, it selects elements in v10 which are between 2 and 9.  The Boolean vector on the left 

of  / of the last compress is b1 or b2 with b1 indicating elements in v10 which are even numbers and b2 indicating 

elements in v10 which can be evenly divided by 3.  Hence, it selects elements in v10 which are multiples of 2 plus 

those which are multiples of 3.         

     From the examples above it is clear that the left and right operands of the compress function must be vectors of 

the same length (later we shall see how to extend this function to the case where the right operand is an array of 

higher dimension).  But the compress function is not a scalar function; it is called a mixed function.  Its definition is 

almost like defining a subset S of the set Sr represented by the right operand with left operand representing a 

proposition P about elements of Sr: 

                                                       S= {x | P(x) holds for x�Sr} 

and the proposition can be a logical combination of several propositions about elements in Sr connected by not, and, 

or.           But we must point out vectors are not sets.  First, a vector (of numbers, or characters or symbols) can have 

duplicate elements while in a set each element is unique.  Second, there is the concept of position in a vector, and the 

definition of the compress function very much depends on that of corresponding position of each element in it.  We 

will continue this discussion about the difference between sets and vectors later when we touch on lists.  Shift back 

our attention to more practical matters we notice that the left side of compress almost always has to be enclosed by a 

pair of parenthesis, unless it is a literal Boolean vector or a variable holding a boolean value.  This is due to the fact 

that ELI executes from right to left and if the left argument to a function, primitive or defined, is an expression other 

than a literal or a variable, then that expression must be put inside a pair of parenthesis.  This not only applies to /, 

but also to the dyadic functions ^ and & as well as results of the monadic function ~.  

     Now let us turn to the case that the right argument a to compress b/a is an array.  For simplicity, we assume that 

a is a matrix.  The left argument b to the compress function must always be a Boolean vector (it can be the scalar 0 

or 1 but it then just extends that to a length suitable for the right argument).  We see examples first 

      m<-4 7#!28 
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      m 

 1  2  3  4  5  6  7 

 8  9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

      0 1 0 1 0 0/m 

length error 

      0 1 0 1 0 0/m 

                 ^ 

      0 1 0 1 0 0 1/m 

 2  4  7 

 9 11 14 

16 18 21 

23 25 28 

      ms<-2 4#`jones `backer `dean `collins `smith 

      ms 

`jones `backer `dean   `collins 

`smith `jones  `backer `dean    

      1 0 1 1/ms 

`jones `dean   `collins 

`smith `backer `dean 

 

     We see that b/a selects columns of a according to positions of 1s in b.  This of course requires that the length of b 

and the width of a (for more general array a, the length of the last dimension of a) to be equal.  Otherwise, a length 

error would result as in the case of the first compress above.      

     What to do if we want to select rows of a matrix instead of columns?  In fact, ELI has a different compress 

function called compress along the first axis denoted by /. to do precisely that:  For a Boolean vector b whose 

length equals to the first dimension of the shape of the right argument a (it is just the height of a in case a is a 

matrix), b/.a  selects sub-arrays of a along the first axis of a (i.e. rows of a in case a is a matrix) which correspond 

to 1s in b.  We illustrate this new compress function on matrices by the following two examples: 

      ms1<-5 4#`jones `backer `dean `collins `smith 

      ms1 

`jones   `backer  `dean    `collins 

`smith   `jones   `backer  `dean    

`collins `smith   `jones   `backer  

`dean    `collins `smith   `jones   

`backer  `dean    `collins `smith   

      1 0 1 1/.m 

 1  2  3  4  5  6  7 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

      0 1 1 0 1/.ms1 

`smith   `jones `backer  `dean   

`collins `smith `jones   `backer 

`backer  `dean  `collins `smith 

 

2.4 The reduction operator and mathematical induction  

 

     The slash character symbol / used in the preceding section for the compress function has a different meaning in 

ELI if there is a primitive function symbol, such as +, immediately to the left of it.  For example,  

      +/v10 

55 
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     In this case, / is an operator, more precisely the reduction operator, which when applies to a dyadic primitive 

scalar function f on its left produces a derived function f/.  When f is + the derived function +/ is what we call the 

sum(.) function in other programming languages. More precisely, for a dyadic scalar function f, the value of the 

result when derived function f/ applied to a vector v with elements v1, v2,…,vn is defined by 

                                                            f/v       ←→       v1 f v2 …f vn          

Hence, +/v10 is 1+2+3+4+5+6+7+8+9+10 which is 55.  Of course, f can be other dyadic primitive scalar functions.  

For examples, 

      */v10 

3628800 

      w10<-10?.100 

      w10 

14 76 46 54 22 5 68 94 39 52 

      _./w10 

5 

      ~./w10 

94 

      ^/0 1 1 0 0 1 1 0 

0 

      &/0 1 1 0 0 1 1 0 

1 

 

Hence, */ is the product function, _./ is the total minimum function and ~./ is the total maximum function.  And 

^/b is 0 unless all elements in b are 1; &/b is 1 if there is a 1 in one of the elements of b.  

 

     We should not forget the fact that Boolean numbers are also integers, i.e. B⊂ N0⊂Z.  Hence, arithmetic functions, 

and consequently,  f/ for an arithmetic function f also applies to Boolean vectors b.  It is easy to see that */ has the 

same effect on a Boolean vector b as that of ^/.  But +/ (we call it plus reduction instead of sum) is far more 

interesting since it counts the 1s in a Boolean vector b, and this is very useful when combined with comparisons: 

 
           +/0 1 1 0 0 1 1 0 
4       

      +/w10<50                         

5 

      cv<-'from sea to shining sea.' 

      +/'s'=cv 

3 

      +/'e'=cv 

2 

 

The second expression above counts the number of elements in w10 which is less than 50 while the last two 

expressions above count the occurrences of the letters ’s’ and ’e’  in the string cv respectively. 

  

     What happens if the argument a to a derived function f/ is an array, say a matrix.  The answer is that f/ will then 

apply to each row of a to yield a vector of length r where r is the number of rows in a, i.e. r is the size of the first 

dimension in the shape of a.  This is called reduction along the last axis of a.  And similar to the case of compress, 

f/.a for an array a is called reduction along the first axis of a and this is defined by applying  f/. to each column 

of a to yield a vector of length c where c is the number of columns in a for a matrix a.   We illustrate these two cases 

by the following examples,      

 
      m 

 1  2  3  4  5  6  7 
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 8  9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

      +/m 

28 77 126 175 

      +/.m 

46 50 54 58 62 66 70       

      +/+/m 

406 

      +/,m 

406 

 

The last two reductions show how to get the total sum of all elements in a matrix like m. 

 

     We want to write a short function to take the average of elements in a numeric a which may be a scalar, a vector 

or a more general array.  It is fairly simple.  We just divide the total sum of elements in a by the count of a, i.e. the 

number of elements in a; so we have the following function:   

 
      {avg1:(+/,x) %^x} 

avg1 

      avg1 10 

10 

      avg1 v2 

22.125       

      avg1 m 

14.5  

 

     Back to the beginning of the example +/v10, a numerical vector vp is called an arithmetic progression if the 

difference between any two consecutive elements in vp is a constant (called step) d.  v10 is a progression with d=1. 

In general, a progression vp of length n and step d starting at b is of the form b+d*!n ([]IO=0); for example,  

 
      []IO<-0 

      10+3*!15 

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52       

      +/10+3*!15 

465 

 

For a progression, you really don’t need the reduction operator to get its sum.  The legend has it that when the great 

German mathematician Carl Friedrich Gauss was a young boy in a classroom, he figured out instantly that the sum 

of 1..100 is 5050 to the surprise of his teacher.  His reasoning is as follows: you pair the first element with the last 

element and the sum is 101, you then pair the next element with the next to last element the sum is still 101 and we 

have 50 such pairs; so the sum is 5050.   This argument also applies to the calculation of the sum of progressions.  

Hence, we write the following short function to calculate the sum of a progression b+d*!n where the y argument 

stands for step d and x stands for the two item list (b;n) of starting point b and length n:  

 
      {sum_pv:[]IO<-0;(b;n)<-x;(b+b+y*n-1)*n%2}  

sum_pv 

      1 sum_pv (1;100) 

5050 

      3 sum_pv (10;15) 

465 

 

So what is the point?  We now have computer and the reduction operator, why bother with the old man’s trick?  But 

wait a minute, suppose a progression is a trillion long, the reduction operation would take a trillion additions, it may 

even run out of memory; yet the function sum_pv only takes 6 arithmetic operations.   The moral of the story is that 
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if we do have a formula (or more generally an analytic solution of mathematical nature), it pays to deploy that before 

embarking on a brute force computation.  Of course, the great advance in scientific research provided by the power 

of modern computer and its assortment of software is that for irregular sequence or stuffs without analytic solutions 

one can still plough on using brute force computation.   

 

     It is not difficult to convince us the correctness of the formula for the sum of a progression.  But for problems of 

more complicated nature, if we can find a formula, we need a formal method to prove its correctness.  This is where 

the method of mathematical induction comes in.  This method concerns about a statement S(n) involving natural 

numbers n�N.  First, we prove the base case, i.e. S(1) is true.  Next, we assume S(k) is true, and from there to prove 

that S(k+1) is also true.  We then conclude that S(n) is true for all n� N.  This process is also called proof by 

induction. The statement we like to try on is 

 

                                                         ∑n 
i=1i

2= (n*(n+1)*(2n+1))/6 

 

that is the sum of squares from 1 up to n.  Clearly, when n=1, 12= (1*(1+1)*(2+1))/6 holds.  Now assume this is true 

of n=k, i.e. the following is true: 

 

                                                          ∑k 
i=1i

2= (k*(k+1)*(2k+1))/6 

 

For n=k+1, we have  

 

         ∑k+1 
i=1i

2= ((k*(k+1)*(2k+1))/6)+(k+1)2= (2k
3+3k

2+k)/6 +k
2+2k+1= ((k+1)*(k+2)*(2(k+1)+1)/6 

 

Hence, the formula is true for n=k+1, so it holds for all n� N.      

                  

2.5 The scan operator 

 

     If the sum function (plus reduction) exemplifies the reduction operator / then the partial sum function +\ 

exemplifies the scan operator denoted by the back-slash \.  We show two examples first: 

      v10 

1 2 3 4 5 6 7 8 9 10 

      +\v10 

1 3 6 10 15 21 28 36 45 55 

      *\v10 

1 2 6 24 120 720 5040 40320 362880 3628800 

             

We can see that +\v10 is the cumulative sums of elements in v10, and *\v10 is the cumulative products of elements 

in v10.  More precisely, for a dyadic scalar function f, the result when derived function f\ applied to a vector v with 

elements v1, v2,…,vn is also a vector of the same length as that of v, and its kth element is defined by 

                                 ( f\v)k       ←→       v1 f v2 …f vk     ←→       f/v1 v2 … vk          

for k=1,…,n.  We have more examples: 

      w10 

14 76 46 54 22 5 68 94 39 52 

      _.\w10 

14 14 14 14 14 5 5 5 5 5 

      ~.\w10 

14 76 76 76 76 76 76 94 94 94 

      ^\1 1 1 0 1 0 0 0 
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1 1 1 0 0 0 0 0 

      &\0 0 1 0 1 1 0 0 

0 0 1 1 1 1 1 1 

 

We see that _.\a gives the cumulative minimum of a vector a and ~.\a gives the cumulative maximum of a.   For a 

Boolean vector b, ^\b turns all elements in it into 0 once a 0 appears in b (scanning from left to right);  and &\b turn 

all elements in it into 1 once a 1 appears in b.  These last two examples could be quite useful in text processing.  

Suppose we have a line of text, i.e. a character string txl.  We would like delete all the leading blanks in txl but not 

all blanks.  We’ll utilize the or scan after a comparison not equal to a blank to yield a Boolean vector for compress 

as shown by the expression and function below: 

      (&\' '~=txl)/txl<-'   Hello, Mr.Smith.' 

Hello, Mr.Smith. 

      {del_leadblks:(&\' '~=x)/x} 

del_leadblks 

      del_leadblks '  This is a small world.' 

This is a small world. 

     

Next, suppose in a programming language L everything to the right of the character ‘#’ in a line of code is part of a 

comment.  We would like to write a function to eliminate comments in a line of code before parsing.   We deploy 

the and scan to achieve this task: 

      (^\'#'~=cln)/cln<-'  a:=a+1; # increment a' 

  a:=a+1;  

      {elim_comm:(^\y~=x)/x} 

elim_comm 

      '#' elim_comm '  area:= length * width; # compute area'  

  area:= length * width; 

  

     We note that we designed the elim_comm function to be dyadic and having the left argument to representing the 

character signaling the beginning of a comment.  This gives us the flexibility of choice.  For example, if the designer 

of language L changes his mind to use ‘$‘ for starting a comment our function elim_comm still can be used to do the 

job simply by calling the function with ‘$‘ as its left argument.      

 

     This reminds us a question: how do we put comment lines in ELI?  The answer is that in ELI a comment starts 

with a double slash ‘//’ and ends at the end of that line.  That is everything after a ‘//’ is treated as part of a 

comment unless this is embedded in a character string as part of data.  A comment line can be a line all by itself or 

mixed with ELI code, i.e. a comment can follow a piece of code on its left.  One does not use comments that much 

when interacts with the ELI interpreter as we have done so far but commenting code is a good habit when writing 

ELI executable files (to be explained later) and in writing defined functions.  You cannot write a comment inside a 

short function, but you can write a comment outside a short function in a file.  We have several examples: 

 
//2015-02-15 version 1 

a<-^/b            //b is Boolean, a is 1 if all elements in b are 1  

      cc<-'this is a test // on a string' 

      cc 

this is a test // on a string 

// 

//a function to eliminate leading blanks in a string 

    {del_leadblks:(&\' '~=x)/x} 

 

     The derived function of scan on a scalar function f, f\, extends to an array a in a similar fashion as that of f/ on 

an array a, i.e. it operates row-wise on each of its rows.  And a companion operator named scan along the first axis 

f\. extends to arrays in a similar fashion for a scalar function f as that of f/. on arrays.   
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     For a scalar function, the result of reduction f/v on a vector v always ends in a scalar, and the result of scan f\v is    

 always is vector of the same length as that of v.  A curious question: what happens if v is an empty vector (#v is 0)?  

 

     Before we can answer this question we need to know how to enter a vector of length 0. There are several ways: 

 
      ss<-''       //this empty vector is of chacter type  

      #ss 

0 

      v0<-!0       //you can also do with a reshape v0<-0#2 

      #v0 

0 

            

Now we can try out:  

 
      +/v0 

0 

      */v0 

1 

 

We see that first it would not end in error but the answer depends on f: 0 is the identity element of + while 1 is the 

identity element of *.  Hence, f/v equals to the identity element of the dyadic scalar function f  for an empty vector v. 

 

2.6 The each operator 

     

     To introduce the each operator ” let us recall the following:  We are already familiar with the fact that for a 

monadic scalar function f applying to a vector v = (v1 v2 …vn) then f v is a vector  

                                                (w1 w2 …wn)           where wk= f vk  for k=1, 2, …, n.   

But what if f is a defined function?  And this is where the each operator comes in.  In short, if you replace f v above 

by f ”v for a defined function f, the above property of wk= f vk still holds.  In fact, this is true even if v is a list 

(v1 ;v2;…;vn) instead of a vector.  This each operator also applies to dyadic defined functions similar to the way of 

dyadic scalar functions.  And for list operands, each operator applies to primitive dyadic or monadic functions as 

well as to derived functions such as +/ or ~./.  Let us look at some examples:       

 
      {f1: %x*x} 

f1 

      f1 2 

0.25 

      f1 3 

0.1111111111 

      f1 5 

0.04 

      f1"2 3 5  

0.25 0.1111111111 0.04 

      {f2:(x+y)%2} 

f2 

      3 f2 5 

4 

      9 f2 10 

9.5 

      _2 f2 8 

3 

      3 9 _2 f2" 5 10 8 
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4 9.5 3        

      {avg1:(+/,x)%^x} 

avg1 

      L<-(3;10 30;7 9 21)  

      avg1"L 

<3 

<20 

<12.33333333 

      +/"L 

<3 

<40 

<37 

      ~./"L 

<3 

<30 

<21 

      _.\"L 

<3 

<10 10 

<7 7 7        

      L%"3 

<1 

<3.333333333 10 

<2.333333333 3 7 

 

We can see that each is indeed a very powerful operator in ELI. 
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3. More Mathematical Functions 

3.1 The power function and roots 

 

     We all know that multiplication can be regarded as addition raised to a higher level in the sense that adding a 

number n t times is the same as multiplying n by t for a positive integer t.  In ELI terms, we have  

                                           +/t#n                 ←→        n*t      for t�N0 

Of course, for general multiplication t can be any real number; so multiplication is an extension of doing repeated 

addition.   Now the question is what is the function which is multiplication raised to a higher level in the sense that it 

stands for repeated multiplication.  Indeed, the power function represents repeated multiplication:  x2, x square is x 

raised to power 2 and x3=x*x*x is x raised to power 3.  The dyadic primitive ELI function corresponding to the 

power function is denoted the double character symbol ‘*.’.suggesting it is multiplication (*) raised to a higher level  

So x2 is x*.2 and x3 is x*.3 in ELI.  We have the following identity:  

                                  xn        ←→          */n#x           ←→     x*.n      for n�N0 , x�R 

And this identity is extended to general n�R for n≥0, and this more general function is the power function.  The 

process of raising x to n-th power is called exponentiation with n called the exponent and x the base.  Please note 

that for n=0 the left side of the identity above is the times reduction over the empty vector, thus it equals to the 

identity element of the multiplication function *, which is 1.  Hence, x*.0 is 1, i.e. power zero of any number x is 1.  

Since (x*.n)*( x*.-n) is 1= (x*.0), we see that x*.-n is 1%x*.n for n�N0.  In general, a-b with a negative 

exponent -b is the reciprocal of ab for b�R, b ≥0.        

     Let us first set []IO<-0.  We then have the following examples of the power function:  

      2*!10 

0 2 4 6 8 10 12 14 16 18 

      2*.!10 

1 2 4 8 16 32 64 128 256 512 

      2*.-!10 

1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625 0.001953125 

      (!10)*.3 

0 1 8 27 64 125 216 343 512 729 

      2 3 5 7 11*.11 7 5 3 2  

2048 2187 3125 343 121 

 

     With exponentiation, we can write a number n which is n0 multiplied by a 1 followed k 0s as  

                                                          n  = n0*10…0 = n0*10*. k 

Indeed, in ELI a floating point number such as n above can be written in scaled form as n0e k.  For example, 

      1.2800845e3 

1280.0845 

      1.2800845E3 

1280.0845 

      1.2800845e_3 

0.0012800845 

 

Note that ‘e’ and ‘E’ are interchangeable but this letter must follow a digit and be followed by a digit or _ and a digit 

with no space in between.  The scaled form is quite suitable for writing huge or tiny numbers with great precision. 
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     Suppose you have 500 dollars and you deposit it at a bank with annual interest rate of 3%.  How much money 

would you have in your account at the end of first year, the second year, the third year … if you do not withdraw 

any money from your account at the bank?  The amount you first deposited, $500 here, is called the principal p and 

the yearly interest rate r, of 3% here, means that interest payment is p*3%100 or p*0.03.  Together with the principal 

p, at the end of the first year there would be p+ p*0.03 or p*1.03 in your account.  And if you keep both the 

principal and the interest in your account there would be (p*1.03)*1.03 and ((p*1.03)*1.03)*1.03 at the end of 

second year and third year respectively.  To put in another form, there would be p*1.03*.2  and p*1.03*.3 in your 

account at the end of second and third year respectively.  To see how your money will grow in ten years, we first 

reset []IO<-1, then we have  

      500*1.03*.!10 

515 530.45 546.3635 562.754405 579.637037 597.026148 614.93693 633.38504 652.38659 671.95819 

       

     We would like to put this calculation into a short function yr_amnt_r for general use whose left parameter is the 

number of years for the money to grow and the right parameter is a list of two items, the first item is the amount of 

principal while the second item is the annual interest in percentage point.  Here is the function and two function calls. 

      {yr_amnt_r:(p;r)<-x;p*(1+r%100)*.y} 

yr_amnt_r 

      3 yr_amnt_r (500;3) 

546.3635 

      10 yr_amnt_r (1000;2.5) 

1280.084544 

        

We note that the first expression in this short function, (p;r)<-x, assigns two parts of the right argument to local 

variables denoting the principal amount p and the interest rate r.  The first call of the function gives us the same 

result as the third element in the result list of 500*1.03*.!10 and the second function call above yields the amount 

of money after ten year for initial deposit of $1000 at annual interest rate of 2.5%.     

     We have the following identity for the right argument of the power function (exponent of the exponentiation):  

                                     a(b+c) = ab *a
c
        ←→        a*.(b+c)      ←→        (a*.b)*(a*.c) 

                                 (a+b)2= a2+2ab+b
2   ←→       (a+b)*.2   ←→    (a*.2)+(2*a*b)+b*.2     

First we see that the left and the right arguments to the power function are clearly not symmetric since they behave 

differently. Second, we see that if we set b and c in the first line of identities above both to 0.5, we then get a= ab *a
c
  

where  ab and ac
  are equal, and that means they are the square roots of a!  In other words, a*.0.5  is the square root 

of a.   By the same argument, the nth root of a is a raised to the power of 1/n, i.e. a*.%n in ELI terms.   We have the 

following examples for square roots, cubic roots and roots up to 10th root: 

      (!10)*.0.5 

1 1.414213562 1.732050808 2 2.236067977 2.449489743 2.645751311 2.828427125 3 3.16227766 

      1 10 100 1000 10000 100000 1000000*.%3   

1 2.15443469 4.641588834 10 21.5443469 46.41588834 100 

      1024*.%!10 

1024 32 10.0793684 5.656854249 4 3.174802104 2.691800385 2.37841423 2.160119478 2 

 

In particular, we see from the above that √2 is 1.414213562; this of course is only an approximation to the real value 

of √2 similar to the situation of 1%3.  However, √2 is very different from 1%3 in a more fundamental sense.  Namely, 

√2 is an irrational number, i.e. it cannot be expressed as a fractional number n over m with n,m� Z, n and m have no 

common factor other than 1.  This fact was discovered by Greek mathematicians of the Pythagorean School more 

than two millenniums ago, and it was a great achievement in mathematics.  
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        Pythagorean Theorem tells us that for a right triangle C with the lengths of the perpendicular sides a and b, and 

c the length of the side facing the right angle, we then have the following 

                                                                    �� + �� = ��                      

When both a and b are equal to 1, we have c equal to √2, and this is how they encountered for the first time this 

irrational number.  They adopted the prove by contradiction method to show the irrationality of √2 as follows: 

suppose √2= m%n with n,m two integers, n and m have no common factor other than 1.  We then have 

                                             (√2)*n= m    square both sides → 2*n
2= m2

     

This implies that m must an even number, say m= 2*m0  or  m2= 4*m0 
2.   Substitute back to the equation above, we 

have 2*n
2=  4*m0 

2 or n2=  2*m0 
2 and this implies that n too is an even number.  This is a contradiction to our initial 

assumption that n and m have no common factor other than 1.  Hence, √2 is irrational. 

 

3.2 Euler’s number e and the exponential function 

 

     The monadic counterpart to the power function a*.b is the exponential function *.b, which is equal to e*.b, 

where e is the famous Euler’s number.  In other words, *.b, the exponential function applied to b is a shorthand for 

e*.b with the left argument to the power function fixed to e which approximately equals to *2.718281828: 

      *.1 

2.718281828 

      e<-*.1 

      e*._1 0 1 2 3 

0.3678794412 1 2.718281828 7.389056099 20.08553692 

      *._1 0 1 2 3 

0.3678794412 1 2.718281828 7.389056099 20.08553692 

 

      Before discussing the Euler number e in more detail, we would like to state more precisely the concept of limit.  

Suppose we have an infinite sequence of real numbers nk, k=1, 2, 3, …, we say that nk is approaching a limit lm, 

written as 

                                                            lim k→∞ nk = lm 

if given an arbitrary small number �, there exists a k such that |lm-nk|<�.  In other words, the sequence nk can get 

closer and closer to lm because one can always pick a number from the sequence {nk} whose difference with lm in 

absolute value is less than the number �.  For example, %k, i.e. 1%k, has limit 0 as k→∞.  Since all representable 

numbers in ELI or any digital computer are really rational numbers, √2 is the limit of a sequence of increasingly 

accurate approximation to this irrational number.  

     The Euler number e was first discovered by Jacob Bernoulli (it is named after the Swiss mathematician Leonhard 

Euler due to an identity discovered by Euler which we will touch on later) when he studied continuous compound 

interest.  Suppose you have $1.00 and deposit it in a bank which offers an annual rate of 100%.  At the end of a year 

you would have (1+1) = 2 dollars, 1 from the principal and 1 from the interest payment.  Now suppose the bank 

decides to pay interest semi-annually: at the end of six months, you get (1+0.5) dollars and at the end of the year you 

get (1+0.5)2 dollars.  If the bank decides to pay interest quarterly, you would have (1+0.25)4 dollars at the end of a 

year.  That would be 2.25 and 2.4414 dollars respectively.  Clearly, the more periods to divide a year to pay interest 

the more money you would have due to compounding.   What happen if we keep increasing the number of equal 

periods for compounding interest payment? 
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     Let us write a monadic short function compr1 whose right argument x represents the number of equal periods in 

a year to pay interest and the result is the amount of money you would have by depositing one dollar at an annual 

rate of 100%: 

      {compr1: (1+%x)*.x} 

compr1 

      compr1 2 

2.25 

      compr1 4 

2.44140625 

      compr1 12 //pay interest monthly 

2.61303529 

 

     In order to see the overall trend of compr1 n when n→∞ we note that the function compr1 can also take a vector 

argument to produce a vector result similar to the way of monadic scalar function.  Now, we can try it out: 

      compr1 2 4 12 

2.25 2.44140625 2.61303529 

      10*.!8 

10 100 1000 10000 100000 1000000 10000000 100000000  

      compr1 10*.!8  

2.59374246 2.704813829 2.716923932 2.718145927 2.718268237 2.718280469 2.718281694 2.718281798  

 

The lim n→∞  compr1 n  is the Euler number e which is truncated to 2.718281828 when displayed in ELI.  In the IPO 

filing for Google in 2004, the company said it intended to raise $2,718,281,828 which is e billion dollars rounded 

to the nearest dollar.  The most accurate calculation of e has been carried out in 2010 with 1E12 decimal digits.       

 

     What if the annual interest rate for continuous compound is r=%a where a is a positive integer; for example if a 

is 2 then r is 50%.  The growth then is the limit of (1+(%a)* %n)*.n which is (1+%a*n)*.n as n→∞, and this again 

can be rewritten as follows (remember that cb*a = (cb)a): 

 

                                       (1+%a*n)*.(a*n)* %a   ←→    ((1+%a*n)*.(a*n))*. %a 

 

Note that lim n→∞(1+%a*n)*.(a*n)is the same as lim n→∞(1+%n)*.n. Hence, when n→∞ the second expression 

above becomes er, r= %a for a positive integer a.  Similarly, we can prove that if the rate of growth r=b is a 

positive integer then continuous compound results in er for total growth.  And for a rate of growth r= b being a 

positive integer (say b is 3 then r is 300%), continuous compounding then leads to the growth which is the limit of  

(1+b%n)*.n as n→∞, and this expression can be rewritten as follows: 

 

                                     (1+%(%b)*n)*.(( %b)*n)*b   ←→    ((1+%n%b)*.(n%b))*.b 

 

Note again that lim n→∞(1+%n%b)*.(n%b)is the same as lim n→∞(1+%n)*.n. Hence, the second expression above is 

er when n→∞ for r= b, i.e. continuous compound at rate r= b results in er for total growth for a positive integer b.   

Combine these two results, we see that the above also holds for r=b%a a positive rational number.  In general, we 

have 

 

                                                                  growth =  e 
rate*time 

 

The time period here needs not to in whole number of years, it can be any time interval since compounding in 

growth is continuous. 
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     The idea of using continuous compounding to represent the rate of growth also applies to decay.  Suppose some 

material of weight w decay at an annual rate of 100%.  After continuous decay at that rate what would be the weight 

of that material at the end of a year? Zero? Not really.  We can calculate roughly at the end of 6 months it would it 

would weigh 0.5w, and at the end of the third quarter it would weigh 0.375w.  In fact, we can write a function as 

before and apply it to a sequence of larger and larger numbers of dividing periods: 

 
      {compr_1:(1-%x)*.x} 

compr_1        

      compr_1 1 100 10000 1000000 100000000 

0 0.3660323413 0.3678610464 0.3678792572 0.3678794375 

 

And we see it is approaching e-1: 

 
      *._1 

0.3678794412 

 

Hence, the following formula is for calculating decay 

 

                                                                    growth =  e- rate*time 

 

3.3 The logarithm and natural logarithm functions and groups 

 

     We can regard the division function % as the inverse of the multiplication function * in the sense that if a*b= c 

then c%b= a.  In this sense, the logarithm function b%.a is the inverse of the power function b*.a; namely, for 

positive numbers a and b, b%.a= c if b*.c= a, just as ‘*.’ is the symbol for the power function ‘%.’ is the symbols 

for the logarithm function written mathematically as logb a with base b.  We illustrate this function by the following 

examples: 

      []IO<-0 

      2*.!11 

1 2 4 8 16 32 64 128 256 512 1024 

      2%.1 2 4 8 16 32 64 128 256 512 1024 

0 1 2 3 4 5 6 7 8 9 10 

      10*.!8 

1 10 100 1000 10000 100000 1000000 10000000 

      10%.1 10 100 1000 10000 100000 1000000 10000000 

0 1 2 3 4 5 6 7 

      2 3 8*.5 

32 243 32768 

      2 3 8%.32 243 32768 

5 5 5 

      2 3 8%.24 27 30 

4.584962501 3 1.635630199 

      10%.17 190 2015 3.16227766 

1.230448921 2.278753601 3.30427505 0.5 

 

     Like other arithmetic functions the logarithm function b%.a is a scalar function.  So it operates on (conformable) 

arrays the same way as it operates on a pair of scalars and scalar extension applies if one argument is a scalar.  Many 

times when a sequence of data is growing very fast like the right argument in the 4th expression above, it would be 

impossible to plot its growth on a chart.  Instead, we can plot its logarithmic growth to indicate the scale of growth. 

      The monadic counterpart to the logarithm function is the natural logarithm function %.a which is the logarithm 

function b%.a with the left argument b fixed to be e, the Euler number; mathematically, it is written as logea or ln a.      
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      e<-*.1 

      e 

2.718281828 

      10*!8 

10 20 30 40 50 60 70 80 

      e%.10*!8 

2.302585093 2.995732274 3.401197382 3.688879454 3.912023005 4.094344562 4.248495242 4.382026635 

      %.10*!8 

2.302585093 2.995732274 3.401197382 3.688879454 3.912023005 4.094344562 4.248495242 4.382026635 

      %.(50*800) 

10.59663473 

      (%.50)+ %.800 

10.59663473         

      (%.0.05)+%.2000 

4.605170186 

      (%.0.05*2000) 

4.605170186 

      (%.0.05) 

_2.995732274 

      %.2000 

7.60090246 

 

Note the last several expressions above illustrate the general identity that  

                                                          ln (a*b) = ln a+ ln b                      (1)  

for two positive real numbers a and b because we have e ln x = x for all x>0, hence raise e to the power of the left and 

right sides of the identity (1) we get e 
a+b = ea

* e
b.          

                                 e 
ln (a*b)  =  a*b  =  e 

ln a
* e 

ln b
 = e 

ln a+ ln b     →   ln (a*b) = ln a+ ln b 

     A map m from a set X to a set Y is called a one-to-one correspondence between X and Y  

                                 if for every x�X,     m(x)�Y 

                                 and for every y�Y, there is a x�X such that m(x)= y        

 

We can see that such a one-to-one correspondence m is a pairing between the set X and the set Y.  Two set S1 and S2 

are called equivalent if there is a one-to-one correspondence between them.  Obviously, finite sets having the same 

number of elements are equivalent to each other since we can set up a one-to-one correspondence between them.  

For two infinite sets being equivalent means that they essentially have the same number of elements as well.  For 

example, the set N of natural numbers and the set N0=N∪{0} are equivalent since m(n)= n-1 from N to N0 is a one-

to-one correspondence between the two sets.  Let 

                                                           Nev= {2, 4, 6, ….} 

be the set of even numbers; then m(n)= 2n is a one-to-one correspondence between N and Nev.  Hence, N, N0 and Nev 

are all equivalent to each other.  A set is called countable if it is equivalent to the set N of natural numbers.  By 

laying out all fractional numbers in a matrix of rows where each row has the same denominator we can prove that 

the set R0 of rational numbers is countable, i.e. we can devise a one-to-one correspondence between R0 and N0.     

     And using a diagonal method first devised by Georg Cantor, the founder of set theory, one can prove that the set 

R of real numbers is not countable.  In other words, there are infinite sets which have more elements than a 

countable set.  We are not going into details of these proofs.  
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     A binary operation * * * * on a set S is a map from a pair of elements (x, y) in S to an element x****y in S for all pairs of 

elements in S.  Both addition + and multiplication * are binary operations on Z (and on R), but division is not a 

binary operation on Z or R because x%0 is not an element in Z or R.  A group is a set G with a binary operation **** on 

G such that it satisfies the following three conditions: 

         1) x****(y****z) = (x****y)****z  for all elements x, y, z in G; 

         2) there is an element id in G such that id****x = x****id = x for each element x in G; and 

         3) for each element x in G there is an element y in G such that x****y = y****x = id. 

 

Property 1) is called the associative law.  The element id is called the identity element of G, and the element y in 3) is 

called the inverse of x in G.  Note that it is not required for a group operation in G that x****y = y****x for all x, y in G.  

One example of a group is Z, the set of all integers, under the binary operation of addition + where 0 is the identity 

element and the inverse of an x in Z is just -x.  This also holds true if we replace Z by R.  However, Z is not a group 

under the binary operation of multiplication * because many elements in Z do not have an inverse in Z under  * 

where  1 is the identity element.  The same is also true for R because the element 0 has no inverse under *.  If we 

define R+ to the set of positive real numbers, namely 

                                                         R+  ={x | x�R, x>0} 

Then R+ is a group under multiplication since we clearly have x*(y*z) = (x*y)*z  for all elements x, y, z in R+ with 1 

as the identity element, and for each x�R
+, %x is the inverse of x.   

     An isomorphism from a group G to a group H is a one-to-one correspondence m between G and H such that  

                                                        m(x****y)  =  m(x)****m(y)     all x, y in G. 

Note that the * * * * in the left side of the above expression is the binary operation in G while the * * * * in the right side of = 

above is the binary operation in H.   Two groups G and H are isomorphic if there is an isomorphism from G to H.  

We see that isomorphic groups are basically the same group as far as group structure is of concern.  In particular, for 

two finite groups to be isomorphic them must have the same number of elements.  With all the discussion above, we 

can see now that the natural logarithm function ln(x) is an isomorphism from the group R+ under multiplication * 

operation to the group R under addition operation + since x→ ln(x) is a one-to-one correspondence between R+ and R 

and we have ln (a*b) = ln a + ln b for all a, b in R+. 

 

3.4 Complex Numbers 

 

     The simple equation:  ax +b = 0 has x = -b%a as its solution for real number coefficients a and b with a>0.  The 

quadratic equations are those of the form 

                                                        ax
2
+ bx +c = 0     where  a , b and c �R with a>0.   

These equations have two solutions x1 and x2 (expressed in ELI notation) as follows:  

                                                        x1 = ((-b) + ((b*.2) + 4*a*c)*.0.5) %2*a 

                                                        x2 = ((-b) + ((b*.2) - 4*a*c)*.0.5) %2*a 

 

The solutions to the general cubic (third degree) equation 

 

                                                                ax
3 
+ bx

2 + cx + d = 0,      a>0 
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Y axis 

X axis O 

b 

a 

a+bi 

 

and the general quartic (fourth degree) equation 

 

                                                               ax
4 
+ b x

3 + c x
2 + dx + e = 0,      a>0    

 

are also known by sixteenth century but their formulae are far more complicated.  The Norwegian mathematician N. 

Abel showed in 1824 that there can be no formulae for solving general equations of degree higher than four.  Of 

course, some particular quartic equations do have solutions in terms of the algebraic operations we studied so for.  

For example, for  ax
4 
+ e = 0, we have x= (-e%a)*.0.25. It was the French mathematician E. Galois (1811-1832) 

who introduced the concept of the group (as we described in the previous section) to study the properties of 

algebraic equations in order to decide which equations have algebraic solutions in terms of their coefficients.  

 

     In all our discussion about solutions to algebraic equations above, we actually neglected an important question: 

where do the solutions lie? In R, the set of real numbers, as the coefficients are? If we just consider the quadratic 

equation x2
+ 1= 0; then x= √-1.  We clearly have a problem here if we only search x in R since for any x�R, x2>0 or 

x
2=0.  For this reason mathematicians developed the system C of complex numbers.  Mathematically, a complex 

number consists of two parts: the real part a and the imaginary part b and written as a+bi where a, b�R and i2= -1.  

If b= 0, then a+bi  is just a real number a.  We now have   

 

                                                                   B⊂ N0⊂Z ⊂R0⊂R ⊂C  

 

However, R is more than a set, it has operations such as addition + and multiplication *.  We want to extend these 

operations to C consistent with R and the fact that i2= -1.   

 

 

 

     Hence, for two complex numbers a+bi and c+di, we define  

  

                                              (a+bi) + (c+di) = (a+c)+ (b+d) i              

 and  

                                              (a+bi) * (c+di) = (ac-bd)+ (ad+cb) i   

 

The extension of the set R of real numbers to the set C of complex numbers is 

a continuation of the extension from natural numbers N to integers Z, and then 

to the set of rational numbers R0.  Each time it is in order to accommodate the 

solutions to operations from subtraction to division, and finally to taking the root of a negative number.  

 

     A complex a+bi is written in ELI as ajb where a is the real part and b is the imaginary part.  If that complex 

number has no imaginary part, i.e. it is a real number, then we can write it as aj0 or just a.  On the other hand if a=0, 

then we must write it as 0jb.  Note that there must not be a space before or after j.  For example, 

 
      _1*.0.5 

0j1 

      _1j2 5.2j_2 0.01j5.8 20.1j0.5 + 2.3j3  

1.3j5 7.5j1 2.31j8.8 22.4j3.5 

      _1j2 5.2j_2 0.01j5.8 20.1j0.5 * 2.3j10  

_22.3j_5.4 31.96j47.4 _57.977j13.44 41.23j202.15 

      1 2 3 4+_1j2 5.2j_2 0.01j5.8 20.1j0.5 

0j2 7.2j_2 3.01j5.8 24.1j0.5 

      0j1 0j2 0j3 0j4+_1j2 5.2j_2 0.01j5.8 20.1j0.5 

Complex Plane 
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_1j3 5.2 0.01j8.8 20.1j4.5 

      1 2 3 4*_1j2 5.2j_2 0.01j5.8 20.1j0.5 

_1j2 10.4j_4 0.03j17.4 80.4j2 

      0j1 0j2 0j3 0j4*_1j2 5.2j_2 0.01j5.8 20.1j0.5 

_2j_1 4j10.4 _17.4j0.03 _2j80.4 

 

We notice that in case that imaginary part is either a negative number or a fractional number less than 1, their first 

character ‘_’ or ‘0’ must follow ‘j’ immediately.       

 

     Since the division function can be defined as the inverse to the multiplication function and initially for positive 

integers the power function can be defined as repeated multiplication, they can also naturally be extended to 

complex numbers.  For example, 

 
      _22.3j_5.4 31.96j47.4 _57.977j13.44 41.23j202.15%2.3j10 

_1j2 5.2j_2 0.01j5.8 20.1j0.5 

      1.3j5 7.5j1 2.31j8.8 22.4j3.5 % 2 2j5 0j4 10j2 

0.65j2.5 0.6896551724j_1.224137931 2.2j_0.5775 2.221153846j_0.09423076923 

      1.3j5 7.5j1 2.31j8.8 22.4j3.5 *. 2 

_23.31j13 55.25j15 _72.1039j40.656 489.51j156.8 

      1.3j5 7.5j1 2.31j8.8 22.4j3.5 *. 0.5 

1.798087392j1.390366236 2.744665096j0.1821715884 2.388319197j1.842299809 4.747198576j0.3686384658 

       

     We introduce a new monadic function + called conjugate.  For a complex number (a+bi) its conjugate equals to 

(a-bi).  Hence, for real numbers, this function is just the identity function, i.e. it gives back the argument as its result. 

For true complex numbers, we have 

 
      +0j1 

0j_1 

      +_1j2 10.4j_4 0.03j17.4 80.4j2 

_1j_2 10.4j4 0.03j_17.4 80.4j_2     

      

     Recall that the absolute value of a real number a is a if a>0, -a if a<0 and 0 if a= 0.  We can interpret this as the 

length from the point representing a in the real number line R to the point representing 0.  We can regard a complex 

number as a point in a plane, the complex plane, with the real part as the horizontal x-coordinate and the imaginary 

part as the vertical y-coordinate.  We can define the absolute value of a complex number a+bi as the distance of that 

point from the origin at (0,0), i.e. it is equal to 

 

                                                                          √ (a2
+b

2) 

 

In ELI, see the following for the absolute value function’s extension to complex numbers: 

 
      |3j4 

5 

      |_3j4 3j_4 0j5 _5 10j_5  

5 5 5 5 11.18033989   

 

     In a similar vein, the value of the signum function of a real number a (1 if a>0, -1 if a<0 and 0 if a= 0) can be 

interpreted as the unit vector from the origin 0 to the point a in R.  And this definition of the signum function can be 

readily extended to complex numbers.  For example, 

 
      *3j4 

0.6j0.8 

      *_3j4 3j_4 0j5 _5 10j_5  

_0.6j0.8 0.6j_0.8 0j1 _1 0.894427191j_0.4472135955 
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     Not all primitive functions on R can be extended to C.  For example, the maximum and minimum functions run 

into problems for complex numbers: 

 
      2j4 _. 3j5 

domain error 

      2j4 _. 3j5 

           ^ 

      2j4 ~. 3j5 

domain error 

      2j4 ~. 3j5 

           ^  

    

3.5 Trigonometric functions 

 

     Generally speaking, trigonometry is the study of triangles, or more precisely the relationship between the angles 

and lengths of sides of a triangle, and trigonometric functions are those involved in these computations.  To simplify 

the situation, people usually concentrate the study of this relationship to an angle on a unit circle, i.e. a circle of 

radius 1, and the trigonometric functions compute the lengths of the sides facing or underlying that angle.  And for 

this reason, the trigonometric functions are also called circle functions in APL and their representation involved the 

character symbol O for which the corresponding ASCII character in ELI is @.  There is only one monadic function @ 

in ELI but several dyadic @ functions as we shall soon see.  

     Let us first try 

      @1 

3.141592654 

      @!5 

3.141592654 6.283185307 9.424777961 12.56637061 15.70796327 

       

We recognize that @1 is π (pi) and @x is just x times π.  We know that for a circle C of radius r, the length of the 

circumference of C is 2πr, the area of C inside its circumference is πr
2 and the volume of a sphere of radius r is 

(4/3)	πr
3.   Clearly, π	is a very important mathematical constant and like the Euler’s number e it is a transcendental 

(hence, an irrational) number, i.e. it is not a solution to a polynomial equation with complex number coefficients.  

How π	was computed in the first place?  Around 1400, the following formula for π	was discovered:   

                                                     π  = (4/1) – (4/3) + (4/5) – (4/7) + . . . 

However, using this formula one has to calculate many terms to get a good approximation of pi.  A better one which 

computes much faster (in terms of getting the number of digits quickly) is the Bailey-Borwein-Plouffe formula: 

                                         π = ∑k=0
∞ [(1/16k)((4/(8k+1)) –(2/(8k+4)) –(1/(8k+5)) –(1/(8k+6))] 

We write a short function to compute the item in this summation (note that k is replaced by the implicit parameter x) 

and make some try run: 

      {f:( %16*.x)*(4%1+8*x)+(_2%4+8*x)+(_1%5+8*x)- %6+8*x} 

f 

      f 0 

3.133333333 

      f 1 

0.008089133089 

      f"0 1 

3.133333333 0.008089133089 
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      +/f"0 1 

3.141422466   

 

Note that we used the each operator " introduced in section 2.6: f"0 1 is f(0) f(1).  We write another short 

function BBN to compute the sum  

                                                                       ∑k=0
n [f(k)] 

with parameter x replacing n and try out on some sample data:  

//!x here is the vector 0 1 .. x-1 

     {BBP:[]IO<-0;+/f"!x}      

BBP 

      BBP 2 

3.141422466        

      BBP 3 

3.14158739 

      BBP 5 

3.141592645 

      BBP 8 

3.141592654 

      @1 

3.141592654 

 

We see that when n reaches 8 the sum calculated from BBP 8 is already indistinguishable from π as far as displayed 

precision of ELI is of concern.   

     In ELI version 0.3, we implemented the system function called printing precision, []PP, which controls the 

maximum number of digits to be displayed after the decimal point ‘.’ of a floating point number.  As we can see 

from the above display that in a clear workspace, the default value of []PP is 10.  But this value of []PP can be 

changed if one would like to see a more precise display (or a shorter display) of a fractional or a real number.  In 

order to see a more accurate picture of how fast the Bailey-Borwein-Plouffe formula computes π we increase []PP to 

15 as  follows: 

      []PP 

10 

      []PP<-15 

      BBP 8 

3.14159265358897 

      @1 

3.14159265358979 

      BBP 9 

3.14159265358975 

      BBP 10 

3.14159265358979   

We then realize that BBP 8 and π differ in the last 3 digits, and only when BBP formula adds up 10 items it gives 

the same number to the 15 decimal place as that of π.  As of late 2013, people have already computed π over 13.3 

trillion (1013) digits.   

     A quite different way to compute π using the so called Monte-Carlo method using ELI can be found in §4.2 of W. 

Ching [2] and interested reader can take a look.  It is based on the fact that the area of a quadrant of the unit circle 

equals to π/4; then one calculates this area by throwing a bunch of random dots into the unit square and   counts the 

ratio of the total number of dots to the number of dots that falling within the quadrant of the unit circle.  That 

method is more understandable intuitively but computationally less efficient than the Bailey-Borwein-Plouffe 

formula we used above.  Of course, the whole point of using the Monte-Carlo method is to solve problems with no 

known formula or analytic solution.  
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     We measure the size of angle AOB with its vertex at a circle of radius 1 by the length x of the arc from A to B on 

the circumference of the circle; this measure x of angle is in radians.  So in radians, the whole circle is of radius 2	π, 

an angle forming a straight line is of radian π and the angle forming by two perpendicular lines is of radian π /2.  

Another measure of angles is by degrees, the corresponding measures in terms of degrees of the above are 3600, 

1800 and 900.   One can easily write a short function to convert the measure of an angle from radians into degrees.   

      {r2d:360*x%@2} 

r2d       

      r2d" @"(%4;%2;7%6;11%4) 

<45 

<90 

<210 

<495 

 

This means that for angles in radians π/4, π/2, 7π/6, 11π/4 the corresponding measure in degrees is 450, 900, 2100, 

495
0.  We note that since (%4;%2;7%6;11%4)is a list, we need to apply the each operator " to @ and this results in 

another list so as to require a second application of " to the function r2d.  If what we feed " to a vector, the double 

application of each " would not be needed.  Indeed, we have a primitive monadic function raze ,. which turns a list 

with all numeric items into a numeric vector (for details of the raze function see section 2.1 of W. Ching [1]):   

           ,.(%4; %2;7%6;11%4)  

0.25 0.5 1.166666667 2.75 

      r2d ,.( %4; %2;7%6;11%4) 

14.32394488 28.64788976 66.8450761 157.5633937 

      r2d @,.(%4; %2;7%6;11%4) 

45 90 210 495     

 

     The main trigonometric functions are sine (sin x), cosine (cos x) and tangent (tan x) functions and in ELI they are 

denoted by the following circle functions: 

                                                   1@x, 2@x, 3@x 

respectively.  If we draw a perpendicular line from point B on the unit circle towards the line OA and intersect it at 

point C, then the value of sin x is the length of BC and the value of cos x is the length of OC while the value of tan x 

is the ratio of the length of BC over that of OC.  

 

Hence, we have the following examples:  

     @0 0.5 1 1.5 2 0.25  

0 1.570796327 3.141592654 4.71238898 6.283185307 0.7853981634 

     1@@0 0.5 1 1.5 2 0.25  
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0 1 0 _1 0 0.7071067812 

     2@@0 0.5 1 1.5 2 0.25  

1 0 _1 0 1 0.7071067812 

     3@@0 1 2 0.25  

0 0 0 1 -1 

 

Conversely, for a right triangle OCB knowing the angle AOB and the length of the side BO we can find the lengths 

of BC and OC.  More generally, for a triangle PQR with the lengths of opposing sides being p, q and r, the Law of 

Cosines in trigonometry states that  

                                                        r2 = p2 + q2 – 2pq cos R     

or in ELI short function form where right argument  x represents angle R: 

   {r:(p;q)<-y;((p*.2)+(q*.2)-2*p*q*2@x)*.0.5} 
r 

      (10;9) r @0.25 

7.329446049 

      (3;4) r @0.5 

5                                                        

          

We see that for R being the right angle (the second case above x=@0.5) we have r2 = p2 + q2 .  Hence, our old 

Pythagorean Theorem is a special case of the Law of Cosines (J. Durbin [3] §35). 

     Conversely, if we know the values of p, q and r, then we can 

find the angle R: 

  cos R = ( p2 + q2 – r2)/2pq   or   R = arccos ( p2 + q2 – r2)/2pq   

where arccos x is the inverse function of cos x, and in ELI it is 

represented by the primitive circle function _2@x.  Hence, we 

have function to calculate this angle R where right argument x 

now represents length r: 

      {R:(p;q)<-y;_2@((p*.2)+(q*.2)-x*.2)%2*p*q} 

R 

      (5;5) R 3 

0.609385308 

 

We note that arcsin x is the inverse function of sin x and in ELI is represented by the circle function _1@x.  Similarly,  

_3@x is the inverse function of 3@x, the tan x function. 

     Finally, the amazing thing is that there is a relationship between π and the mathematical constant e vie complex 

numbers.  This is the famous Euler formula: 

                                                           eix = cos x + i sin x  

In particular, when x=	π, cos x = -1 and sin x = 0 so we have eiΠ = -1 or 

 
     *.0j1*@1 

_1 

 

It certainly is too advanced for us to give a proof of this Euler formula here, but we can test this formula by writing a 

function for the right side and test it on a sample data points.        
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      {c_s:(2@x)+0j1*1@x} 

c_s 

      x 

1 2 3j4 2.8 _10 

      *.0j1*x 

0.5403023059j0.8414709848 _0.4161468365j0.9092974268 _0.01813234507j0.002584703108 

      _0.9422223407j0.3349881502 _0.8390715291j0.5440211109 

      c_s x 

0.5403023059j0.8414709848 _0.4161468365j0.9092974268 _0.01813234507j0.002584703108 

      _0.9422223407j0.3349881502 _0.8390715291j0.5440211109 

 

 

  



 

49 
 

4. Coding with Arrays, Lists and Dictionaries 

4.1 Accessing and changing array and list elements 

 

     We have already introduced array and list as the basic data structures in ELI in § 1.2, but we haven’t touched on 

the topic of how to access elements in an array or a list, and how to change some elements in an array or a list. This 

is done by indexing and indexed assignment, both depend on []IO, the system variable index origin we introduced 

in § 1.4.  Let us assume for the moment that we have []IO=1 and v is a vector of length of n, then v[i] is the i-th 

element of v provided that 1≤i≤n; in case we have []IO=0 then v[i] is the (i+1)-th element of v provided that 0≤i≤n-

1.  We note that []IO=1 is the default in ELI while in the programming language C it is like one always has []IO=0.  

For example,  

      w10 

14 76 46 54 22 5 68 94 39 52       

      w10[2] 

76 

      w10[5] 

22 

      w10[0] 

index error 

      w10[0] 

 ^ 

      []IO<-0 

      w10[2] 

46 

      w10[5] 

5 

      w10[10] 

index error  
      w10[10] 

          ^ 

We see that when the index i is out of bound the system responds with an index error.  We note that we can 

replace the single index i by a vector (even an array) I= i1, …, im as long as each element in I satisfies the bound 

stated above; v[I] then is a vector vI of length m whose k-th element of is v[ik].   For example (still []IO=0), 

 
      w10[0 2 5 8] 

14 46 5 39 

      w10[9 7 7] 

52 94 94 

      w10[1+!5] 

76 46 54 22 5 

 

We see that I can have repeat elements and I can also be an integer expression as long as the resulting elements are 

all within the indexing bounds.   

 

     To change the values of selected elements in a vector v, we do an indexed assignment:  

 

                                                         v[I] <- w,     I= i1, …, im 

 

where I is either a single index or a vector of indices (for simplicity we assume they are all distinct) as before all 

satisfy the bounds and w is either a singleton or a vector of length m; in case m>1 and w is a singleton then all 

elements v[ik] in v are replaced by w, otherwise each v[ik] is replaced by the corresponding element in w.   For 

example (continue with[]IO=0), 
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      w10 

14 76 46 54 22 5 68 94 39 52 

      w10[I]<-w10[I<-0 2 5 8]*10 

      w10 

140 76 460 54 22 50 68 94 390 52 

      w10[!3]<-0 

      w10 

0 0 0 54 22 50 68 94 390 52 

      song<-'from sea to shining sea.' 

      song 

from sea to shining sea. 

      song[5 12 20]<-'S' 

      song 

from Sea to Shining Sea.  

 

Of course, in case any of these indices is out of bound we would get an index error. 

 

     Since a list is also a linear structure like a vector, it can be similarly indexed to get its elements and indexed 

assigned to change some of its elements as illustrated above for vectors.  We can represent the set S5 in § 1.3 in a list 

form as follows, and try to access some of its elements as well as to change some of them: 

 
      S5<-(`Jobs;2011;('Apple Company';'Pixar')) 

      S5 

<`Jobs 

<2011 

<<Apple Company 

 <Pixar 

      S5[0 1] 

<`Jobs 

<2011 

      S5[2] 

<Apple Company 

<Pixar 

      S5[1] 

2011 

      S5[1]<-2011.10.05 

      S5 

<`Jobs 

<2011.10.05 

<<Apple Company 

 <Pixar 

 

We note that S5[1]is no longer a list but a scalar of integer type and it can be replaced by a scalar of type date 

because S5 is a list which can be non-homogeneous while  

 
      song[5 12 20]<-`S 

domain error 

      song[5 12 20]<-`S 

                    ^ 

runs into problem because song is a vector of characters, i.e. a string, but `S is of symbol type.      

 

     For a general multi-dimensional array a, the indices to a are multi-dimensional.  For simplicity, we assume that a 

is a m by n matrix, i.e. a two dimensional array; its indexing then is of the form  

 

                                                      a[I;J],          I= i1, …, im , J= j1, …, jn 
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where indices in I select the rows of matrix a to be taken and those in J select the columns of a to be taken.  Either I 

or J, or both I and J can be singletons.  Moreover, either I or J in [I;J] can be missing, i.e. not present, in the 

indexing expression [I;J]; in this case, it means that all rows of a are chosen (when I is missing) or all columns of a 

are chosen (when J is missing).  We illustrate these rules by following example of a character matrix ([]IO=1): 

 
      alph<-3 8#'abcdefghijklmnopqrstuvwx' 

      alph 

abcdefgh 

ijklmnop 

qrstuvwx 

      alph[3;4] 

t 

      alph[1 3;2+!4] 

cdef 

stuv 

      alph[;2+!4] 

cdef 

klmn 

stuv 

      alph[1 3;] 

abcdefgh 

qrstuvwx 

 

     Indexed assignment to a matrix a follows the same general rule as that for a vector v.  For the indexed assignment  

 

                                          a[I;J] <- w,               I= i1, …, ih , J= j1, …, jk 

 

to be valid both elements in I and J must be within bounds of the dimensions of a, and w is either a singleton or it 

has the same shape as that of a[I;J] (the Cartesian product of the index set I and the index set J with !m substituting 

for missing I and !n substituting for missing J).  Let us continue our play with the array alph:     

 
      alph[3;4]<-'y' 

      alph 

abcdefgh 

ijklmnop 

qrsyuvwx 

      alph[1 3;2+!4]<-2 4#'CDEFSTUV' 

      alph 

abCDEFgh 

ijklmnop 

qrSTUVwx 

      alph[;2+!4]<-3 4#'abcdefghijkl' 

      alph 

ababcdgh 

ijefghop 

qrijklwx 

      alph[1 3;]<-'*' 

      alph 

******** 

ijefghop 

******** 

 

Multi-dimensional indexing does not apply to lists since lists are linear. 
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4.2 Operations on arrays 

 

     We have already seen many primitive functions in ELI which take values of elements in one or two arrays to 

produce another array of the same shape; these are scalar functions and they carry out mathematical operations on 

the array elements.  There are also many other primitive functions in ELI which take array(s) as argument(s) and 

transform them into new arrays possibly with new shapes.  They are part of mixed functions.  They either rearrange 

array elements or take/drop piece of an array.  We start with the dyadic take function l^.a, where the left argument 

l is an integer vector of length r which equals to the rank of a.  For the simple case of a vector a, l is just one 

integer which can be positive, negative or 0.  For example,   

      w10<-14 76 46 54 22 5 68 94 39 52 

      1^.w10 

14 

      #1^.w10 

1       

      w10[1] 

14 

      #w10[1] 

 

      3^.w10 

14 76 46 

      _3^.w10 

94 39 52 

      12^.w10 

14 76 46 54 22 5 68 94 39 52 0 0 

      _12^.w10 

0 0 14 76 46 54 22 5 68 94 39 52 

      ch8<-'abcdefgh' 

      5^.ch8 

abcde 

      _5^.ch8 

defgh 

      _9^.ch8 

 abcdefgh 

      12#w10 

14 76 46 54 22 5 68 94 39 52 14 76 

 

We see that l^.a takes the first l elements of a if l>0, and l^.a takes the last l elements of a if l<0, i.e. takes 

elements from a backwards.   We also see that in the case of overtake, i.e. (|l)>#a resulting in more elements to be 

taken than there are, the additional elements are filled by the typical element of the type of a (the typical element of 

numeric type is 0 while the typical element of character type is a blank ’ ‘).   We also notice the difference  

between reshape where when additional elements are required it reuses elements from a itself in ravel order but in 

overtake where additional elements are the typical element of the type of a.  0^.a results in an empty vector.  Take 

can be regarded as a whole piece indexing either from the beginning of an array or from the end of an array.  

     The dyadic primitive function drop l!.a is the opposite of take in the sense that what l^.a takes from a the l!.a 

drops from a.  For example,     

      1!.w10 

76 46 54 22 5 68 94 39 52 

      3!.w10 

54 22 5 68 94 39 52 

      _3!.w10 

14 76 46 54 22 5 68 

      5!.ch8 
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fgh 

      _5!.ch8 

abc 

 

Again, negative drop means drop from the back; and clearly all over drops result in empty vectors.    

     All these apply to lists as well.  For example, 

      ll<-(3;33 4;0) 

      2^.ll 

<3 

<33 4 

      2!.ll 

<0 

 

We would not getting into the multi-dimensional case of take and drop here.  Interested readers can consult  § 1.8 in 

the ELI Primer [1].    

     The monadic function reverse $a transforms the array a to a reverse position.  We illustrate this by the cases 

where a is a vector:      

      $w10 

52 39 94 68 5 22 54 46 76 14 

      $ch8 

hgfedcba 

      ss<-`John `Jack `Joshua 

      $ss 

`Joshua `Jack `John 

      $2015.04.01+!7 

2015.04.08 2015.04.07 2015.04.06 2015.04.05 2015.04.04 2015.04.03 2015.04.02 

 

     The dyadic function rotate l$a rotate the array a to the right (l>0) or the left (l<0) by the amount |l.  We again 

illustrate these by the cases where a is a vector:      

      w10 

14 76 46 54 22 5 68 94 39 52 

      2$w10 

46 54 22 5 68 94 39 52 14 76 

      _2$w10 

39 52 14 76 46 54 22 5 68 94 

      5$ch8 

fghabcde 

      _5$ch8 

defghabc 

      2$ss 

`Joshua `John `Jack 

      _2$ss 

`Jack `Joshua `John 

      3$2015.04.01+!7 

2015.04.05 2015.04.06 2015.04.07 2015.04.08 2015.04.02 2015.04.03 2015.04.04 

      _3$2015.04.01+!7 

2015.04.06 2015.04.07 2015.04.08 2015.04.02 2015.04.03 2015.04.04 2015.04.05 

      

     And we leave the multi-dimensional case for readers to look up in the Primer [1] where the concept of the axis of 

a reverse or a rotate gets into play with $ indicating the axis is the last axis of an array while $. indicating the axis 

is the first axis of an array.    We note here that the reverse function works on lists while the rotate does not: 
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      ll  

<3 

<33 4 

<0 

      $ll 

<0 

<33 4 

<3 

 

     Other than the dyadic reshape function #, perhaps the most important dyadic primitive function in forming a new 

array (or list) in ELI is the catenate function a,b where a and b can be both scalars, or one scalar one array,  or both 

arrays (with certain constrains on their shapes) or both lists.  We note that the monadic counterpart of catenate, ,b, 

is the ravel function we encountered earlier in §1.2.  Let us first see some examples where a or b is either a scalar or 

a vector: 

      100,200 

100 200 

      100,14 76 46 54 22 5 68 94 39 52 

100 14 76 46 54 22 5 68 94 39 52 

      14 76 46 54 22 5 68 94 39 52,200 

14 76 46 54 22 5 68 94 39 52 200 

      (2015.04.02+!6),2015.04.20+!2 

2015.04.03 2015.04.04 2015.04.05 2015.04.06 2015.04.07 2015.04.08 2015.04.21 2015.04.22 

      '*',ch8,'!!!' 

*abcdefgh!!! 

      `Adam `Bob,ss  

`Adam `Bob `John `Jack `Joshua 

      ll 

<3 

<33 4 

<0 

      ll,('USA';(`president;`Washington `Lincon)) 

<3 

<33 4 

<0 

<USA 

<<`president 

 <`Washington `Lincon 

      ll,10 20 

<3 

<33 4 

<0 

<10 20 

 

We see that a,b simply glue two pieces of data together whether a and b are scalars, one scalar one vector, two 

vectors, one list one vector or two lists.  In the last case, when a is a list while b is a vector, a,b just turns b to be the 

last item in the new list.     

     If one of the argument to the catenate function is an array while the other is a scalar, a,b always works.  For 

example,    

      m 

1  2  3  4 

5  6  7  8 

9 10 11 12 

      m,0 

1  2  3  4 0 

5  6  7  8 0 

9 10 11 12 0 
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      0,m 

0 1  2  3  4 

0 5  6  7  8 

0 9 10 11 12 

      chm<-2 4#ch8 

      chm 

abcd 

efgh 

      chm,'*' 

abcd* 

efgh* 

      chm,.'*' 

abcd 

efgh 

**** 

      '+',.chm,.'*' 

++++ 

abcd 

efgh 

**** 

 

We can clearly see the rule.  We note that a,.b is a function companion to a,b called catenate along the first axis 

while a,b always catenate along the last axis.  a,b (and a,.b) would glue two matrices a and b if they have the 

same heights (resp. the same width).  For example,  

      a 

abcd 

efgh 

      b 

123 

456 

      a,b 

abcd123 

efgh456 

      c<-3 4#'opikvbnmxyz ' 

      c 

opik 

vbnm 

xyz  

      a,.c 

abcd 

efgh 

opik 

vbnm 

xyz 

 

If the widths (resp. heights) of two operands to catenate (resp. catenate along first axis) are not equal it would result 

in a length error:  

     a,c  

length error 

      a,c  

       ^ 

We refer more details of the rules of the catenate functions to  § 1.8 in W. Ching [1].  We note that both array/scalar 

operands to the catenate functions must be of the same type, be they numeric, character or symbolic.    

     The two basic operations in set theory are that of union and intersection of two sets (§ 1.3).  If we restrict our 

discussion of sets to be sets of a particular data type and use vectors (of that data type) to represent sets, then a,b 

can be the basis of implementing set union in ELI.  The problem is that there can be elements belong to both sets so 
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a,b would contain duplicates but for a vector to represent a set each element can only appear once.  To this end, we 

introduce the monadic primitive function unique = in ELI: for any array a, =a returns a vector consisting of all 

unique elements in a.  For example, 

      m 

3 4 5 

5 6 7 

      =m 

3 4 5 6 7 

      =3 4 5 5 6 7 

3 4 5 6 7 

 

With this primitive function, we can write the following function for set union: 

      {union: =x,y} 

union 

      `John `Fred `Peter union `Fred `Peter `Bob `Jack 

`Fred `Peter `Bob `Jack `John       

      'ABC' union 'abc' 

abcABC 

      3 6 9 union !7 

1 2 3 4 5 6 7 9 

      'ac' union `a `c 

domain error 

union[1]  z<-=x,y 

               ^  

 

The last expression runs into problem because the left operand in x,y is of symbol type while the right operand is of 

character type.    

 

4.3 Set membership and linear locations of elements  

 

     We have shown that we can use a vector (of certain data type) to represent a set of elements of a particular data 

type.  In set theory, the most important operation is to query whether an element a is a member of a set S, i.e. check 

whether a� S is true.  Indeed, ELI has a corresponding dyadic primitive function belong to, a?s, where a and s can 

be any scalar or array, for checking membership of a in the set consisting of elements in s.  For example, 

      2?'abc'  

0 

      2?!3 

1 

      2 8?!3 

1 0 

      cm<-3 4#'awy' 

      cm 

awya 

wyaw 

yawy 

      cm?'abc' 

1 0 0 1 

0 0 1 0 

0 1 0 0 

      'abc'?cm 

1 0 0 
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First, we observe that the result of the member of function ? is Boolean, i.e. 0 or 1 representing false or true.  

Second, if the two operands are of different data types then the result is false.  Third, the shape of the result (such as 

#cm?’abc’) is the same as the shape of the left operand (#cm).  For a left array operand a, the result is a scalar 

extension of the result of each element in a with respect to the right operand.    

     We have one more set operation to implement: that the intersection of two sets A∩B; by definition (§ 1.3) this is 

the set consisting of all elements which belong to both A and B.  For simplicity, we use two vectors to represent the 

two sets of concern (we can always apply ravel to an array to get a vector) so we can use the compress function.  We 

have the following function: 

      {intersect:(x?y)/x} 

intersect 

       'aby' intersect =,cm 

ay 

      (3*!3) intersect !10 

3 6 9 

      `sim `joe `mark intersect `ada `jane `joe `kim 

`joe 

      0j1 10 3.5 0.02 100 intersect 2 3.5 0j1 10 

3.5 0j1 10    

 

Note that the reason we need to apply =, to cm is to make the right side of the expression to represent a set where 

not only it needs to be a vector but also each element there can appear only once.  

     Suppose we have a group of passwords psw of unequal lengths and we would like to count the number of digits 

contained in each password.  We’ll do the following with a sample psw: 

      psw<-('king88';'Yoo2x';'Le3sa56';'s967750') 

      {cnt_dgs:+/x?'0123456789'} 

cnt_dgs 

      cnt_dgs" psw 

<2 

<1 

<3 

<6       

      ,.cnt_dgs" psw 

2 1 3 6 

           

We see that the function cnt_dgs first asks which element in x is a digit and then adds up the 1s using plus reduction 

to get a count.  Here the result of the member of function is used immediately as the input to the plus reduction.  Prof. 

Alan Perlis of Yale, the first recipient of the Turing Award coined the word dataflow programming to describe this 

style of programming.  Hence, Ken Iverson in designing APL used single character of a special font to represent a 

high level primitive is not a mere imitation of mathematical notation for aesthetic beauty or an excessive desire for 

succinctness of code, it is to facilitate a dataflow style programming.  Therefore, ELI, following the tradition of APL, 

encourages this dataflow style of programming for programming productivity as well as for clarity of code.  The 

each operator " applies the function cnt_dgs to each element of the list psw; and ,. is the monadic raze function 

which turns a list of elements of homogeneous type into a vector (see § 2.1 of [1]).  We can further apply the avg1 

function of § 2.4 to the last expression above to get the average number of digits appearing in a password in psw:  

      avg1 ,.cnt_dgs" psw 

3 

 

This is a further extension to the previous flow of data stitched together with a group of ELI operations to achieve a 

non-trivial computation. 
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     There is a dyadic primitive function index of, v!a, in ELI which bears certain similarity to the dyadic member of 

function a?v but with the roles of the left and right operands reversed; for a scalar a, instead of asking whether a� v, 

it asks where a is located inside vector v.  The answer depends on []IO .  First if a� v is false, than v!a equals to 

                                                       (#v)+1-[]IO=0 

 

i.e. it equals to the length of v or #v plus 1 depends on whether []IO is 0 or 1, in other words, the index of the last 

element in v plus 1.   On the other hand, if a� v then v!a equals to the index of the first time a appears in v.  For an 

array a, the result of v!a is a scalar extension on the right operand a, i.e. the shape of v!a is the shape of a and each 

element of (v!a)ij equals to v!aij.  For example,  

     `sam `fred `kate !`john 

4 

      []IO<-0 

      `sam `fred `kate !`john 

3 

      'abcdecfgh'!'acw' 

0 2 9 

       []IO<-1 

       'abcdecfgh'!'acw' 

1 3 10 

       'abcdecfgh'!2 4#'acwxfjh' 

1  3 10 10 

7 10  9  1 

      v<-3.2 3.05 _4 1 12 

      v!1 10 3.2 

4 6 1 

      m<-3 3#8 3.2 11 12 _4 

      m 

 8    3.2 11 

12   _4    8 

 3.2 11   12 

      v!m 

6 1 6 

5 3 6 

1 6 5 

 

     The monadic primitive function ?b corresponding to the dyadic member of function a?b is called where; for a 

Boolean vector b, ?b gives the indices of elements in b which are equal to 1.  Hence, ?b depends on []IO.  This 

function is quite useful for replacing a group of elements in a vector by a single new element or number of (+/?b) 

elements.  For example, 

      v<2  

0 0 1 1 0 

      ?v<2  

3 4 

      v[?v<2]<-0 

      v 

3.2 3.05 0 0 12 

      (cv<-'abcdecfgh')?'cef' 

0 0 1 0 1 1 1 0 0 

      ?0 0 1 0 1 1 1 0 0 

3 5 6 7 

      cv[?(cv<-'abcdecfgh')?'cef']<-'x' 

      cv 

abxdxxxgh       

      v[?v<2]<-100 200 

      v 
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3.2 3.05 100 200 12 

 

 

4.4 Outer product and inner product 

 

     There are two more operators in ELI, the outer product and the inner product, which we shall introduce here.   

First, the outer product .: is a monadic operator (like all the operators we introduced so far but takes the argument 

on the right): given a dyadic primitive scalar function f it produces a dyadic derived function .:f  which operates on 

two vector arguments A and B as follows with (A.: f B) being a matrix:   

                                                      (A.:f B)[i;j] �� A[i] f B[j] 

It is easy to see how this works by some simple examples: 

      (!10) .:* !10 

 1  2  3  4  5  6  7  8  9  10 

 2  4  6  8 10 12 14 16 18  20 

 3  6  9 12 15 18 21 24 27  30 

 4  8 12 16 20 24 28 32 36  40 

 5 10 15 20 25 30 35 40 45  50 

 6 12 18 24 30 36 42 48 54  60 

 7 14 21 28 35 42 49 56 63  70 

 8 16 24 32 40 48 56 64 72  80 

 9 18 27 36 45 54 63 72 81  90 

10 20 30 40 50 60 70 80 90 100 

      100 1000 10000 .:% 2 4 5 10 

  50   25   20   10 

 500  250  200  100 

5000 2500 2000 1000 

      2.3 1.7 4.5 9 .:~. 3 2 1.1 0.7 10 

3   2.3 2.3 2.3 10 

3   2   1.7 1.7 10 

4.5 4.5 4.5 4.5 10 

9   9   9   9   10 

      2.3 1.7 4.5 9 .:>= 3 2 1.1 0.7 10 

0 1 1 1 0 

0 0 1 1 0 

1 1 1 1 0 

1 1 1 1 0 

 

The first example is just our old multiplication table.  The second example is a table showing when 3 piles of money 

divide by 4 groups of people in all combinations how much will be each person’s share.  The third example is the 

pairwise maximum of two numeric vectors, and the fourth example is the pairwise comparison (>=) of the same pair 

of numeric vectors.  The arguments A and B to the derived function can be scalar or arrays and one can find the 

general rule in §1.6 of [1] where more interesting examples of outer products can also be found.    

     The inner product operator : is a dyadic operator, it takes two dyadic primitive scalar functions f and g to 

produce a dyadic derived function f:g (note that in APL it is denoted by f.g); for vectors V and W, V f:g W is defined 

to be f/VgW.  For example, let unitpc be the unit price of 5 merchandises and qty be a list of number of items 

bought for each merchandise, then the total payment is given by:   

      unitpc<-2.5 11.2 7 13.05 1.95 

      qty<-4 2 3 1 9 

      unitpc +:* qty 

84 
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V and W can be arrays, in that case, the last dimension of V must be equal to the first dimension of W.  We refer to      

§ 1.8 of [1] for details and additional examples of inner products.  

4.5 Sort functions 

 

     Sorting is likely the most used operation in data processing.  ELI provides two primitive functions, grade up <v 

and grade down >v for sorting numeric and character vectors.  For a numeric vector v, <v produces a vector u of 

indices such that each u[i] is the index of v[i] in the new vector after we sort v into a vector of non-decreasing 

order; in other words, v[<v] is an upward sorted vector.  Similarly, for the grade down function >, v[>v] results in a 

sorted vector of non-increasing order.  For a character vector, the sorting order is the lexicographic order.  For 

example,  

      v 

3.2 3.05 100 200 12 

      <v 

2 1 5 3 4 

      v[<v] 

3.05 3.2 12 100 200      

      cc<-'pohycjkmacl'  

      <cc 

9 5 10 3 6 7 11 8 2 1 4 

      cc[<cc] 

acchjklmopy 

 

     Suppose w is a list of contributions (a pair of amount and name) to a club.  We would like to produce a list of 

names in the order of amounts they contributed starting with the one with the most amount.  We proceed as follows:  

      w<-((3.2;`sam);(3.05;`jack);(100;`mary);(200;`joe);(12;`peter))       

      v1<-^."w  //take the first item of each element in w 

      v1 

<3.2 

<3.05 

<100 

<200 

<12 

<200      

      i<->,.v1  //turn v1 into a vector and apply grade down function 

      i 

4 3 5 1 2 

      w[i] 

<<200 

 <`joe 

<<100 

 <`mary 

<<12 

 <`peter 

<<3.2 

 <`sam 

<<3.05 

 <`jack 

 

We are almost there; we just need to extract symbol names from the sorted list.  To this end we code a short function 

to extract the last element in a list: 

      {last:x[_1+[]IO+#x]} 

last 

      last (200;`joe) 



 

61 
 

`joe 

      last"w[i] 

<`joe 

<`mary 

<`peter 

<`sam 

<`jack 

      ,.last"w[i] 

`joe `mary `peter `sam `jack 

      ,.last"w[>,.^."w] 

`joe `mary `peter `sam `jack 

 

     Here we see the wisdom of providing >v as a set of indices instead of just the sorted vector because the indices 

can be further used to rearrange related items.  The last expression above is a further example of ELI’s dataflow 

style programming or what used to be called one-liners in APL which horrified people not well-versed in APL.  

Once one understands each of the operations in that line as we did going thru in its derivation, its clarity stands out, 

and compare this line with one or two pages of code in a verbose language it is far easy to maintain due to its 

succinctness and precision.   

4.6 Dictionaries  

 

     In ELI, there is a special kind of two items list (d;r)called dictionary: a dictionary D consists of a domain d 

which is a vector or a list, and a range r which is also a vector or a list of equal length as that of d, and a one-to-one 

correspondence set up between the two by the dyadic function map :, d:r.  Once a dictionary D is set up, a pair of 

system functions will return its components: key(D) gives d, the domain, and value(D) gives r in list form (even 

if r is originally a vector), the range of D.  The domain d must be a simple list of unique elements such as a vector of 

symbols, characters or numbers with no duplicates, the range r is a list of the same count as that of d whose items 

can be scalar, array or list of any type.  Elements in d are called keys; for each key k in d the lookup function D[k] 

will yield the corresponding item in r, which can be a scalar, an array or a list in r as the result.  For example: 

      D1<-_1 0 1 2 3:`loeb `greg `carl `kevin `paul  

      D1 

_1| loeb 

0 | greg 

1 | carl 

2 | kevin 

3 | paul 

      D1[_1] 

`loeb 

      D1[0 2] 

<`greg 

<`kevin 

      D2<-'ABCDEF':(2 3;1.2 5;4.1 0;100 92;8 7.5;32 12) 

      D2 

A| 2 3 

B| 1.2 5 

C| 4.1 0 

D| 100 92 

E| 8 7.5 

F| 32 12 

      key(D1) 

_1 0 1 2 3 

      value(D1) 

<`loeb 

<`greg 

<`carl 

<`kevin 
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<`paul 

      key(D2) 

ABCDEF 

      value(D2) 

<2 3 

<1.2 5 

<4.1 0 

<100 92 

<8 7.5 

<32 12 

      D3<-`apple `orange `berry:(('R';0.5);('Y';0.45);3.1 4.2 2.5) 

      D3 

apple | - 

orange| - 

berry | 3.1 4.2 2.5 

      value(D3) 

<<R 

 <0.5 

<<Y 

 <0.45 

<3.1 4.2 2.5 

 

     If we regard a vector or a list of a length n as a map from !n to its elements, then a dictionary D becomes a 

natural extension to vector or list by replacing !n with key(D) as the underlying set of indices.  Dictionaries are 

called hashes in the programming language Perl, and called maps in the popular language Python.  Now let us 

recast the variable w of contributions in the previous section as a dictionary which maps individual names to the 

amount, and rework thru the excise to get the final result (range should be a list, but in this case it acts as a list):       

      W<-`sam `jack `mary `joe `peter:3.2 3.05 100 200 12 

      W 

sam  | 3.2 

jack | 3.05 

mary | 100 

joe  | 200 

peter| 12 

      value(W) 

<3.2 

<3.05 

<100 

<200 

<12 

      >,.value(W) 

4 3 5 1 2 

      key(W) 

`sam `jack `mary `joe `peter 

      (key(W))[>,.value(W)] 

`joe `mary `peter `sam `jack 

       

We see that by using dictionary the coding is much cleaner compared with that in the previous section.  One just 

need to remember that value(D)always returns a list, so we need the raze function ,. to turn it into a vector.  Finally, 

we note that IBM APL2 (successor to the classical APL) has general arrays in lieu of lists but has no dictionaries. 
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5. Defined Functions, Script Files and Standard Library 

5.1 Defined functions and control structures 

 

     We have briefly introduced defined functions in § 1.5 and learned how to write short functions, a special form of 

defined functions.  We describe now how to write a defined function in general.  One starts a defined function by 

typing the two-character symbol @. and ends the definition of a function with a matching @..  The first line of a 

function definition, i.e. the line starting with @., is called the function head and it is of the form 

                                      @.[res<- ][larg] fnam [rarg][;local_var_list]  

The notation [a] above means the item a is optional.  So res<- is present in the function head only if the function 

named fnam returns a result named res, and larg is the variable name of the left parameter if there is one while rarg 

is the name of the right parameter if there is one.  A function needs not return a result and it needs not take any 

argument (i.e. a niladic function); but if it has a left argument then it must have a right argument too.  local_var_list 

is a list of local variables separated by ;.   We’ll explain the meaning of local variables later.  Let us try a simple 

example: a function which picks one element out of a vector (the right argument) according to the left argument: 

            @.z<-la pick1 ra 
        la<-la_.#ra    

        z<-ra[la] 

      @.      

      7 pick1 4 5 10 11 15 

15 

      3 pick1 4 5 10 11 15 

10 

 

Once you type in the function head, ELI interpreter enters the edit mode.  You then enter the function body line by 

line; when you finish you enter a matching @. and the system jumps back to the  original mode, i.e. the interpret 

mode signaling the end of a function definition.  Once a function is properly defined, we can call the function by 

enter the function name, and supplying its argument(s) if it is not niladic.  ELI would then take the values of the 

actual parameters, i.e. the ones we supplied in a call, to the formal parameters, i.e. the larg and rarg in the function 

definition and executing the code in the function body line by line until it reaches the end.  If the function returns a 

result, i.e. res<- is present at the beginning of function head line, then somewhere in the function body, there must 

be an assignment to the result variable res; otherwise it would end up in a value error.  Also, -> is the branch 

symbol ELI inherits from APL which we’ll not use much except that ->0 signals an immediate exit in a function 

execution and ->msg will abort execution with an error message msg.  If k is one of the local variables listed in the 

function head, any use of k will look for its value assigned in the function, otherwise a value error message will 

appear.  Local variables as well as parameters of a defined function will disappear when defined function finishes its 

execution.  See § 3.1 of [1] for rules on accessing non-local variables in a function execution.     

     All examples of ELI code so far are one liners, i.e. an ELI expression stitched together with primitive or defined 

functions, and their execution is strictly from right to left.  We call these simple statements in ELI.  A general 

statement in ELI is built out simple statements with control structures which alternate the execution order of the 

statements involved from a straight line by line execution.  We emphasize here that general statement with control 

structures cannot be entered directly in ELI interpreter mode; they can only appear inside a defined function.  We 

first introduce the if-statement which is of the form: 

                                  if (boolean-expression) statement [else statement] 

 

where statement is one statement or several statements in multiple lines grouped together by a pair {…}of curry   
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brackets.  The else part is optional (depends on what the code intends to do).  We illustrate the use of if-statement 

with the following function which lists days in months with the year as a right parameter since in a leap year the 

month of February has 29 days instead of 28 and this is determined by whether the year can be evenly divided by 4: 

[0]  z<-days_in_month y       //lines after @. 

[1]  z<-`jan`feb`mar`apr`may`jun`jul`aug`sep`oct`nov`dec:12#_ 

[2]  z[`jan`mar`may`jul`aug`oct`dec]<-!31 

[3]  z[`apr`jun`sep`nov]<-!30  

[4]  if (0=4|y) z[`feb]<-!29 

[5]  else z[`feb]<-!28  
           @.z<-days_in_month y  //return from edit mode after @. In line [6] above 
      )fns 

days_in_month 

     days_in_month 2015  

jan| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

feb| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

mar| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

apr| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

may| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

jun| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

jul| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

aug| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

sep| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

oct| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

nov| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

dec| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

     days_in_month 2016  

jan| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

feb| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

mar| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

apr| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

may| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

jun| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

jul| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

aug| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

sep| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

oct| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

nov| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

dec| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

       

We note that the first line in the function is setting up a dictionary whose range is a list of length 12 with empty 

elements.  Actually, we could avoid the use of the if-statement in the function above by replacing it with 

                              z[`feb]<-!28+(0=4|y) 

     The while-statement is of the form 

                        while (boolean-expression) statement 

where statement again may be one statement or several statements grouped together by a pair of {}.  That statement 

is repeatedly executed as long as the boolean-expression inside ()remains to be 1, whose value presumably 

depends on  variables in the statement as well as itself.  We have the following example which prints out a bunch 

of numbers: 

     @.z<-print;n;x  //go to edit mode to enter the function 

      )fns           //after returning from edit mode  

print 

     []CR 'print'    //display the function definition 

z<-print;n                            
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z<-!n<-0                              

while (0.00000001<x<-%1+n<-(n+1)*.2) 

z<-z,x       

    print 

0.5 0.2 0.03846153846 0.001477104874 2.18183405E_6 

 

We note that []CR is the ELI system function which display the canonical representation of a function.  We remark 

that one must make sure that the boolean-expression in a while-statement will eventually become 0 unless one 

intentionally wants to have an infinite loop.  Usually, there is a change of value either in the body of the while- 

statement or as in our case the change is in the boolean-expression itself (when n increases, x is getting smaller 

and smaller).   

     The for-statement is of the following form: 

                               for (idxv:for-format) statement 

where for-format is either a vector for idxv to iterate over in executing the statement or an indication of steps for 

idxv to go thru (we shall illustrate this second case of for-statement in the next section and we refer the case-

statement to § 3.4 in [1]).  Let us look at one example of the for-loop: 

      @.z<-n draw gp;i 

      )fns 

draw 

      []CR 'draw' 

z<-n draw gp;i       

z<-gp:(#gp)#_        

for (i:gp) z[i]<-?.n  

       100 draw `emma `john `jane `jack `karl 

emma| 14 

john| 76 

jane| 46 

jack| 54 

karl| 22 

      100 draw `emma `john `jane `jack `karl 

emma| 5 

john| 68 

jane| 68 

jack| 94 

karl| 39 

 

This function body’s first line set up a dictionary with its domain equal to the right argument gp which is a group of 

people represented as a vector of symbol type and its range is a list of empty slots.  The for-statement followed has i 

as idxv to iterate over gp.  What it does is to randomly draw a number from !n to assign to corresponding slot z[i]. 

We notice that the second function call with the same arguments didn’t produce identical results because each call to 

the roll function ?. changes []RL.  We also notice that in the second call john and jane draw the same number 68.  

This is due to the fact that each call of ?. is independent of each other and hence different draws could get the same 

number just as when repeatedly flip a coin can end up in two heads.  If we change the function to first get five 

numbers by calling (#gp)?.n and then spread the result to the slots then no two would get the same result.  This of 

course depends on n>=#gp. 

5.2 Recursion 

      

     Recursion refers to the fact of a function calling itself in the body of its function definition.  The following series 

is     called Fibonacci sequence (discovered by the Italian mathematician Fibonacci in 1202) where the next number 

is the sum of the previous two numbers: 
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                               0  1  1  2  3  5  8  13  21  34  55  89  144  233  . . .   

If we denote the n-th Fibonacci number in this sequence by Fn then with seeds F0 =0 and F1 =1 we have   

                                                      Fn =  Fn-1 + Fn-2 

We write a recursive function fib n to generate this this sequence up to Fn. as follows:   

[0]  z<-fib n 

[1]  if (n<1)->'n must be greater than 0' 

[2]  if (n=1) z<-0 1 

[3]  else z<-z,+/_2^.z<-fib n-1       

      fib 0 

n must be greater than 0 

      fib 1 

0 1       

      fib 15 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 

 

     The German mathematician and astronomer J. Kepler observed that the ratio of consecutive Fibonacci numbers 

converges to a limit, the golden ratio ϕ (if a>0, b>0 and (a+b)/a = a/b then a/b is the golden ratio which equals 

to(1+5*.0.5) %2=1.61803399):  

                                                           limn→∞  Fn+1% Fn = ϕ       

     Now we turn to a less well-known but more difficult problem: given a non-negative integer n find integers a and 

b such that 

                                                          (3 +√5)n
 = a + b√5 

write a function which takes n as input and (a,b) as output.  Example input/output: 

0 → 1, 0 

1 → 3, 1 

2 → 14, 6 

3 → 72, 32 

4 → 376, 168 

5 → 1968, 880 

6 → 10304, 4608 

7 → 53952, 24128 

8 → 282496, 126336 

9 → 1479168, 661504  

We first observe that 

                                           (3 +√5)n+1
 = (a + b√5)*( 3 +√5) = 3a+5b+(5a+3b) √5 

In other words, if the pair zn=(an,bn) is the solution to input n, then an+1=3a n+5b n and  bn+1=a n+3b n is a solution to 

n+1.  Let v be the 2 element vector zn and m be the matrix  

      m<-2 2#3 5 1 3 

      m 

3 5 

1 3 

 

then the vector m+:*v is a solution for n+1.  So we have the following recursive function to solve the problem: 
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@.z<-Pair n;a;b            

  if (n=0) z<-0 1 0        

  else z<-n,(2 2#3 5 1 3)+:*(Pair n-1)[2 3] 

@.       

      Pair 3 

3 72 32 

 

where the first element of the output is the input while the next two elements are the solution for that input.  In case 

we want to output solutions up to n, we can do the following: 

      Pair" 1||!5 

<1 3 1 

<2 14 6 

<3 72 32 

<4 376 168 

<5 1968 880 

 

where 1||v turns a vector v into a list so the each operator " can be applied to each item of v (see partition function 

|| in § 2.2 of [1]).  We remark here that it is necessary to turn the argument into a list first because the function 

Pair cannot apply to a vector.  We actually can write a non-recursive function to print out solutions to the above 

problem up to n.  The function first lay out an n by 3 matrix, fill the first column with input numbers and calculate 

values in the other two columns row by row using the step-format of the for-statement: 

     []CR 'Pairs'  

z<-Pairs n;a;b                                     

  z<-((n+1),3)#[]IO<-0                             

  z[;0]<-!n+1                                      

  z[0;]<-0 1 0                                     

  for (i:1;n) z[i;1 2]<-(2 2#3 5 1 3)+:*z[i-1;1 2] 

      Pairs 9 

0       1      0 

1       3      1 

2      14      6 

3      72     32 

4     376    168 

5    1968    880 

6   10304   4608 

7   53952  24128 

8  282496 126336 

9 1479168 661504    

 

Non-recursive functions usually run faster than their recursive counterparts and more amenable to parallelization. 

 

5.3 Script files and output variables 

 

     One can enter a bunch of functions and variables into ELI non-interactively by loading a prepared text file.  Such 

files are usually called script files and these are just ordinary text files of type *.txt or of type *.esf.  An ELI script 

file can contain ELI expressions (simple statements), defined functions and variables (i.e. their values).  A script file 

named file1.esf (or file1.txt) properly located (we’ll explain this later) can be loaded into ELI or copied into an active 

ELI workspace by system commands  

    )fload file1 

or  
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    )fcopy file1 

The difference between the two commands is that the first command will clear out the existing workspace and then 

load the content of file1 while the second command will load the content of file1 into an existing workspace.  So 

in the case of fcopy, what already exists in the workspace will remain to be there provided there is no name conflict 

(in that case, the item will be replaced by the item of the same name from file1).  Let us create a text file print.txt in 

C:\csource\ directory (Windows version):  

//2015-6-12 printing loop    

[]IO<-0 

w<-10?.100 

 

@.print x 

  for (i:0;_1+#x) { 

    [)<-'i= ' 

 []<-i 

 [)<-'x[i]= ' 

 []<-x[i] 

  } 

@. 

 

We then click on item Options in the top bar of our ELI window, one item in the draw down menu is Workspace Path; 

click on that we see C:\Program Files (x86)\eli\ws\. This is the default location for ELI script files.  We can either move 

our file there or change the path to C:\csource\.  Next, type 

      )fload print 

      []IO<-0 

      w<-10?.100 

saved 2015.06.12 23:00:16 (gmt-5) 

      []IO 

0 

      )vars 

w 

      )fns 

print 

      []CR 'print' 

print x             

  for (i:0;_1+#x) { 

    [)<-'i= '       

 [)<-i              

 [)<-', x[i]= '       

 []<-x[i]           

  }                 

      print !5 

i= 0, x[i]= 0 

i= 1, x[i]= 1 

i= 2, x[i]= 2 

i= 3, x[i]= 3 

i= 4, x[i]= 4 

      print w 

i= 0, x[i]= 86 

i= 1, x[i]= 24 

i= 2, x[i]= 53 

i= 3, x[i]= 45 

i= 4, x[i]= 74 

i= 5, x[i]= 90 

i= 6, x[i]= 30 

i= 7, x[i]= 29 

i= 8, x[i]= 6 
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i= 9, x[i]= 56 

 

We see that after we )fload the file, the ELI interpreter executes the executable statements in the file, and all the 

variable(s) assigned and function(s) defined in the file have been brought into the current active workspace.  In our 

case,  []IO becomes 0 and we have variable w and function print.  We can use these variables and functions and 

even save the whole thing into a new workspace by using the system commands )wsid and )save (§ 1.5). 

      In ELI interpreter mode, we observe that if a line of code is ending in an assignment (i<-...) then nothing will 

print out; on the other hand, the result of the last expression (such as a single variable) will be printed out.  If we 

want to print out something in a defined function, we use the system variables quad output [] and bare output [) 

by assigning the expression we want to print to one of them as we did in the print function.  The difference 

between [] and [) is that for [] the next output will be in a new line while for [) the next output will continue 

immediately after the previous output as we see in the function print.   

 

     We have wrote a text file as a *.txt script file to be loaded into ELI interpreter.  There is another way to create 

script files and that is to export one from an active workspace by the system command 

    )out file1 

where file1 is the name of the file outputted to the default location of the ELI system we stated earlier.  All the 

values of user defined variables and definitions of user defined functions in the workspace will be there (but no 

executed statements except that of []IO<-0 if []IO has been changed).  For function definitions, they are of the 

same form as in our hand prepared file print; for a variable it is of the form  

&vnam typ rnk shape 

,vnam 

& 

 

where typ rnk shape are the type (‘I’ for integer, ‘E’ for floating point number, ‘C’ for character, ‘S’ for symbol etc. 

see § 4.2 of [1] for more details), rank and shape of variable vnam.and ,vnam are raveled values of vnam. For 

example, if we have a v<-%2 in our workspace, then v and the w in our preceding example are in file of the 

following form: 

 
&v E 0 

0.5 

& 

&w I 1 10 

87 25 54 46 75 91 31 30 7 57 

& 

 

We can also write a variable in this form in a script file to be imported into ELI without an assignment.      

 

5.4 The standard library 

 

     ELI system provides a script file standard.esf which contains many frequently used functions.  Hence,   

      )clear 

      )fcopy standard  
           alphabet<-'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' 
      alphanum<-alphabet,'0123456789'  

saved 2014.06.14 00:28:14 (gmt-5) 
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      )fns 

all_equal   avg        cat        cat1       cutlowerl     cutlowerr     dat2wd     dat2wdc  ddif  

det         diag       dt2d       dt2dat     dt2hms        dt2s          dt2sec     dt2ymd    eye    

find        findj      findv      gmean      index         indexj        intersect  last     less   

lgth        lower      median     mn_dev     mv_max        mv_min        mv_sum     nw_avg nw_max 

nw_min      nw_sum     rand       randm      replac1s      replacac      replace    replic sec2ts 

sort        stddev     substr     sym        take          take1         trace      tril     trim   

triml       trimr      triu       union      upper         xor 

 

will copy in the script file, then a group of pre-defined functions and two variables are available.  One can study the 

file to see the functionalities and restrictions of these pre-defined functions by reading the  comments and inspecting 

their definitions.  We refer examples of their use to § 4.4 in [1]; some of these such as intersect and union we have 

already seen in previous sections.  We note here that to use this library, before copying standard.esf into an 

existing workspace, one must make sure that no existing functions in the original workspace have the same name as 

those in standard.esf.  Otherwise, a name change is required to prevent a loss of user functions. 
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6. Data and Probability 

6.1 studying numeric data 

 

     For a sequence of real numbers v, the mean of v is the sum of v divided by the number of elements in v: 

      {avg: (+/x)%^x} 

avg 

       avg _1 7 

3 

      v<-7 8 9 2 10 9 9 9 9 4 5 6 1 5 6 7 8 6 1 10 

      avg v 

6.55 

 

     The mean (i.e. average) of a set of data gives us a rough idea about the average size of each data point.  But in 

some situations this could be quite misleading.  Suppose we have a village of 500 people which has one billionaire, 

two millionaires and the rest all have 50000 dollars each.  The average wealth of the village is then: 

 
      avg 1000000000,(2#1000000),497#50000 

2053700 

 

and this average (over two millions) is certainly very high but does not truly reflect the wealth of most people in the 

village.  To this end we introduce the median of a sequence of real numbers v, which is a number in v greater or 

equal to half of the numbers in v and less than or equal to half of numbers in v.  In other word, the median of v is a 

number in v which sits in the middle of v when arranged according to size.  How do we calculate the median of a 

sequence of numbers? 

 

     We mentioned at the end of last chapter that there is a script file standard.esf of pre-defined functions as part 

of the ELI distribution, and the function median is included there to calculate the median of a sequence: 

 
          )fcopy standard   

   []CR ‘median’ 

z<-median x;w;m                                                 

z<-((0.5*w[m]+w[m+1]),w[m<-_1+[]IO+~.0.5*#x])[[]IO+2|#w<-x[<x]] 

 

the basic idea is to sort the input vector x into a variable: w<-x[<x]and find the element w[m] in the middle of w if 

the input has odd number of elements (when 2|#w is 1) so []IO+2|#w would choose the second element in the 

expression inside the outmost parenthesis on the left or take the average of the two elements sit in the middle of the 

sorted list w (0.5*w[m]+w[m+1]) when 2|#w is 0.  When apply this function median piece by piece to our example of 

a village with three very rich people, we find the median as follows 

 
      x <-1000000000,(2#1000000),497#50000 
      w<-x[<x] 

      w 

50000 50000 50000 50000 … 50000 1000000 1000000 1000000000       
      #w 

500 

      m<-_1+[]IO+~.0.5*#x 

      m 

250 

      w[m] 

50000 

      w[m+1] 

50000      
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      median x  

50000  

 

     We notice that there is also an avg function in standard.esf which differs from the one we just introduced 

earlier: 

      []CR 'avg' 

z<-avg x        

z<-(+/x)%_1^.#x 

      avg 5 

 

      avg ,5 

5 

      x<-3 4#12?.100 

      x 

14 76 46 54 

22  5 68 94 

39 52 84  4 

      avg x 

47.5 47.25 44.75 

 

The difference is that if the input is a scalar it gives out an empty vector as a result while our old avg will give the 

input as a result.  On the other hand, our old avg can only take vectors as inputs while the new avg from standard 

library can take matrix inputs and gives the averages on each row as the result. 

     The variance of a sequence v is defined to be the average of the squared difference from the mean of v.  The 

standard deviation (denoted by the symbol σ) of a sequence v is simply the square root of the variance.  It measures 

how spread out the numbers in v are (from the average of v), it is the function stddev in the standard library: 

           z<-stddev x                    
z<-((+/(x-avg x)*.2)%#,x)*.0.5 

      x<-7 8 9 2 10 9 9 9 9 4 5 6 1 5 6 7 8 6 1 10 

      stddev x 

2.765411362     

 

     For a sequence of numbers v, the mode of v is the number in v which appears most often in v.  For example, if v = 

2 3 2 1 3 5 8 3, then the mode of v is 3.  How to find the mode of a numeric sequence x?  We first apply the monadic 

function unique = to it to get all unique elements u of x and then form the outer product u.:=x.  For example, 

     x<-7 8 9 2 10 9 9 9 9 4 5 6 1 5 6 7 8 6 1 10       
     u<-=x 

     u 

7 8 9 2 10 4 5 6 1 

      u.:=x 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

      +/u.:=x 

2 2 5 1 2 1 2 3 2 
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The resulting outer product is a m by n Boolean matrix, where m is the length of u, n is the length of x and each 

row’s 1s indicating places in x equal to that element in u; to sum up each row is just counting the frequency of 

occurrence of each element in u.  We store this into a variable f and take its maximum and ask where the maximum 

occurs in f and finally use this position of figure out the corresponding element in u which is the mode of x: 

      ~./f<-+/u.:=x 

5 

      ?f=~./f 

3 

      u[?f=~./f] 

9 

 

To combine the computations we’ve done so far and to store it into a code segment which we can reuse later, we 

write a short function; we name this monadic function mode: 

      {mode: u[?f=~./f<-+/(u<-=x).:=x]} 

mode 

      mode x 

9 

 

     Given a sequence of numbers such as x above, we would like to construct a frequency table with unique elements 

of x in ascending order in one column and the corresponding frequencies in another column.  We have the following 

short function: 

      {fqtb: f<-+/(u<-=x).:=x;a<-u[i<-<u];b<-f[i];([] Number<-a;Frequency<-b)} 

fqtb 

      fqtb x 

Number Frequency 

---------------- 

1      2         

2      1         

4      1         

5      2         

6      3         

7      2         

8      2         

9      5         

10     2    

      

a is the sorted list of u in ascending order while b is the corresponding list of frequencies; the last statement in the 

function definition is a way to produce a table in ELI which is explained in § 5.2 in [1], the ELI Primer. 

6.2 basic combinatorics 

 

     Let Sn be a finite set of n elements.  A r-permutation Pr,n is an ordered r-tuple (a1, a2,…, ar) of r distinct elements 

from Sn (to make it simple, we can assume that Sn is a set of numbers, then a r-permutation of Sn is just a vector v of 

distinct elements from Sn of length r), r≤n, for a positive integers r and n.  Giving a r, r≤n, how many r-permutations 

Pr,n are there for Sn?  For the first element a1 of Pr,n, we have n items to choose from Sn, for the second element a2 of 

Pr,n, we have n-1 items to choose from  what is left in Sn, and for the last element ar we have (n-r)+1 choices.  Hence, 

we have 

                                                  P(n;r) =  n*(n-1)*…*((n-r)+1)                                                                                (1) 

distinct choices to form a Pr,n.   In other word, the formula (1) above gives the number of distinct r-permutations of 

Sn.  In particular, we have  
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                                                      P(n;n) =  n*(n-1)*…*1                                                                                         (2)                                                                                

We note that (1) can rewritten as 

                                                       P(n;r) =  P(n;n)%P(n-r;n-r)                                                                                    (3)                                     

there P(n;k) are k-permutations of Sn, k=r, n, n-r. 

     Mathematically, the function n→ P(n;n) is call the factorial of n (usually denoted by n!).  In ELI, this factorial 

function is denoted by a slightly twisted (monadic) symbol |.n (remember!n is iota of n in ELI): 

      |.0 

1 

      |.3 

6 

      |.10 

3628800 

      (|.10)%|.7 

720 

      {pnr0:(|.y)%|.y-x} 

Pnr0 

       10 pnr0 3 

720 

 

So we have the factorial function |.n and the short function n pnr0 r to calculate P(n;r).  However, there is a 

problem for the function pnr0 when the arguments are large because the factorial function grows very quickly.  To 

overcome this difficulty we write a new function which uses formula (1) instead of (3):  

 
      {pnr:*/(-x)^.!y} 

pnr 

      100 pnr 3 

970200 

 

     A r-subset of a finite set is a subset {a1, a2,…, ar} of r distinct elements of Sn.  The difference between a r-subset 

and a r-permutation of Sn is that for a r-subset the order of elements doesn’t matter.  *The difference between a set S 

of numbers {a1, a2,…, an} and a vector v=(a1, a2,…, an)  is that in S the order of elements doesn’t matter, and we can 

regard v as a particular representation of S but different from S conceptually.  How many r-subsets of Sn are there 

with r≤n?  We know there are r-permutations P(n;r) of Sn, and we know there are r-permutations P(r;r) of Sr.  Hence, 

the answer is P(n;r)%P(r;r).  Let us put in a short function: 

  
       {bin:(|.y)%(|.y-x)*|.x} 

bin 

       10 bin 3 

120 

 

Actually, ELI has a dyadic primitive function binomial x|.y to do exactly that with r on the left-side:     

 
      3|.10 

120       

      7|.10 

120 

      4|.11 

330 

 

This function is called binomial because it is the binomial coefficient ��
�	of the expansion of the polynomial (x+a)n.: 
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     The difference of an r-permutation and an r-subset (a combination) can be illustrated by the following problem: 

there are two ways to form a committee of three people out of a group of 100 people; in case i) everyone in the 

committee are equal, in case ii) there is a chairman, a treasury and a secretary of the committee.  In case (ii) then 

answer is P(100;3) and as we see above the answer is 970200.  In the second case, the answer is  

 
          3|.100 
161700 

  

     A r-sample of a set Sn of n elements is an ordered r-tuple (a1, a2,…, ar) of r not necessarily distinct elements from 

Sn.  How many r-samples of Sn are there?  A similar argument as that for the number P(n;r) applies except that at  

each stage we have n choices instead of a decreasing number of choices.  Hence, the number of r-samples of Sn is nr.  

We note that there is no requirement of r≤n as in r-permutation case since ai and aj can be the same.   

 

     Let Sn be {0,1}, i.e. n=2, and then a r-sample of Sn is just a bit-string of length r.  Recall that the roll function ?.n 

which randomly picks an integer from !n in § 1.4.  So, if we set []IO=0, then ?.!2 will randomly pick a bit and an 

r-sample of Sn can be generated and counting the number of its on-bits as follows: 

 
      []IO<-0 

      ?.32#2 

0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 

      +/0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 

18 

 

We can designate 1 as the head and 0 as the tail of a coin and regard an r-sample of Sn as the result of tossing a coin 

r-times.  We know that the total number of heads turned up after you throw a coin 1000 times is close to 500.  What 

is the probability of this total number being exactly 500?  We can look at a thousand coin-tossing as a set of 1000 

items and we are counting the number of ways to pick 500 items out of it, and then divide it by the size of the space 

of all outcomes which is about 2.5%: 

 
      (500|.1000)%2*.1000 

0.02522501818     

 

     Let A be a set {a1, a2,…, an} of n elements representing n different ways, and let B be a set {b1, b2,…, bm} of m 

elements.  The Cartesian product A•B (A cross B) is defined to be to be the set of all (ai, bj) ways with ai in A and bj 

in B.  The multiplication principle then says A cross B has n*m elements.  This concept of product A•B of two finite 

sets can easily be extended to product A1 • A2 •…•Ak of multiple finite sets A1, A2,…,Ak of sizes n1, n2,…,nk. The 

extended multiplication principle then says the size of the product A1 • A2 •…•Ak is n1* n2*…*nk. 

 

     Recall what we stated in § 1.1 that in ELI, as in many other programming languages, a variable name or a 

function name must start with a letter, then followed by a digit or a letter or the character ‘_’ but that the under-bar 

character cannot be the last character of a name.  How many possible (variable/function) names of 3 characters 

c1c2c3 are there in ELI?  Let A be the set of letters, upper case and lower case together; A has 52 elements.  Let B be 

the set of letters and digits; B has 62 elements.  Finally, let C= B∪{‘_’}.  The set of all legal 3-character names in 

ELI is the set  

 

                                                  N3= { c1c2c3 | c1�A, c2�C, c3�B}  
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This is the product A•C•B of A, C and B.  Hence, N3 has 52*63*62= 203112 elements by the multiplication principle. 

 

     Let A be a set {a1, a2,…, an} of n elements representing n different ways, and let B be a set {b1, b2,…, bm} of m 

elements; assume A∩B={}, . i.e. A and B are disjoint. The sum A+B (A or B) is defined to be to be the set of all ck 

ways with either ck=ai in A or ck=bj in B.  The addition principle then says (A or B) has n+m elements.  This concept 

of sum A+B of two disjoint finite sets can easily be extended to sum A1+ A2+…+Ak of multiple mutually disjoint 

finite sets A1, A2,…,Ak of sizes n1, n2,…,nk, Aj∩Ai={} if j≠i. The extended addition principle then says the size of the 

sum is n1+ n2+…+nk. 

 

     Let N be the set of all legal names of a variable/function in ELI up to 3 characters.  Then N is the sum of N1 (the 

set of names with one character only), N2 (the set of names with two characters) and N3.  The sizes of  N1,  N2 and N3 

are 52, 52*62 and 203112 respectively.  The three sets N1,  N2 and N3 are clearly mutual disjoint.  Hence, the size of 

their sum N is 52+ 3224+203112=206388. 

 

     Let U be the set of totality of all possible ways under consideration and it is of size n; and let A be a subset of U 

of size m.  The set ~A (not A) is defined to be the set of those elements in U which are not in A.  The complement 

principle then says that the size of ~A is n-m. 

 

     How many possible variable names in ELI up to 3 characters are there which do not contain a ‘_’ character?  The 

set U in this case is the set N we studied above, its size is 206388.  The set A is this case is the set of names in N with 

a character ‘_’.  Since ‘_’ cannot appear as the first or the last character of a name, A is a subset of N3 and it is of 

size 52*1*62= 3224 because the middle character is fixed with one choice only.  Hence, the answer is the size of ~A 

which is 206388-3224=203164. 

6.3 elementary probability theory 

 

     Probability theory has its roots in attempts to analyze games of chance such as in gambling (a game of chance is 

a game whose outcome is strongly influenced by a randomizing device, upon which contestants may bet on money) 

by mathematicians from 16th century on.  But its precise description was first given by the French mathematician 

Pierre-Simon Laplace in 1795.   Today, techniques based on probability theory are at the core of Big Data analysis 

and Artificial Intelligence.    

     An experiment is an occurrence whose outcome is subject to chance such as flipping a coin or rolling a die.  It 

has a sample space: the set S of all possible outcomes.  For example, the sample space of flipping a coin is {0, 1} 

where 0 represents a tail while 1 represents a head; and D={1,2,3,4,5,6} (the numbers on a die’s faces) in the case of 

throwing a die.  If our experiment is tossing a coin 1000 times, then the sample space B is the set of all Boolean 

strings of length 1000.  A sample space needs not to be discrete.  For example, our experiment can be picking a 

point from the unit interval [0,1], i.e. set of real numbers x with 0≤x≤1, and the sample space is  [0,1].  A sample 

space must have some “size”.  For a discrete finite sample space, this is just the number of elements in S.  For 

example, the size of B is 21000.  For a non-discrete sample space the size is some kind of measure.  For example, the 

size of [0,1] is 1, i.e. the length of the interval. 

     An event E is one possible outcome of the experiment.  For example, in the case of rolling a die, one event, E1, is 

that the face number of die showing up is an even number.  In the case of a point in a unit interval, one event E2 is 

that x≤0.5.  One can look at an event E as a particular subset of the sample space S, i.e. E⊂S. The probability of an 

event E is the ratio of its “size” to that of the sample space S which we denote by p(E).  In the cases E1 and E2 above, 

we have both p(Ei)= 0.5, i=1,2.   
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     Let A and B are two events of a sample space S, then the probability of the event A∩B, the intersection of A and B 

may or may not be the following (see section below) in contrast to the Cartesian product A•B case in the preceding 

section 

                                                          p(A∩B)= p(A)* p(B)                                                                                           (4) 

On the other hand, for two disjoint events A and B (i.e. A∩B ={}) of a sample space S, then the probability of the 

event A∪B, the union of  A and B is 

                                                          p(A∪B)= p(A)+ p(B)                                                                                            (5) 

And finally, for an event A of a sample space S, let S-A or A’ be the event consisting of all occurrences in S not in A, 

i.e. the complement of A, we have its probability as follows:  

                                                           p(A’)= 1- p(A)                                                                                                     (6) 

We can see that formulae (4)-(6) of combining probabilities of events are just a reformulation of the multiplication* 

principle, the addition principle and the complement principle in basic combinatorics in the previous section.  Indeed, 

elementary probability theory is a set-theoretic extension of intuitive ideas developed in basic combinatorics.  

     What is the probability of the event D that when you throw two dice and the sum of the resulting face numbers is 

exactly 10?  If you get a 1, 2 or 3 in your first die, you would not end in a sum of 10 no matter what number turns up 

in your second die.  Let us denote the event that the first throw resulting in number 4 by A4, and let A5 and A6 be the 

events associated with the face numbers 5 and 6.  Similarly, we define B4, B5 and B6 to be the events that the number 

turns in the second die is 4, 5 and 6 respectively.  The event A4∩ B6 is part of D, i.e. you get a 4 and a 6 in your two 

throws.  We assume the dice is not rigged so each of the six numbers has an equal chance of turning up.  Hence, 

p(C)=1/6 for C to be any of the Ai or Bj here and p(A4∩ B6)=1/36.  Therefore, 

                p(D)= p((A4∩ B6)∪(A5∩ B5)∪(A6∩ B4))= p(A4∩ B6)+ p(A4∩ B6)+ p(A4∩ B6)= 3*(1/36)=1/12   

Note that each Ai is disjoint from Aj for i≠j (you cannot turn up two numbers in the same die.  Hence the components 

in the union above are mutually disjoint, so formula (5) applies.  

     In a class of 24 students, what is the probability of two students having the same birthday?  First let us make a 

simplifying assumption that there is no one born on February 29 of a leap year.  So, there are 365 possible birthdays 

for each student and the size of our sample space is 36524.  Let us denote A to be the event that no two students have 

the same birthday, and then ask what is p(A)?  For that to happen, the first student can choose any day to be his/her 

birthday, for the second student he/she has 356-1 days to choose from, the probability p2 of the event of two students 

have different birthdays is p2=(365-1) %365, the probability p3 of 3 students have distinct birthdays is p2*(365-2)/365,   

and the probability p24 of all 24 students have distinct birthdays is p(A)= p23*(365-23) %365;  and the probability of 

two students in a class of 24 having the same birthday is p(A’)= 1-p(A).  Put the detail calculation in ELI as follows: 

      24^.$!365 

365 364 363 362 361 360 359 358 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 

      (24^.$!365)%365 

1 0.99726027 0.994520548 0.99178082 0.989041096 0.98630137 0.9835616438 0.9808219178 0.9780821918 

      0.9753424658 0.9726027397 0.9698630137 0.9671232877 0.9643835616 0.9616438356 0.9589041096 

      0.9561643836 0.9534246575 0.9506849315 0.9479452055 0.9452054795 0.9424657534 0.9397260274 

      0.9369863014 

      */(24^.$!365)%365 

0.4616557421 

      1-*/(24^.$!365)%365 

0.5383442579  
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The last expression is by formula (6) for p(A’).  We can put this calculation into a short function with the number of 

students, or people in a party as the right parameter x: 

      {p_samebdat:1-*/(x^.$!365)%365} 

p_samebdat 

      p_samebdat 24 

0.5383442579 

      p_samebdat 50 

0.9703735796 

 

We see that while for a group of 24 people the probability of two persons having the same birthday is a little more 

than half, for a group of 50 people, you are very likely to encounter people in the party having the same birthday. 

          We can now put our discussion so far in a more formal setting:  A probability space is a mathematical triplet 

(S, F, p) where 

1. S is a sample space of all possible outcomes of an experiment. 

2. F is a collection of subsets of S called events each of which containing zero or more outcomes. 

3. an assignment of probabilities to the events, i.e. a real-valued function p from F to [0,1]. 

 

For a finite (discrete) set S, F usually is just the collection of all subsets of S and the p is a ratio of the size of E in F 

relative to the size S as in many examples we have studied.  In more general case, the “size” in question is replaced  

by something called a measure on S, and F is a σ–algebra (a collection F of subsets of S with the following three 

properties: i) the empty set {} and S are in F, ii) if E1 and E2 are in F then E1∩E2 and E1∪E2 are in F too, iii) all 

events in F are measurable).  An example is S= [0,1] and  F be the set of all (Lebesgue-)measurable subsets E of 

[0,1], and p of E is just the measure of E.        

     A random variable v on sample space S (of a probability space (S, F, p)) is a real valued function on S whose 

value is subject to valuations due to chance.  For example, the top face value f when rolling a die is a random 

variable on the sample space {1, 2, 3, 4, 5, 6}.  In general, S needs not be a finite set.  For example, 

                                                           f(y) = p({x| x2≤y, x[0,1]})  

is a random variable on the unit interval [0,1].    

     The mathematical expectation E of a random variable v, or just expectation of v or the expected value of v, on a 

probability space (S, F, p) is the “average” value of v on S.  For a discrete set S, this is defined by 

                                                                E(v)= ∑x�Sv(x)*p(x)                                                                                   (7) 

For example, the expected value of the top face (of a die) function f is  

+/(!6)%6 

3.5    

 

because each p(x) is 1/6.  This says that on average, you can expect a top face value of 3.5 after many rolls.  For a 

random variable v on non-discrete probability space (S, F, p) the expectation of v is calculated as an integral over S 

against a measure µ representing p with the summation ∑x�S replaced by an integral sign over S and p(x) replaced by 

xdx.  We are not getting into details here since we have not explored the subject of calculus in this tutorial.  Overall, 

we see that the expect value of a random variable on a sample space S as a “weighted” probability, or non-uniformly 

distributed probability on S. 
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     The concept of expectation actually preceded that of probability as it relates to gambling.  An example from the 

Dutch mathematician C. Huygens in the use of his concept of expectation is the following game: if two dice are 

rolled.  If a seven (sum of two top faces) is thrown, play X gets amount a; if a ten is thrown player Y gets amount b; 

and in any other cases, the amount a is divided evenly between the two players.  What are amounts players X and Y 

expected to win? We can regard X and Y as two random variables on sample space S of two dice’s face values 

{(x,y)} which is of size 36.  The size of the event A of a seven is twice that of {(1, 6), (2, 5), (3, 4)}, i.e. 6, and event 

B is {(4,6), (6,4), (5,5)} of size 3, and the event C of outcomes neither in A or B is of size 36-(6+3)= 27.  Hence, the 

expected values for X and Y are 

                                                           E(X)= (6a+27*0.5*a)/36 = 13a/36                                                                 (8) 

                                                           E(Y)= (3b+27*0.5*a)/36 = b/12+9a/24                                                          (9) 

 

If a=b, then E(Y) is 11a/24, player Y has expected advantage over player X as 0.4583 vs 0.3611.  In (8) and (9), we 

use the fact that if {E1, E2, …,En} is partition of S into events, i.e. Ek are mutually disjoint and their union is S, and 

that on each Ek the value of the random variable v is ak, k=1,…,n, then formula (7) becomes 

                                                           E(v)= a1*p(E1)+ a2*p(E2)+…+ an*p(En)                                                         (10) 

6.4 conditional probability 

 

      For a probability space (S, F, p) and two events A and B in S, we define the conditional probability of A given B, 

denoted by p(A|B), to be a measure of the probability of an event A under the assumption that another event B has 

occurred, or the likelihood that an experiment is in event A given that another event B has already happened.  Let the 

event B’ be complement of the event B in S.  Clearly, B and B’ are mutually exclusive and any experiment is either 

in B or in B’.  Hence, 

                                               p(A) = p(A|B) p(B) + p(A|B’) p(B’)                                                                                 (1) 

If we replace A above by the event A∩B, i.e. the collection of experiments each of which is both in A and B, we have 

                                                      p(A∩B) = p(A|B) p(B)                                                                                              (2) 

since p(A∩B |B)= p(A|B) and p(A∩B |B’)=0.  If p(B)> 0, (2) can be rewritten as  

                                                      p(A|B)  = p(A∩B)%%%%p(B)                                                                                            (3) 

And if we switch the role of A in (2) with that of B, we have 

                                                       p(A∩B) = p(B|A) p(A)                                                                                             (4) 

     Let us have an example.  Suppose the probability of a person in a small town in upper state New York who has 

visited New York City (event B) is 70%, that who has visited Boston (event A) is 55% and that who has visited both 

cities (event A∩B) is 45%.  If a randomly selected person in that town has already visited New York City, what is 

the likelihood that this person has visited Boston as well?  According to (3), we have p(A|B) = 0.45/0.7= 0.642857.      

     Two events A and B in S are statistically independent if both 

                                               p(A|B) = p(A)        and        p(B|A) = p(B)                                                                       (5) 

are true.  In that case, we then have 

                                                        p(A∩B) = p(A) p(B)                                                                                               (6) 
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This is a formalization of the important concept in probability that events A and B do not influence each other, or the 

old idea that in tossing a coin several times, the coin never remembers: let A be the event that the first toss of a coin 

results in a head and B be the event that the second toss of the same coin results in a tail.  Then, clearly both sides of 

(6) above equal to ¼.  On the other hand, suppose our sample space is that of rolling a pair of dice; A is the event 

that the first die turns up a 2 and B is the event that the sum of resulting tops of the two dice is 3.  We have p(A)=1/6, 

B ={(1,2), (2,1)} and p(B)=1/18 and A∩B ={(2,1)}, so the left side of (6) above is 1/36 while the right side is 1/108.  

We note that p(A|B), the likelihood of A occurs given that B already has occurred (so only 1 or 2 can turn up for the 

first die) is ½, i.e. (2) above holds.  Hence these two events are not statistically independent, in other word, event A 

is influenced by event B. 

     When we combine the formulae (2) and (4) above, we get the Bayes’ theorem: 

                                                       p(A|B) = p(B|A) p(A)%%%% p(B)                                                                                     (7) 

                                                       p(B|A) = p(A|B) p(B)%%%% p(A)                                                                                   (7a) 

 

Bayes’ theorem is an application of conditional probability formula to successive events in order to find the 

likelihood of a particular cause having brought about a particular result.  It is an important tool used in statistical 

inference.  The theorem was first formulated by Rev. Thomas Bayes and further developed by S. Laplace.  

     A simple example of an application of this theorem is the following:  Suppose our sample space in the population 

in U.S., 0.2% of the people in U.S. are 65 years old (event A) and 1% of the population has cancer (event B); we also 

know that the probability of a person with cancer who happens to be 65 years old is 0.5% (p(B|A)).  What is the 

chance of a 65 year old person in U.S. having cancer, i.e. (p(A|B))?  According to (7), we have 

      (0.005*0.01)%0.002 

0.025 

 

i.e. 2.5%, a bit more than doubling the chance of having cancer in U.S. general population. 

     Many times, we do not know directly the denominator in formula (7) directly but do have other pieces of 

information to get to it.  Suppose B1, B2 and B3 are mutually disjoint and their union is the sample space S, in other 

word, {B1, B2, B3} is a partition of S.  With the same argument as that in deriving formula (1) with B1 replacing B etc. 

we have the following:    

                                     p(A) = p(A|B1) p(B1) + p(A|B2) p(B2) + p(A|B3) p(B3)                                                            (8) 

Hence, we can use the right-hand side of (8) to replace p(A) in (7a) if these information are available. 

     Suppose we find in a study that 30%, 50% and 20% of families in a nation (B) are of low-income, middle-income 

and affluent respectively (B1, B2, B3).  Further, we call a kid tall (A) if he/she is of height at least 6 feet.  We also 

know respectively that 4%, 5% and 3% of kids from low-income, middle-income and affluent families are tall.  

What is the probability of a tall kid being from affluent family?  Substituting B3 for B in (7a), we have  

                                                      p(B3|A) = p(B3|A) p(B3)%%%% p(A)                                                                                 (9) 

Combining (9) with (8) we have the following computation for p(B3|A): 

      pBs<-0.3 0.5 0.2  

      pA_Bs<-0.04 0.05 0.03 

      (pA_Bs)[3]*pBs[3] 

0.006 

      (pA_Bs)[3]*pBs[3]%+/pA_Bs*pBs 

0.1395348837 
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This example leads us to the following general form of the Bayes’ theorem: 

     Let {B1, B2, …, Bn} be a partition of the sample space S of an experiment.  If for i = 1,2,…,n, p(Bi)>0, then for 

any event A of S with p(A)>0 

                             p(Bk|A) = p(Bk|A) p(Bk)%%%%( p(A|B1) p(B1) + p(A|B2) p(B2) +…+ p(A|Bn) p(Bn))                            (10) 

     In statistical applications of (10), B1, B2, …, Bn are called hypotheses, p(Bi|A) is called prior probability of  Bi, and 

the conditional probability p(Bi|A) is called posterior probability of B, after the event occurrence of A. 
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